1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 #include <linux/usb/composite.h> 31 32 33 #include "core.h" 34 #include "hw.h" 35 36 /* conversion functions */ 37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 38 { 39 return container_of(req, struct dwc2_hsotg_req, req); 40 } 41 42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 43 { 44 return container_of(ep, struct dwc2_hsotg_ep, ep); 45 } 46 47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 48 { 49 return container_of(gadget, struct dwc2_hsotg, gadget); 50 } 51 52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 53 { 54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 55 } 56 57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 58 { 59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 60 } 61 62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 63 u32 ep_index, u32 dir_in) 64 { 65 if (dir_in) 66 return hsotg->eps_in[ep_index]; 67 else 68 return hsotg->eps_out[ep_index]; 69 } 70 71 /* forward declaration of functions */ 72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 73 74 /** 75 * using_dma - return the DMA status of the driver. 76 * @hsotg: The driver state. 77 * 78 * Return true if we're using DMA. 79 * 80 * Currently, we have the DMA support code worked into everywhere 81 * that needs it, but the AMBA DMA implementation in the hardware can 82 * only DMA from 32bit aligned addresses. This means that gadgets such 83 * as the CDC Ethernet cannot work as they often pass packets which are 84 * not 32bit aligned. 85 * 86 * Unfortunately the choice to use DMA or not is global to the controller 87 * and seems to be only settable when the controller is being put through 88 * a core reset. This means we either need to fix the gadgets to take 89 * account of DMA alignment, or add bounce buffers (yuerk). 90 * 91 * g_using_dma is set depending on dts flag. 92 */ 93 static inline bool using_dma(struct dwc2_hsotg *hsotg) 94 { 95 return hsotg->params.g_dma; 96 } 97 98 /* 99 * using_desc_dma - return the descriptor DMA status of the driver. 100 * @hsotg: The driver state. 101 * 102 * Return true if we're using descriptor DMA. 103 */ 104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 105 { 106 return hsotg->params.g_dma_desc; 107 } 108 109 /** 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 111 * @hs_ep: The endpoint 112 * 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 115 */ 116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 117 { 118 hs_ep->target_frame += hs_ep->interval; 119 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 120 hs_ep->frame_overrun = true; 121 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 122 } else { 123 hs_ep->frame_overrun = false; 124 } 125 } 126 127 /** 128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 129 * by one. 130 * @hs_ep: The endpoint. 131 * 132 * This function used in service interval based scheduling flow to calculate 133 * descriptor frame number filed value. For service interval mode frame 134 * number in descriptor should point to last (u)frame in the interval. 135 * 136 */ 137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 138 { 139 if (hs_ep->target_frame) 140 hs_ep->target_frame -= 1; 141 else 142 hs_ep->target_frame = DSTS_SOFFN_LIMIT; 143 } 144 145 /** 146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 147 * @hsotg: The device state 148 * @ints: A bitmask of the interrupts to enable 149 */ 150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 151 { 152 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 153 u32 new_gsintmsk; 154 155 new_gsintmsk = gsintmsk | ints; 156 157 if (new_gsintmsk != gsintmsk) { 158 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 159 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 160 } 161 } 162 163 /** 164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 165 * @hsotg: The device state 166 * @ints: A bitmask of the interrupts to enable 167 */ 168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 169 { 170 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 171 u32 new_gsintmsk; 172 173 new_gsintmsk = gsintmsk & ~ints; 174 175 if (new_gsintmsk != gsintmsk) 176 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 177 } 178 179 /** 180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 181 * @hsotg: The device state 182 * @ep: The endpoint index 183 * @dir_in: True if direction is in. 184 * @en: The enable value, true to enable 185 * 186 * Set or clear the mask for an individual endpoint's interrupt 187 * request. 188 */ 189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 190 unsigned int ep, unsigned int dir_in, 191 unsigned int en) 192 { 193 unsigned long flags; 194 u32 bit = 1 << ep; 195 u32 daint; 196 197 if (!dir_in) 198 bit <<= 16; 199 200 local_irq_save(flags); 201 daint = dwc2_readl(hsotg, DAINTMSK); 202 if (en) 203 daint |= bit; 204 else 205 daint &= ~bit; 206 dwc2_writel(hsotg, daint, DAINTMSK); 207 local_irq_restore(flags); 208 } 209 210 /** 211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 212 * 213 * @hsotg: Programming view of the DWC_otg controller 214 */ 215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 216 { 217 if (hsotg->hw_params.en_multiple_tx_fifo) 218 /* In dedicated FIFO mode we need count of IN EPs */ 219 return hsotg->hw_params.num_dev_in_eps; 220 else 221 /* In shared FIFO mode we need count of Periodic IN EPs */ 222 return hsotg->hw_params.num_dev_perio_in_ep; 223 } 224 225 /** 226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 227 * device mode TX FIFOs 228 * 229 * @hsotg: Programming view of the DWC_otg controller 230 */ 231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 232 { 233 int addr; 234 int tx_addr_max; 235 u32 np_tx_fifo_size; 236 237 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 238 hsotg->params.g_np_tx_fifo_size); 239 240 /* Get Endpoint Info Control block size in DWORDs. */ 241 tx_addr_max = hsotg->hw_params.total_fifo_size; 242 243 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 244 if (tx_addr_max <= addr) 245 return 0; 246 247 return tx_addr_max - addr; 248 } 249 250 /** 251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 252 * 253 * @hsotg: Programming view of the DWC_otg controller 254 * 255 */ 256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 257 { 258 u32 gintsts2; 259 u32 gintmsk2; 260 261 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 262 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 263 gintsts2 &= gintmsk2; 264 265 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 266 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 267 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 268 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 269 } 270 } 271 272 /** 273 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 274 * TX FIFOs 275 * 276 * @hsotg: Programming view of the DWC_otg controller 277 */ 278 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 279 { 280 int tx_fifo_count; 281 int tx_fifo_depth; 282 283 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 284 285 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 286 287 if (!tx_fifo_count) 288 return tx_fifo_depth; 289 else 290 return tx_fifo_depth / tx_fifo_count; 291 } 292 293 /** 294 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 295 * @hsotg: The device instance. 296 */ 297 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 298 { 299 unsigned int ep; 300 unsigned int addr; 301 int timeout; 302 303 u32 val; 304 u32 *txfsz = hsotg->params.g_tx_fifo_size; 305 306 /* Reset fifo map if not correctly cleared during previous session */ 307 WARN_ON(hsotg->fifo_map); 308 hsotg->fifo_map = 0; 309 310 /* set RX/NPTX FIFO sizes */ 311 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 312 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 313 FIFOSIZE_STARTADDR_SHIFT) | 314 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 315 GNPTXFSIZ); 316 317 /* 318 * arange all the rest of the TX FIFOs, as some versions of this 319 * block have overlapping default addresses. This also ensures 320 * that if the settings have been changed, then they are set to 321 * known values. 322 */ 323 324 /* start at the end of the GNPTXFSIZ, rounded up */ 325 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 326 327 /* 328 * Configure fifos sizes from provided configuration and assign 329 * them to endpoints dynamically according to maxpacket size value of 330 * given endpoint. 331 */ 332 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 333 if (!txfsz[ep]) 334 continue; 335 val = addr; 336 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 337 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 338 "insufficient fifo memory"); 339 addr += txfsz[ep]; 340 341 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 342 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 343 } 344 345 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 346 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 347 GDFIFOCFG); 348 /* 349 * according to p428 of the design guide, we need to ensure that 350 * all fifos are flushed before continuing 351 */ 352 353 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 354 GRSTCTL_RXFFLSH, GRSTCTL); 355 356 /* wait until the fifos are both flushed */ 357 timeout = 100; 358 while (1) { 359 val = dwc2_readl(hsotg, GRSTCTL); 360 361 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 362 break; 363 364 if (--timeout == 0) { 365 dev_err(hsotg->dev, 366 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 367 __func__, val); 368 break; 369 } 370 371 udelay(1); 372 } 373 374 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 375 } 376 377 /** 378 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 379 * @ep: USB endpoint to allocate request for. 380 * @flags: Allocation flags 381 * 382 * Allocate a new USB request structure appropriate for the specified endpoint 383 */ 384 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 385 gfp_t flags) 386 { 387 struct dwc2_hsotg_req *req; 388 389 req = kzalloc(sizeof(*req), flags); 390 if (!req) 391 return NULL; 392 393 INIT_LIST_HEAD(&req->queue); 394 395 return &req->req; 396 } 397 398 /** 399 * is_ep_periodic - return true if the endpoint is in periodic mode. 400 * @hs_ep: The endpoint to query. 401 * 402 * Returns true if the endpoint is in periodic mode, meaning it is being 403 * used for an Interrupt or ISO transfer. 404 */ 405 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 406 { 407 return hs_ep->periodic; 408 } 409 410 /** 411 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 412 * @hsotg: The device state. 413 * @hs_ep: The endpoint for the request 414 * @hs_req: The request being processed. 415 * 416 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 417 * of a request to ensure the buffer is ready for access by the caller. 418 */ 419 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 420 struct dwc2_hsotg_ep *hs_ep, 421 struct dwc2_hsotg_req *hs_req) 422 { 423 struct usb_request *req = &hs_req->req; 424 425 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir); 426 } 427 428 /* 429 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 430 * for Control endpoint 431 * @hsotg: The device state. 432 * 433 * This function will allocate 4 descriptor chains for EP 0: 2 for 434 * Setup stage, per one for IN and OUT data/status transactions. 435 */ 436 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 437 { 438 hsotg->setup_desc[0] = 439 dmam_alloc_coherent(hsotg->dev, 440 sizeof(struct dwc2_dma_desc), 441 &hsotg->setup_desc_dma[0], 442 GFP_KERNEL); 443 if (!hsotg->setup_desc[0]) 444 goto fail; 445 446 hsotg->setup_desc[1] = 447 dmam_alloc_coherent(hsotg->dev, 448 sizeof(struct dwc2_dma_desc), 449 &hsotg->setup_desc_dma[1], 450 GFP_KERNEL); 451 if (!hsotg->setup_desc[1]) 452 goto fail; 453 454 hsotg->ctrl_in_desc = 455 dmam_alloc_coherent(hsotg->dev, 456 sizeof(struct dwc2_dma_desc), 457 &hsotg->ctrl_in_desc_dma, 458 GFP_KERNEL); 459 if (!hsotg->ctrl_in_desc) 460 goto fail; 461 462 hsotg->ctrl_out_desc = 463 dmam_alloc_coherent(hsotg->dev, 464 sizeof(struct dwc2_dma_desc), 465 &hsotg->ctrl_out_desc_dma, 466 GFP_KERNEL); 467 if (!hsotg->ctrl_out_desc) 468 goto fail; 469 470 return 0; 471 472 fail: 473 return -ENOMEM; 474 } 475 476 /** 477 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 478 * @hsotg: The controller state. 479 * @hs_ep: The endpoint we're going to write for. 480 * @hs_req: The request to write data for. 481 * 482 * This is called when the TxFIFO has some space in it to hold a new 483 * transmission and we have something to give it. The actual setup of 484 * the data size is done elsewhere, so all we have to do is to actually 485 * write the data. 486 * 487 * The return value is zero if there is more space (or nothing was done) 488 * otherwise -ENOSPC is returned if the FIFO space was used up. 489 * 490 * This routine is only needed for PIO 491 */ 492 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 493 struct dwc2_hsotg_ep *hs_ep, 494 struct dwc2_hsotg_req *hs_req) 495 { 496 bool periodic = is_ep_periodic(hs_ep); 497 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 498 int buf_pos = hs_req->req.actual; 499 int to_write = hs_ep->size_loaded; 500 void *data; 501 int can_write; 502 int pkt_round; 503 int max_transfer; 504 505 to_write -= (buf_pos - hs_ep->last_load); 506 507 /* if there's nothing to write, get out early */ 508 if (to_write == 0) 509 return 0; 510 511 if (periodic && !hsotg->dedicated_fifos) { 512 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 513 int size_left; 514 int size_done; 515 516 /* 517 * work out how much data was loaded so we can calculate 518 * how much data is left in the fifo. 519 */ 520 521 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 522 523 /* 524 * if shared fifo, we cannot write anything until the 525 * previous data has been completely sent. 526 */ 527 if (hs_ep->fifo_load != 0) { 528 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 529 return -ENOSPC; 530 } 531 532 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 533 __func__, size_left, 534 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 535 536 /* how much of the data has moved */ 537 size_done = hs_ep->size_loaded - size_left; 538 539 /* how much data is left in the fifo */ 540 can_write = hs_ep->fifo_load - size_done; 541 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 542 __func__, can_write); 543 544 can_write = hs_ep->fifo_size - can_write; 545 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 546 __func__, can_write); 547 548 if (can_write <= 0) { 549 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 550 return -ENOSPC; 551 } 552 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 553 can_write = dwc2_readl(hsotg, 554 DTXFSTS(hs_ep->fifo_index)); 555 556 can_write &= 0xffff; 557 can_write *= 4; 558 } else { 559 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 560 dev_dbg(hsotg->dev, 561 "%s: no queue slots available (0x%08x)\n", 562 __func__, gnptxsts); 563 564 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 565 return -ENOSPC; 566 } 567 568 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 569 can_write *= 4; /* fifo size is in 32bit quantities. */ 570 } 571 572 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 573 574 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 575 __func__, gnptxsts, can_write, to_write, max_transfer); 576 577 /* 578 * limit to 512 bytes of data, it seems at least on the non-periodic 579 * FIFO, requests of >512 cause the endpoint to get stuck with a 580 * fragment of the end of the transfer in it. 581 */ 582 if (can_write > 512 && !periodic) 583 can_write = 512; 584 585 /* 586 * limit the write to one max-packet size worth of data, but allow 587 * the transfer to return that it did not run out of fifo space 588 * doing it. 589 */ 590 if (to_write > max_transfer) { 591 to_write = max_transfer; 592 593 /* it's needed only when we do not use dedicated fifos */ 594 if (!hsotg->dedicated_fifos) 595 dwc2_hsotg_en_gsint(hsotg, 596 periodic ? GINTSTS_PTXFEMP : 597 GINTSTS_NPTXFEMP); 598 } 599 600 /* see if we can write data */ 601 602 if (to_write > can_write) { 603 to_write = can_write; 604 pkt_round = to_write % max_transfer; 605 606 /* 607 * Round the write down to an 608 * exact number of packets. 609 * 610 * Note, we do not currently check to see if we can ever 611 * write a full packet or not to the FIFO. 612 */ 613 614 if (pkt_round) 615 to_write -= pkt_round; 616 617 /* 618 * enable correct FIFO interrupt to alert us when there 619 * is more room left. 620 */ 621 622 /* it's needed only when we do not use dedicated fifos */ 623 if (!hsotg->dedicated_fifos) 624 dwc2_hsotg_en_gsint(hsotg, 625 periodic ? GINTSTS_PTXFEMP : 626 GINTSTS_NPTXFEMP); 627 } 628 629 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 630 to_write, hs_req->req.length, can_write, buf_pos); 631 632 if (to_write <= 0) 633 return -ENOSPC; 634 635 hs_req->req.actual = buf_pos + to_write; 636 hs_ep->total_data += to_write; 637 638 if (periodic) 639 hs_ep->fifo_load += to_write; 640 641 to_write = DIV_ROUND_UP(to_write, 4); 642 data = hs_req->req.buf + buf_pos; 643 644 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 645 646 return (to_write >= can_write) ? -ENOSPC : 0; 647 } 648 649 /** 650 * get_ep_limit - get the maximum data legnth for this endpoint 651 * @hs_ep: The endpoint 652 * 653 * Return the maximum data that can be queued in one go on a given endpoint 654 * so that transfers that are too long can be split. 655 */ 656 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 657 { 658 int index = hs_ep->index; 659 unsigned int maxsize; 660 unsigned int maxpkt; 661 662 if (index != 0) { 663 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 664 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 665 } else { 666 maxsize = 64 + 64; 667 if (hs_ep->dir_in) 668 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 669 else 670 maxpkt = 2; 671 } 672 673 /* we made the constant loading easier above by using +1 */ 674 maxpkt--; 675 maxsize--; 676 677 /* 678 * constrain by packet count if maxpkts*pktsize is greater 679 * than the length register size. 680 */ 681 682 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 683 maxsize = maxpkt * hs_ep->ep.maxpacket; 684 685 return maxsize; 686 } 687 688 /** 689 * dwc2_hsotg_read_frameno - read current frame number 690 * @hsotg: The device instance 691 * 692 * Return the current frame number 693 */ 694 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 695 { 696 u32 dsts; 697 698 dsts = dwc2_readl(hsotg, DSTS); 699 dsts &= DSTS_SOFFN_MASK; 700 dsts >>= DSTS_SOFFN_SHIFT; 701 702 return dsts; 703 } 704 705 /** 706 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 707 * DMA descriptor chain prepared for specific endpoint 708 * @hs_ep: The endpoint 709 * 710 * Return the maximum data that can be queued in one go on a given endpoint 711 * depending on its descriptor chain capacity so that transfers that 712 * are too long can be split. 713 */ 714 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 715 { 716 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 717 int is_isoc = hs_ep->isochronous; 718 unsigned int maxsize; 719 u32 mps = hs_ep->ep.maxpacket; 720 int dir_in = hs_ep->dir_in; 721 722 if (is_isoc) 723 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 724 DEV_DMA_ISOC_RX_NBYTES_LIMIT) * 725 MAX_DMA_DESC_NUM_HS_ISOC; 726 else 727 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; 728 729 /* Interrupt OUT EP with mps not multiple of 4 */ 730 if (hs_ep->index) 731 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 732 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC; 733 734 return maxsize; 735 } 736 737 /* 738 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 739 * @hs_ep: The endpoint 740 * @mask: RX/TX bytes mask to be defined 741 * 742 * Returns maximum data payload for one descriptor after analyzing endpoint 743 * characteristics. 744 * DMA descriptor transfer bytes limit depends on EP type: 745 * Control out - MPS, 746 * Isochronous - descriptor rx/tx bytes bitfield limit, 747 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 748 * have concatenations from various descriptors within one packet. 749 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds 750 * to a single descriptor. 751 * 752 * Selects corresponding mask for RX/TX bytes as well. 753 */ 754 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 755 { 756 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 757 u32 mps = hs_ep->ep.maxpacket; 758 int dir_in = hs_ep->dir_in; 759 u32 desc_size = 0; 760 761 if (!hs_ep->index && !dir_in) { 762 desc_size = mps; 763 *mask = DEV_DMA_NBYTES_MASK; 764 } else if (hs_ep->isochronous) { 765 if (dir_in) { 766 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 767 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 768 } else { 769 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 770 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 771 } 772 } else { 773 desc_size = DEV_DMA_NBYTES_LIMIT; 774 *mask = DEV_DMA_NBYTES_MASK; 775 776 /* Round down desc_size to be mps multiple */ 777 desc_size -= desc_size % mps; 778 } 779 780 /* Interrupt OUT EP with mps not multiple of 4 */ 781 if (hs_ep->index) 782 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) { 783 desc_size = mps; 784 *mask = DEV_DMA_NBYTES_MASK; 785 } 786 787 return desc_size; 788 } 789 790 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, 791 struct dwc2_dma_desc **desc, 792 dma_addr_t dma_buff, 793 unsigned int len, 794 bool true_last) 795 { 796 int dir_in = hs_ep->dir_in; 797 u32 mps = hs_ep->ep.maxpacket; 798 u32 maxsize = 0; 799 u32 offset = 0; 800 u32 mask = 0; 801 int i; 802 803 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 804 805 hs_ep->desc_count = (len / maxsize) + 806 ((len % maxsize) ? 1 : 0); 807 if (len == 0) 808 hs_ep->desc_count = 1; 809 810 for (i = 0; i < hs_ep->desc_count; ++i) { 811 (*desc)->status = 0; 812 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY 813 << DEV_DMA_BUFF_STS_SHIFT); 814 815 if (len > maxsize) { 816 if (!hs_ep->index && !dir_in) 817 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 818 819 (*desc)->status |= 820 maxsize << DEV_DMA_NBYTES_SHIFT & mask; 821 (*desc)->buf = dma_buff + offset; 822 823 len -= maxsize; 824 offset += maxsize; 825 } else { 826 if (true_last) 827 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 828 829 if (dir_in) 830 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : 831 ((hs_ep->send_zlp && true_last) ? 832 DEV_DMA_SHORT : 0); 833 834 (*desc)->status |= 835 len << DEV_DMA_NBYTES_SHIFT & mask; 836 (*desc)->buf = dma_buff + offset; 837 } 838 839 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; 840 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY 841 << DEV_DMA_BUFF_STS_SHIFT); 842 (*desc)++; 843 } 844 } 845 846 /* 847 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 848 * @hs_ep: The endpoint 849 * @ureq: Request to transfer 850 * @offset: offset in bytes 851 * @len: Length of the transfer 852 * 853 * This function will iterate over descriptor chain and fill its entries 854 * with corresponding information based on transfer data. 855 */ 856 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 857 dma_addr_t dma_buff, 858 unsigned int len) 859 { 860 struct usb_request *ureq = NULL; 861 struct dwc2_dma_desc *desc = hs_ep->desc_list; 862 struct scatterlist *sg; 863 int i; 864 u8 desc_count = 0; 865 866 if (hs_ep->req) 867 ureq = &hs_ep->req->req; 868 869 /* non-DMA sg buffer */ 870 if (!ureq || !ureq->num_sgs) { 871 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 872 dma_buff, len, true); 873 return; 874 } 875 876 /* DMA sg buffer */ 877 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) { 878 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 879 sg_dma_address(sg) + sg->offset, sg_dma_len(sg), 880 sg_is_last(sg)); 881 desc_count += hs_ep->desc_count; 882 } 883 884 hs_ep->desc_count = desc_count; 885 } 886 887 /* 888 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 889 * @hs_ep: The isochronous endpoint. 890 * @dma_buff: usb requests dma buffer. 891 * @len: usb request transfer length. 892 * 893 * Fills next free descriptor with the data of the arrived usb request, 894 * frame info, sets Last and IOC bits increments next_desc. If filled 895 * descriptor is not the first one, removes L bit from the previous descriptor 896 * status. 897 */ 898 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 899 dma_addr_t dma_buff, unsigned int len) 900 { 901 struct dwc2_dma_desc *desc; 902 struct dwc2_hsotg *hsotg = hs_ep->parent; 903 u32 index; 904 u32 mask = 0; 905 u8 pid = 0; 906 907 dwc2_gadget_get_desc_params(hs_ep, &mask); 908 909 index = hs_ep->next_desc; 910 desc = &hs_ep->desc_list[index]; 911 912 /* Check if descriptor chain full */ 913 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 914 DEV_DMA_BUFF_STS_HREADY) { 915 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 916 return 1; 917 } 918 919 /* Clear L bit of previous desc if more than one entries in the chain */ 920 if (hs_ep->next_desc) 921 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 922 923 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 924 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 925 926 desc->status = 0; 927 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 928 929 desc->buf = dma_buff; 930 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 931 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 932 933 if (hs_ep->dir_in) { 934 if (len) 935 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 936 else 937 pid = 1; 938 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 939 DEV_DMA_ISOC_PID_MASK) | 940 ((len % hs_ep->ep.maxpacket) ? 941 DEV_DMA_SHORT : 0) | 942 ((hs_ep->target_frame << 943 DEV_DMA_ISOC_FRNUM_SHIFT) & 944 DEV_DMA_ISOC_FRNUM_MASK); 945 } 946 947 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 948 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 949 950 /* Increment frame number by interval for IN */ 951 if (hs_ep->dir_in) 952 dwc2_gadget_incr_frame_num(hs_ep); 953 954 /* Update index of last configured entry in the chain */ 955 hs_ep->next_desc++; 956 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) 957 hs_ep->next_desc = 0; 958 959 return 0; 960 } 961 962 /* 963 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 964 * @hs_ep: The isochronous endpoint. 965 * 966 * Prepare descriptor chain for isochronous endpoints. Afterwards 967 * write DMA address to HW and enable the endpoint. 968 */ 969 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 970 { 971 struct dwc2_hsotg *hsotg = hs_ep->parent; 972 struct dwc2_hsotg_req *hs_req, *treq; 973 int index = hs_ep->index; 974 int ret; 975 int i; 976 u32 dma_reg; 977 u32 depctl; 978 u32 ctrl; 979 struct dwc2_dma_desc *desc; 980 981 if (list_empty(&hs_ep->queue)) { 982 hs_ep->target_frame = TARGET_FRAME_INITIAL; 983 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 984 return; 985 } 986 987 /* Initialize descriptor chain by Host Busy status */ 988 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { 989 desc = &hs_ep->desc_list[i]; 990 desc->status = 0; 991 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 992 << DEV_DMA_BUFF_STS_SHIFT); 993 } 994 995 hs_ep->next_desc = 0; 996 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 997 dma_addr_t dma_addr = hs_req->req.dma; 998 999 if (hs_req->req.num_sgs) { 1000 WARN_ON(hs_req->req.num_sgs > 1); 1001 dma_addr = sg_dma_address(hs_req->req.sg); 1002 } 1003 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1004 hs_req->req.length); 1005 if (ret) 1006 break; 1007 } 1008 1009 hs_ep->compl_desc = 0; 1010 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1011 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 1012 1013 /* write descriptor chain address to control register */ 1014 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1015 1016 ctrl = dwc2_readl(hsotg, depctl); 1017 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 1018 dwc2_writel(hsotg, ctrl, depctl); 1019 } 1020 1021 /** 1022 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 1023 * @hsotg: The controller state. 1024 * @hs_ep: The endpoint to process a request for 1025 * @hs_req: The request to start. 1026 * @continuing: True if we are doing more for the current request. 1027 * 1028 * Start the given request running by setting the endpoint registers 1029 * appropriately, and writing any data to the FIFOs. 1030 */ 1031 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 1032 struct dwc2_hsotg_ep *hs_ep, 1033 struct dwc2_hsotg_req *hs_req, 1034 bool continuing) 1035 { 1036 struct usb_request *ureq = &hs_req->req; 1037 int index = hs_ep->index; 1038 int dir_in = hs_ep->dir_in; 1039 u32 epctrl_reg; 1040 u32 epsize_reg; 1041 u32 epsize; 1042 u32 ctrl; 1043 unsigned int length; 1044 unsigned int packets; 1045 unsigned int maxreq; 1046 unsigned int dma_reg; 1047 1048 if (index != 0) { 1049 if (hs_ep->req && !continuing) { 1050 dev_err(hsotg->dev, "%s: active request\n", __func__); 1051 WARN_ON(1); 1052 return; 1053 } else if (hs_ep->req != hs_req && continuing) { 1054 dev_err(hsotg->dev, 1055 "%s: continue different req\n", __func__); 1056 WARN_ON(1); 1057 return; 1058 } 1059 } 1060 1061 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1062 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1063 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1064 1065 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1066 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1067 hs_ep->dir_in ? "in" : "out"); 1068 1069 /* If endpoint is stalled, we will restart request later */ 1070 ctrl = dwc2_readl(hsotg, epctrl_reg); 1071 1072 if (index && ctrl & DXEPCTL_STALL) { 1073 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1074 return; 1075 } 1076 1077 length = ureq->length - ureq->actual; 1078 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1079 ureq->length, ureq->actual); 1080 1081 if (!using_desc_dma(hsotg)) 1082 maxreq = get_ep_limit(hs_ep); 1083 else 1084 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1085 1086 if (length > maxreq) { 1087 int round = maxreq % hs_ep->ep.maxpacket; 1088 1089 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1090 __func__, length, maxreq, round); 1091 1092 /* round down to multiple of packets */ 1093 if (round) 1094 maxreq -= round; 1095 1096 length = maxreq; 1097 } 1098 1099 if (length) 1100 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1101 else 1102 packets = 1; /* send one packet if length is zero. */ 1103 1104 if (dir_in && index != 0) 1105 if (hs_ep->isochronous) 1106 epsize = DXEPTSIZ_MC(packets); 1107 else 1108 epsize = DXEPTSIZ_MC(1); 1109 else 1110 epsize = 0; 1111 1112 /* 1113 * zero length packet should be programmed on its own and should not 1114 * be counted in DIEPTSIZ.PktCnt with other packets. 1115 */ 1116 if (dir_in && ureq->zero && !continuing) { 1117 /* Test if zlp is actually required. */ 1118 if ((ureq->length >= hs_ep->ep.maxpacket) && 1119 !(ureq->length % hs_ep->ep.maxpacket)) 1120 hs_ep->send_zlp = 1; 1121 } 1122 1123 epsize |= DXEPTSIZ_PKTCNT(packets); 1124 epsize |= DXEPTSIZ_XFERSIZE(length); 1125 1126 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1127 __func__, packets, length, ureq->length, epsize, epsize_reg); 1128 1129 /* store the request as the current one we're doing */ 1130 hs_ep->req = hs_req; 1131 1132 if (using_desc_dma(hsotg)) { 1133 u32 offset = 0; 1134 u32 mps = hs_ep->ep.maxpacket; 1135 1136 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1137 if (!dir_in) { 1138 if (!index) 1139 length = mps; 1140 else if (length % mps) 1141 length += (mps - (length % mps)); 1142 } 1143 1144 if (continuing) 1145 offset = ureq->actual; 1146 1147 /* Fill DDMA chain entries */ 1148 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1149 length); 1150 1151 /* write descriptor chain address to control register */ 1152 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1153 1154 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1155 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1156 } else { 1157 /* write size / packets */ 1158 dwc2_writel(hsotg, epsize, epsize_reg); 1159 1160 if (using_dma(hsotg) && !continuing && (length != 0)) { 1161 /* 1162 * write DMA address to control register, buffer 1163 * already synced by dwc2_hsotg_ep_queue(). 1164 */ 1165 1166 dwc2_writel(hsotg, ureq->dma, dma_reg); 1167 1168 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1169 __func__, &ureq->dma, dma_reg); 1170 } 1171 } 1172 1173 if (hs_ep->isochronous && hs_ep->interval == 1) { 1174 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1175 dwc2_gadget_incr_frame_num(hs_ep); 1176 1177 if (hs_ep->target_frame & 0x1) 1178 ctrl |= DXEPCTL_SETODDFR; 1179 else 1180 ctrl |= DXEPCTL_SETEVENFR; 1181 } 1182 1183 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1184 1185 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1186 1187 /* For Setup request do not clear NAK */ 1188 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1189 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1190 1191 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1192 dwc2_writel(hsotg, ctrl, epctrl_reg); 1193 1194 /* 1195 * set these, it seems that DMA support increments past the end 1196 * of the packet buffer so we need to calculate the length from 1197 * this information. 1198 */ 1199 hs_ep->size_loaded = length; 1200 hs_ep->last_load = ureq->actual; 1201 1202 if (dir_in && !using_dma(hsotg)) { 1203 /* set these anyway, we may need them for non-periodic in */ 1204 hs_ep->fifo_load = 0; 1205 1206 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1207 } 1208 1209 /* 1210 * Note, trying to clear the NAK here causes problems with transmit 1211 * on the S3C6400 ending up with the TXFIFO becoming full. 1212 */ 1213 1214 /* check ep is enabled */ 1215 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1216 dev_dbg(hsotg->dev, 1217 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1218 index, dwc2_readl(hsotg, epctrl_reg)); 1219 1220 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1221 __func__, dwc2_readl(hsotg, epctrl_reg)); 1222 1223 /* enable ep interrupts */ 1224 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1225 } 1226 1227 /** 1228 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1229 * @hsotg: The device state. 1230 * @hs_ep: The endpoint the request is on. 1231 * @req: The request being processed. 1232 * 1233 * We've been asked to queue a request, so ensure that the memory buffer 1234 * is correctly setup for DMA. If we've been passed an extant DMA address 1235 * then ensure the buffer has been synced to memory. If our buffer has no 1236 * DMA memory, then we map the memory and mark our request to allow us to 1237 * cleanup on completion. 1238 */ 1239 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1240 struct dwc2_hsotg_ep *hs_ep, 1241 struct usb_request *req) 1242 { 1243 int ret; 1244 1245 hs_ep->map_dir = hs_ep->dir_in; 1246 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1247 if (ret) 1248 goto dma_error; 1249 1250 return 0; 1251 1252 dma_error: 1253 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1254 __func__, req->buf, req->length); 1255 1256 return -EIO; 1257 } 1258 1259 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1260 struct dwc2_hsotg_ep *hs_ep, 1261 struct dwc2_hsotg_req *hs_req) 1262 { 1263 void *req_buf = hs_req->req.buf; 1264 1265 /* If dma is not being used or buffer is aligned */ 1266 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1267 return 0; 1268 1269 WARN_ON(hs_req->saved_req_buf); 1270 1271 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1272 hs_ep->ep.name, req_buf, hs_req->req.length); 1273 1274 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1275 if (!hs_req->req.buf) { 1276 hs_req->req.buf = req_buf; 1277 dev_err(hsotg->dev, 1278 "%s: unable to allocate memory for bounce buffer\n", 1279 __func__); 1280 return -ENOMEM; 1281 } 1282 1283 /* Save actual buffer */ 1284 hs_req->saved_req_buf = req_buf; 1285 1286 if (hs_ep->dir_in) 1287 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1288 return 0; 1289 } 1290 1291 static void 1292 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1293 struct dwc2_hsotg_ep *hs_ep, 1294 struct dwc2_hsotg_req *hs_req) 1295 { 1296 /* If dma is not being used or buffer was aligned */ 1297 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1298 return; 1299 1300 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1301 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1302 1303 /* Copy data from bounce buffer on successful out transfer */ 1304 if (!hs_ep->dir_in && !hs_req->req.status) 1305 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1306 hs_req->req.actual); 1307 1308 /* Free bounce buffer */ 1309 kfree(hs_req->req.buf); 1310 1311 hs_req->req.buf = hs_req->saved_req_buf; 1312 hs_req->saved_req_buf = NULL; 1313 } 1314 1315 /** 1316 * dwc2_gadget_target_frame_elapsed - Checks target frame 1317 * @hs_ep: The driver endpoint to check 1318 * 1319 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1320 * corresponding transfer. 1321 */ 1322 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1323 { 1324 struct dwc2_hsotg *hsotg = hs_ep->parent; 1325 u32 target_frame = hs_ep->target_frame; 1326 u32 current_frame = hsotg->frame_number; 1327 bool frame_overrun = hs_ep->frame_overrun; 1328 1329 if (!frame_overrun && current_frame >= target_frame) 1330 return true; 1331 1332 if (frame_overrun && current_frame >= target_frame && 1333 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1334 return true; 1335 1336 return false; 1337 } 1338 1339 /* 1340 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1341 * @hsotg: The driver state 1342 * @hs_ep: the ep descriptor chain is for 1343 * 1344 * Called to update EP0 structure's pointers depend on stage of 1345 * control transfer. 1346 */ 1347 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1348 struct dwc2_hsotg_ep *hs_ep) 1349 { 1350 switch (hsotg->ep0_state) { 1351 case DWC2_EP0_SETUP: 1352 case DWC2_EP0_STATUS_OUT: 1353 hs_ep->desc_list = hsotg->setup_desc[0]; 1354 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1355 break; 1356 case DWC2_EP0_DATA_IN: 1357 case DWC2_EP0_STATUS_IN: 1358 hs_ep->desc_list = hsotg->ctrl_in_desc; 1359 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1360 break; 1361 case DWC2_EP0_DATA_OUT: 1362 hs_ep->desc_list = hsotg->ctrl_out_desc; 1363 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1364 break; 1365 default: 1366 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1367 hsotg->ep0_state); 1368 return -EINVAL; 1369 } 1370 1371 return 0; 1372 } 1373 1374 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1375 gfp_t gfp_flags) 1376 { 1377 struct dwc2_hsotg_req *hs_req = our_req(req); 1378 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1379 struct dwc2_hsotg *hs = hs_ep->parent; 1380 bool first; 1381 int ret; 1382 u32 maxsize = 0; 1383 u32 mask = 0; 1384 1385 1386 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1387 ep->name, req, req->length, req->buf, req->no_interrupt, 1388 req->zero, req->short_not_ok); 1389 1390 /* Prevent new request submission when controller is suspended */ 1391 if (hs->lx_state != DWC2_L0) { 1392 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1393 __func__); 1394 return -EAGAIN; 1395 } 1396 1397 /* initialise status of the request */ 1398 INIT_LIST_HEAD(&hs_req->queue); 1399 req->actual = 0; 1400 req->status = -EINPROGRESS; 1401 1402 /* Don't queue ISOC request if length greater than mps*mc */ 1403 if (hs_ep->isochronous && 1404 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1405 dev_err(hs->dev, "req length > maxpacket*mc\n"); 1406 return -EINVAL; 1407 } 1408 1409 /* In DDMA mode for ISOC's don't queue request if length greater 1410 * than descriptor limits. 1411 */ 1412 if (using_desc_dma(hs) && hs_ep->isochronous) { 1413 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1414 if (hs_ep->dir_in && req->length > maxsize) { 1415 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1416 req->length, maxsize); 1417 return -EINVAL; 1418 } 1419 1420 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1421 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1422 req->length, hs_ep->ep.maxpacket); 1423 return -EINVAL; 1424 } 1425 } 1426 1427 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1428 if (ret) 1429 return ret; 1430 1431 /* if we're using DMA, sync the buffers as necessary */ 1432 if (using_dma(hs)) { 1433 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1434 if (ret) 1435 return ret; 1436 } 1437 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1438 if (using_desc_dma(hs) && !hs_ep->index) { 1439 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1440 if (ret) 1441 return ret; 1442 } 1443 1444 first = list_empty(&hs_ep->queue); 1445 list_add_tail(&hs_req->queue, &hs_ep->queue); 1446 1447 /* 1448 * Handle DDMA isochronous transfers separately - just add new entry 1449 * to the descriptor chain. 1450 * Transfer will be started once SW gets either one of NAK or 1451 * OutTknEpDis interrupts. 1452 */ 1453 if (using_desc_dma(hs) && hs_ep->isochronous) { 1454 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1455 dma_addr_t dma_addr = hs_req->req.dma; 1456 1457 if (hs_req->req.num_sgs) { 1458 WARN_ON(hs_req->req.num_sgs > 1); 1459 dma_addr = sg_dma_address(hs_req->req.sg); 1460 } 1461 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1462 hs_req->req.length); 1463 } 1464 return 0; 1465 } 1466 1467 /* Change EP direction if status phase request is after data out */ 1468 if (!hs_ep->index && !req->length && !hs_ep->dir_in && 1469 hs->ep0_state == DWC2_EP0_DATA_OUT) 1470 hs_ep->dir_in = 1; 1471 1472 if (first) { 1473 if (!hs_ep->isochronous) { 1474 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1475 return 0; 1476 } 1477 1478 /* Update current frame number value. */ 1479 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1480 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1481 dwc2_gadget_incr_frame_num(hs_ep); 1482 /* Update current frame number value once more as it 1483 * changes here. 1484 */ 1485 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1486 } 1487 1488 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1489 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1490 } 1491 return 0; 1492 } 1493 1494 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1495 gfp_t gfp_flags) 1496 { 1497 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1498 struct dwc2_hsotg *hs = hs_ep->parent; 1499 unsigned long flags; 1500 int ret; 1501 1502 spin_lock_irqsave(&hs->lock, flags); 1503 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1504 spin_unlock_irqrestore(&hs->lock, flags); 1505 1506 return ret; 1507 } 1508 1509 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1510 struct usb_request *req) 1511 { 1512 struct dwc2_hsotg_req *hs_req = our_req(req); 1513 1514 kfree(hs_req); 1515 } 1516 1517 /** 1518 * dwc2_hsotg_complete_oursetup - setup completion callback 1519 * @ep: The endpoint the request was on. 1520 * @req: The request completed. 1521 * 1522 * Called on completion of any requests the driver itself 1523 * submitted that need cleaning up. 1524 */ 1525 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1526 struct usb_request *req) 1527 { 1528 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1529 struct dwc2_hsotg *hsotg = hs_ep->parent; 1530 1531 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1532 1533 dwc2_hsotg_ep_free_request(ep, req); 1534 } 1535 1536 /** 1537 * ep_from_windex - convert control wIndex value to endpoint 1538 * @hsotg: The driver state. 1539 * @windex: The control request wIndex field (in host order). 1540 * 1541 * Convert the given wIndex into a pointer to an driver endpoint 1542 * structure, or return NULL if it is not a valid endpoint. 1543 */ 1544 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1545 u32 windex) 1546 { 1547 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1548 int idx = windex & 0x7F; 1549 1550 if (windex >= 0x100) 1551 return NULL; 1552 1553 if (idx > hsotg->num_of_eps) 1554 return NULL; 1555 1556 return index_to_ep(hsotg, idx, dir); 1557 } 1558 1559 /** 1560 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1561 * @hsotg: The driver state. 1562 * @testmode: requested usb test mode 1563 * Enable usb Test Mode requested by the Host. 1564 */ 1565 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1566 { 1567 int dctl = dwc2_readl(hsotg, DCTL); 1568 1569 dctl &= ~DCTL_TSTCTL_MASK; 1570 switch (testmode) { 1571 case USB_TEST_J: 1572 case USB_TEST_K: 1573 case USB_TEST_SE0_NAK: 1574 case USB_TEST_PACKET: 1575 case USB_TEST_FORCE_ENABLE: 1576 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1577 break; 1578 default: 1579 return -EINVAL; 1580 } 1581 dwc2_writel(hsotg, dctl, DCTL); 1582 return 0; 1583 } 1584 1585 /** 1586 * dwc2_hsotg_send_reply - send reply to control request 1587 * @hsotg: The device state 1588 * @ep: Endpoint 0 1589 * @buff: Buffer for request 1590 * @length: Length of reply. 1591 * 1592 * Create a request and queue it on the given endpoint. This is useful as 1593 * an internal method of sending replies to certain control requests, etc. 1594 */ 1595 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1596 struct dwc2_hsotg_ep *ep, 1597 void *buff, 1598 int length) 1599 { 1600 struct usb_request *req; 1601 int ret; 1602 1603 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1604 1605 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1606 hsotg->ep0_reply = req; 1607 if (!req) { 1608 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1609 return -ENOMEM; 1610 } 1611 1612 req->buf = hsotg->ep0_buff; 1613 req->length = length; 1614 /* 1615 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1616 * STATUS stage. 1617 */ 1618 req->zero = 0; 1619 req->complete = dwc2_hsotg_complete_oursetup; 1620 1621 if (length) 1622 memcpy(req->buf, buff, length); 1623 1624 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1625 if (ret) { 1626 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1627 return ret; 1628 } 1629 1630 return 0; 1631 } 1632 1633 /** 1634 * dwc2_hsotg_process_req_status - process request GET_STATUS 1635 * @hsotg: The device state 1636 * @ctrl: USB control request 1637 */ 1638 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1639 struct usb_ctrlrequest *ctrl) 1640 { 1641 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1642 struct dwc2_hsotg_ep *ep; 1643 __le16 reply; 1644 u16 status; 1645 int ret; 1646 1647 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1648 1649 if (!ep0->dir_in) { 1650 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1651 return -EINVAL; 1652 } 1653 1654 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1655 case USB_RECIP_DEVICE: 1656 status = hsotg->gadget.is_selfpowered << 1657 USB_DEVICE_SELF_POWERED; 1658 status |= hsotg->remote_wakeup_allowed << 1659 USB_DEVICE_REMOTE_WAKEUP; 1660 reply = cpu_to_le16(status); 1661 break; 1662 1663 case USB_RECIP_INTERFACE: 1664 /* currently, the data result should be zero */ 1665 reply = cpu_to_le16(0); 1666 break; 1667 1668 case USB_RECIP_ENDPOINT: 1669 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1670 if (!ep) 1671 return -ENOENT; 1672 1673 reply = cpu_to_le16(ep->halted ? 1 : 0); 1674 break; 1675 1676 default: 1677 return 0; 1678 } 1679 1680 if (le16_to_cpu(ctrl->wLength) != 2) 1681 return -EINVAL; 1682 1683 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1684 if (ret) { 1685 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1686 return ret; 1687 } 1688 1689 return 1; 1690 } 1691 1692 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1693 1694 /** 1695 * get_ep_head - return the first request on the endpoint 1696 * @hs_ep: The controller endpoint to get 1697 * 1698 * Get the first request on the endpoint. 1699 */ 1700 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1701 { 1702 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1703 queue); 1704 } 1705 1706 /** 1707 * dwc2_gadget_start_next_request - Starts next request from ep queue 1708 * @hs_ep: Endpoint structure 1709 * 1710 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1711 * in its handler. Hence we need to unmask it here to be able to do 1712 * resynchronization. 1713 */ 1714 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1715 { 1716 u32 mask; 1717 struct dwc2_hsotg *hsotg = hs_ep->parent; 1718 int dir_in = hs_ep->dir_in; 1719 struct dwc2_hsotg_req *hs_req; 1720 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1721 1722 if (!list_empty(&hs_ep->queue)) { 1723 hs_req = get_ep_head(hs_ep); 1724 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1725 return; 1726 } 1727 if (!hs_ep->isochronous) 1728 return; 1729 1730 if (dir_in) { 1731 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1732 __func__); 1733 } else { 1734 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1735 __func__); 1736 mask = dwc2_readl(hsotg, epmsk_reg); 1737 mask |= DOEPMSK_OUTTKNEPDISMSK; 1738 dwc2_writel(hsotg, mask, epmsk_reg); 1739 } 1740 } 1741 1742 /** 1743 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1744 * @hsotg: The device state 1745 * @ctrl: USB control request 1746 */ 1747 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1748 struct usb_ctrlrequest *ctrl) 1749 { 1750 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1751 struct dwc2_hsotg_req *hs_req; 1752 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1753 struct dwc2_hsotg_ep *ep; 1754 int ret; 1755 bool halted; 1756 u32 recip; 1757 u32 wValue; 1758 u32 wIndex; 1759 1760 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1761 __func__, set ? "SET" : "CLEAR"); 1762 1763 wValue = le16_to_cpu(ctrl->wValue); 1764 wIndex = le16_to_cpu(ctrl->wIndex); 1765 recip = ctrl->bRequestType & USB_RECIP_MASK; 1766 1767 switch (recip) { 1768 case USB_RECIP_DEVICE: 1769 switch (wValue) { 1770 case USB_DEVICE_REMOTE_WAKEUP: 1771 if (set) 1772 hsotg->remote_wakeup_allowed = 1; 1773 else 1774 hsotg->remote_wakeup_allowed = 0; 1775 break; 1776 1777 case USB_DEVICE_TEST_MODE: 1778 if ((wIndex & 0xff) != 0) 1779 return -EINVAL; 1780 if (!set) 1781 return -EINVAL; 1782 1783 hsotg->test_mode = wIndex >> 8; 1784 break; 1785 default: 1786 return -ENOENT; 1787 } 1788 1789 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1790 if (ret) { 1791 dev_err(hsotg->dev, 1792 "%s: failed to send reply\n", __func__); 1793 return ret; 1794 } 1795 break; 1796 1797 case USB_RECIP_ENDPOINT: 1798 ep = ep_from_windex(hsotg, wIndex); 1799 if (!ep) { 1800 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1801 __func__, wIndex); 1802 return -ENOENT; 1803 } 1804 1805 switch (wValue) { 1806 case USB_ENDPOINT_HALT: 1807 halted = ep->halted; 1808 1809 if (!ep->wedged) 1810 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1811 1812 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1813 if (ret) { 1814 dev_err(hsotg->dev, 1815 "%s: failed to send reply\n", __func__); 1816 return ret; 1817 } 1818 1819 /* 1820 * we have to complete all requests for ep if it was 1821 * halted, and the halt was cleared by CLEAR_FEATURE 1822 */ 1823 1824 if (!set && halted) { 1825 /* 1826 * If we have request in progress, 1827 * then complete it 1828 */ 1829 if (ep->req) { 1830 hs_req = ep->req; 1831 ep->req = NULL; 1832 list_del_init(&hs_req->queue); 1833 if (hs_req->req.complete) { 1834 spin_unlock(&hsotg->lock); 1835 usb_gadget_giveback_request( 1836 &ep->ep, &hs_req->req); 1837 spin_lock(&hsotg->lock); 1838 } 1839 } 1840 1841 /* If we have pending request, then start it */ 1842 if (!ep->req) 1843 dwc2_gadget_start_next_request(ep); 1844 } 1845 1846 break; 1847 1848 default: 1849 return -ENOENT; 1850 } 1851 break; 1852 default: 1853 return -ENOENT; 1854 } 1855 return 1; 1856 } 1857 1858 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1859 1860 /** 1861 * dwc2_hsotg_stall_ep0 - stall ep0 1862 * @hsotg: The device state 1863 * 1864 * Set stall for ep0 as response for setup request. 1865 */ 1866 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1867 { 1868 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1869 u32 reg; 1870 u32 ctrl; 1871 1872 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1873 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1874 1875 /* 1876 * DxEPCTL_Stall will be cleared by EP once it has 1877 * taken effect, so no need to clear later. 1878 */ 1879 1880 ctrl = dwc2_readl(hsotg, reg); 1881 ctrl |= DXEPCTL_STALL; 1882 ctrl |= DXEPCTL_CNAK; 1883 dwc2_writel(hsotg, ctrl, reg); 1884 1885 dev_dbg(hsotg->dev, 1886 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1887 ctrl, reg, dwc2_readl(hsotg, reg)); 1888 1889 /* 1890 * complete won't be called, so we enqueue 1891 * setup request here 1892 */ 1893 dwc2_hsotg_enqueue_setup(hsotg); 1894 } 1895 1896 /** 1897 * dwc2_hsotg_process_control - process a control request 1898 * @hsotg: The device state 1899 * @ctrl: The control request received 1900 * 1901 * The controller has received the SETUP phase of a control request, and 1902 * needs to work out what to do next (and whether to pass it on to the 1903 * gadget driver). 1904 */ 1905 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1906 struct usb_ctrlrequest *ctrl) 1907 { 1908 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1909 int ret = 0; 1910 u32 dcfg; 1911 1912 dev_dbg(hsotg->dev, 1913 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1914 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1915 ctrl->wIndex, ctrl->wLength); 1916 1917 if (ctrl->wLength == 0) { 1918 ep0->dir_in = 1; 1919 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1920 } else if (ctrl->bRequestType & USB_DIR_IN) { 1921 ep0->dir_in = 1; 1922 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1923 } else { 1924 ep0->dir_in = 0; 1925 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1926 } 1927 1928 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1929 switch (ctrl->bRequest) { 1930 case USB_REQ_SET_ADDRESS: 1931 hsotg->connected = 1; 1932 dcfg = dwc2_readl(hsotg, DCFG); 1933 dcfg &= ~DCFG_DEVADDR_MASK; 1934 dcfg |= (le16_to_cpu(ctrl->wValue) << 1935 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1936 dwc2_writel(hsotg, dcfg, DCFG); 1937 1938 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1939 1940 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1941 return; 1942 1943 case USB_REQ_GET_STATUS: 1944 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1945 break; 1946 1947 case USB_REQ_CLEAR_FEATURE: 1948 case USB_REQ_SET_FEATURE: 1949 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1950 break; 1951 } 1952 } 1953 1954 /* as a fallback, try delivering it to the driver to deal with */ 1955 1956 if (ret == 0 && hsotg->driver) { 1957 spin_unlock(&hsotg->lock); 1958 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1959 spin_lock(&hsotg->lock); 1960 if (ret < 0) 1961 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1962 } 1963 1964 hsotg->delayed_status = false; 1965 if (ret == USB_GADGET_DELAYED_STATUS) 1966 hsotg->delayed_status = true; 1967 1968 /* 1969 * the request is either unhandlable, or is not formatted correctly 1970 * so respond with a STALL for the status stage to indicate failure. 1971 */ 1972 1973 if (ret < 0) 1974 dwc2_hsotg_stall_ep0(hsotg); 1975 } 1976 1977 /** 1978 * dwc2_hsotg_complete_setup - completion of a setup transfer 1979 * @ep: The endpoint the request was on. 1980 * @req: The request completed. 1981 * 1982 * Called on completion of any requests the driver itself submitted for 1983 * EP0 setup packets 1984 */ 1985 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1986 struct usb_request *req) 1987 { 1988 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1989 struct dwc2_hsotg *hsotg = hs_ep->parent; 1990 1991 if (req->status < 0) { 1992 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1993 return; 1994 } 1995 1996 spin_lock(&hsotg->lock); 1997 if (req->actual == 0) 1998 dwc2_hsotg_enqueue_setup(hsotg); 1999 else 2000 dwc2_hsotg_process_control(hsotg, req->buf); 2001 spin_unlock(&hsotg->lock); 2002 } 2003 2004 /** 2005 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 2006 * @hsotg: The device state. 2007 * 2008 * Enqueue a request on EP0 if necessary to received any SETUP packets 2009 * received from the host. 2010 */ 2011 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 2012 { 2013 struct usb_request *req = hsotg->ctrl_req; 2014 struct dwc2_hsotg_req *hs_req = our_req(req); 2015 int ret; 2016 2017 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 2018 2019 req->zero = 0; 2020 req->length = 8; 2021 req->buf = hsotg->ctrl_buff; 2022 req->complete = dwc2_hsotg_complete_setup; 2023 2024 if (!list_empty(&hs_req->queue)) { 2025 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 2026 return; 2027 } 2028 2029 hsotg->eps_out[0]->dir_in = 0; 2030 hsotg->eps_out[0]->send_zlp = 0; 2031 hsotg->ep0_state = DWC2_EP0_SETUP; 2032 2033 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 2034 if (ret < 0) { 2035 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 2036 /* 2037 * Don't think there's much we can do other than watch the 2038 * driver fail. 2039 */ 2040 } 2041 } 2042 2043 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 2044 struct dwc2_hsotg_ep *hs_ep) 2045 { 2046 u32 ctrl; 2047 u8 index = hs_ep->index; 2048 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2049 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 2050 2051 if (hs_ep->dir_in) 2052 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 2053 index); 2054 else 2055 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 2056 index); 2057 if (using_desc_dma(hsotg)) { 2058 /* Not specific buffer needed for ep0 ZLP */ 2059 dma_addr_t dma = hs_ep->desc_list_dma; 2060 2061 if (!index) 2062 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 2063 2064 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 2065 } else { 2066 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2067 DXEPTSIZ_XFERSIZE(0), 2068 epsiz_reg); 2069 } 2070 2071 ctrl = dwc2_readl(hsotg, epctl_reg); 2072 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2073 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2074 ctrl |= DXEPCTL_USBACTEP; 2075 dwc2_writel(hsotg, ctrl, epctl_reg); 2076 } 2077 2078 /** 2079 * dwc2_hsotg_complete_request - complete a request given to us 2080 * @hsotg: The device state. 2081 * @hs_ep: The endpoint the request was on. 2082 * @hs_req: The request to complete. 2083 * @result: The result code (0 => Ok, otherwise errno) 2084 * 2085 * The given request has finished, so call the necessary completion 2086 * if it has one and then look to see if we can start a new request 2087 * on the endpoint. 2088 * 2089 * Note, expects the ep to already be locked as appropriate. 2090 */ 2091 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2092 struct dwc2_hsotg_ep *hs_ep, 2093 struct dwc2_hsotg_req *hs_req, 2094 int result) 2095 { 2096 if (!hs_req) { 2097 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2098 return; 2099 } 2100 2101 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2102 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2103 2104 /* 2105 * only replace the status if we've not already set an error 2106 * from a previous transaction 2107 */ 2108 2109 if (hs_req->req.status == -EINPROGRESS) 2110 hs_req->req.status = result; 2111 2112 if (using_dma(hsotg)) 2113 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2114 2115 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2116 2117 hs_ep->req = NULL; 2118 list_del_init(&hs_req->queue); 2119 2120 /* 2121 * call the complete request with the locks off, just in case the 2122 * request tries to queue more work for this endpoint. 2123 */ 2124 2125 if (hs_req->req.complete) { 2126 spin_unlock(&hsotg->lock); 2127 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2128 spin_lock(&hsotg->lock); 2129 } 2130 2131 /* In DDMA don't need to proceed to starting of next ISOC request */ 2132 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2133 return; 2134 2135 /* 2136 * Look to see if there is anything else to do. Note, the completion 2137 * of the previous request may have caused a new request to be started 2138 * so be careful when doing this. 2139 */ 2140 2141 if (!hs_ep->req && result >= 0) 2142 dwc2_gadget_start_next_request(hs_ep); 2143 } 2144 2145 /* 2146 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2147 * @hs_ep: The endpoint the request was on. 2148 * 2149 * Get first request from the ep queue, determine descriptor on which complete 2150 * happened. SW discovers which descriptor currently in use by HW, adjusts 2151 * dma_address and calculates index of completed descriptor based on the value 2152 * of DEPDMA register. Update actual length of request, giveback to gadget. 2153 */ 2154 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2155 { 2156 struct dwc2_hsotg *hsotg = hs_ep->parent; 2157 struct dwc2_hsotg_req *hs_req; 2158 struct usb_request *ureq; 2159 u32 desc_sts; 2160 u32 mask; 2161 2162 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2163 2164 /* Process only descriptors with buffer status set to DMA done */ 2165 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2166 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2167 2168 hs_req = get_ep_head(hs_ep); 2169 if (!hs_req) { 2170 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2171 return; 2172 } 2173 ureq = &hs_req->req; 2174 2175 /* Check completion status */ 2176 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2177 DEV_DMA_STS_SUCC) { 2178 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2179 DEV_DMA_ISOC_RX_NBYTES_MASK; 2180 ureq->actual = ureq->length - ((desc_sts & mask) >> 2181 DEV_DMA_ISOC_NBYTES_SHIFT); 2182 2183 /* Adjust actual len for ISOC Out if len is 2184 * not align of 4 2185 */ 2186 if (!hs_ep->dir_in && ureq->length & 0x3) 2187 ureq->actual += 4 - (ureq->length & 0x3); 2188 2189 /* Set actual frame number for completed transfers */ 2190 ureq->frame_number = 2191 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> 2192 DEV_DMA_ISOC_FRNUM_SHIFT; 2193 } 2194 2195 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2196 2197 hs_ep->compl_desc++; 2198 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) 2199 hs_ep->compl_desc = 0; 2200 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2201 } 2202 } 2203 2204 /* 2205 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2206 * @hs_ep: The isochronous endpoint. 2207 * 2208 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2209 * interrupt. Reset target frame and next_desc to allow to start 2210 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2211 * interrupt for OUT direction. 2212 */ 2213 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2214 { 2215 struct dwc2_hsotg *hsotg = hs_ep->parent; 2216 2217 if (!hs_ep->dir_in) 2218 dwc2_flush_rx_fifo(hsotg); 2219 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2220 2221 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2222 hs_ep->next_desc = 0; 2223 hs_ep->compl_desc = 0; 2224 } 2225 2226 /** 2227 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2228 * @hsotg: The device state. 2229 * @ep_idx: The endpoint index for the data 2230 * @size: The size of data in the fifo, in bytes 2231 * 2232 * The FIFO status shows there is data to read from the FIFO for a given 2233 * endpoint, so sort out whether we need to read the data into a request 2234 * that has been made for that endpoint. 2235 */ 2236 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2237 { 2238 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2239 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2240 int to_read; 2241 int max_req; 2242 int read_ptr; 2243 2244 if (!hs_req) { 2245 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2246 int ptr; 2247 2248 dev_dbg(hsotg->dev, 2249 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2250 __func__, size, ep_idx, epctl); 2251 2252 /* dump the data from the FIFO, we've nothing we can do */ 2253 for (ptr = 0; ptr < size; ptr += 4) 2254 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2255 2256 return; 2257 } 2258 2259 to_read = size; 2260 read_ptr = hs_req->req.actual; 2261 max_req = hs_req->req.length - read_ptr; 2262 2263 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2264 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2265 2266 if (to_read > max_req) { 2267 /* 2268 * more data appeared than we where willing 2269 * to deal with in this request. 2270 */ 2271 2272 /* currently we don't deal this */ 2273 WARN_ON_ONCE(1); 2274 } 2275 2276 hs_ep->total_data += to_read; 2277 hs_req->req.actual += to_read; 2278 to_read = DIV_ROUND_UP(to_read, 4); 2279 2280 /* 2281 * note, we might over-write the buffer end by 3 bytes depending on 2282 * alignment of the data. 2283 */ 2284 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2285 hs_req->req.buf + read_ptr, to_read); 2286 } 2287 2288 /** 2289 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2290 * @hsotg: The device instance 2291 * @dir_in: If IN zlp 2292 * 2293 * Generate a zero-length IN packet request for terminating a SETUP 2294 * transaction. 2295 * 2296 * Note, since we don't write any data to the TxFIFO, then it is 2297 * currently believed that we do not need to wait for any space in 2298 * the TxFIFO. 2299 */ 2300 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2301 { 2302 /* eps_out[0] is used in both directions */ 2303 hsotg->eps_out[0]->dir_in = dir_in; 2304 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2305 2306 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2307 } 2308 2309 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2310 u32 epctl_reg) 2311 { 2312 u32 ctrl; 2313 2314 ctrl = dwc2_readl(hsotg, epctl_reg); 2315 if (ctrl & DXEPCTL_EOFRNUM) 2316 ctrl |= DXEPCTL_SETEVENFR; 2317 else 2318 ctrl |= DXEPCTL_SETODDFR; 2319 dwc2_writel(hsotg, ctrl, epctl_reg); 2320 } 2321 2322 /* 2323 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2324 * @hs_ep - The endpoint on which transfer went 2325 * 2326 * Iterate over endpoints descriptor chain and get info on bytes remained 2327 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2328 */ 2329 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2330 { 2331 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 2332 struct dwc2_hsotg *hsotg = hs_ep->parent; 2333 unsigned int bytes_rem = 0; 2334 unsigned int bytes_rem_correction = 0; 2335 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2336 int i; 2337 u32 status; 2338 u32 mps = hs_ep->ep.maxpacket; 2339 int dir_in = hs_ep->dir_in; 2340 2341 if (!desc) 2342 return -EINVAL; 2343 2344 /* Interrupt OUT EP with mps not multiple of 4 */ 2345 if (hs_ep->index) 2346 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 2347 bytes_rem_correction = 4 - (mps % 4); 2348 2349 for (i = 0; i < hs_ep->desc_count; ++i) { 2350 status = desc->status; 2351 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2352 bytes_rem -= bytes_rem_correction; 2353 2354 if (status & DEV_DMA_STS_MASK) 2355 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2356 i, status & DEV_DMA_STS_MASK); 2357 2358 if (status & DEV_DMA_L) 2359 break; 2360 2361 desc++; 2362 } 2363 2364 return bytes_rem; 2365 } 2366 2367 /** 2368 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2369 * @hsotg: The device instance 2370 * @epnum: The endpoint received from 2371 * 2372 * The RXFIFO has delivered an OutDone event, which means that the data 2373 * transfer for an OUT endpoint has been completed, either by a short 2374 * packet or by the finish of a transfer. 2375 */ 2376 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2377 { 2378 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2379 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2380 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2381 struct usb_request *req = &hs_req->req; 2382 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2383 int result = 0; 2384 2385 if (!hs_req) { 2386 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2387 return; 2388 } 2389 2390 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2391 dev_dbg(hsotg->dev, "zlp packet received\n"); 2392 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2393 dwc2_hsotg_enqueue_setup(hsotg); 2394 return; 2395 } 2396 2397 if (using_desc_dma(hsotg)) 2398 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2399 2400 if (using_dma(hsotg)) { 2401 unsigned int size_done; 2402 2403 /* 2404 * Calculate the size of the transfer by checking how much 2405 * is left in the endpoint size register and then working it 2406 * out from the amount we loaded for the transfer. 2407 * 2408 * We need to do this as DMA pointers are always 32bit aligned 2409 * so may overshoot/undershoot the transfer. 2410 */ 2411 2412 size_done = hs_ep->size_loaded - size_left; 2413 size_done += hs_ep->last_load; 2414 2415 req->actual = size_done; 2416 } 2417 2418 /* if there is more request to do, schedule new transfer */ 2419 if (req->actual < req->length && size_left == 0) { 2420 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2421 return; 2422 } 2423 2424 if (req->actual < req->length && req->short_not_ok) { 2425 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2426 __func__, req->actual, req->length); 2427 2428 /* 2429 * todo - what should we return here? there's no one else 2430 * even bothering to check the status. 2431 */ 2432 } 2433 2434 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2435 if (!using_desc_dma(hsotg) && epnum == 0 && 2436 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2437 /* Move to STATUS IN */ 2438 if (!hsotg->delayed_status) 2439 dwc2_hsotg_ep0_zlp(hsotg, true); 2440 } 2441 2442 /* 2443 * Slave mode OUT transfers do not go through XferComplete so 2444 * adjust the ISOC parity here. 2445 */ 2446 if (!using_dma(hsotg)) { 2447 if (hs_ep->isochronous && hs_ep->interval == 1) 2448 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2449 else if (hs_ep->isochronous && hs_ep->interval > 1) 2450 dwc2_gadget_incr_frame_num(hs_ep); 2451 } 2452 2453 /* Set actual frame number for completed transfers */ 2454 if (!using_desc_dma(hsotg) && hs_ep->isochronous) 2455 req->frame_number = hsotg->frame_number; 2456 2457 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2458 } 2459 2460 /** 2461 * dwc2_hsotg_handle_rx - RX FIFO has data 2462 * @hsotg: The device instance 2463 * 2464 * The IRQ handler has detected that the RX FIFO has some data in it 2465 * that requires processing, so find out what is in there and do the 2466 * appropriate read. 2467 * 2468 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2469 * chunks, so if you have x packets received on an endpoint you'll get x 2470 * FIFO events delivered, each with a packet's worth of data in it. 2471 * 2472 * When using DMA, we should not be processing events from the RXFIFO 2473 * as the actual data should be sent to the memory directly and we turn 2474 * on the completion interrupts to get notifications of transfer completion. 2475 */ 2476 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2477 { 2478 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2479 u32 epnum, status, size; 2480 2481 WARN_ON(using_dma(hsotg)); 2482 2483 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2484 status = grxstsr & GRXSTS_PKTSTS_MASK; 2485 2486 size = grxstsr & GRXSTS_BYTECNT_MASK; 2487 size >>= GRXSTS_BYTECNT_SHIFT; 2488 2489 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2490 __func__, grxstsr, size, epnum); 2491 2492 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2493 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2494 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2495 break; 2496 2497 case GRXSTS_PKTSTS_OUTDONE: 2498 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2499 dwc2_hsotg_read_frameno(hsotg)); 2500 2501 if (!using_dma(hsotg)) 2502 dwc2_hsotg_handle_outdone(hsotg, epnum); 2503 break; 2504 2505 case GRXSTS_PKTSTS_SETUPDONE: 2506 dev_dbg(hsotg->dev, 2507 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2508 dwc2_hsotg_read_frameno(hsotg), 2509 dwc2_readl(hsotg, DOEPCTL(0))); 2510 /* 2511 * Call dwc2_hsotg_handle_outdone here if it was not called from 2512 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2513 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2514 */ 2515 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2516 dwc2_hsotg_handle_outdone(hsotg, epnum); 2517 break; 2518 2519 case GRXSTS_PKTSTS_OUTRX: 2520 dwc2_hsotg_rx_data(hsotg, epnum, size); 2521 break; 2522 2523 case GRXSTS_PKTSTS_SETUPRX: 2524 dev_dbg(hsotg->dev, 2525 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2526 dwc2_hsotg_read_frameno(hsotg), 2527 dwc2_readl(hsotg, DOEPCTL(0))); 2528 2529 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2530 2531 dwc2_hsotg_rx_data(hsotg, epnum, size); 2532 break; 2533 2534 default: 2535 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2536 __func__, grxstsr); 2537 2538 dwc2_hsotg_dump(hsotg); 2539 break; 2540 } 2541 } 2542 2543 /** 2544 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2545 * @mps: The maximum packet size in bytes. 2546 */ 2547 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2548 { 2549 switch (mps) { 2550 case 64: 2551 return D0EPCTL_MPS_64; 2552 case 32: 2553 return D0EPCTL_MPS_32; 2554 case 16: 2555 return D0EPCTL_MPS_16; 2556 case 8: 2557 return D0EPCTL_MPS_8; 2558 } 2559 2560 /* bad max packet size, warn and return invalid result */ 2561 WARN_ON(1); 2562 return (u32)-1; 2563 } 2564 2565 /** 2566 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2567 * @hsotg: The driver state. 2568 * @ep: The index number of the endpoint 2569 * @mps: The maximum packet size in bytes 2570 * @mc: The multicount value 2571 * @dir_in: True if direction is in. 2572 * 2573 * Configure the maximum packet size for the given endpoint, updating 2574 * the hardware control registers to reflect this. 2575 */ 2576 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2577 unsigned int ep, unsigned int mps, 2578 unsigned int mc, unsigned int dir_in) 2579 { 2580 struct dwc2_hsotg_ep *hs_ep; 2581 u32 reg; 2582 2583 hs_ep = index_to_ep(hsotg, ep, dir_in); 2584 if (!hs_ep) 2585 return; 2586 2587 if (ep == 0) { 2588 u32 mps_bytes = mps; 2589 2590 /* EP0 is a special case */ 2591 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2592 if (mps > 3) 2593 goto bad_mps; 2594 hs_ep->ep.maxpacket = mps_bytes; 2595 hs_ep->mc = 1; 2596 } else { 2597 if (mps > 1024) 2598 goto bad_mps; 2599 hs_ep->mc = mc; 2600 if (mc > 3) 2601 goto bad_mps; 2602 hs_ep->ep.maxpacket = mps; 2603 } 2604 2605 if (dir_in) { 2606 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2607 reg &= ~DXEPCTL_MPS_MASK; 2608 reg |= mps; 2609 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2610 } else { 2611 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2612 reg &= ~DXEPCTL_MPS_MASK; 2613 reg |= mps; 2614 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2615 } 2616 2617 return; 2618 2619 bad_mps: 2620 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2621 } 2622 2623 /** 2624 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2625 * @hsotg: The driver state 2626 * @idx: The index for the endpoint (0..15) 2627 */ 2628 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2629 { 2630 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2631 GRSTCTL); 2632 2633 /* wait until the fifo is flushed */ 2634 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2635 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2636 __func__); 2637 } 2638 2639 /** 2640 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2641 * @hsotg: The driver state 2642 * @hs_ep: The driver endpoint to check. 2643 * 2644 * Check to see if there is a request that has data to send, and if so 2645 * make an attempt to write data into the FIFO. 2646 */ 2647 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2648 struct dwc2_hsotg_ep *hs_ep) 2649 { 2650 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2651 2652 if (!hs_ep->dir_in || !hs_req) { 2653 /** 2654 * if request is not enqueued, we disable interrupts 2655 * for endpoints, excepting ep0 2656 */ 2657 if (hs_ep->index != 0) 2658 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2659 hs_ep->dir_in, 0); 2660 return 0; 2661 } 2662 2663 if (hs_req->req.actual < hs_req->req.length) { 2664 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2665 hs_ep->index); 2666 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2667 } 2668 2669 return 0; 2670 } 2671 2672 /** 2673 * dwc2_hsotg_complete_in - complete IN transfer 2674 * @hsotg: The device state. 2675 * @hs_ep: The endpoint that has just completed. 2676 * 2677 * An IN transfer has been completed, update the transfer's state and then 2678 * call the relevant completion routines. 2679 */ 2680 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2681 struct dwc2_hsotg_ep *hs_ep) 2682 { 2683 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2684 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2685 int size_left, size_done; 2686 2687 if (!hs_req) { 2688 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2689 return; 2690 } 2691 2692 /* Finish ZLP handling for IN EP0 transactions */ 2693 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2694 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2695 2696 /* 2697 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2698 * changed to IN. Change back to complete OUT transfer request 2699 */ 2700 hs_ep->dir_in = 0; 2701 2702 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2703 if (hsotg->test_mode) { 2704 int ret; 2705 2706 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2707 if (ret < 0) { 2708 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2709 hsotg->test_mode); 2710 dwc2_hsotg_stall_ep0(hsotg); 2711 return; 2712 } 2713 } 2714 dwc2_hsotg_enqueue_setup(hsotg); 2715 return; 2716 } 2717 2718 /* 2719 * Calculate the size of the transfer by checking how much is left 2720 * in the endpoint size register and then working it out from 2721 * the amount we loaded for the transfer. 2722 * 2723 * We do this even for DMA, as the transfer may have incremented 2724 * past the end of the buffer (DMA transfers are always 32bit 2725 * aligned). 2726 */ 2727 if (using_desc_dma(hsotg)) { 2728 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2729 if (size_left < 0) 2730 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2731 size_left); 2732 } else { 2733 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2734 } 2735 2736 size_done = hs_ep->size_loaded - size_left; 2737 size_done += hs_ep->last_load; 2738 2739 if (hs_req->req.actual != size_done) 2740 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2741 __func__, hs_req->req.actual, size_done); 2742 2743 hs_req->req.actual = size_done; 2744 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2745 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2746 2747 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2748 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2749 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2750 return; 2751 } 2752 2753 /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */ 2754 if (hs_ep->send_zlp) { 2755 hs_ep->send_zlp = 0; 2756 if (!using_desc_dma(hsotg)) { 2757 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2758 /* transfer will be completed on next complete interrupt */ 2759 return; 2760 } 2761 } 2762 2763 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2764 /* Move to STATUS OUT */ 2765 dwc2_hsotg_ep0_zlp(hsotg, false); 2766 return; 2767 } 2768 2769 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2770 } 2771 2772 /** 2773 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2774 * @hsotg: The device state. 2775 * @idx: Index of ep. 2776 * @dir_in: Endpoint direction 1-in 0-out. 2777 * 2778 * Reads for endpoint with given index and direction, by masking 2779 * epint_reg with coresponding mask. 2780 */ 2781 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2782 unsigned int idx, int dir_in) 2783 { 2784 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2785 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2786 u32 ints; 2787 u32 mask; 2788 u32 diepempmsk; 2789 2790 mask = dwc2_readl(hsotg, epmsk_reg); 2791 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2792 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2793 mask |= DXEPINT_SETUP_RCVD; 2794 2795 ints = dwc2_readl(hsotg, epint_reg); 2796 ints &= mask; 2797 return ints; 2798 } 2799 2800 /** 2801 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2802 * @hs_ep: The endpoint on which interrupt is asserted. 2803 * 2804 * This interrupt indicates that the endpoint has been disabled per the 2805 * application's request. 2806 * 2807 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2808 * in case of ISOC completes current request. 2809 * 2810 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2811 * request starts it. 2812 */ 2813 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2814 { 2815 struct dwc2_hsotg *hsotg = hs_ep->parent; 2816 struct dwc2_hsotg_req *hs_req; 2817 unsigned char idx = hs_ep->index; 2818 int dir_in = hs_ep->dir_in; 2819 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2820 int dctl = dwc2_readl(hsotg, DCTL); 2821 2822 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2823 2824 if (dir_in) { 2825 int epctl = dwc2_readl(hsotg, epctl_reg); 2826 2827 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2828 2829 if (hs_ep->isochronous) { 2830 dwc2_hsotg_complete_in(hsotg, hs_ep); 2831 return; 2832 } 2833 2834 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2835 int dctl = dwc2_readl(hsotg, DCTL); 2836 2837 dctl |= DCTL_CGNPINNAK; 2838 dwc2_writel(hsotg, dctl, DCTL); 2839 } 2840 return; 2841 } 2842 2843 if (dctl & DCTL_GOUTNAKSTS) { 2844 dctl |= DCTL_CGOUTNAK; 2845 dwc2_writel(hsotg, dctl, DCTL); 2846 } 2847 2848 if (!hs_ep->isochronous) 2849 return; 2850 2851 if (list_empty(&hs_ep->queue)) { 2852 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2853 __func__, hs_ep); 2854 return; 2855 } 2856 2857 do { 2858 hs_req = get_ep_head(hs_ep); 2859 if (hs_req) 2860 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2861 -ENODATA); 2862 dwc2_gadget_incr_frame_num(hs_ep); 2863 /* Update current frame number value. */ 2864 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2865 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2866 2867 dwc2_gadget_start_next_request(hs_ep); 2868 } 2869 2870 /** 2871 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2872 * @ep: The endpoint on which interrupt is asserted. 2873 * 2874 * This is starting point for ISOC-OUT transfer, synchronization done with 2875 * first out token received from host while corresponding EP is disabled. 2876 * 2877 * Device does not know initial frame in which out token will come. For this 2878 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2879 * getting this interrupt SW starts calculation for next transfer frame. 2880 */ 2881 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2882 { 2883 struct dwc2_hsotg *hsotg = ep->parent; 2884 int dir_in = ep->dir_in; 2885 u32 doepmsk; 2886 2887 if (dir_in || !ep->isochronous) 2888 return; 2889 2890 if (using_desc_dma(hsotg)) { 2891 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2892 /* Start first ISO Out */ 2893 ep->target_frame = hsotg->frame_number; 2894 dwc2_gadget_start_isoc_ddma(ep); 2895 } 2896 return; 2897 } 2898 2899 if (ep->interval > 1 && 2900 ep->target_frame == TARGET_FRAME_INITIAL) { 2901 u32 ctrl; 2902 2903 ep->target_frame = hsotg->frame_number; 2904 dwc2_gadget_incr_frame_num(ep); 2905 2906 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2907 if (ep->target_frame & 0x1) 2908 ctrl |= DXEPCTL_SETODDFR; 2909 else 2910 ctrl |= DXEPCTL_SETEVENFR; 2911 2912 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2913 } 2914 2915 dwc2_gadget_start_next_request(ep); 2916 doepmsk = dwc2_readl(hsotg, DOEPMSK); 2917 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2918 dwc2_writel(hsotg, doepmsk, DOEPMSK); 2919 } 2920 2921 /** 2922 * dwc2_gadget_handle_nak - handle NAK interrupt 2923 * @hs_ep: The endpoint on which interrupt is asserted. 2924 * 2925 * This is starting point for ISOC-IN transfer, synchronization done with 2926 * first IN token received from host while corresponding EP is disabled. 2927 * 2928 * Device does not know when first one token will arrive from host. On first 2929 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2930 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2931 * sent in response to that as there was no data in FIFO. SW is basing on this 2932 * interrupt to obtain frame in which token has come and then based on the 2933 * interval calculates next frame for transfer. 2934 */ 2935 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2936 { 2937 struct dwc2_hsotg *hsotg = hs_ep->parent; 2938 int dir_in = hs_ep->dir_in; 2939 2940 if (!dir_in || !hs_ep->isochronous) 2941 return; 2942 2943 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2944 2945 if (using_desc_dma(hsotg)) { 2946 hs_ep->target_frame = hsotg->frame_number; 2947 dwc2_gadget_incr_frame_num(hs_ep); 2948 2949 /* In service interval mode target_frame must 2950 * be set to last (u)frame of the service interval. 2951 */ 2952 if (hsotg->params.service_interval) { 2953 /* Set target_frame to the first (u)frame of 2954 * the service interval 2955 */ 2956 hs_ep->target_frame &= ~hs_ep->interval + 1; 2957 2958 /* Set target_frame to the last (u)frame of 2959 * the service interval 2960 */ 2961 dwc2_gadget_incr_frame_num(hs_ep); 2962 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2963 } 2964 2965 dwc2_gadget_start_isoc_ddma(hs_ep); 2966 return; 2967 } 2968 2969 hs_ep->target_frame = hsotg->frame_number; 2970 if (hs_ep->interval > 1) { 2971 u32 ctrl = dwc2_readl(hsotg, 2972 DIEPCTL(hs_ep->index)); 2973 if (hs_ep->target_frame & 0x1) 2974 ctrl |= DXEPCTL_SETODDFR; 2975 else 2976 ctrl |= DXEPCTL_SETEVENFR; 2977 2978 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 2979 } 2980 2981 dwc2_hsotg_complete_request(hsotg, hs_ep, 2982 get_ep_head(hs_ep), 0); 2983 } 2984 2985 if (!using_desc_dma(hsotg)) 2986 dwc2_gadget_incr_frame_num(hs_ep); 2987 } 2988 2989 /** 2990 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2991 * @hsotg: The driver state 2992 * @idx: The index for the endpoint (0..15) 2993 * @dir_in: Set if this is an IN endpoint 2994 * 2995 * Process and clear any interrupt pending for an individual endpoint 2996 */ 2997 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2998 int dir_in) 2999 { 3000 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 3001 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 3002 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 3003 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 3004 u32 ints; 3005 3006 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 3007 3008 /* Clear endpoint interrupts */ 3009 dwc2_writel(hsotg, ints, epint_reg); 3010 3011 if (!hs_ep) { 3012 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 3013 __func__, idx, dir_in ? "in" : "out"); 3014 return; 3015 } 3016 3017 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 3018 __func__, idx, dir_in ? "in" : "out", ints); 3019 3020 /* Don't process XferCompl interrupt if it is a setup packet */ 3021 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 3022 ints &= ~DXEPINT_XFERCOMPL; 3023 3024 /* 3025 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 3026 * stage and xfercomplete was generated without SETUP phase done 3027 * interrupt. SW should parse received setup packet only after host's 3028 * exit from setup phase of control transfer. 3029 */ 3030 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 3031 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 3032 ints &= ~DXEPINT_XFERCOMPL; 3033 3034 if (ints & DXEPINT_XFERCOMPL) { 3035 dev_dbg(hsotg->dev, 3036 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 3037 __func__, dwc2_readl(hsotg, epctl_reg), 3038 dwc2_readl(hsotg, epsiz_reg)); 3039 3040 /* In DDMA handle isochronous requests separately */ 3041 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 3042 /* XferCompl set along with BNA */ 3043 if (!(ints & DXEPINT_BNAINTR)) 3044 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 3045 } else if (dir_in) { 3046 /* 3047 * We get OutDone from the FIFO, so we only 3048 * need to look at completing IN requests here 3049 * if operating slave mode 3050 */ 3051 if (hs_ep->isochronous && hs_ep->interval > 1) 3052 dwc2_gadget_incr_frame_num(hs_ep); 3053 3054 dwc2_hsotg_complete_in(hsotg, hs_ep); 3055 if (ints & DXEPINT_NAKINTRPT) 3056 ints &= ~DXEPINT_NAKINTRPT; 3057 3058 if (idx == 0 && !hs_ep->req) 3059 dwc2_hsotg_enqueue_setup(hsotg); 3060 } else if (using_dma(hsotg)) { 3061 /* 3062 * We're using DMA, we need to fire an OutDone here 3063 * as we ignore the RXFIFO. 3064 */ 3065 if (hs_ep->isochronous && hs_ep->interval > 1) 3066 dwc2_gadget_incr_frame_num(hs_ep); 3067 3068 dwc2_hsotg_handle_outdone(hsotg, idx); 3069 } 3070 } 3071 3072 if (ints & DXEPINT_EPDISBLD) 3073 dwc2_gadget_handle_ep_disabled(hs_ep); 3074 3075 if (ints & DXEPINT_OUTTKNEPDIS) 3076 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 3077 3078 if (ints & DXEPINT_NAKINTRPT) 3079 dwc2_gadget_handle_nak(hs_ep); 3080 3081 if (ints & DXEPINT_AHBERR) 3082 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 3083 3084 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 3085 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3086 3087 if (using_dma(hsotg) && idx == 0) { 3088 /* 3089 * this is the notification we've received a 3090 * setup packet. In non-DMA mode we'd get this 3091 * from the RXFIFO, instead we need to process 3092 * the setup here. 3093 */ 3094 3095 if (dir_in) 3096 WARN_ON_ONCE(1); 3097 else 3098 dwc2_hsotg_handle_outdone(hsotg, 0); 3099 } 3100 } 3101 3102 if (ints & DXEPINT_STSPHSERCVD) { 3103 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3104 3105 /* Safety check EP0 state when STSPHSERCVD asserted */ 3106 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3107 /* Move to STATUS IN for DDMA */ 3108 if (using_desc_dma(hsotg)) { 3109 if (!hsotg->delayed_status) 3110 dwc2_hsotg_ep0_zlp(hsotg, true); 3111 else 3112 /* In case of 3 stage Control Write with delayed 3113 * status, when Status IN transfer started 3114 * before STSPHSERCVD asserted, NAKSTS bit not 3115 * cleared by CNAK in dwc2_hsotg_start_req() 3116 * function. Clear now NAKSTS to allow complete 3117 * transfer. 3118 */ 3119 dwc2_set_bit(hsotg, DIEPCTL(0), 3120 DXEPCTL_CNAK); 3121 } 3122 } 3123 3124 } 3125 3126 if (ints & DXEPINT_BACK2BACKSETUP) 3127 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3128 3129 if (ints & DXEPINT_BNAINTR) { 3130 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3131 if (hs_ep->isochronous) 3132 dwc2_gadget_handle_isoc_bna(hs_ep); 3133 } 3134 3135 if (dir_in && !hs_ep->isochronous) { 3136 /* not sure if this is important, but we'll clear it anyway */ 3137 if (ints & DXEPINT_INTKNTXFEMP) { 3138 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3139 __func__, idx); 3140 } 3141 3142 /* this probably means something bad is happening */ 3143 if (ints & DXEPINT_INTKNEPMIS) { 3144 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3145 __func__, idx); 3146 } 3147 3148 /* FIFO has space or is empty (see GAHBCFG) */ 3149 if (hsotg->dedicated_fifos && 3150 ints & DXEPINT_TXFEMP) { 3151 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3152 __func__, idx); 3153 if (!using_dma(hsotg)) 3154 dwc2_hsotg_trytx(hsotg, hs_ep); 3155 } 3156 } 3157 } 3158 3159 /** 3160 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3161 * @hsotg: The device state. 3162 * 3163 * Handle updating the device settings after the enumeration phase has 3164 * been completed. 3165 */ 3166 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3167 { 3168 u32 dsts = dwc2_readl(hsotg, DSTS); 3169 int ep0_mps = 0, ep_mps = 8; 3170 3171 /* 3172 * This should signal the finish of the enumeration phase 3173 * of the USB handshaking, so we should now know what rate 3174 * we connected at. 3175 */ 3176 3177 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3178 3179 /* 3180 * note, since we're limited by the size of transfer on EP0, and 3181 * it seems IN transfers must be a even number of packets we do 3182 * not advertise a 64byte MPS on EP0. 3183 */ 3184 3185 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3186 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3187 case DSTS_ENUMSPD_FS: 3188 case DSTS_ENUMSPD_FS48: 3189 hsotg->gadget.speed = USB_SPEED_FULL; 3190 ep0_mps = EP0_MPS_LIMIT; 3191 ep_mps = 1023; 3192 break; 3193 3194 case DSTS_ENUMSPD_HS: 3195 hsotg->gadget.speed = USB_SPEED_HIGH; 3196 ep0_mps = EP0_MPS_LIMIT; 3197 ep_mps = 1024; 3198 break; 3199 3200 case DSTS_ENUMSPD_LS: 3201 hsotg->gadget.speed = USB_SPEED_LOW; 3202 ep0_mps = 8; 3203 ep_mps = 8; 3204 /* 3205 * note, we don't actually support LS in this driver at the 3206 * moment, and the documentation seems to imply that it isn't 3207 * supported by the PHYs on some of the devices. 3208 */ 3209 break; 3210 } 3211 dev_info(hsotg->dev, "new device is %s\n", 3212 usb_speed_string(hsotg->gadget.speed)); 3213 3214 /* 3215 * we should now know the maximum packet size for an 3216 * endpoint, so set the endpoints to a default value. 3217 */ 3218 3219 if (ep0_mps) { 3220 int i; 3221 /* Initialize ep0 for both in and out directions */ 3222 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3223 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3224 for (i = 1; i < hsotg->num_of_eps; i++) { 3225 if (hsotg->eps_in[i]) 3226 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3227 0, 1); 3228 if (hsotg->eps_out[i]) 3229 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3230 0, 0); 3231 } 3232 } 3233 3234 /* ensure after enumeration our EP0 is active */ 3235 3236 dwc2_hsotg_enqueue_setup(hsotg); 3237 3238 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3239 dwc2_readl(hsotg, DIEPCTL0), 3240 dwc2_readl(hsotg, DOEPCTL0)); 3241 } 3242 3243 /** 3244 * kill_all_requests - remove all requests from the endpoint's queue 3245 * @hsotg: The device state. 3246 * @ep: The endpoint the requests may be on. 3247 * @result: The result code to use. 3248 * 3249 * Go through the requests on the given endpoint and mark them 3250 * completed with the given result code. 3251 */ 3252 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3253 struct dwc2_hsotg_ep *ep, 3254 int result) 3255 { 3256 unsigned int size; 3257 3258 ep->req = NULL; 3259 3260 while (!list_empty(&ep->queue)) { 3261 struct dwc2_hsotg_req *req = get_ep_head(ep); 3262 3263 dwc2_hsotg_complete_request(hsotg, ep, req, result); 3264 } 3265 3266 if (!hsotg->dedicated_fifos) 3267 return; 3268 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3269 if (size < ep->fifo_size) 3270 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3271 } 3272 3273 /** 3274 * dwc2_hsotg_disconnect - disconnect service 3275 * @hsotg: The device state. 3276 * 3277 * The device has been disconnected. Remove all current 3278 * transactions and signal the gadget driver that this 3279 * has happened. 3280 */ 3281 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3282 { 3283 unsigned int ep; 3284 3285 if (!hsotg->connected) 3286 return; 3287 3288 hsotg->connected = 0; 3289 hsotg->test_mode = 0; 3290 3291 /* all endpoints should be shutdown */ 3292 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3293 if (hsotg->eps_in[ep]) 3294 kill_all_requests(hsotg, hsotg->eps_in[ep], 3295 -ESHUTDOWN); 3296 if (hsotg->eps_out[ep]) 3297 kill_all_requests(hsotg, hsotg->eps_out[ep], 3298 -ESHUTDOWN); 3299 } 3300 3301 call_gadget(hsotg, disconnect); 3302 hsotg->lx_state = DWC2_L3; 3303 3304 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3305 } 3306 3307 /** 3308 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3309 * @hsotg: The device state: 3310 * @periodic: True if this is a periodic FIFO interrupt 3311 */ 3312 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3313 { 3314 struct dwc2_hsotg_ep *ep; 3315 int epno, ret; 3316 3317 /* look through for any more data to transmit */ 3318 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3319 ep = index_to_ep(hsotg, epno, 1); 3320 3321 if (!ep) 3322 continue; 3323 3324 if (!ep->dir_in) 3325 continue; 3326 3327 if ((periodic && !ep->periodic) || 3328 (!periodic && ep->periodic)) 3329 continue; 3330 3331 ret = dwc2_hsotg_trytx(hsotg, ep); 3332 if (ret < 0) 3333 break; 3334 } 3335 } 3336 3337 /* IRQ flags which will trigger a retry around the IRQ loop */ 3338 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3339 GINTSTS_PTXFEMP | \ 3340 GINTSTS_RXFLVL) 3341 3342 static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3343 /** 3344 * dwc2_hsotg_core_init_disconnected - issue softreset to the core 3345 * @hsotg: The device state 3346 * @is_usb_reset: Usb resetting flag 3347 * 3348 * Issue a soft reset to the core, and await the core finishing it. 3349 */ 3350 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3351 bool is_usb_reset) 3352 { 3353 u32 intmsk; 3354 u32 val; 3355 u32 usbcfg; 3356 u32 dcfg = 0; 3357 int ep; 3358 3359 /* Kill any ep0 requests as controller will be reinitialized */ 3360 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3361 3362 if (!is_usb_reset) { 3363 if (dwc2_core_reset(hsotg, true)) 3364 return; 3365 } else { 3366 /* all endpoints should be shutdown */ 3367 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3368 if (hsotg->eps_in[ep]) 3369 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3370 if (hsotg->eps_out[ep]) 3371 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3372 } 3373 } 3374 3375 /* 3376 * we must now enable ep0 ready for host detection and then 3377 * set configuration. 3378 */ 3379 3380 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3381 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3382 usbcfg &= ~GUSBCFG_TOUTCAL_MASK; 3383 usbcfg |= GUSBCFG_TOUTCAL(7); 3384 3385 /* remove the HNP/SRP and set the PHY */ 3386 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); 3387 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3388 3389 dwc2_phy_init(hsotg, true); 3390 3391 dwc2_hsotg_init_fifo(hsotg); 3392 3393 if (!is_usb_reset) 3394 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3395 3396 dcfg |= DCFG_EPMISCNT(1); 3397 3398 switch (hsotg->params.speed) { 3399 case DWC2_SPEED_PARAM_LOW: 3400 dcfg |= DCFG_DEVSPD_LS; 3401 break; 3402 case DWC2_SPEED_PARAM_FULL: 3403 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3404 dcfg |= DCFG_DEVSPD_FS48; 3405 else 3406 dcfg |= DCFG_DEVSPD_FS; 3407 break; 3408 default: 3409 dcfg |= DCFG_DEVSPD_HS; 3410 } 3411 3412 if (hsotg->params.ipg_isoc_en) 3413 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3414 3415 dwc2_writel(hsotg, dcfg, DCFG); 3416 3417 /* Clear any pending OTG interrupts */ 3418 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3419 3420 /* Clear any pending interrupts */ 3421 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3422 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3423 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3424 GINTSTS_USBRST | GINTSTS_RESETDET | 3425 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3426 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3427 GINTSTS_LPMTRANRCVD; 3428 3429 if (!using_desc_dma(hsotg)) 3430 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3431 3432 if (!hsotg->params.external_id_pin_ctl) 3433 intmsk |= GINTSTS_CONIDSTSCHNG; 3434 3435 dwc2_writel(hsotg, intmsk, GINTMSK); 3436 3437 if (using_dma(hsotg)) { 3438 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3439 hsotg->params.ahbcfg, 3440 GAHBCFG); 3441 3442 /* Set DDMA mode support in the core if needed */ 3443 if (using_desc_dma(hsotg)) 3444 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3445 3446 } else { 3447 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3448 (GAHBCFG_NP_TXF_EMP_LVL | 3449 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3450 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3451 } 3452 3453 /* 3454 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3455 * when we have no data to transfer. Otherwise we get being flooded by 3456 * interrupts. 3457 */ 3458 3459 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3460 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3461 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3462 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3463 DIEPMSK); 3464 3465 /* 3466 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3467 * DMA mode we may need this and StsPhseRcvd. 3468 */ 3469 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3470 DOEPMSK_STSPHSERCVDMSK) : 0) | 3471 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3472 DOEPMSK_SETUPMSK, 3473 DOEPMSK); 3474 3475 /* Enable BNA interrupt for DDMA */ 3476 if (using_desc_dma(hsotg)) { 3477 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3478 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3479 } 3480 3481 /* Enable Service Interval mode if supported */ 3482 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3483 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3484 3485 dwc2_writel(hsotg, 0, DAINTMSK); 3486 3487 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3488 dwc2_readl(hsotg, DIEPCTL0), 3489 dwc2_readl(hsotg, DOEPCTL0)); 3490 3491 /* enable in and out endpoint interrupts */ 3492 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3493 3494 /* 3495 * Enable the RXFIFO when in slave mode, as this is how we collect 3496 * the data. In DMA mode, we get events from the FIFO but also 3497 * things we cannot process, so do not use it. 3498 */ 3499 if (!using_dma(hsotg)) 3500 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3501 3502 /* Enable interrupts for EP0 in and out */ 3503 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3504 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3505 3506 if (!is_usb_reset) { 3507 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3508 udelay(10); /* see openiboot */ 3509 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3510 } 3511 3512 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3513 3514 /* 3515 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3516 * writing to the EPCTL register.. 3517 */ 3518 3519 /* set to read 1 8byte packet */ 3520 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3521 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3522 3523 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3524 DXEPCTL_CNAK | DXEPCTL_EPENA | 3525 DXEPCTL_USBACTEP, 3526 DOEPCTL0); 3527 3528 /* enable, but don't activate EP0in */ 3529 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3530 DXEPCTL_USBACTEP, DIEPCTL0); 3531 3532 /* clear global NAKs */ 3533 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3534 if (!is_usb_reset) 3535 val |= DCTL_SFTDISCON; 3536 dwc2_set_bit(hsotg, DCTL, val); 3537 3538 /* configure the core to support LPM */ 3539 dwc2_gadget_init_lpm(hsotg); 3540 3541 /* program GREFCLK register if needed */ 3542 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3543 dwc2_gadget_program_ref_clk(hsotg); 3544 3545 /* must be at-least 3ms to allow bus to see disconnect */ 3546 mdelay(3); 3547 3548 hsotg->lx_state = DWC2_L0; 3549 3550 dwc2_hsotg_enqueue_setup(hsotg); 3551 3552 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3553 dwc2_readl(hsotg, DIEPCTL0), 3554 dwc2_readl(hsotg, DOEPCTL0)); 3555 } 3556 3557 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3558 { 3559 /* set the soft-disconnect bit */ 3560 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3561 } 3562 3563 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3564 { 3565 /* remove the soft-disconnect and let's go */ 3566 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3567 } 3568 3569 /** 3570 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3571 * @hsotg: The device state: 3572 * 3573 * This interrupt indicates one of the following conditions occurred while 3574 * transmitting an ISOC transaction. 3575 * - Corrupted IN Token for ISOC EP. 3576 * - Packet not complete in FIFO. 3577 * 3578 * The following actions will be taken: 3579 * - Determine the EP 3580 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3581 */ 3582 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3583 { 3584 struct dwc2_hsotg_ep *hs_ep; 3585 u32 epctrl; 3586 u32 daintmsk; 3587 u32 idx; 3588 3589 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3590 3591 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3592 3593 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3594 hs_ep = hsotg->eps_in[idx]; 3595 /* Proceed only unmasked ISOC EPs */ 3596 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3597 continue; 3598 3599 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3600 if ((epctrl & DXEPCTL_EPENA) && 3601 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3602 epctrl |= DXEPCTL_SNAK; 3603 epctrl |= DXEPCTL_EPDIS; 3604 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3605 } 3606 } 3607 3608 /* Clear interrupt */ 3609 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3610 } 3611 3612 /** 3613 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3614 * @hsotg: The device state: 3615 * 3616 * This interrupt indicates one of the following conditions occurred while 3617 * transmitting an ISOC transaction. 3618 * - Corrupted OUT Token for ISOC EP. 3619 * - Packet not complete in FIFO. 3620 * 3621 * The following actions will be taken: 3622 * - Determine the EP 3623 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3624 */ 3625 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3626 { 3627 u32 gintsts; 3628 u32 gintmsk; 3629 u32 daintmsk; 3630 u32 epctrl; 3631 struct dwc2_hsotg_ep *hs_ep; 3632 int idx; 3633 3634 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3635 3636 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3637 daintmsk >>= DAINT_OUTEP_SHIFT; 3638 3639 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3640 hs_ep = hsotg->eps_out[idx]; 3641 /* Proceed only unmasked ISOC EPs */ 3642 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3643 continue; 3644 3645 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3646 if ((epctrl & DXEPCTL_EPENA) && 3647 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3648 /* Unmask GOUTNAKEFF interrupt */ 3649 gintmsk = dwc2_readl(hsotg, GINTMSK); 3650 gintmsk |= GINTSTS_GOUTNAKEFF; 3651 dwc2_writel(hsotg, gintmsk, GINTMSK); 3652 3653 gintsts = dwc2_readl(hsotg, GINTSTS); 3654 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3655 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3656 break; 3657 } 3658 } 3659 } 3660 3661 /* Clear interrupt */ 3662 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3663 } 3664 3665 /** 3666 * dwc2_hsotg_irq - handle device interrupt 3667 * @irq: The IRQ number triggered 3668 * @pw: The pw value when registered the handler. 3669 */ 3670 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3671 { 3672 struct dwc2_hsotg *hsotg = pw; 3673 int retry_count = 8; 3674 u32 gintsts; 3675 u32 gintmsk; 3676 3677 if (!dwc2_is_device_mode(hsotg)) 3678 return IRQ_NONE; 3679 3680 spin_lock(&hsotg->lock); 3681 irq_retry: 3682 gintsts = dwc2_readl(hsotg, GINTSTS); 3683 gintmsk = dwc2_readl(hsotg, GINTMSK); 3684 3685 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3686 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3687 3688 gintsts &= gintmsk; 3689 3690 if (gintsts & GINTSTS_RESETDET) { 3691 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3692 3693 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3694 3695 /* This event must be used only if controller is suspended */ 3696 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2) 3697 dwc2_exit_partial_power_down(hsotg, 0, true); 3698 3699 hsotg->lx_state = DWC2_L0; 3700 } 3701 3702 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3703 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3704 u32 connected = hsotg->connected; 3705 3706 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3707 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3708 dwc2_readl(hsotg, GNPTXSTS)); 3709 3710 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3711 3712 /* Report disconnection if it is not already done. */ 3713 dwc2_hsotg_disconnect(hsotg); 3714 3715 /* Reset device address to zero */ 3716 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3717 3718 if (usb_status & GOTGCTL_BSESVLD && connected) 3719 dwc2_hsotg_core_init_disconnected(hsotg, true); 3720 } 3721 3722 if (gintsts & GINTSTS_ENUMDONE) { 3723 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3724 3725 dwc2_hsotg_irq_enumdone(hsotg); 3726 } 3727 3728 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3729 u32 daint = dwc2_readl(hsotg, DAINT); 3730 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3731 u32 daint_out, daint_in; 3732 int ep; 3733 3734 daint &= daintmsk; 3735 daint_out = daint >> DAINT_OUTEP_SHIFT; 3736 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3737 3738 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3739 3740 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3741 ep++, daint_out >>= 1) { 3742 if (daint_out & 1) 3743 dwc2_hsotg_epint(hsotg, ep, 0); 3744 } 3745 3746 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3747 ep++, daint_in >>= 1) { 3748 if (daint_in & 1) 3749 dwc2_hsotg_epint(hsotg, ep, 1); 3750 } 3751 } 3752 3753 /* check both FIFOs */ 3754 3755 if (gintsts & GINTSTS_NPTXFEMP) { 3756 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3757 3758 /* 3759 * Disable the interrupt to stop it happening again 3760 * unless one of these endpoint routines decides that 3761 * it needs re-enabling 3762 */ 3763 3764 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3765 dwc2_hsotg_irq_fifoempty(hsotg, false); 3766 } 3767 3768 if (gintsts & GINTSTS_PTXFEMP) { 3769 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3770 3771 /* See note in GINTSTS_NPTxFEmp */ 3772 3773 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3774 dwc2_hsotg_irq_fifoempty(hsotg, true); 3775 } 3776 3777 if (gintsts & GINTSTS_RXFLVL) { 3778 /* 3779 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3780 * we need to retry dwc2_hsotg_handle_rx if this is still 3781 * set. 3782 */ 3783 3784 dwc2_hsotg_handle_rx(hsotg); 3785 } 3786 3787 if (gintsts & GINTSTS_ERLYSUSP) { 3788 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3789 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3790 } 3791 3792 /* 3793 * these next two seem to crop-up occasionally causing the core 3794 * to shutdown the USB transfer, so try clearing them and logging 3795 * the occurrence. 3796 */ 3797 3798 if (gintsts & GINTSTS_GOUTNAKEFF) { 3799 u8 idx; 3800 u32 epctrl; 3801 u32 gintmsk; 3802 u32 daintmsk; 3803 struct dwc2_hsotg_ep *hs_ep; 3804 3805 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3806 daintmsk >>= DAINT_OUTEP_SHIFT; 3807 /* Mask this interrupt */ 3808 gintmsk = dwc2_readl(hsotg, GINTMSK); 3809 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3810 dwc2_writel(hsotg, gintmsk, GINTMSK); 3811 3812 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3813 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3814 hs_ep = hsotg->eps_out[idx]; 3815 /* Proceed only unmasked ISOC EPs */ 3816 if (BIT(idx) & ~daintmsk) 3817 continue; 3818 3819 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3820 3821 //ISOC Ep's only 3822 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3823 epctrl |= DXEPCTL_SNAK; 3824 epctrl |= DXEPCTL_EPDIS; 3825 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3826 continue; 3827 } 3828 3829 //Non-ISOC EP's 3830 if (hs_ep->halted) { 3831 if (!(epctrl & DXEPCTL_EPENA)) 3832 epctrl |= DXEPCTL_EPENA; 3833 epctrl |= DXEPCTL_EPDIS; 3834 epctrl |= DXEPCTL_STALL; 3835 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3836 } 3837 } 3838 3839 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3840 } 3841 3842 if (gintsts & GINTSTS_GINNAKEFF) { 3843 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3844 3845 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3846 3847 dwc2_hsotg_dump(hsotg); 3848 } 3849 3850 if (gintsts & GINTSTS_INCOMPL_SOIN) 3851 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3852 3853 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3854 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3855 3856 /* 3857 * if we've had fifo events, we should try and go around the 3858 * loop again to see if there's any point in returning yet. 3859 */ 3860 3861 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3862 goto irq_retry; 3863 3864 /* Check WKUP_ALERT interrupt*/ 3865 if (hsotg->params.service_interval) 3866 dwc2_gadget_wkup_alert_handler(hsotg); 3867 3868 spin_unlock(&hsotg->lock); 3869 3870 return IRQ_HANDLED; 3871 } 3872 3873 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3874 struct dwc2_hsotg_ep *hs_ep) 3875 { 3876 u32 epctrl_reg; 3877 u32 epint_reg; 3878 3879 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3880 DOEPCTL(hs_ep->index); 3881 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3882 DOEPINT(hs_ep->index); 3883 3884 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3885 hs_ep->name); 3886 3887 if (hs_ep->dir_in) { 3888 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3889 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3890 /* Wait for Nak effect */ 3891 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3892 DXEPINT_INEPNAKEFF, 100)) 3893 dev_warn(hsotg->dev, 3894 "%s: timeout DIEPINT.NAKEFF\n", 3895 __func__); 3896 } else { 3897 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3898 /* Wait for Nak effect */ 3899 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3900 GINTSTS_GINNAKEFF, 100)) 3901 dev_warn(hsotg->dev, 3902 "%s: timeout GINTSTS.GINNAKEFF\n", 3903 __func__); 3904 } 3905 } else { 3906 /* Mask GINTSTS_GOUTNAKEFF interrupt */ 3907 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF); 3908 3909 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3910 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3911 3912 if (!using_dma(hsotg)) { 3913 /* Wait for GINTSTS_RXFLVL interrupt */ 3914 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3915 GINTSTS_RXFLVL, 100)) { 3916 dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n", 3917 __func__); 3918 } else { 3919 /* 3920 * Pop GLOBAL OUT NAK status packet from RxFIFO 3921 * to assert GOUTNAKEFF interrupt 3922 */ 3923 dwc2_readl(hsotg, GRXSTSP); 3924 } 3925 } 3926 3927 /* Wait for global nak to take effect */ 3928 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3929 GINTSTS_GOUTNAKEFF, 100)) 3930 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3931 __func__); 3932 } 3933 3934 /* Disable ep */ 3935 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3936 3937 /* Wait for ep to be disabled */ 3938 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3939 dev_warn(hsotg->dev, 3940 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3941 3942 /* Clear EPDISBLD interrupt */ 3943 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3944 3945 if (hs_ep->dir_in) { 3946 unsigned short fifo_index; 3947 3948 if (hsotg->dedicated_fifos || hs_ep->periodic) 3949 fifo_index = hs_ep->fifo_index; 3950 else 3951 fifo_index = 0; 3952 3953 /* Flush TX FIFO */ 3954 dwc2_flush_tx_fifo(hsotg, fifo_index); 3955 3956 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3957 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3958 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3959 3960 } else { 3961 /* Remove global NAKs */ 3962 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 3963 } 3964 } 3965 3966 /** 3967 * dwc2_hsotg_ep_enable - enable the given endpoint 3968 * @ep: The USB endpint to configure 3969 * @desc: The USB endpoint descriptor to configure with. 3970 * 3971 * This is called from the USB gadget code's usb_ep_enable(). 3972 */ 3973 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3974 const struct usb_endpoint_descriptor *desc) 3975 { 3976 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3977 struct dwc2_hsotg *hsotg = hs_ep->parent; 3978 unsigned long flags; 3979 unsigned int index = hs_ep->index; 3980 u32 epctrl_reg; 3981 u32 epctrl; 3982 u32 mps; 3983 u32 mc; 3984 u32 mask; 3985 unsigned int dir_in; 3986 unsigned int i, val, size; 3987 int ret = 0; 3988 unsigned char ep_type; 3989 int desc_num; 3990 3991 dev_dbg(hsotg->dev, 3992 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3993 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3994 desc->wMaxPacketSize, desc->bInterval); 3995 3996 /* not to be called for EP0 */ 3997 if (index == 0) { 3998 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3999 return -EINVAL; 4000 } 4001 4002 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 4003 if (dir_in != hs_ep->dir_in) { 4004 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 4005 return -EINVAL; 4006 } 4007 4008 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 4009 mps = usb_endpoint_maxp(desc); 4010 mc = usb_endpoint_maxp_mult(desc); 4011 4012 /* ISOC IN in DDMA supported bInterval up to 10 */ 4013 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4014 dir_in && desc->bInterval > 10) { 4015 dev_err(hsotg->dev, 4016 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 4017 return -EINVAL; 4018 } 4019 4020 /* High bandwidth ISOC OUT in DDMA not supported */ 4021 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4022 !dir_in && mc > 1) { 4023 dev_err(hsotg->dev, 4024 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 4025 return -EINVAL; 4026 } 4027 4028 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 4029 4030 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4031 epctrl = dwc2_readl(hsotg, epctrl_reg); 4032 4033 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 4034 __func__, epctrl, epctrl_reg); 4035 4036 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) 4037 desc_num = MAX_DMA_DESC_NUM_HS_ISOC; 4038 else 4039 desc_num = MAX_DMA_DESC_NUM_GENERIC; 4040 4041 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 4042 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 4043 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 4044 desc_num * sizeof(struct dwc2_dma_desc), 4045 &hs_ep->desc_list_dma, GFP_ATOMIC); 4046 if (!hs_ep->desc_list) { 4047 ret = -ENOMEM; 4048 goto error2; 4049 } 4050 } 4051 4052 spin_lock_irqsave(&hsotg->lock, flags); 4053 4054 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 4055 epctrl |= DXEPCTL_MPS(mps); 4056 4057 /* 4058 * mark the endpoint as active, otherwise the core may ignore 4059 * transactions entirely for this endpoint 4060 */ 4061 epctrl |= DXEPCTL_USBACTEP; 4062 4063 /* update the endpoint state */ 4064 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 4065 4066 /* default, set to non-periodic */ 4067 hs_ep->isochronous = 0; 4068 hs_ep->periodic = 0; 4069 hs_ep->halted = 0; 4070 hs_ep->wedged = 0; 4071 hs_ep->interval = desc->bInterval; 4072 4073 switch (ep_type) { 4074 case USB_ENDPOINT_XFER_ISOC: 4075 epctrl |= DXEPCTL_EPTYPE_ISO; 4076 epctrl |= DXEPCTL_SETEVENFR; 4077 hs_ep->isochronous = 1; 4078 hs_ep->interval = 1 << (desc->bInterval - 1); 4079 hs_ep->target_frame = TARGET_FRAME_INITIAL; 4080 hs_ep->next_desc = 0; 4081 hs_ep->compl_desc = 0; 4082 if (dir_in) { 4083 hs_ep->periodic = 1; 4084 mask = dwc2_readl(hsotg, DIEPMSK); 4085 mask |= DIEPMSK_NAKMSK; 4086 dwc2_writel(hsotg, mask, DIEPMSK); 4087 } else { 4088 mask = dwc2_readl(hsotg, DOEPMSK); 4089 mask |= DOEPMSK_OUTTKNEPDISMSK; 4090 dwc2_writel(hsotg, mask, DOEPMSK); 4091 } 4092 break; 4093 4094 case USB_ENDPOINT_XFER_BULK: 4095 epctrl |= DXEPCTL_EPTYPE_BULK; 4096 break; 4097 4098 case USB_ENDPOINT_XFER_INT: 4099 if (dir_in) 4100 hs_ep->periodic = 1; 4101 4102 if (hsotg->gadget.speed == USB_SPEED_HIGH) 4103 hs_ep->interval = 1 << (desc->bInterval - 1); 4104 4105 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 4106 break; 4107 4108 case USB_ENDPOINT_XFER_CONTROL: 4109 epctrl |= DXEPCTL_EPTYPE_CONTROL; 4110 break; 4111 } 4112 4113 /* 4114 * if the hardware has dedicated fifos, we must give each IN EP 4115 * a unique tx-fifo even if it is non-periodic. 4116 */ 4117 if (dir_in && hsotg->dedicated_fifos) { 4118 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 4119 u32 fifo_index = 0; 4120 u32 fifo_size = UINT_MAX; 4121 4122 size = hs_ep->ep.maxpacket * hs_ep->mc; 4123 for (i = 1; i <= fifo_count; ++i) { 4124 if (hsotg->fifo_map & (1 << i)) 4125 continue; 4126 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 4127 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 4128 if (val < size) 4129 continue; 4130 /* Search for smallest acceptable fifo */ 4131 if (val < fifo_size) { 4132 fifo_size = val; 4133 fifo_index = i; 4134 } 4135 } 4136 if (!fifo_index) { 4137 dev_err(hsotg->dev, 4138 "%s: No suitable fifo found\n", __func__); 4139 ret = -ENOMEM; 4140 goto error1; 4141 } 4142 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); 4143 hsotg->fifo_map |= 1 << fifo_index; 4144 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4145 hs_ep->fifo_index = fifo_index; 4146 hs_ep->fifo_size = fifo_size; 4147 } 4148 4149 /* for non control endpoints, set PID to D0 */ 4150 if (index && !hs_ep->isochronous) 4151 epctrl |= DXEPCTL_SETD0PID; 4152 4153 /* WA for Full speed ISOC IN in DDMA mode. 4154 * By Clear NAK status of EP, core will send ZLP 4155 * to IN token and assert NAK interrupt relying 4156 * on TxFIFO status only 4157 */ 4158 4159 if (hsotg->gadget.speed == USB_SPEED_FULL && 4160 hs_ep->isochronous && dir_in) { 4161 /* The WA applies only to core versions from 2.72a 4162 * to 4.00a (including both). Also for FS_IOT_1.00a 4163 * and HS_IOT_1.00a. 4164 */ 4165 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4166 4167 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4168 gsnpsid <= DWC2_CORE_REV_4_00a) || 4169 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4170 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4171 epctrl |= DXEPCTL_CNAK; 4172 } 4173 4174 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4175 __func__, epctrl); 4176 4177 dwc2_writel(hsotg, epctrl, epctrl_reg); 4178 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4179 __func__, dwc2_readl(hsotg, epctrl_reg)); 4180 4181 /* enable the endpoint interrupt */ 4182 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4183 4184 error1: 4185 spin_unlock_irqrestore(&hsotg->lock, flags); 4186 4187 error2: 4188 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4189 dmam_free_coherent(hsotg->dev, desc_num * 4190 sizeof(struct dwc2_dma_desc), 4191 hs_ep->desc_list, hs_ep->desc_list_dma); 4192 hs_ep->desc_list = NULL; 4193 } 4194 4195 return ret; 4196 } 4197 4198 /** 4199 * dwc2_hsotg_ep_disable - disable given endpoint 4200 * @ep: The endpoint to disable. 4201 */ 4202 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4203 { 4204 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4205 struct dwc2_hsotg *hsotg = hs_ep->parent; 4206 int dir_in = hs_ep->dir_in; 4207 int index = hs_ep->index; 4208 u32 epctrl_reg; 4209 u32 ctrl; 4210 4211 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4212 4213 if (ep == &hsotg->eps_out[0]->ep) { 4214 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4215 return -EINVAL; 4216 } 4217 4218 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4219 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4220 return -EINVAL; 4221 } 4222 4223 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4224 4225 ctrl = dwc2_readl(hsotg, epctrl_reg); 4226 4227 if (ctrl & DXEPCTL_EPENA) 4228 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4229 4230 ctrl &= ~DXEPCTL_EPENA; 4231 ctrl &= ~DXEPCTL_USBACTEP; 4232 ctrl |= DXEPCTL_SNAK; 4233 4234 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4235 dwc2_writel(hsotg, ctrl, epctrl_reg); 4236 4237 /* disable endpoint interrupts */ 4238 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4239 4240 /* terminate all requests with shutdown */ 4241 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4242 4243 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4244 hs_ep->fifo_index = 0; 4245 hs_ep->fifo_size = 0; 4246 4247 return 0; 4248 } 4249 4250 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4251 { 4252 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4253 struct dwc2_hsotg *hsotg = hs_ep->parent; 4254 unsigned long flags; 4255 int ret; 4256 4257 spin_lock_irqsave(&hsotg->lock, flags); 4258 ret = dwc2_hsotg_ep_disable(ep); 4259 spin_unlock_irqrestore(&hsotg->lock, flags); 4260 return ret; 4261 } 4262 4263 /** 4264 * on_list - check request is on the given endpoint 4265 * @ep: The endpoint to check. 4266 * @test: The request to test if it is on the endpoint. 4267 */ 4268 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4269 { 4270 struct dwc2_hsotg_req *req, *treq; 4271 4272 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4273 if (req == test) 4274 return true; 4275 } 4276 4277 return false; 4278 } 4279 4280 /** 4281 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4282 * @ep: The endpoint to dequeue. 4283 * @req: The request to be removed from a queue. 4284 */ 4285 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4286 { 4287 struct dwc2_hsotg_req *hs_req = our_req(req); 4288 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4289 struct dwc2_hsotg *hs = hs_ep->parent; 4290 unsigned long flags; 4291 4292 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4293 4294 spin_lock_irqsave(&hs->lock, flags); 4295 4296 if (!on_list(hs_ep, hs_req)) { 4297 spin_unlock_irqrestore(&hs->lock, flags); 4298 return -EINVAL; 4299 } 4300 4301 /* Dequeue already started request */ 4302 if (req == &hs_ep->req->req) 4303 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4304 4305 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4306 spin_unlock_irqrestore(&hs->lock, flags); 4307 4308 return 0; 4309 } 4310 4311 /** 4312 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint 4313 * @ep: The endpoint to be wedged. 4314 * 4315 */ 4316 static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep) 4317 { 4318 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4319 struct dwc2_hsotg *hs = hs_ep->parent; 4320 4321 unsigned long flags; 4322 int ret; 4323 4324 spin_lock_irqsave(&hs->lock, flags); 4325 hs_ep->wedged = 1; 4326 ret = dwc2_hsotg_ep_sethalt(ep, 1, false); 4327 spin_unlock_irqrestore(&hs->lock, flags); 4328 4329 return ret; 4330 } 4331 4332 /** 4333 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4334 * @ep: The endpoint to set halt. 4335 * @value: Set or unset the halt. 4336 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4337 * the endpoint is busy processing requests. 4338 * 4339 * We need to stall the endpoint immediately if request comes from set_feature 4340 * protocol command handler. 4341 */ 4342 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4343 { 4344 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4345 struct dwc2_hsotg *hs = hs_ep->parent; 4346 int index = hs_ep->index; 4347 u32 epreg; 4348 u32 epctl; 4349 u32 xfertype; 4350 4351 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4352 4353 if (index == 0) { 4354 if (value) 4355 dwc2_hsotg_stall_ep0(hs); 4356 else 4357 dev_warn(hs->dev, 4358 "%s: can't clear halt on ep0\n", __func__); 4359 return 0; 4360 } 4361 4362 if (hs_ep->isochronous) { 4363 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4364 return -EINVAL; 4365 } 4366 4367 if (!now && value && !list_empty(&hs_ep->queue)) { 4368 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4369 ep->name); 4370 return -EAGAIN; 4371 } 4372 4373 if (hs_ep->dir_in) { 4374 epreg = DIEPCTL(index); 4375 epctl = dwc2_readl(hs, epreg); 4376 4377 if (value) { 4378 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4379 if (epctl & DXEPCTL_EPENA) 4380 epctl |= DXEPCTL_EPDIS; 4381 } else { 4382 epctl &= ~DXEPCTL_STALL; 4383 hs_ep->wedged = 0; 4384 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4385 if (xfertype == DXEPCTL_EPTYPE_BULK || 4386 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4387 epctl |= DXEPCTL_SETD0PID; 4388 } 4389 dwc2_writel(hs, epctl, epreg); 4390 } else { 4391 epreg = DOEPCTL(index); 4392 epctl = dwc2_readl(hs, epreg); 4393 4394 if (value) { 4395 /* Unmask GOUTNAKEFF interrupt */ 4396 dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF); 4397 4398 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF)) 4399 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK); 4400 // STALL bit will be set in GOUTNAKEFF interrupt handler 4401 } else { 4402 epctl &= ~DXEPCTL_STALL; 4403 hs_ep->wedged = 0; 4404 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4405 if (xfertype == DXEPCTL_EPTYPE_BULK || 4406 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4407 epctl |= DXEPCTL_SETD0PID; 4408 dwc2_writel(hs, epctl, epreg); 4409 } 4410 } 4411 4412 hs_ep->halted = value; 4413 return 0; 4414 } 4415 4416 /** 4417 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4418 * @ep: The endpoint to set halt. 4419 * @value: Set or unset the halt. 4420 */ 4421 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4422 { 4423 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4424 struct dwc2_hsotg *hs = hs_ep->parent; 4425 unsigned long flags; 4426 int ret; 4427 4428 spin_lock_irqsave(&hs->lock, flags); 4429 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4430 spin_unlock_irqrestore(&hs->lock, flags); 4431 4432 return ret; 4433 } 4434 4435 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4436 .enable = dwc2_hsotg_ep_enable, 4437 .disable = dwc2_hsotg_ep_disable_lock, 4438 .alloc_request = dwc2_hsotg_ep_alloc_request, 4439 .free_request = dwc2_hsotg_ep_free_request, 4440 .queue = dwc2_hsotg_ep_queue_lock, 4441 .dequeue = dwc2_hsotg_ep_dequeue, 4442 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4443 .set_wedge = dwc2_gadget_ep_set_wedge, 4444 /* note, don't believe we have any call for the fifo routines */ 4445 }; 4446 4447 /** 4448 * dwc2_hsotg_init - initialize the usb core 4449 * @hsotg: The driver state 4450 */ 4451 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4452 { 4453 /* unmask subset of endpoint interrupts */ 4454 4455 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4456 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4457 DIEPMSK); 4458 4459 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4460 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4461 DOEPMSK); 4462 4463 dwc2_writel(hsotg, 0, DAINTMSK); 4464 4465 /* Be in disconnected state until gadget is registered */ 4466 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4467 4468 /* setup fifos */ 4469 4470 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4471 dwc2_readl(hsotg, GRXFSIZ), 4472 dwc2_readl(hsotg, GNPTXFSIZ)); 4473 4474 dwc2_hsotg_init_fifo(hsotg); 4475 4476 if (using_dma(hsotg)) 4477 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4478 } 4479 4480 /** 4481 * dwc2_hsotg_udc_start - prepare the udc for work 4482 * @gadget: The usb gadget state 4483 * @driver: The usb gadget driver 4484 * 4485 * Perform initialization to prepare udc device and driver 4486 * to work. 4487 */ 4488 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4489 struct usb_gadget_driver *driver) 4490 { 4491 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4492 unsigned long flags; 4493 int ret; 4494 4495 if (!hsotg) { 4496 pr_err("%s: called with no device\n", __func__); 4497 return -ENODEV; 4498 } 4499 4500 if (!driver) { 4501 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4502 return -EINVAL; 4503 } 4504 4505 if (driver->max_speed < USB_SPEED_FULL) 4506 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4507 4508 if (!driver->setup) { 4509 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4510 return -EINVAL; 4511 } 4512 4513 WARN_ON(hsotg->driver); 4514 4515 driver->driver.bus = NULL; 4516 hsotg->driver = driver; 4517 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4518 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4519 4520 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4521 ret = dwc2_lowlevel_hw_enable(hsotg); 4522 if (ret) 4523 goto err; 4524 } 4525 4526 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4527 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4528 4529 spin_lock_irqsave(&hsotg->lock, flags); 4530 if (dwc2_hw_is_device(hsotg)) { 4531 dwc2_hsotg_init(hsotg); 4532 dwc2_hsotg_core_init_disconnected(hsotg, false); 4533 } 4534 4535 hsotg->enabled = 0; 4536 spin_unlock_irqrestore(&hsotg->lock, flags); 4537 4538 gadget->sg_supported = using_desc_dma(hsotg); 4539 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4540 4541 return 0; 4542 4543 err: 4544 hsotg->driver = NULL; 4545 return ret; 4546 } 4547 4548 /** 4549 * dwc2_hsotg_udc_stop - stop the udc 4550 * @gadget: The usb gadget state 4551 * 4552 * Stop udc hw block and stay tunned for future transmissions 4553 */ 4554 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4555 { 4556 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4557 unsigned long flags; 4558 int ep; 4559 4560 if (!hsotg) 4561 return -ENODEV; 4562 4563 /* all endpoints should be shutdown */ 4564 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4565 if (hsotg->eps_in[ep]) 4566 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4567 if (hsotg->eps_out[ep]) 4568 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4569 } 4570 4571 spin_lock_irqsave(&hsotg->lock, flags); 4572 4573 hsotg->driver = NULL; 4574 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4575 hsotg->enabled = 0; 4576 4577 spin_unlock_irqrestore(&hsotg->lock, flags); 4578 4579 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4580 otg_set_peripheral(hsotg->uphy->otg, NULL); 4581 4582 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4583 dwc2_lowlevel_hw_disable(hsotg); 4584 4585 return 0; 4586 } 4587 4588 /** 4589 * dwc2_hsotg_gadget_getframe - read the frame number 4590 * @gadget: The usb gadget state 4591 * 4592 * Read the {micro} frame number 4593 */ 4594 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4595 { 4596 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4597 } 4598 4599 /** 4600 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered 4601 * @gadget: The usb gadget state 4602 * @is_selfpowered: Whether the device is self-powered 4603 * 4604 * Set if the device is self or bus powered. 4605 */ 4606 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget, 4607 int is_selfpowered) 4608 { 4609 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4610 unsigned long flags; 4611 4612 spin_lock_irqsave(&hsotg->lock, flags); 4613 gadget->is_selfpowered = !!is_selfpowered; 4614 spin_unlock_irqrestore(&hsotg->lock, flags); 4615 4616 return 0; 4617 } 4618 4619 /** 4620 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4621 * @gadget: The usb gadget state 4622 * @is_on: Current state of the USB PHY 4623 * 4624 * Connect/Disconnect the USB PHY pullup 4625 */ 4626 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4627 { 4628 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4629 unsigned long flags; 4630 4631 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4632 hsotg->op_state); 4633 4634 /* Don't modify pullup state while in host mode */ 4635 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4636 hsotg->enabled = is_on; 4637 return 0; 4638 } 4639 4640 spin_lock_irqsave(&hsotg->lock, flags); 4641 if (is_on) { 4642 hsotg->enabled = 1; 4643 dwc2_hsotg_core_init_disconnected(hsotg, false); 4644 /* Enable ACG feature in device mode,if supported */ 4645 dwc2_enable_acg(hsotg); 4646 dwc2_hsotg_core_connect(hsotg); 4647 } else { 4648 dwc2_hsotg_core_disconnect(hsotg); 4649 dwc2_hsotg_disconnect(hsotg); 4650 hsotg->enabled = 0; 4651 } 4652 4653 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4654 spin_unlock_irqrestore(&hsotg->lock, flags); 4655 4656 return 0; 4657 } 4658 4659 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4660 { 4661 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4662 unsigned long flags; 4663 4664 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4665 spin_lock_irqsave(&hsotg->lock, flags); 4666 4667 /* 4668 * If controller is in partial power down state, it must exit from 4669 * that state before being initialized / de-initialized 4670 */ 4671 if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd) 4672 /* 4673 * No need to check the return value as 4674 * registers are not being restored. 4675 */ 4676 dwc2_exit_partial_power_down(hsotg, 0, false); 4677 4678 if (is_active) { 4679 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4680 4681 dwc2_hsotg_core_init_disconnected(hsotg, false); 4682 if (hsotg->enabled) { 4683 /* Enable ACG feature in device mode,if supported */ 4684 dwc2_enable_acg(hsotg); 4685 dwc2_hsotg_core_connect(hsotg); 4686 } 4687 } else { 4688 dwc2_hsotg_core_disconnect(hsotg); 4689 dwc2_hsotg_disconnect(hsotg); 4690 } 4691 4692 spin_unlock_irqrestore(&hsotg->lock, flags); 4693 return 0; 4694 } 4695 4696 /** 4697 * dwc2_hsotg_vbus_draw - report bMaxPower field 4698 * @gadget: The usb gadget state 4699 * @mA: Amount of current 4700 * 4701 * Report how much power the device may consume to the phy. 4702 */ 4703 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4704 { 4705 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4706 4707 if (IS_ERR_OR_NULL(hsotg->uphy)) 4708 return -ENOTSUPP; 4709 return usb_phy_set_power(hsotg->uphy, mA); 4710 } 4711 4712 static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed) 4713 { 4714 struct dwc2_hsotg *hsotg = to_hsotg(g); 4715 unsigned long flags; 4716 4717 spin_lock_irqsave(&hsotg->lock, flags); 4718 switch (speed) { 4719 case USB_SPEED_HIGH: 4720 hsotg->params.speed = DWC2_SPEED_PARAM_HIGH; 4721 break; 4722 case USB_SPEED_FULL: 4723 hsotg->params.speed = DWC2_SPEED_PARAM_FULL; 4724 break; 4725 case USB_SPEED_LOW: 4726 hsotg->params.speed = DWC2_SPEED_PARAM_LOW; 4727 break; 4728 default: 4729 dev_err(hsotg->dev, "invalid speed (%d)\n", speed); 4730 } 4731 spin_unlock_irqrestore(&hsotg->lock, flags); 4732 } 4733 4734 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4735 .get_frame = dwc2_hsotg_gadget_getframe, 4736 .set_selfpowered = dwc2_hsotg_set_selfpowered, 4737 .udc_start = dwc2_hsotg_udc_start, 4738 .udc_stop = dwc2_hsotg_udc_stop, 4739 .pullup = dwc2_hsotg_pullup, 4740 .udc_set_speed = dwc2_gadget_set_speed, 4741 .vbus_session = dwc2_hsotg_vbus_session, 4742 .vbus_draw = dwc2_hsotg_vbus_draw, 4743 }; 4744 4745 /** 4746 * dwc2_hsotg_initep - initialise a single endpoint 4747 * @hsotg: The device state. 4748 * @hs_ep: The endpoint to be initialised. 4749 * @epnum: The endpoint number 4750 * @dir_in: True if direction is in. 4751 * 4752 * Initialise the given endpoint (as part of the probe and device state 4753 * creation) to give to the gadget driver. Setup the endpoint name, any 4754 * direction information and other state that may be required. 4755 */ 4756 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4757 struct dwc2_hsotg_ep *hs_ep, 4758 int epnum, 4759 bool dir_in) 4760 { 4761 char *dir; 4762 4763 if (epnum == 0) 4764 dir = ""; 4765 else if (dir_in) 4766 dir = "in"; 4767 else 4768 dir = "out"; 4769 4770 hs_ep->dir_in = dir_in; 4771 hs_ep->index = epnum; 4772 4773 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4774 4775 INIT_LIST_HEAD(&hs_ep->queue); 4776 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4777 4778 /* add to the list of endpoints known by the gadget driver */ 4779 if (epnum) 4780 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4781 4782 hs_ep->parent = hsotg; 4783 hs_ep->ep.name = hs_ep->name; 4784 4785 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4786 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4787 else 4788 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4789 epnum ? 1024 : EP0_MPS_LIMIT); 4790 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4791 4792 if (epnum == 0) { 4793 hs_ep->ep.caps.type_control = true; 4794 } else { 4795 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4796 hs_ep->ep.caps.type_iso = true; 4797 hs_ep->ep.caps.type_bulk = true; 4798 } 4799 hs_ep->ep.caps.type_int = true; 4800 } 4801 4802 if (dir_in) 4803 hs_ep->ep.caps.dir_in = true; 4804 else 4805 hs_ep->ep.caps.dir_out = true; 4806 4807 /* 4808 * if we're using dma, we need to set the next-endpoint pointer 4809 * to be something valid. 4810 */ 4811 4812 if (using_dma(hsotg)) { 4813 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4814 4815 if (dir_in) 4816 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4817 else 4818 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4819 } 4820 } 4821 4822 /** 4823 * dwc2_hsotg_hw_cfg - read HW configuration registers 4824 * @hsotg: Programming view of the DWC_otg controller 4825 * 4826 * Read the USB core HW configuration registers 4827 */ 4828 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4829 { 4830 u32 cfg; 4831 u32 ep_type; 4832 u32 i; 4833 4834 /* check hardware configuration */ 4835 4836 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4837 4838 /* Add ep0 */ 4839 hsotg->num_of_eps++; 4840 4841 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4842 sizeof(struct dwc2_hsotg_ep), 4843 GFP_KERNEL); 4844 if (!hsotg->eps_in[0]) 4845 return -ENOMEM; 4846 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4847 hsotg->eps_out[0] = hsotg->eps_in[0]; 4848 4849 cfg = hsotg->hw_params.dev_ep_dirs; 4850 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4851 ep_type = cfg & 3; 4852 /* Direction in or both */ 4853 if (!(ep_type & 2)) { 4854 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4855 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4856 if (!hsotg->eps_in[i]) 4857 return -ENOMEM; 4858 } 4859 /* Direction out or both */ 4860 if (!(ep_type & 1)) { 4861 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4862 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4863 if (!hsotg->eps_out[i]) 4864 return -ENOMEM; 4865 } 4866 } 4867 4868 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4869 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4870 4871 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4872 hsotg->num_of_eps, 4873 hsotg->dedicated_fifos ? "dedicated" : "shared", 4874 hsotg->fifo_mem); 4875 return 0; 4876 } 4877 4878 /** 4879 * dwc2_hsotg_dump - dump state of the udc 4880 * @hsotg: Programming view of the DWC_otg controller 4881 * 4882 */ 4883 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4884 { 4885 #ifdef DEBUG 4886 struct device *dev = hsotg->dev; 4887 u32 val; 4888 int idx; 4889 4890 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4891 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4892 dwc2_readl(hsotg, DIEPMSK)); 4893 4894 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4895 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4896 4897 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4898 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4899 4900 /* show periodic fifo settings */ 4901 4902 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4903 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4904 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4905 val >> FIFOSIZE_DEPTH_SHIFT, 4906 val & FIFOSIZE_STARTADDR_MASK); 4907 } 4908 4909 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4910 dev_info(dev, 4911 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4912 dwc2_readl(hsotg, DIEPCTL(idx)), 4913 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4914 dwc2_readl(hsotg, DIEPDMA(idx))); 4915 4916 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4917 dev_info(dev, 4918 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4919 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4920 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4921 dwc2_readl(hsotg, DOEPDMA(idx))); 4922 } 4923 4924 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4925 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4926 #endif 4927 } 4928 4929 /** 4930 * dwc2_gadget_init - init function for gadget 4931 * @hsotg: Programming view of the DWC_otg controller 4932 * 4933 */ 4934 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4935 { 4936 struct device *dev = hsotg->dev; 4937 int epnum; 4938 int ret; 4939 4940 /* Dump fifo information */ 4941 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4942 hsotg->params.g_np_tx_fifo_size); 4943 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4944 4945 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4946 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4947 hsotg->gadget.name = dev_name(dev); 4948 hsotg->remote_wakeup_allowed = 0; 4949 4950 if (hsotg->params.lpm) 4951 hsotg->gadget.lpm_capable = true; 4952 4953 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4954 hsotg->gadget.is_otg = 1; 4955 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4956 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4957 4958 ret = dwc2_hsotg_hw_cfg(hsotg); 4959 if (ret) { 4960 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4961 return ret; 4962 } 4963 4964 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4965 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4966 if (!hsotg->ctrl_buff) 4967 return -ENOMEM; 4968 4969 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4970 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4971 if (!hsotg->ep0_buff) 4972 return -ENOMEM; 4973 4974 if (using_desc_dma(hsotg)) { 4975 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4976 if (ret < 0) 4977 return ret; 4978 } 4979 4980 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4981 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4982 if (ret < 0) { 4983 dev_err(dev, "cannot claim IRQ for gadget\n"); 4984 return ret; 4985 } 4986 4987 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4988 4989 if (hsotg->num_of_eps == 0) { 4990 dev_err(dev, "wrong number of EPs (zero)\n"); 4991 return -EINVAL; 4992 } 4993 4994 /* setup endpoint information */ 4995 4996 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4997 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4998 4999 /* allocate EP0 request */ 5000 5001 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 5002 GFP_KERNEL); 5003 if (!hsotg->ctrl_req) { 5004 dev_err(dev, "failed to allocate ctrl req\n"); 5005 return -ENOMEM; 5006 } 5007 5008 /* initialise the endpoints now the core has been initialised */ 5009 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 5010 if (hsotg->eps_in[epnum]) 5011 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 5012 epnum, 1); 5013 if (hsotg->eps_out[epnum]) 5014 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 5015 epnum, 0); 5016 } 5017 5018 dwc2_hsotg_dump(hsotg); 5019 5020 return 0; 5021 } 5022 5023 /** 5024 * dwc2_hsotg_remove - remove function for hsotg driver 5025 * @hsotg: Programming view of the DWC_otg controller 5026 * 5027 */ 5028 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 5029 { 5030 usb_del_gadget_udc(&hsotg->gadget); 5031 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 5032 5033 return 0; 5034 } 5035 5036 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 5037 { 5038 unsigned long flags; 5039 5040 if (hsotg->lx_state != DWC2_L0) 5041 return 0; 5042 5043 if (hsotg->driver) { 5044 int ep; 5045 5046 dev_info(hsotg->dev, "suspending usb gadget %s\n", 5047 hsotg->driver->driver.name); 5048 5049 spin_lock_irqsave(&hsotg->lock, flags); 5050 if (hsotg->enabled) 5051 dwc2_hsotg_core_disconnect(hsotg); 5052 dwc2_hsotg_disconnect(hsotg); 5053 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 5054 spin_unlock_irqrestore(&hsotg->lock, flags); 5055 5056 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 5057 if (hsotg->eps_in[ep]) 5058 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 5059 if (hsotg->eps_out[ep]) 5060 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 5061 } 5062 } 5063 5064 return 0; 5065 } 5066 5067 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 5068 { 5069 unsigned long flags; 5070 5071 if (hsotg->lx_state == DWC2_L2) 5072 return 0; 5073 5074 if (hsotg->driver) { 5075 dev_info(hsotg->dev, "resuming usb gadget %s\n", 5076 hsotg->driver->driver.name); 5077 5078 spin_lock_irqsave(&hsotg->lock, flags); 5079 dwc2_hsotg_core_init_disconnected(hsotg, false); 5080 if (hsotg->enabled) { 5081 /* Enable ACG feature in device mode,if supported */ 5082 dwc2_enable_acg(hsotg); 5083 dwc2_hsotg_core_connect(hsotg); 5084 } 5085 spin_unlock_irqrestore(&hsotg->lock, flags); 5086 } 5087 5088 return 0; 5089 } 5090 5091 /** 5092 * dwc2_backup_device_registers() - Backup controller device registers. 5093 * When suspending usb bus, registers needs to be backuped 5094 * if controller power is disabled once suspended. 5095 * 5096 * @hsotg: Programming view of the DWC_otg controller 5097 */ 5098 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 5099 { 5100 struct dwc2_dregs_backup *dr; 5101 int i; 5102 5103 dev_dbg(hsotg->dev, "%s\n", __func__); 5104 5105 /* Backup dev regs */ 5106 dr = &hsotg->dr_backup; 5107 5108 dr->dcfg = dwc2_readl(hsotg, DCFG); 5109 dr->dctl = dwc2_readl(hsotg, DCTL); 5110 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 5111 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 5112 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 5113 5114 for (i = 0; i < hsotg->num_of_eps; i++) { 5115 /* Backup IN EPs */ 5116 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 5117 5118 /* Ensure DATA PID is correctly configured */ 5119 if (dr->diepctl[i] & DXEPCTL_DPID) 5120 dr->diepctl[i] |= DXEPCTL_SETD1PID; 5121 else 5122 dr->diepctl[i] |= DXEPCTL_SETD0PID; 5123 5124 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 5125 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 5126 5127 /* Backup OUT EPs */ 5128 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 5129 5130 /* Ensure DATA PID is correctly configured */ 5131 if (dr->doepctl[i] & DXEPCTL_DPID) 5132 dr->doepctl[i] |= DXEPCTL_SETD1PID; 5133 else 5134 dr->doepctl[i] |= DXEPCTL_SETD0PID; 5135 5136 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 5137 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 5138 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 5139 } 5140 dr->valid = true; 5141 return 0; 5142 } 5143 5144 /** 5145 * dwc2_restore_device_registers() - Restore controller device registers. 5146 * When resuming usb bus, device registers needs to be restored 5147 * if controller power were disabled. 5148 * 5149 * @hsotg: Programming view of the DWC_otg controller 5150 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 5151 * 5152 * Return: 0 if successful, negative error code otherwise 5153 */ 5154 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 5155 { 5156 struct dwc2_dregs_backup *dr; 5157 int i; 5158 5159 dev_dbg(hsotg->dev, "%s\n", __func__); 5160 5161 /* Restore dev regs */ 5162 dr = &hsotg->dr_backup; 5163 if (!dr->valid) { 5164 dev_err(hsotg->dev, "%s: no device registers to restore\n", 5165 __func__); 5166 return -EINVAL; 5167 } 5168 dr->valid = false; 5169 5170 if (!remote_wakeup) 5171 dwc2_writel(hsotg, dr->dctl, DCTL); 5172 5173 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 5174 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 5175 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 5176 5177 for (i = 0; i < hsotg->num_of_eps; i++) { 5178 /* Restore IN EPs */ 5179 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 5180 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 5181 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5182 /** WA for enabled EPx's IN in DDMA mode. On entering to 5183 * hibernation wrong value read and saved from DIEPDMAx, 5184 * as result BNA interrupt asserted on hibernation exit 5185 * by restoring from saved area. 5186 */ 5187 if (hsotg->params.g_dma_desc && 5188 (dr->diepctl[i] & DXEPCTL_EPENA)) 5189 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 5190 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 5191 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 5192 /* Restore OUT EPs */ 5193 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5194 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5195 * hibernation wrong value read and saved from DOEPDMAx, 5196 * as result BNA interrupt asserted on hibernation exit 5197 * by restoring from saved area. 5198 */ 5199 if (hsotg->params.g_dma_desc && 5200 (dr->doepctl[i] & DXEPCTL_EPENA)) 5201 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5202 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5203 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5204 } 5205 5206 return 0; 5207 } 5208 5209 /** 5210 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5211 * 5212 * @hsotg: Programming view of DWC_otg controller 5213 * 5214 */ 5215 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5216 { 5217 u32 val; 5218 5219 if (!hsotg->params.lpm) 5220 return; 5221 5222 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5223 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5224 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5225 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5226 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5227 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; 5228 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5229 dwc2_writel(hsotg, val, GLPMCFG); 5230 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5231 5232 /* Unmask WKUP_ALERT Interrupt */ 5233 if (hsotg->params.service_interval) 5234 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5235 } 5236 5237 /** 5238 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5239 * 5240 * @hsotg: Programming view of DWC_otg controller 5241 * 5242 */ 5243 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5244 { 5245 u32 val = 0; 5246 5247 val |= GREFCLK_REF_CLK_MODE; 5248 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5249 val |= hsotg->params.sof_cnt_wkup_alert << 5250 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5251 5252 dwc2_writel(hsotg, val, GREFCLK); 5253 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5254 } 5255 5256 /** 5257 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5258 * 5259 * @hsotg: Programming view of the DWC_otg controller 5260 * 5261 * Return non-zero if failed to enter to hibernation. 5262 */ 5263 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5264 { 5265 u32 gpwrdn; 5266 int ret = 0; 5267 5268 /* Change to L2(suspend) state */ 5269 hsotg->lx_state = DWC2_L2; 5270 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5271 ret = dwc2_backup_global_registers(hsotg); 5272 if (ret) { 5273 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5274 __func__); 5275 return ret; 5276 } 5277 ret = dwc2_backup_device_registers(hsotg); 5278 if (ret) { 5279 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5280 __func__); 5281 return ret; 5282 } 5283 5284 gpwrdn = GPWRDN_PWRDNRSTN; 5285 gpwrdn |= GPWRDN_PMUACTV; 5286 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5287 udelay(10); 5288 5289 /* Set flag to indicate that we are in hibernation */ 5290 hsotg->hibernated = 1; 5291 5292 /* Enable interrupts from wake up logic */ 5293 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5294 gpwrdn |= GPWRDN_PMUINTSEL; 5295 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5296 udelay(10); 5297 5298 /* Unmask device mode interrupts in GPWRDN */ 5299 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5300 gpwrdn |= GPWRDN_RST_DET_MSK; 5301 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5302 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5303 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5304 udelay(10); 5305 5306 /* Enable Power Down Clamp */ 5307 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5308 gpwrdn |= GPWRDN_PWRDNCLMP; 5309 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5310 udelay(10); 5311 5312 /* Switch off VDD */ 5313 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5314 gpwrdn |= GPWRDN_PWRDNSWTCH; 5315 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5316 udelay(10); 5317 5318 /* Save gpwrdn register for further usage if stschng interrupt */ 5319 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5320 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5321 5322 return ret; 5323 } 5324 5325 /** 5326 * dwc2_gadget_exit_hibernation() 5327 * This function is for exiting from Device mode hibernation by host initiated 5328 * resume/reset and device initiated remote-wakeup. 5329 * 5330 * @hsotg: Programming view of the DWC_otg controller 5331 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5332 * @reset: indicates whether resume is initiated by Reset. 5333 * 5334 * Return non-zero if failed to exit from hibernation. 5335 */ 5336 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5337 int rem_wakeup, int reset) 5338 { 5339 u32 pcgcctl; 5340 u32 gpwrdn; 5341 u32 dctl; 5342 int ret = 0; 5343 struct dwc2_gregs_backup *gr; 5344 struct dwc2_dregs_backup *dr; 5345 5346 gr = &hsotg->gr_backup; 5347 dr = &hsotg->dr_backup; 5348 5349 if (!hsotg->hibernated) { 5350 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5351 return 1; 5352 } 5353 dev_dbg(hsotg->dev, 5354 "%s: called with rem_wakeup = %d reset = %d\n", 5355 __func__, rem_wakeup, reset); 5356 5357 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5358 5359 if (!reset) { 5360 /* Clear all pending interupts */ 5361 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5362 } 5363 5364 /* De-assert Restore */ 5365 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5366 gpwrdn &= ~GPWRDN_RESTORE; 5367 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5368 udelay(10); 5369 5370 if (!rem_wakeup) { 5371 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5372 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5373 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5374 } 5375 5376 /* Restore GUSBCFG, DCFG and DCTL */ 5377 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5378 dwc2_writel(hsotg, dr->dcfg, DCFG); 5379 dwc2_writel(hsotg, dr->dctl, DCTL); 5380 5381 /* On USB Reset, reset device address to zero */ 5382 if (reset) 5383 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 5384 5385 /* De-assert Wakeup Logic */ 5386 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5387 gpwrdn &= ~GPWRDN_PMUACTV; 5388 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5389 5390 if (rem_wakeup) { 5391 udelay(10); 5392 /* Start Remote Wakeup Signaling */ 5393 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5394 } else { 5395 udelay(50); 5396 /* Set Device programming done bit */ 5397 dctl = dwc2_readl(hsotg, DCTL); 5398 dctl |= DCTL_PWRONPRGDONE; 5399 dwc2_writel(hsotg, dctl, DCTL); 5400 } 5401 /* Wait for interrupts which must be cleared */ 5402 mdelay(2); 5403 /* Clear all pending interupts */ 5404 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5405 5406 /* Restore global registers */ 5407 ret = dwc2_restore_global_registers(hsotg); 5408 if (ret) { 5409 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5410 __func__); 5411 return ret; 5412 } 5413 5414 /* Restore device registers */ 5415 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5416 if (ret) { 5417 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5418 __func__); 5419 return ret; 5420 } 5421 5422 if (rem_wakeup) { 5423 mdelay(10); 5424 dctl = dwc2_readl(hsotg, DCTL); 5425 dctl &= ~DCTL_RMTWKUPSIG; 5426 dwc2_writel(hsotg, dctl, DCTL); 5427 } 5428 5429 hsotg->hibernated = 0; 5430 hsotg->lx_state = DWC2_L0; 5431 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5432 5433 return ret; 5434 } 5435 5436 /** 5437 * dwc2_gadget_enter_partial_power_down() - Put controller in partial 5438 * power down. 5439 * 5440 * @hsotg: Programming view of the DWC_otg controller 5441 * 5442 * Return: non-zero if failed to enter device partial power down. 5443 * 5444 * This function is for entering device mode partial power down. 5445 */ 5446 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg) 5447 { 5448 u32 pcgcctl; 5449 int ret = 0; 5450 5451 dev_dbg(hsotg->dev, "Entering device partial power down started.\n"); 5452 5453 /* Backup all registers */ 5454 ret = dwc2_backup_global_registers(hsotg); 5455 if (ret) { 5456 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5457 __func__); 5458 return ret; 5459 } 5460 5461 ret = dwc2_backup_device_registers(hsotg); 5462 if (ret) { 5463 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5464 __func__); 5465 return ret; 5466 } 5467 5468 /* 5469 * Clear any pending interrupts since dwc2 will not be able to 5470 * clear them after entering partial_power_down. 5471 */ 5472 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5473 5474 /* Put the controller in low power state */ 5475 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5476 5477 pcgcctl |= PCGCTL_PWRCLMP; 5478 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5479 udelay(5); 5480 5481 pcgcctl |= PCGCTL_RSTPDWNMODULE; 5482 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5483 udelay(5); 5484 5485 pcgcctl |= PCGCTL_STOPPCLK; 5486 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5487 5488 /* Set in_ppd flag to 1 as here core enters suspend. */ 5489 hsotg->in_ppd = 1; 5490 hsotg->lx_state = DWC2_L2; 5491 5492 dev_dbg(hsotg->dev, "Entering device partial power down completed.\n"); 5493 5494 return ret; 5495 } 5496 5497 /* 5498 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial 5499 * power down. 5500 * 5501 * @hsotg: Programming view of the DWC_otg controller 5502 * @restore: indicates whether need to restore the registers or not. 5503 * 5504 * Return: non-zero if failed to exit device partial power down. 5505 * 5506 * This function is for exiting from device mode partial power down. 5507 */ 5508 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, 5509 bool restore) 5510 { 5511 u32 pcgcctl; 5512 u32 dctl; 5513 struct dwc2_dregs_backup *dr; 5514 int ret = 0; 5515 5516 dr = &hsotg->dr_backup; 5517 5518 dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n"); 5519 5520 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5521 pcgcctl &= ~PCGCTL_STOPPCLK; 5522 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5523 5524 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5525 pcgcctl &= ~PCGCTL_PWRCLMP; 5526 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5527 5528 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5529 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5530 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5531 5532 udelay(100); 5533 if (restore) { 5534 ret = dwc2_restore_global_registers(hsotg); 5535 if (ret) { 5536 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5537 __func__); 5538 return ret; 5539 } 5540 /* Restore DCFG */ 5541 dwc2_writel(hsotg, dr->dcfg, DCFG); 5542 5543 ret = dwc2_restore_device_registers(hsotg, 0); 5544 if (ret) { 5545 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5546 __func__); 5547 return ret; 5548 } 5549 } 5550 5551 /* Set the Power-On Programming done bit */ 5552 dctl = dwc2_readl(hsotg, DCTL); 5553 dctl |= DCTL_PWRONPRGDONE; 5554 dwc2_writel(hsotg, dctl, DCTL); 5555 5556 /* Set in_ppd flag to 0 as here core exits from suspend. */ 5557 hsotg->in_ppd = 0; 5558 hsotg->lx_state = DWC2_L0; 5559 5560 dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n"); 5561 return ret; 5562 } 5563 5564 /** 5565 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating. 5566 * 5567 * @hsotg: Programming view of the DWC_otg controller 5568 * 5569 * Return: non-zero if failed to enter device partial power down. 5570 * 5571 * This function is for entering device mode clock gating. 5572 */ 5573 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) 5574 { 5575 u32 pcgctl; 5576 5577 dev_dbg(hsotg->dev, "Entering device clock gating.\n"); 5578 5579 /* Set the Phy Clock bit as suspend is received. */ 5580 pcgctl = dwc2_readl(hsotg, PCGCTL); 5581 pcgctl |= PCGCTL_STOPPCLK; 5582 dwc2_writel(hsotg, pcgctl, PCGCTL); 5583 udelay(5); 5584 5585 /* Set the Gate hclk as suspend is received. */ 5586 pcgctl = dwc2_readl(hsotg, PCGCTL); 5587 pcgctl |= PCGCTL_GATEHCLK; 5588 dwc2_writel(hsotg, pcgctl, PCGCTL); 5589 udelay(5); 5590 5591 hsotg->lx_state = DWC2_L2; 5592 hsotg->bus_suspended = true; 5593 } 5594 5595 /* 5596 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating. 5597 * 5598 * @hsotg: Programming view of the DWC_otg controller 5599 * @rem_wakeup: indicates whether remote wake up is enabled. 5600 * 5601 * This function is for exiting from device mode clock gating. 5602 */ 5603 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup) 5604 { 5605 u32 pcgctl; 5606 u32 dctl; 5607 5608 dev_dbg(hsotg->dev, "Exiting device clock gating.\n"); 5609 5610 /* Clear the Gate hclk. */ 5611 pcgctl = dwc2_readl(hsotg, PCGCTL); 5612 pcgctl &= ~PCGCTL_GATEHCLK; 5613 dwc2_writel(hsotg, pcgctl, PCGCTL); 5614 udelay(5); 5615 5616 /* Phy Clock bit. */ 5617 pcgctl = dwc2_readl(hsotg, PCGCTL); 5618 pcgctl &= ~PCGCTL_STOPPCLK; 5619 dwc2_writel(hsotg, pcgctl, PCGCTL); 5620 udelay(5); 5621 5622 if (rem_wakeup) { 5623 /* Set Remote Wakeup Signaling */ 5624 dctl = dwc2_readl(hsotg, DCTL); 5625 dctl |= DCTL_RMTWKUPSIG; 5626 dwc2_writel(hsotg, dctl, DCTL); 5627 } 5628 5629 /* Change to L0 state */ 5630 call_gadget(hsotg, resume); 5631 hsotg->lx_state = DWC2_L0; 5632 hsotg->bus_suspended = false; 5633 } 5634