xref: /linux/drivers/usb/dwc2/gadget.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /**
2  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright 2008 Openmoko, Inc.
6  * Copyright 2008 Simtec Electronics
7  *      Ben Dooks <ben@simtec.co.uk>
8  *      http://armlinux.simtec.co.uk/
9  *
10  * S3C USB2.0 High-speed / OtG driver
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/of_platform.h>
29 
30 #include <linux/usb/ch9.h>
31 #include <linux/usb/gadget.h>
32 #include <linux/usb/phy.h>
33 
34 #include "core.h"
35 #include "hw.h"
36 
37 /* conversion functions */
38 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39 {
40 	return container_of(req, struct dwc2_hsotg_req, req);
41 }
42 
43 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44 {
45 	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 }
47 
48 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49 {
50 	return container_of(gadget, struct dwc2_hsotg, gadget);
51 }
52 
53 static inline void __orr32(void __iomem *ptr, u32 val)
54 {
55 	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 }
57 
58 static inline void __bic32(void __iomem *ptr, u32 val)
59 {
60 	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 }
62 
63 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 						u32 ep_index, u32 dir_in)
65 {
66 	if (dir_in)
67 		return hsotg->eps_in[ep_index];
68 	else
69 		return hsotg->eps_out[ep_index];
70 }
71 
72 /* forward declaration of functions */
73 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 
75 /**
76  * using_dma - return the DMA status of the driver.
77  * @hsotg: The driver state.
78  *
79  * Return true if we're using DMA.
80  *
81  * Currently, we have the DMA support code worked into everywhere
82  * that needs it, but the AMBA DMA implementation in the hardware can
83  * only DMA from 32bit aligned addresses. This means that gadgets such
84  * as the CDC Ethernet cannot work as they often pass packets which are
85  * not 32bit aligned.
86  *
87  * Unfortunately the choice to use DMA or not is global to the controller
88  * and seems to be only settable when the controller is being put through
89  * a core reset. This means we either need to fix the gadgets to take
90  * account of DMA alignment, or add bounce buffers (yuerk).
91  *
92  * g_using_dma is set depending on dts flag.
93  */
94 static inline bool using_dma(struct dwc2_hsotg *hsotg)
95 {
96 	return hsotg->g_using_dma;
97 }
98 
99 /**
100  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
101  * @hs_ep: The endpoint
102  * @increment: The value to increment by
103  *
104  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
105  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
106  */
107 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
108 {
109 	hs_ep->target_frame += hs_ep->interval;
110 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
111 		hs_ep->frame_overrun = 1;
112 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
113 	} else {
114 		hs_ep->frame_overrun = 0;
115 	}
116 }
117 
118 /**
119  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
120  * @hsotg: The device state
121  * @ints: A bitmask of the interrupts to enable
122  */
123 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
124 {
125 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
126 	u32 new_gsintmsk;
127 
128 	new_gsintmsk = gsintmsk | ints;
129 
130 	if (new_gsintmsk != gsintmsk) {
131 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
132 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
133 	}
134 }
135 
136 /**
137  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
138  * @hsotg: The device state
139  * @ints: A bitmask of the interrupts to enable
140  */
141 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
142 {
143 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
144 	u32 new_gsintmsk;
145 
146 	new_gsintmsk = gsintmsk & ~ints;
147 
148 	if (new_gsintmsk != gsintmsk)
149 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
150 }
151 
152 /**
153  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
154  * @hsotg: The device state
155  * @ep: The endpoint index
156  * @dir_in: True if direction is in.
157  * @en: The enable value, true to enable
158  *
159  * Set or clear the mask for an individual endpoint's interrupt
160  * request.
161  */
162 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
163 				 unsigned int ep, unsigned int dir_in,
164 				 unsigned int en)
165 {
166 	unsigned long flags;
167 	u32 bit = 1 << ep;
168 	u32 daint;
169 
170 	if (!dir_in)
171 		bit <<= 16;
172 
173 	local_irq_save(flags);
174 	daint = dwc2_readl(hsotg->regs + DAINTMSK);
175 	if (en)
176 		daint |= bit;
177 	else
178 		daint &= ~bit;
179 	dwc2_writel(daint, hsotg->regs + DAINTMSK);
180 	local_irq_restore(flags);
181 }
182 
183 /**
184  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
185  * @hsotg: The device instance.
186  */
187 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
188 {
189 	unsigned int ep;
190 	unsigned int addr;
191 	int timeout;
192 	u32 val;
193 
194 	/* Reset fifo map if not correctly cleared during previous session */
195 	WARN_ON(hsotg->fifo_map);
196 	hsotg->fifo_map = 0;
197 
198 	/* set RX/NPTX FIFO sizes */
199 	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
200 	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
201 		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
202 		hsotg->regs + GNPTXFSIZ);
203 
204 	/*
205 	 * arange all the rest of the TX FIFOs, as some versions of this
206 	 * block have overlapping default addresses. This also ensures
207 	 * that if the settings have been changed, then they are set to
208 	 * known values.
209 	 */
210 
211 	/* start at the end of the GNPTXFSIZ, rounded up */
212 	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
213 
214 	/*
215 	 * Configure fifos sizes from provided configuration and assign
216 	 * them to endpoints dynamically according to maxpacket size value of
217 	 * given endpoint.
218 	 */
219 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
220 		if (!hsotg->g_tx_fifo_sz[ep])
221 			continue;
222 		val = addr;
223 		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
224 		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
225 			  "insufficient fifo memory");
226 		addr += hsotg->g_tx_fifo_sz[ep];
227 
228 		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
229 	}
230 
231 	/*
232 	 * according to p428 of the design guide, we need to ensure that
233 	 * all fifos are flushed before continuing
234 	 */
235 
236 	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
237 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
238 
239 	/* wait until the fifos are both flushed */
240 	timeout = 100;
241 	while (1) {
242 		val = dwc2_readl(hsotg->regs + GRSTCTL);
243 
244 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
245 			break;
246 
247 		if (--timeout == 0) {
248 			dev_err(hsotg->dev,
249 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
250 				__func__, val);
251 			break;
252 		}
253 
254 		udelay(1);
255 	}
256 
257 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
258 }
259 
260 /**
261  * @ep: USB endpoint to allocate request for.
262  * @flags: Allocation flags
263  *
264  * Allocate a new USB request structure appropriate for the specified endpoint
265  */
266 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
267 						      gfp_t flags)
268 {
269 	struct dwc2_hsotg_req *req;
270 
271 	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
272 	if (!req)
273 		return NULL;
274 
275 	INIT_LIST_HEAD(&req->queue);
276 
277 	return &req->req;
278 }
279 
280 /**
281  * is_ep_periodic - return true if the endpoint is in periodic mode.
282  * @hs_ep: The endpoint to query.
283  *
284  * Returns true if the endpoint is in periodic mode, meaning it is being
285  * used for an Interrupt or ISO transfer.
286  */
287 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
288 {
289 	return hs_ep->periodic;
290 }
291 
292 /**
293  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
294  * @hsotg: The device state.
295  * @hs_ep: The endpoint for the request
296  * @hs_req: The request being processed.
297  *
298  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
299  * of a request to ensure the buffer is ready for access by the caller.
300  */
301 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
302 				struct dwc2_hsotg_ep *hs_ep,
303 				struct dwc2_hsotg_req *hs_req)
304 {
305 	struct usb_request *req = &hs_req->req;
306 
307 	/* ignore this if we're not moving any data */
308 	if (hs_req->req.length == 0)
309 		return;
310 
311 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
312 }
313 
314 /**
315  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
316  * @hsotg: The controller state.
317  * @hs_ep: The endpoint we're going to write for.
318  * @hs_req: The request to write data for.
319  *
320  * This is called when the TxFIFO has some space in it to hold a new
321  * transmission and we have something to give it. The actual setup of
322  * the data size is done elsewhere, so all we have to do is to actually
323  * write the data.
324  *
325  * The return value is zero if there is more space (or nothing was done)
326  * otherwise -ENOSPC is returned if the FIFO space was used up.
327  *
328  * This routine is only needed for PIO
329  */
330 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
331 				struct dwc2_hsotg_ep *hs_ep,
332 				struct dwc2_hsotg_req *hs_req)
333 {
334 	bool periodic = is_ep_periodic(hs_ep);
335 	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
336 	int buf_pos = hs_req->req.actual;
337 	int to_write = hs_ep->size_loaded;
338 	void *data;
339 	int can_write;
340 	int pkt_round;
341 	int max_transfer;
342 
343 	to_write -= (buf_pos - hs_ep->last_load);
344 
345 	/* if there's nothing to write, get out early */
346 	if (to_write == 0)
347 		return 0;
348 
349 	if (periodic && !hsotg->dedicated_fifos) {
350 		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
351 		int size_left;
352 		int size_done;
353 
354 		/*
355 		 * work out how much data was loaded so we can calculate
356 		 * how much data is left in the fifo.
357 		 */
358 
359 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
360 
361 		/*
362 		 * if shared fifo, we cannot write anything until the
363 		 * previous data has been completely sent.
364 		 */
365 		if (hs_ep->fifo_load != 0) {
366 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
367 			return -ENOSPC;
368 		}
369 
370 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
371 			__func__, size_left,
372 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
373 
374 		/* how much of the data has moved */
375 		size_done = hs_ep->size_loaded - size_left;
376 
377 		/* how much data is left in the fifo */
378 		can_write = hs_ep->fifo_load - size_done;
379 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
380 			__func__, can_write);
381 
382 		can_write = hs_ep->fifo_size - can_write;
383 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
384 			__func__, can_write);
385 
386 		if (can_write <= 0) {
387 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
388 			return -ENOSPC;
389 		}
390 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
391 		can_write = dwc2_readl(hsotg->regs +
392 				DTXFSTS(hs_ep->fifo_index));
393 
394 		can_write &= 0xffff;
395 		can_write *= 4;
396 	} else {
397 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
398 			dev_dbg(hsotg->dev,
399 				"%s: no queue slots available (0x%08x)\n",
400 				__func__, gnptxsts);
401 
402 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
403 			return -ENOSPC;
404 		}
405 
406 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
407 		can_write *= 4;	/* fifo size is in 32bit quantities. */
408 	}
409 
410 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
411 
412 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
413 		 __func__, gnptxsts, can_write, to_write, max_transfer);
414 
415 	/*
416 	 * limit to 512 bytes of data, it seems at least on the non-periodic
417 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
418 	 * fragment of the end of the transfer in it.
419 	 */
420 	if (can_write > 512 && !periodic)
421 		can_write = 512;
422 
423 	/*
424 	 * limit the write to one max-packet size worth of data, but allow
425 	 * the transfer to return that it did not run out of fifo space
426 	 * doing it.
427 	 */
428 	if (to_write > max_transfer) {
429 		to_write = max_transfer;
430 
431 		/* it's needed only when we do not use dedicated fifos */
432 		if (!hsotg->dedicated_fifos)
433 			dwc2_hsotg_en_gsint(hsotg,
434 					   periodic ? GINTSTS_PTXFEMP :
435 					   GINTSTS_NPTXFEMP);
436 	}
437 
438 	/* see if we can write data */
439 
440 	if (to_write > can_write) {
441 		to_write = can_write;
442 		pkt_round = to_write % max_transfer;
443 
444 		/*
445 		 * Round the write down to an
446 		 * exact number of packets.
447 		 *
448 		 * Note, we do not currently check to see if we can ever
449 		 * write a full packet or not to the FIFO.
450 		 */
451 
452 		if (pkt_round)
453 			to_write -= pkt_round;
454 
455 		/*
456 		 * enable correct FIFO interrupt to alert us when there
457 		 * is more room left.
458 		 */
459 
460 		/* it's needed only when we do not use dedicated fifos */
461 		if (!hsotg->dedicated_fifos)
462 			dwc2_hsotg_en_gsint(hsotg,
463 					   periodic ? GINTSTS_PTXFEMP :
464 					   GINTSTS_NPTXFEMP);
465 	}
466 
467 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
468 		 to_write, hs_req->req.length, can_write, buf_pos);
469 
470 	if (to_write <= 0)
471 		return -ENOSPC;
472 
473 	hs_req->req.actual = buf_pos + to_write;
474 	hs_ep->total_data += to_write;
475 
476 	if (periodic)
477 		hs_ep->fifo_load += to_write;
478 
479 	to_write = DIV_ROUND_UP(to_write, 4);
480 	data = hs_req->req.buf + buf_pos;
481 
482 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
483 
484 	return (to_write >= can_write) ? -ENOSPC : 0;
485 }
486 
487 /**
488  * get_ep_limit - get the maximum data legnth for this endpoint
489  * @hs_ep: The endpoint
490  *
491  * Return the maximum data that can be queued in one go on a given endpoint
492  * so that transfers that are too long can be split.
493  */
494 static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
495 {
496 	int index = hs_ep->index;
497 	unsigned maxsize;
498 	unsigned maxpkt;
499 
500 	if (index != 0) {
501 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
502 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
503 	} else {
504 		maxsize = 64+64;
505 		if (hs_ep->dir_in)
506 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
507 		else
508 			maxpkt = 2;
509 	}
510 
511 	/* we made the constant loading easier above by using +1 */
512 	maxpkt--;
513 	maxsize--;
514 
515 	/*
516 	 * constrain by packet count if maxpkts*pktsize is greater
517 	 * than the length register size.
518 	 */
519 
520 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
521 		maxsize = maxpkt * hs_ep->ep.maxpacket;
522 
523 	return maxsize;
524 }
525 
526 /**
527 * dwc2_hsotg_read_frameno - read current frame number
528 * @hsotg: The device instance
529 *
530 * Return the current frame number
531 */
532 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
533 {
534 	u32 dsts;
535 
536 	dsts = dwc2_readl(hsotg->regs + DSTS);
537 	dsts &= DSTS_SOFFN_MASK;
538 	dsts >>= DSTS_SOFFN_SHIFT;
539 
540 	return dsts;
541 }
542 
543 /**
544  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
545  * @hsotg: The controller state.
546  * @hs_ep: The endpoint to process a request for
547  * @hs_req: The request to start.
548  * @continuing: True if we are doing more for the current request.
549  *
550  * Start the given request running by setting the endpoint registers
551  * appropriately, and writing any data to the FIFOs.
552  */
553 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
554 				struct dwc2_hsotg_ep *hs_ep,
555 				struct dwc2_hsotg_req *hs_req,
556 				bool continuing)
557 {
558 	struct usb_request *ureq = &hs_req->req;
559 	int index = hs_ep->index;
560 	int dir_in = hs_ep->dir_in;
561 	u32 epctrl_reg;
562 	u32 epsize_reg;
563 	u32 epsize;
564 	u32 ctrl;
565 	unsigned length;
566 	unsigned packets;
567 	unsigned maxreq;
568 
569 	if (index != 0) {
570 		if (hs_ep->req && !continuing) {
571 			dev_err(hsotg->dev, "%s: active request\n", __func__);
572 			WARN_ON(1);
573 			return;
574 		} else if (hs_ep->req != hs_req && continuing) {
575 			dev_err(hsotg->dev,
576 				"%s: continue different req\n", __func__);
577 			WARN_ON(1);
578 			return;
579 		}
580 	}
581 
582 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
583 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
584 
585 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
586 		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
587 		hs_ep->dir_in ? "in" : "out");
588 
589 	/* If endpoint is stalled, we will restart request later */
590 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
591 
592 	if (index && ctrl & DXEPCTL_STALL) {
593 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
594 		return;
595 	}
596 
597 	length = ureq->length - ureq->actual;
598 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
599 		ureq->length, ureq->actual);
600 
601 	maxreq = get_ep_limit(hs_ep);
602 	if (length > maxreq) {
603 		int round = maxreq % hs_ep->ep.maxpacket;
604 
605 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
606 			__func__, length, maxreq, round);
607 
608 		/* round down to multiple of packets */
609 		if (round)
610 			maxreq -= round;
611 
612 		length = maxreq;
613 	}
614 
615 	if (length)
616 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
617 	else
618 		packets = 1;	/* send one packet if length is zero. */
619 
620 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
621 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
622 		return;
623 	}
624 
625 	if (dir_in && index != 0)
626 		if (hs_ep->isochronous)
627 			epsize = DXEPTSIZ_MC(packets);
628 		else
629 			epsize = DXEPTSIZ_MC(1);
630 	else
631 		epsize = 0;
632 
633 	/*
634 	 * zero length packet should be programmed on its own and should not
635 	 * be counted in DIEPTSIZ.PktCnt with other packets.
636 	 */
637 	if (dir_in && ureq->zero && !continuing) {
638 		/* Test if zlp is actually required. */
639 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
640 					!(ureq->length % hs_ep->ep.maxpacket))
641 			hs_ep->send_zlp = 1;
642 	}
643 
644 	epsize |= DXEPTSIZ_PKTCNT(packets);
645 	epsize |= DXEPTSIZ_XFERSIZE(length);
646 
647 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
648 		__func__, packets, length, ureq->length, epsize, epsize_reg);
649 
650 	/* store the request as the current one we're doing */
651 	hs_ep->req = hs_req;
652 
653 	/* write size / packets */
654 	dwc2_writel(epsize, hsotg->regs + epsize_reg);
655 
656 	if (using_dma(hsotg) && !continuing) {
657 		unsigned int dma_reg;
658 
659 		/*
660 		 * write DMA address to control register, buffer already
661 		 * synced by dwc2_hsotg_ep_queue().
662 		 */
663 
664 		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
665 		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
666 
667 		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
668 			__func__, &ureq->dma, dma_reg);
669 	}
670 
671 	if (hs_ep->isochronous && hs_ep->interval == 1) {
672 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
673 		dwc2_gadget_incr_frame_num(hs_ep);
674 
675 		if (hs_ep->target_frame & 0x1)
676 			ctrl |= DXEPCTL_SETODDFR;
677 		else
678 			ctrl |= DXEPCTL_SETEVENFR;
679 	}
680 
681 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
682 
683 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
684 
685 	/* For Setup request do not clear NAK */
686 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
687 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
688 
689 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
690 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
691 
692 	/*
693 	 * set these, it seems that DMA support increments past the end
694 	 * of the packet buffer so we need to calculate the length from
695 	 * this information.
696 	 */
697 	hs_ep->size_loaded = length;
698 	hs_ep->last_load = ureq->actual;
699 
700 	if (dir_in && !using_dma(hsotg)) {
701 		/* set these anyway, we may need them for non-periodic in */
702 		hs_ep->fifo_load = 0;
703 
704 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
705 	}
706 
707 	/*
708 	 * Note, trying to clear the NAK here causes problems with transmit
709 	 * on the S3C6400 ending up with the TXFIFO becoming full.
710 	 */
711 
712 	/* check ep is enabled */
713 	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
714 		dev_dbg(hsotg->dev,
715 			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
716 			 index, dwc2_readl(hsotg->regs + epctrl_reg));
717 
718 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
719 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
720 
721 	/* enable ep interrupts */
722 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
723 }
724 
725 /**
726  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
727  * @hsotg: The device state.
728  * @hs_ep: The endpoint the request is on.
729  * @req: The request being processed.
730  *
731  * We've been asked to queue a request, so ensure that the memory buffer
732  * is correctly setup for DMA. If we've been passed an extant DMA address
733  * then ensure the buffer has been synced to memory. If our buffer has no
734  * DMA memory, then we map the memory and mark our request to allow us to
735  * cleanup on completion.
736  */
737 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
738 			     struct dwc2_hsotg_ep *hs_ep,
739 			     struct usb_request *req)
740 {
741 	struct dwc2_hsotg_req *hs_req = our_req(req);
742 	int ret;
743 
744 	/* if the length is zero, ignore the DMA data */
745 	if (hs_req->req.length == 0)
746 		return 0;
747 
748 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
749 	if (ret)
750 		goto dma_error;
751 
752 	return 0;
753 
754 dma_error:
755 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
756 		__func__, req->buf, req->length);
757 
758 	return -EIO;
759 }
760 
761 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
762 	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
763 {
764 	void *req_buf = hs_req->req.buf;
765 
766 	/* If dma is not being used or buffer is aligned */
767 	if (!using_dma(hsotg) || !((long)req_buf & 3))
768 		return 0;
769 
770 	WARN_ON(hs_req->saved_req_buf);
771 
772 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
773 			hs_ep->ep.name, req_buf, hs_req->req.length);
774 
775 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
776 	if (!hs_req->req.buf) {
777 		hs_req->req.buf = req_buf;
778 		dev_err(hsotg->dev,
779 			"%s: unable to allocate memory for bounce buffer\n",
780 			__func__);
781 		return -ENOMEM;
782 	}
783 
784 	/* Save actual buffer */
785 	hs_req->saved_req_buf = req_buf;
786 
787 	if (hs_ep->dir_in)
788 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
789 	return 0;
790 }
791 
792 static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
793 	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
794 {
795 	/* If dma is not being used or buffer was aligned */
796 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
797 		return;
798 
799 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
800 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
801 
802 	/* Copy data from bounce buffer on successful out transfer */
803 	if (!hs_ep->dir_in && !hs_req->req.status)
804 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
805 							hs_req->req.actual);
806 
807 	/* Free bounce buffer */
808 	kfree(hs_req->req.buf);
809 
810 	hs_req->req.buf = hs_req->saved_req_buf;
811 	hs_req->saved_req_buf = NULL;
812 }
813 
814 /**
815  * dwc2_gadget_target_frame_elapsed - Checks target frame
816  * @hs_ep: The driver endpoint to check
817  *
818  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
819  * corresponding transfer.
820  */
821 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
822 {
823 	struct dwc2_hsotg *hsotg = hs_ep->parent;
824 	u32 target_frame = hs_ep->target_frame;
825 	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
826 	bool frame_overrun = hs_ep->frame_overrun;
827 
828 	if (!frame_overrun && current_frame >= target_frame)
829 		return true;
830 
831 	if (frame_overrun && current_frame >= target_frame &&
832 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
833 		return true;
834 
835 	return false;
836 }
837 
838 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
839 			      gfp_t gfp_flags)
840 {
841 	struct dwc2_hsotg_req *hs_req = our_req(req);
842 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
843 	struct dwc2_hsotg *hs = hs_ep->parent;
844 	bool first;
845 	int ret;
846 
847 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
848 		ep->name, req, req->length, req->buf, req->no_interrupt,
849 		req->zero, req->short_not_ok);
850 
851 	/* Prevent new request submission when controller is suspended */
852 	if (hs->lx_state == DWC2_L2) {
853 		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
854 				__func__);
855 		return -EAGAIN;
856 	}
857 
858 	/* initialise status of the request */
859 	INIT_LIST_HEAD(&hs_req->queue);
860 	req->actual = 0;
861 	req->status = -EINPROGRESS;
862 
863 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
864 	if (ret)
865 		return ret;
866 
867 	/* if we're using DMA, sync the buffers as necessary */
868 	if (using_dma(hs)) {
869 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
870 		if (ret)
871 			return ret;
872 	}
873 
874 	first = list_empty(&hs_ep->queue);
875 	list_add_tail(&hs_req->queue, &hs_ep->queue);
876 
877 	if (first) {
878 		if (!hs_ep->isochronous) {
879 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
880 			return 0;
881 		}
882 
883 		while (dwc2_gadget_target_frame_elapsed(hs_ep))
884 			dwc2_gadget_incr_frame_num(hs_ep);
885 
886 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
887 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
888 	}
889 	return 0;
890 }
891 
892 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
893 			      gfp_t gfp_flags)
894 {
895 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
896 	struct dwc2_hsotg *hs = hs_ep->parent;
897 	unsigned long flags = 0;
898 	int ret = 0;
899 
900 	spin_lock_irqsave(&hs->lock, flags);
901 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
902 	spin_unlock_irqrestore(&hs->lock, flags);
903 
904 	return ret;
905 }
906 
907 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
908 				      struct usb_request *req)
909 {
910 	struct dwc2_hsotg_req *hs_req = our_req(req);
911 
912 	kfree(hs_req);
913 }
914 
915 /**
916  * dwc2_hsotg_complete_oursetup - setup completion callback
917  * @ep: The endpoint the request was on.
918  * @req: The request completed.
919  *
920  * Called on completion of any requests the driver itself
921  * submitted that need cleaning up.
922  */
923 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
924 					struct usb_request *req)
925 {
926 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
927 	struct dwc2_hsotg *hsotg = hs_ep->parent;
928 
929 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
930 
931 	dwc2_hsotg_ep_free_request(ep, req);
932 }
933 
934 /**
935  * ep_from_windex - convert control wIndex value to endpoint
936  * @hsotg: The driver state.
937  * @windex: The control request wIndex field (in host order).
938  *
939  * Convert the given wIndex into a pointer to an driver endpoint
940  * structure, or return NULL if it is not a valid endpoint.
941  */
942 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
943 					   u32 windex)
944 {
945 	struct dwc2_hsotg_ep *ep;
946 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
947 	int idx = windex & 0x7F;
948 
949 	if (windex >= 0x100)
950 		return NULL;
951 
952 	if (idx > hsotg->num_of_eps)
953 		return NULL;
954 
955 	ep = index_to_ep(hsotg, idx, dir);
956 
957 	if (idx && ep->dir_in != dir)
958 		return NULL;
959 
960 	return ep;
961 }
962 
963 /**
964  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
965  * @hsotg: The driver state.
966  * @testmode: requested usb test mode
967  * Enable usb Test Mode requested by the Host.
968  */
969 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
970 {
971 	int dctl = dwc2_readl(hsotg->regs + DCTL);
972 
973 	dctl &= ~DCTL_TSTCTL_MASK;
974 	switch (testmode) {
975 	case TEST_J:
976 	case TEST_K:
977 	case TEST_SE0_NAK:
978 	case TEST_PACKET:
979 	case TEST_FORCE_EN:
980 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
981 		break;
982 	default:
983 		return -EINVAL;
984 	}
985 	dwc2_writel(dctl, hsotg->regs + DCTL);
986 	return 0;
987 }
988 
989 /**
990  * dwc2_hsotg_send_reply - send reply to control request
991  * @hsotg: The device state
992  * @ep: Endpoint 0
993  * @buff: Buffer for request
994  * @length: Length of reply.
995  *
996  * Create a request and queue it on the given endpoint. This is useful as
997  * an internal method of sending replies to certain control requests, etc.
998  */
999 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1000 				struct dwc2_hsotg_ep *ep,
1001 				void *buff,
1002 				int length)
1003 {
1004 	struct usb_request *req;
1005 	int ret;
1006 
1007 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1008 
1009 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1010 	hsotg->ep0_reply = req;
1011 	if (!req) {
1012 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1013 		return -ENOMEM;
1014 	}
1015 
1016 	req->buf = hsotg->ep0_buff;
1017 	req->length = length;
1018 	/*
1019 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1020 	 * STATUS stage.
1021 	 */
1022 	req->zero = 0;
1023 	req->complete = dwc2_hsotg_complete_oursetup;
1024 
1025 	if (length)
1026 		memcpy(req->buf, buff, length);
1027 
1028 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1029 	if (ret) {
1030 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1031 		return ret;
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 /**
1038  * dwc2_hsotg_process_req_status - process request GET_STATUS
1039  * @hsotg: The device state
1040  * @ctrl: USB control request
1041  */
1042 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1043 					struct usb_ctrlrequest *ctrl)
1044 {
1045 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1046 	struct dwc2_hsotg_ep *ep;
1047 	__le16 reply;
1048 	int ret;
1049 
1050 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1051 
1052 	if (!ep0->dir_in) {
1053 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1054 		return -EINVAL;
1055 	}
1056 
1057 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1058 	case USB_RECIP_DEVICE:
1059 		reply = cpu_to_le16(0); /* bit 0 => self powered,
1060 					 * bit 1 => remote wakeup */
1061 		break;
1062 
1063 	case USB_RECIP_INTERFACE:
1064 		/* currently, the data result should be zero */
1065 		reply = cpu_to_le16(0);
1066 		break;
1067 
1068 	case USB_RECIP_ENDPOINT:
1069 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1070 		if (!ep)
1071 			return -ENOENT;
1072 
1073 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1074 		break;
1075 
1076 	default:
1077 		return 0;
1078 	}
1079 
1080 	if (le16_to_cpu(ctrl->wLength) != 2)
1081 		return -EINVAL;
1082 
1083 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1084 	if (ret) {
1085 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1086 		return ret;
1087 	}
1088 
1089 	return 1;
1090 }
1091 
1092 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1093 
1094 /**
1095  * get_ep_head - return the first request on the endpoint
1096  * @hs_ep: The controller endpoint to get
1097  *
1098  * Get the first request on the endpoint.
1099  */
1100 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1101 {
1102 	if (list_empty(&hs_ep->queue))
1103 		return NULL;
1104 
1105 	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1106 }
1107 
1108 /**
1109  * dwc2_gadget_start_next_request - Starts next request from ep queue
1110  * @hs_ep: Endpoint structure
1111  *
1112  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1113  * in its handler. Hence we need to unmask it here to be able to do
1114  * resynchronization.
1115  */
1116 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1117 {
1118 	u32 mask;
1119 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1120 	int dir_in = hs_ep->dir_in;
1121 	struct dwc2_hsotg_req *hs_req;
1122 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1123 
1124 	if (!list_empty(&hs_ep->queue)) {
1125 		hs_req = get_ep_head(hs_ep);
1126 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1127 		return;
1128 	}
1129 	if (!hs_ep->isochronous)
1130 		return;
1131 
1132 	if (dir_in) {
1133 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1134 			__func__);
1135 	} else {
1136 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1137 			__func__);
1138 		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1139 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1140 		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1141 	}
1142 }
1143 
1144 /**
1145  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1146  * @hsotg: The device state
1147  * @ctrl: USB control request
1148  */
1149 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1150 					 struct usb_ctrlrequest *ctrl)
1151 {
1152 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1153 	struct dwc2_hsotg_req *hs_req;
1154 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1155 	struct dwc2_hsotg_ep *ep;
1156 	int ret;
1157 	bool halted;
1158 	u32 recip;
1159 	u32 wValue;
1160 	u32 wIndex;
1161 
1162 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1163 		__func__, set ? "SET" : "CLEAR");
1164 
1165 	wValue = le16_to_cpu(ctrl->wValue);
1166 	wIndex = le16_to_cpu(ctrl->wIndex);
1167 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1168 
1169 	switch (recip) {
1170 	case USB_RECIP_DEVICE:
1171 		switch (wValue) {
1172 		case USB_DEVICE_TEST_MODE:
1173 			if ((wIndex & 0xff) != 0)
1174 				return -EINVAL;
1175 			if (!set)
1176 				return -EINVAL;
1177 
1178 			hsotg->test_mode = wIndex >> 8;
1179 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1180 			if (ret) {
1181 				dev_err(hsotg->dev,
1182 					"%s: failed to send reply\n", __func__);
1183 				return ret;
1184 			}
1185 			break;
1186 		default:
1187 			return -ENOENT;
1188 		}
1189 		break;
1190 
1191 	case USB_RECIP_ENDPOINT:
1192 		ep = ep_from_windex(hsotg, wIndex);
1193 		if (!ep) {
1194 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1195 				__func__, wIndex);
1196 			return -ENOENT;
1197 		}
1198 
1199 		switch (wValue) {
1200 		case USB_ENDPOINT_HALT:
1201 			halted = ep->halted;
1202 
1203 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1204 
1205 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1206 			if (ret) {
1207 				dev_err(hsotg->dev,
1208 					"%s: failed to send reply\n", __func__);
1209 				return ret;
1210 			}
1211 
1212 			/*
1213 			 * we have to complete all requests for ep if it was
1214 			 * halted, and the halt was cleared by CLEAR_FEATURE
1215 			 */
1216 
1217 			if (!set && halted) {
1218 				/*
1219 				 * If we have request in progress,
1220 				 * then complete it
1221 				 */
1222 				if (ep->req) {
1223 					hs_req = ep->req;
1224 					ep->req = NULL;
1225 					list_del_init(&hs_req->queue);
1226 					if (hs_req->req.complete) {
1227 						spin_unlock(&hsotg->lock);
1228 						usb_gadget_giveback_request(
1229 							&ep->ep, &hs_req->req);
1230 						spin_lock(&hsotg->lock);
1231 					}
1232 				}
1233 
1234 				/* If we have pending request, then start it */
1235 				if (!ep->req) {
1236 					dwc2_gadget_start_next_request(ep);
1237 				}
1238 			}
1239 
1240 			break;
1241 
1242 		default:
1243 			return -ENOENT;
1244 		}
1245 		break;
1246 	default:
1247 		return -ENOENT;
1248 	}
1249 	return 1;
1250 }
1251 
1252 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1253 
1254 /**
1255  * dwc2_hsotg_stall_ep0 - stall ep0
1256  * @hsotg: The device state
1257  *
1258  * Set stall for ep0 as response for setup request.
1259  */
1260 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1261 {
1262 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1263 	u32 reg;
1264 	u32 ctrl;
1265 
1266 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1267 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1268 
1269 	/*
1270 	 * DxEPCTL_Stall will be cleared by EP once it has
1271 	 * taken effect, so no need to clear later.
1272 	 */
1273 
1274 	ctrl = dwc2_readl(hsotg->regs + reg);
1275 	ctrl |= DXEPCTL_STALL;
1276 	ctrl |= DXEPCTL_CNAK;
1277 	dwc2_writel(ctrl, hsotg->regs + reg);
1278 
1279 	dev_dbg(hsotg->dev,
1280 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1281 		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1282 
1283 	 /*
1284 	  * complete won't be called, so we enqueue
1285 	  * setup request here
1286 	  */
1287 	 dwc2_hsotg_enqueue_setup(hsotg);
1288 }
1289 
1290 /**
1291  * dwc2_hsotg_process_control - process a control request
1292  * @hsotg: The device state
1293  * @ctrl: The control request received
1294  *
1295  * The controller has received the SETUP phase of a control request, and
1296  * needs to work out what to do next (and whether to pass it on to the
1297  * gadget driver).
1298  */
1299 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1300 				      struct usb_ctrlrequest *ctrl)
1301 {
1302 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1303 	int ret = 0;
1304 	u32 dcfg;
1305 
1306 	dev_dbg(hsotg->dev,
1307 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1308 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1309 		ctrl->wIndex, ctrl->wLength);
1310 
1311 	if (ctrl->wLength == 0) {
1312 		ep0->dir_in = 1;
1313 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1314 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1315 		ep0->dir_in = 1;
1316 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1317 	} else {
1318 		ep0->dir_in = 0;
1319 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1320 	}
1321 
1322 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1323 		switch (ctrl->bRequest) {
1324 		case USB_REQ_SET_ADDRESS:
1325 			hsotg->connected = 1;
1326 			dcfg = dwc2_readl(hsotg->regs + DCFG);
1327 			dcfg &= ~DCFG_DEVADDR_MASK;
1328 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1329 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1330 			dwc2_writel(dcfg, hsotg->regs + DCFG);
1331 
1332 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1333 
1334 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1335 			return;
1336 
1337 		case USB_REQ_GET_STATUS:
1338 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1339 			break;
1340 
1341 		case USB_REQ_CLEAR_FEATURE:
1342 		case USB_REQ_SET_FEATURE:
1343 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1344 			break;
1345 		}
1346 	}
1347 
1348 	/* as a fallback, try delivering it to the driver to deal with */
1349 
1350 	if (ret == 0 && hsotg->driver) {
1351 		spin_unlock(&hsotg->lock);
1352 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1353 		spin_lock(&hsotg->lock);
1354 		if (ret < 0)
1355 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1356 	}
1357 
1358 	/*
1359 	 * the request is either unhandlable, or is not formatted correctly
1360 	 * so respond with a STALL for the status stage to indicate failure.
1361 	 */
1362 
1363 	if (ret < 0)
1364 		dwc2_hsotg_stall_ep0(hsotg);
1365 }
1366 
1367 /**
1368  * dwc2_hsotg_complete_setup - completion of a setup transfer
1369  * @ep: The endpoint the request was on.
1370  * @req: The request completed.
1371  *
1372  * Called on completion of any requests the driver itself submitted for
1373  * EP0 setup packets
1374  */
1375 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1376 				     struct usb_request *req)
1377 {
1378 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1379 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1380 
1381 	if (req->status < 0) {
1382 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1383 		return;
1384 	}
1385 
1386 	spin_lock(&hsotg->lock);
1387 	if (req->actual == 0)
1388 		dwc2_hsotg_enqueue_setup(hsotg);
1389 	else
1390 		dwc2_hsotg_process_control(hsotg, req->buf);
1391 	spin_unlock(&hsotg->lock);
1392 }
1393 
1394 /**
1395  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1396  * @hsotg: The device state.
1397  *
1398  * Enqueue a request on EP0 if necessary to received any SETUP packets
1399  * received from the host.
1400  */
1401 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1402 {
1403 	struct usb_request *req = hsotg->ctrl_req;
1404 	struct dwc2_hsotg_req *hs_req = our_req(req);
1405 	int ret;
1406 
1407 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1408 
1409 	req->zero = 0;
1410 	req->length = 8;
1411 	req->buf = hsotg->ctrl_buff;
1412 	req->complete = dwc2_hsotg_complete_setup;
1413 
1414 	if (!list_empty(&hs_req->queue)) {
1415 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1416 		return;
1417 	}
1418 
1419 	hsotg->eps_out[0]->dir_in = 0;
1420 	hsotg->eps_out[0]->send_zlp = 0;
1421 	hsotg->ep0_state = DWC2_EP0_SETUP;
1422 
1423 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1424 	if (ret < 0) {
1425 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1426 		/*
1427 		 * Don't think there's much we can do other than watch the
1428 		 * driver fail.
1429 		 */
1430 	}
1431 }
1432 
1433 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1434 					struct dwc2_hsotg_ep *hs_ep)
1435 {
1436 	u32 ctrl;
1437 	u8 index = hs_ep->index;
1438 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1439 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1440 
1441 	if (hs_ep->dir_in)
1442 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1443 									index);
1444 	else
1445 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1446 									index);
1447 
1448 	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1449 		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1450 		    epsiz_reg);
1451 
1452 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1453 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1454 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1455 	ctrl |= DXEPCTL_USBACTEP;
1456 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1457 }
1458 
1459 /**
1460  * dwc2_hsotg_complete_request - complete a request given to us
1461  * @hsotg: The device state.
1462  * @hs_ep: The endpoint the request was on.
1463  * @hs_req: The request to complete.
1464  * @result: The result code (0 => Ok, otherwise errno)
1465  *
1466  * The given request has finished, so call the necessary completion
1467  * if it has one and then look to see if we can start a new request
1468  * on the endpoint.
1469  *
1470  * Note, expects the ep to already be locked as appropriate.
1471  */
1472 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1473 				       struct dwc2_hsotg_ep *hs_ep,
1474 				       struct dwc2_hsotg_req *hs_req,
1475 				       int result)
1476 {
1477 
1478 	if (!hs_req) {
1479 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1480 		return;
1481 	}
1482 
1483 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1484 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1485 
1486 	/*
1487 	 * only replace the status if we've not already set an error
1488 	 * from a previous transaction
1489 	 */
1490 
1491 	if (hs_req->req.status == -EINPROGRESS)
1492 		hs_req->req.status = result;
1493 
1494 	if (using_dma(hsotg))
1495 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1496 
1497 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1498 
1499 	hs_ep->req = NULL;
1500 	list_del_init(&hs_req->queue);
1501 
1502 	/*
1503 	 * call the complete request with the locks off, just in case the
1504 	 * request tries to queue more work for this endpoint.
1505 	 */
1506 
1507 	if (hs_req->req.complete) {
1508 		spin_unlock(&hsotg->lock);
1509 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1510 		spin_lock(&hsotg->lock);
1511 	}
1512 
1513 	/*
1514 	 * Look to see if there is anything else to do. Note, the completion
1515 	 * of the previous request may have caused a new request to be started
1516 	 * so be careful when doing this.
1517 	 */
1518 
1519 	if (!hs_ep->req && result >= 0) {
1520 		dwc2_gadget_start_next_request(hs_ep);
1521 	}
1522 }
1523 
1524 /**
1525  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1526  * @hsotg: The device state.
1527  * @ep_idx: The endpoint index for the data
1528  * @size: The size of data in the fifo, in bytes
1529  *
1530  * The FIFO status shows there is data to read from the FIFO for a given
1531  * endpoint, so sort out whether we need to read the data into a request
1532  * that has been made for that endpoint.
1533  */
1534 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1535 {
1536 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1537 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1538 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1539 	int to_read;
1540 	int max_req;
1541 	int read_ptr;
1542 
1543 
1544 	if (!hs_req) {
1545 		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1546 		int ptr;
1547 
1548 		dev_dbg(hsotg->dev,
1549 			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1550 			 __func__, size, ep_idx, epctl);
1551 
1552 		/* dump the data from the FIFO, we've nothing we can do */
1553 		for (ptr = 0; ptr < size; ptr += 4)
1554 			(void)dwc2_readl(fifo);
1555 
1556 		return;
1557 	}
1558 
1559 	to_read = size;
1560 	read_ptr = hs_req->req.actual;
1561 	max_req = hs_req->req.length - read_ptr;
1562 
1563 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1564 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1565 
1566 	if (to_read > max_req) {
1567 		/*
1568 		 * more data appeared than we where willing
1569 		 * to deal with in this request.
1570 		 */
1571 
1572 		/* currently we don't deal this */
1573 		WARN_ON_ONCE(1);
1574 	}
1575 
1576 	hs_ep->total_data += to_read;
1577 	hs_req->req.actual += to_read;
1578 	to_read = DIV_ROUND_UP(to_read, 4);
1579 
1580 	/*
1581 	 * note, we might over-write the buffer end by 3 bytes depending on
1582 	 * alignment of the data.
1583 	 */
1584 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1585 }
1586 
1587 /**
1588  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1589  * @hsotg: The device instance
1590  * @dir_in: If IN zlp
1591  *
1592  * Generate a zero-length IN packet request for terminating a SETUP
1593  * transaction.
1594  *
1595  * Note, since we don't write any data to the TxFIFO, then it is
1596  * currently believed that we do not need to wait for any space in
1597  * the TxFIFO.
1598  */
1599 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1600 {
1601 	/* eps_out[0] is used in both directions */
1602 	hsotg->eps_out[0]->dir_in = dir_in;
1603 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1604 
1605 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1606 }
1607 
1608 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
1609 			u32 epctl_reg)
1610 {
1611 	u32 ctrl;
1612 
1613 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1614 	if (ctrl & DXEPCTL_EOFRNUM)
1615 		ctrl |= DXEPCTL_SETEVENFR;
1616 	else
1617 		ctrl |= DXEPCTL_SETODDFR;
1618 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1619 }
1620 
1621 /**
1622  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1623  * @hsotg: The device instance
1624  * @epnum: The endpoint received from
1625  *
1626  * The RXFIFO has delivered an OutDone event, which means that the data
1627  * transfer for an OUT endpoint has been completed, either by a short
1628  * packet or by the finish of a transfer.
1629  */
1630 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1631 {
1632 	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1633 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1634 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1635 	struct usb_request *req = &hs_req->req;
1636 	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1637 	int result = 0;
1638 
1639 	if (!hs_req) {
1640 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1641 		return;
1642 	}
1643 
1644 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1645 		dev_dbg(hsotg->dev, "zlp packet received\n");
1646 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1647 		dwc2_hsotg_enqueue_setup(hsotg);
1648 		return;
1649 	}
1650 
1651 	if (using_dma(hsotg)) {
1652 		unsigned size_done;
1653 
1654 		/*
1655 		 * Calculate the size of the transfer by checking how much
1656 		 * is left in the endpoint size register and then working it
1657 		 * out from the amount we loaded for the transfer.
1658 		 *
1659 		 * We need to do this as DMA pointers are always 32bit aligned
1660 		 * so may overshoot/undershoot the transfer.
1661 		 */
1662 
1663 		size_done = hs_ep->size_loaded - size_left;
1664 		size_done += hs_ep->last_load;
1665 
1666 		req->actual = size_done;
1667 	}
1668 
1669 	/* if there is more request to do, schedule new transfer */
1670 	if (req->actual < req->length && size_left == 0) {
1671 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1672 		return;
1673 	}
1674 
1675 	if (req->actual < req->length && req->short_not_ok) {
1676 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1677 			__func__, req->actual, req->length);
1678 
1679 		/*
1680 		 * todo - what should we return here? there's no one else
1681 		 * even bothering to check the status.
1682 		 */
1683 	}
1684 
1685 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
1686 		/* Move to STATUS IN */
1687 		dwc2_hsotg_ep0_zlp(hsotg, true);
1688 		return;
1689 	}
1690 
1691 	/*
1692 	 * Slave mode OUT transfers do not go through XferComplete so
1693 	 * adjust the ISOC parity here.
1694 	 */
1695 	if (!using_dma(hsotg)) {
1696 		if (hs_ep->isochronous && hs_ep->interval == 1)
1697 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
1698 		else if (hs_ep->isochronous && hs_ep->interval > 1)
1699 			dwc2_gadget_incr_frame_num(hs_ep);
1700 	}
1701 
1702 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1703 }
1704 
1705 /**
1706  * dwc2_hsotg_handle_rx - RX FIFO has data
1707  * @hsotg: The device instance
1708  *
1709  * The IRQ handler has detected that the RX FIFO has some data in it
1710  * that requires processing, so find out what is in there and do the
1711  * appropriate read.
1712  *
1713  * The RXFIFO is a true FIFO, the packets coming out are still in packet
1714  * chunks, so if you have x packets received on an endpoint you'll get x
1715  * FIFO events delivered, each with a packet's worth of data in it.
1716  *
1717  * When using DMA, we should not be processing events from the RXFIFO
1718  * as the actual data should be sent to the memory directly and we turn
1719  * on the completion interrupts to get notifications of transfer completion.
1720  */
1721 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1722 {
1723 	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1724 	u32 epnum, status, size;
1725 
1726 	WARN_ON(using_dma(hsotg));
1727 
1728 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1729 	status = grxstsr & GRXSTS_PKTSTS_MASK;
1730 
1731 	size = grxstsr & GRXSTS_BYTECNT_MASK;
1732 	size >>= GRXSTS_BYTECNT_SHIFT;
1733 
1734 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1735 			__func__, grxstsr, size, epnum);
1736 
1737 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1738 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1739 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1740 		break;
1741 
1742 	case GRXSTS_PKTSTS_OUTDONE:
1743 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1744 			dwc2_hsotg_read_frameno(hsotg));
1745 
1746 		if (!using_dma(hsotg))
1747 			dwc2_hsotg_handle_outdone(hsotg, epnum);
1748 		break;
1749 
1750 	case GRXSTS_PKTSTS_SETUPDONE:
1751 		dev_dbg(hsotg->dev,
1752 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1753 			dwc2_hsotg_read_frameno(hsotg),
1754 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1755 		/*
1756 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1757 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1758 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1759 		 */
1760 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1761 			dwc2_hsotg_handle_outdone(hsotg, epnum);
1762 		break;
1763 
1764 	case GRXSTS_PKTSTS_OUTRX:
1765 		dwc2_hsotg_rx_data(hsotg, epnum, size);
1766 		break;
1767 
1768 	case GRXSTS_PKTSTS_SETUPRX:
1769 		dev_dbg(hsotg->dev,
1770 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1771 			dwc2_hsotg_read_frameno(hsotg),
1772 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1773 
1774 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1775 
1776 		dwc2_hsotg_rx_data(hsotg, epnum, size);
1777 		break;
1778 
1779 	default:
1780 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1781 			 __func__, grxstsr);
1782 
1783 		dwc2_hsotg_dump(hsotg);
1784 		break;
1785 	}
1786 }
1787 
1788 /**
1789  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1790  * @mps: The maximum packet size in bytes.
1791  */
1792 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1793 {
1794 	switch (mps) {
1795 	case 64:
1796 		return D0EPCTL_MPS_64;
1797 	case 32:
1798 		return D0EPCTL_MPS_32;
1799 	case 16:
1800 		return D0EPCTL_MPS_16;
1801 	case 8:
1802 		return D0EPCTL_MPS_8;
1803 	}
1804 
1805 	/* bad max packet size, warn and return invalid result */
1806 	WARN_ON(1);
1807 	return (u32)-1;
1808 }
1809 
1810 /**
1811  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1812  * @hsotg: The driver state.
1813  * @ep: The index number of the endpoint
1814  * @mps: The maximum packet size in bytes
1815  *
1816  * Configure the maximum packet size for the given endpoint, updating
1817  * the hardware control registers to reflect this.
1818  */
1819 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1820 			unsigned int ep, unsigned int mps, unsigned int dir_in)
1821 {
1822 	struct dwc2_hsotg_ep *hs_ep;
1823 	void __iomem *regs = hsotg->regs;
1824 	u32 mpsval;
1825 	u32 mcval;
1826 	u32 reg;
1827 
1828 	hs_ep = index_to_ep(hsotg, ep, dir_in);
1829 	if (!hs_ep)
1830 		return;
1831 
1832 	if (ep == 0) {
1833 		/* EP0 is a special case */
1834 		mpsval = dwc2_hsotg_ep0_mps(mps);
1835 		if (mpsval > 3)
1836 			goto bad_mps;
1837 		hs_ep->ep.maxpacket = mps;
1838 		hs_ep->mc = 1;
1839 	} else {
1840 		mpsval = mps & DXEPCTL_MPS_MASK;
1841 		if (mpsval > 1024)
1842 			goto bad_mps;
1843 		mcval = ((mps >> 11) & 0x3) + 1;
1844 		hs_ep->mc = mcval;
1845 		if (mcval > 3)
1846 			goto bad_mps;
1847 		hs_ep->ep.maxpacket = mpsval;
1848 	}
1849 
1850 	if (dir_in) {
1851 		reg = dwc2_readl(regs + DIEPCTL(ep));
1852 		reg &= ~DXEPCTL_MPS_MASK;
1853 		reg |= mpsval;
1854 		dwc2_writel(reg, regs + DIEPCTL(ep));
1855 	} else {
1856 		reg = dwc2_readl(regs + DOEPCTL(ep));
1857 		reg &= ~DXEPCTL_MPS_MASK;
1858 		reg |= mpsval;
1859 		dwc2_writel(reg, regs + DOEPCTL(ep));
1860 	}
1861 
1862 	return;
1863 
1864 bad_mps:
1865 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1866 }
1867 
1868 /**
1869  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1870  * @hsotg: The driver state
1871  * @idx: The index for the endpoint (0..15)
1872  */
1873 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1874 {
1875 	int timeout;
1876 	int val;
1877 
1878 	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1879 		    hsotg->regs + GRSTCTL);
1880 
1881 	/* wait until the fifo is flushed */
1882 	timeout = 100;
1883 
1884 	while (1) {
1885 		val = dwc2_readl(hsotg->regs + GRSTCTL);
1886 
1887 		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1888 			break;
1889 
1890 		if (--timeout == 0) {
1891 			dev_err(hsotg->dev,
1892 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1893 				__func__, val);
1894 			break;
1895 		}
1896 
1897 		udelay(1);
1898 	}
1899 }
1900 
1901 /**
1902  * dwc2_hsotg_trytx - check to see if anything needs transmitting
1903  * @hsotg: The driver state
1904  * @hs_ep: The driver endpoint to check.
1905  *
1906  * Check to see if there is a request that has data to send, and if so
1907  * make an attempt to write data into the FIFO.
1908  */
1909 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
1910 			   struct dwc2_hsotg_ep *hs_ep)
1911 {
1912 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1913 
1914 	if (!hs_ep->dir_in || !hs_req) {
1915 		/**
1916 		 * if request is not enqueued, we disable interrupts
1917 		 * for endpoints, excepting ep0
1918 		 */
1919 		if (hs_ep->index != 0)
1920 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1921 					     hs_ep->dir_in, 0);
1922 		return 0;
1923 	}
1924 
1925 	if (hs_req->req.actual < hs_req->req.length) {
1926 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1927 			hs_ep->index);
1928 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 /**
1935  * dwc2_hsotg_complete_in - complete IN transfer
1936  * @hsotg: The device state.
1937  * @hs_ep: The endpoint that has just completed.
1938  *
1939  * An IN transfer has been completed, update the transfer's state and then
1940  * call the relevant completion routines.
1941  */
1942 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1943 				  struct dwc2_hsotg_ep *hs_ep)
1944 {
1945 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1946 	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1947 	int size_left, size_done;
1948 
1949 	if (!hs_req) {
1950 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1951 		return;
1952 	}
1953 
1954 	/* Finish ZLP handling for IN EP0 transactions */
1955 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1956 		dev_dbg(hsotg->dev, "zlp packet sent\n");
1957 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1958 		if (hsotg->test_mode) {
1959 			int ret;
1960 
1961 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1962 			if (ret < 0) {
1963 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1964 						hsotg->test_mode);
1965 				dwc2_hsotg_stall_ep0(hsotg);
1966 				return;
1967 			}
1968 		}
1969 		dwc2_hsotg_enqueue_setup(hsotg);
1970 		return;
1971 	}
1972 
1973 	/*
1974 	 * Calculate the size of the transfer by checking how much is left
1975 	 * in the endpoint size register and then working it out from
1976 	 * the amount we loaded for the transfer.
1977 	 *
1978 	 * We do this even for DMA, as the transfer may have incremented
1979 	 * past the end of the buffer (DMA transfers are always 32bit
1980 	 * aligned).
1981 	 */
1982 
1983 	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1984 
1985 	size_done = hs_ep->size_loaded - size_left;
1986 	size_done += hs_ep->last_load;
1987 
1988 	if (hs_req->req.actual != size_done)
1989 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1990 			__func__, hs_req->req.actual, size_done);
1991 
1992 	hs_req->req.actual = size_done;
1993 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1994 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1995 
1996 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1997 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1998 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1999 		return;
2000 	}
2001 
2002 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2003 	if (hs_ep->send_zlp) {
2004 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2005 		hs_ep->send_zlp = 0;
2006 		/* transfer will be completed on next complete interrupt */
2007 		return;
2008 	}
2009 
2010 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2011 		/* Move to STATUS OUT */
2012 		dwc2_hsotg_ep0_zlp(hsotg, false);
2013 		return;
2014 	}
2015 
2016 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2017 }
2018 
2019 /**
2020  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2021  * @hsotg: The device state.
2022  * @idx: Index of ep.
2023  * @dir_in: Endpoint direction 1-in 0-out.
2024  *
2025  * Reads for endpoint with given index and direction, by masking
2026  * epint_reg with coresponding mask.
2027  */
2028 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2029 					  unsigned int idx, int dir_in)
2030 {
2031 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2032 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2033 	u32 ints;
2034 	u32 mask;
2035 	u32 diepempmsk;
2036 
2037 	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2038 	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2039 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2040 	mask |= DXEPINT_SETUP_RCVD;
2041 
2042 	ints = dwc2_readl(hsotg->regs + epint_reg);
2043 	ints &= mask;
2044 	return ints;
2045 }
2046 
2047 /**
2048  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2049  * @hs_ep: The endpoint on which interrupt is asserted.
2050  *
2051  * This interrupt indicates that the endpoint has been disabled per the
2052  * application's request.
2053  *
2054  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2055  * in case of ISOC completes current request.
2056  *
2057  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2058  * request starts it.
2059  */
2060 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2061 {
2062 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2063 	struct dwc2_hsotg_req *hs_req;
2064 	unsigned char idx = hs_ep->index;
2065 	int dir_in = hs_ep->dir_in;
2066 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2067 	int dctl = dwc2_readl(hsotg->regs + DCTL);
2068 
2069 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2070 
2071 	if (dir_in) {
2072 		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2073 
2074 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2075 
2076 		if (hs_ep->isochronous) {
2077 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2078 			return;
2079 		}
2080 
2081 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2082 			int dctl = dwc2_readl(hsotg->regs + DCTL);
2083 
2084 			dctl |= DCTL_CGNPINNAK;
2085 			dwc2_writel(dctl, hsotg->regs + DCTL);
2086 		}
2087 		return;
2088 	}
2089 
2090 	if (dctl & DCTL_GOUTNAKSTS) {
2091 		dctl |= DCTL_CGOUTNAK;
2092 		dwc2_writel(dctl, hsotg->regs + DCTL);
2093 	}
2094 
2095 	if (!hs_ep->isochronous)
2096 		return;
2097 
2098 	if (list_empty(&hs_ep->queue)) {
2099 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2100 			__func__, hs_ep);
2101 		return;
2102 	}
2103 
2104 	do {
2105 		hs_req = get_ep_head(hs_ep);
2106 		if (hs_req)
2107 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2108 						    -ENODATA);
2109 		dwc2_gadget_incr_frame_num(hs_ep);
2110 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2111 
2112 	dwc2_gadget_start_next_request(hs_ep);
2113 }
2114 
2115 /**
2116  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2117  * @hs_ep: The endpoint on which interrupt is asserted.
2118  *
2119  * This is starting point for ISOC-OUT transfer, synchronization done with
2120  * first out token received from host while corresponding EP is disabled.
2121  *
2122  * Device does not know initial frame in which out token will come. For this
2123  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2124  * getting this interrupt SW starts calculation for next transfer frame.
2125  */
2126 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2127 {
2128 	struct dwc2_hsotg *hsotg = ep->parent;
2129 	int dir_in = ep->dir_in;
2130 	u32 doepmsk;
2131 
2132 	if (dir_in || !ep->isochronous)
2133 		return;
2134 
2135 	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2136 
2137 	if (ep->interval > 1 &&
2138 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2139 		u32 dsts;
2140 		u32 ctrl;
2141 
2142 		dsts = dwc2_readl(hsotg->regs + DSTS);
2143 		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2144 		dwc2_gadget_incr_frame_num(ep);
2145 
2146 		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2147 		if (ep->target_frame & 0x1)
2148 			ctrl |= DXEPCTL_SETODDFR;
2149 		else
2150 			ctrl |= DXEPCTL_SETEVENFR;
2151 
2152 		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2153 	}
2154 
2155 	dwc2_gadget_start_next_request(ep);
2156 	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2157 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2158 	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2159 }
2160 
2161 /**
2162 * dwc2_gadget_handle_nak - handle NAK interrupt
2163 * @hs_ep: The endpoint on which interrupt is asserted.
2164 *
2165 * This is starting point for ISOC-IN transfer, synchronization done with
2166 * first IN token received from host while corresponding EP is disabled.
2167 *
2168 * Device does not know when first one token will arrive from host. On first
2169 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2170 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2171 * sent in response to that as there was no data in FIFO. SW is basing on this
2172 * interrupt to obtain frame in which token has come and then based on the
2173 * interval calculates next frame for transfer.
2174 */
2175 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2176 {
2177 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2178 	int dir_in = hs_ep->dir_in;
2179 
2180 	if (!dir_in || !hs_ep->isochronous)
2181 		return;
2182 
2183 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2184 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2185 		if (hs_ep->interval > 1) {
2186 			u32 ctrl = dwc2_readl(hsotg->regs +
2187 					      DIEPCTL(hs_ep->index));
2188 			if (hs_ep->target_frame & 0x1)
2189 				ctrl |= DXEPCTL_SETODDFR;
2190 			else
2191 				ctrl |= DXEPCTL_SETEVENFR;
2192 
2193 			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2194 		}
2195 
2196 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2197 					    get_ep_head(hs_ep), 0);
2198 	}
2199 
2200 	dwc2_gadget_incr_frame_num(hs_ep);
2201 }
2202 
2203 /**
2204  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2205  * @hsotg: The driver state
2206  * @idx: The index for the endpoint (0..15)
2207  * @dir_in: Set if this is an IN endpoint
2208  *
2209  * Process and clear any interrupt pending for an individual endpoint
2210  */
2211 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2212 			    int dir_in)
2213 {
2214 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2215 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2216 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2217 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2218 	u32 ints;
2219 	u32 ctrl;
2220 
2221 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2222 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2223 
2224 	/* Clear endpoint interrupts */
2225 	dwc2_writel(ints, hsotg->regs + epint_reg);
2226 
2227 	if (!hs_ep) {
2228 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2229 					__func__, idx, dir_in ? "in" : "out");
2230 		return;
2231 	}
2232 
2233 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2234 		__func__, idx, dir_in ? "in" : "out", ints);
2235 
2236 	/* Don't process XferCompl interrupt if it is a setup packet */
2237 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2238 		ints &= ~DXEPINT_XFERCOMPL;
2239 
2240 	if (ints & DXEPINT_STSPHSERCVD)
2241 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd asserted\n", __func__);
2242 
2243 	if (ints & DXEPINT_XFERCOMPL) {
2244 		dev_dbg(hsotg->dev,
2245 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2246 			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2247 			dwc2_readl(hsotg->regs + epsiz_reg));
2248 
2249 		/*
2250 		 * we get OutDone from the FIFO, so we only need to look
2251 		 * at completing IN requests here
2252 		 */
2253 		if (dir_in) {
2254 			if (hs_ep->isochronous && hs_ep->interval > 1)
2255 				dwc2_gadget_incr_frame_num(hs_ep);
2256 
2257 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2258 			if (ints & DXEPINT_NAKINTRPT)
2259 				ints &= ~DXEPINT_NAKINTRPT;
2260 
2261 			if (idx == 0 && !hs_ep->req)
2262 				dwc2_hsotg_enqueue_setup(hsotg);
2263 		} else if (using_dma(hsotg)) {
2264 			/*
2265 			 * We're using DMA, we need to fire an OutDone here
2266 			 * as we ignore the RXFIFO.
2267 			 */
2268 			if (hs_ep->isochronous && hs_ep->interval > 1)
2269 				dwc2_gadget_incr_frame_num(hs_ep);
2270 
2271 			dwc2_hsotg_handle_outdone(hsotg, idx);
2272 		}
2273 	}
2274 
2275 	if (ints & DXEPINT_EPDISBLD)
2276 		dwc2_gadget_handle_ep_disabled(hs_ep);
2277 
2278 	if (ints & DXEPINT_OUTTKNEPDIS)
2279 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2280 
2281 	if (ints & DXEPINT_NAKINTRPT)
2282 		dwc2_gadget_handle_nak(hs_ep);
2283 
2284 	if (ints & DXEPINT_AHBERR)
2285 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2286 
2287 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2288 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2289 
2290 		if (using_dma(hsotg) && idx == 0) {
2291 			/*
2292 			 * this is the notification we've received a
2293 			 * setup packet. In non-DMA mode we'd get this
2294 			 * from the RXFIFO, instead we need to process
2295 			 * the setup here.
2296 			 */
2297 
2298 			if (dir_in)
2299 				WARN_ON_ONCE(1);
2300 			else
2301 				dwc2_hsotg_handle_outdone(hsotg, 0);
2302 		}
2303 	}
2304 
2305 	if (ints & DXEPINT_BACK2BACKSETUP)
2306 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2307 
2308 	if (dir_in && !hs_ep->isochronous) {
2309 		/* not sure if this is important, but we'll clear it anyway */
2310 		if (ints & DXEPINT_INTKNTXFEMP) {
2311 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2312 				__func__, idx);
2313 		}
2314 
2315 		/* this probably means something bad is happening */
2316 		if (ints & DXEPINT_INTKNEPMIS) {
2317 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2318 				 __func__, idx);
2319 		}
2320 
2321 		/* FIFO has space or is empty (see GAHBCFG) */
2322 		if (hsotg->dedicated_fifos &&
2323 		    ints & DXEPINT_TXFEMP) {
2324 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2325 				__func__, idx);
2326 			if (!using_dma(hsotg))
2327 				dwc2_hsotg_trytx(hsotg, hs_ep);
2328 		}
2329 	}
2330 }
2331 
2332 /**
2333  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2334  * @hsotg: The device state.
2335  *
2336  * Handle updating the device settings after the enumeration phase has
2337  * been completed.
2338  */
2339 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2340 {
2341 	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2342 	int ep0_mps = 0, ep_mps = 8;
2343 
2344 	/*
2345 	 * This should signal the finish of the enumeration phase
2346 	 * of the USB handshaking, so we should now know what rate
2347 	 * we connected at.
2348 	 */
2349 
2350 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2351 
2352 	/*
2353 	 * note, since we're limited by the size of transfer on EP0, and
2354 	 * it seems IN transfers must be a even number of packets we do
2355 	 * not advertise a 64byte MPS on EP0.
2356 	 */
2357 
2358 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2359 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2360 	case DSTS_ENUMSPD_FS:
2361 	case DSTS_ENUMSPD_FS48:
2362 		hsotg->gadget.speed = USB_SPEED_FULL;
2363 		ep0_mps = EP0_MPS_LIMIT;
2364 		ep_mps = 1023;
2365 		break;
2366 
2367 	case DSTS_ENUMSPD_HS:
2368 		hsotg->gadget.speed = USB_SPEED_HIGH;
2369 		ep0_mps = EP0_MPS_LIMIT;
2370 		ep_mps = 1024;
2371 		break;
2372 
2373 	case DSTS_ENUMSPD_LS:
2374 		hsotg->gadget.speed = USB_SPEED_LOW;
2375 		/*
2376 		 * note, we don't actually support LS in this driver at the
2377 		 * moment, and the documentation seems to imply that it isn't
2378 		 * supported by the PHYs on some of the devices.
2379 		 */
2380 		break;
2381 	}
2382 	dev_info(hsotg->dev, "new device is %s\n",
2383 		 usb_speed_string(hsotg->gadget.speed));
2384 
2385 	/*
2386 	 * we should now know the maximum packet size for an
2387 	 * endpoint, so set the endpoints to a default value.
2388 	 */
2389 
2390 	if (ep0_mps) {
2391 		int i;
2392 		/* Initialize ep0 for both in and out directions */
2393 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2394 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2395 		for (i = 1; i < hsotg->num_of_eps; i++) {
2396 			if (hsotg->eps_in[i])
2397 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2398 			if (hsotg->eps_out[i])
2399 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2400 		}
2401 	}
2402 
2403 	/* ensure after enumeration our EP0 is active */
2404 
2405 	dwc2_hsotg_enqueue_setup(hsotg);
2406 
2407 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2408 		dwc2_readl(hsotg->regs + DIEPCTL0),
2409 		dwc2_readl(hsotg->regs + DOEPCTL0));
2410 }
2411 
2412 /**
2413  * kill_all_requests - remove all requests from the endpoint's queue
2414  * @hsotg: The device state.
2415  * @ep: The endpoint the requests may be on.
2416  * @result: The result code to use.
2417  *
2418  * Go through the requests on the given endpoint and mark them
2419  * completed with the given result code.
2420  */
2421 static void kill_all_requests(struct dwc2_hsotg *hsotg,
2422 			      struct dwc2_hsotg_ep *ep,
2423 			      int result)
2424 {
2425 	struct dwc2_hsotg_req *req, *treq;
2426 	unsigned size;
2427 
2428 	ep->req = NULL;
2429 
2430 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2431 		dwc2_hsotg_complete_request(hsotg, ep, req,
2432 					   result);
2433 
2434 	if (!hsotg->dedicated_fifos)
2435 		return;
2436 	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
2437 	if (size < ep->fifo_size)
2438 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2439 }
2440 
2441 /**
2442  * dwc2_hsotg_disconnect - disconnect service
2443  * @hsotg: The device state.
2444  *
2445  * The device has been disconnected. Remove all current
2446  * transactions and signal the gadget driver that this
2447  * has happened.
2448  */
2449 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2450 {
2451 	unsigned ep;
2452 
2453 	if (!hsotg->connected)
2454 		return;
2455 
2456 	hsotg->connected = 0;
2457 	hsotg->test_mode = 0;
2458 
2459 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2460 		if (hsotg->eps_in[ep])
2461 			kill_all_requests(hsotg, hsotg->eps_in[ep],
2462 								-ESHUTDOWN);
2463 		if (hsotg->eps_out[ep])
2464 			kill_all_requests(hsotg, hsotg->eps_out[ep],
2465 								-ESHUTDOWN);
2466 	}
2467 
2468 	call_gadget(hsotg, disconnect);
2469 	hsotg->lx_state = DWC2_L3;
2470 }
2471 
2472 /**
2473  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2474  * @hsotg: The device state:
2475  * @periodic: True if this is a periodic FIFO interrupt
2476  */
2477 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2478 {
2479 	struct dwc2_hsotg_ep *ep;
2480 	int epno, ret;
2481 
2482 	/* look through for any more data to transmit */
2483 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2484 		ep = index_to_ep(hsotg, epno, 1);
2485 
2486 		if (!ep)
2487 			continue;
2488 
2489 		if (!ep->dir_in)
2490 			continue;
2491 
2492 		if ((periodic && !ep->periodic) ||
2493 		    (!periodic && ep->periodic))
2494 			continue;
2495 
2496 		ret = dwc2_hsotg_trytx(hsotg, ep);
2497 		if (ret < 0)
2498 			break;
2499 	}
2500 }
2501 
2502 /* IRQ flags which will trigger a retry around the IRQ loop */
2503 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2504 			GINTSTS_PTXFEMP |  \
2505 			GINTSTS_RXFLVL)
2506 
2507 /**
2508  * dwc2_hsotg_core_init - issue softreset to the core
2509  * @hsotg: The device state
2510  *
2511  * Issue a soft reset to the core, and await the core finishing it.
2512  */
2513 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2514 						bool is_usb_reset)
2515 {
2516 	u32 intmsk;
2517 	u32 val;
2518 	u32 usbcfg;
2519 
2520 	/* Kill any ep0 requests as controller will be reinitialized */
2521 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
2522 
2523 	if (!is_usb_reset)
2524 		if (dwc2_core_reset(hsotg))
2525 			return;
2526 
2527 	/*
2528 	 * we must now enable ep0 ready for host detection and then
2529 	 * set configuration.
2530 	 */
2531 
2532 	/* keep other bits untouched (so e.g. forced modes are not lost) */
2533 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2534 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
2535 		GUSBCFG_HNPCAP);
2536 
2537 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2538 	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2539 	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2540 		(val << GUSBCFG_USBTRDTIM_SHIFT);
2541 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2542 
2543 	dwc2_hsotg_init_fifo(hsotg);
2544 
2545 	if (!is_usb_reset)
2546 		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2547 
2548 	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2549 
2550 	/* Clear any pending OTG interrupts */
2551 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2552 
2553 	/* Clear any pending interrupts */
2554 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2555 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2556 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2557 		GINTSTS_USBRST | GINTSTS_RESETDET |
2558 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2559 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
2560 		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2561 
2562 	if (hsotg->core_params->external_id_pin_ctl <= 0)
2563 		intmsk |= GINTSTS_CONIDSTSCHNG;
2564 
2565 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2566 
2567 	if (using_dma(hsotg))
2568 		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2569 			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2570 			    hsotg->regs + GAHBCFG);
2571 	else
2572 		dwc2_writel(((hsotg->dedicated_fifos) ?
2573 						(GAHBCFG_NP_TXF_EMP_LVL |
2574 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
2575 			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2576 
2577 	/*
2578 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2579 	 * when we have no data to transfer. Otherwise we get being flooded by
2580 	 * interrupts.
2581 	 */
2582 
2583 	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2584 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2585 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2586 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
2587 		hsotg->regs + DIEPMSK);
2588 
2589 	/*
2590 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2591 	 * DMA mode we may need this.
2592 	 */
2593 	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK) : 0) |
2594 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2595 		DOEPMSK_SETUPMSK | DOEPMSK_STSPHSERCVDMSK,
2596 		hsotg->regs + DOEPMSK);
2597 
2598 	dwc2_writel(0, hsotg->regs + DAINTMSK);
2599 
2600 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2601 		dwc2_readl(hsotg->regs + DIEPCTL0),
2602 		dwc2_readl(hsotg->regs + DOEPCTL0));
2603 
2604 	/* enable in and out endpoint interrupts */
2605 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2606 
2607 	/*
2608 	 * Enable the RXFIFO when in slave mode, as this is how we collect
2609 	 * the data. In DMA mode, we get events from the FIFO but also
2610 	 * things we cannot process, so do not use it.
2611 	 */
2612 	if (!using_dma(hsotg))
2613 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2614 
2615 	/* Enable interrupts for EP0 in and out */
2616 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2617 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2618 
2619 	if (!is_usb_reset) {
2620 		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2621 		udelay(10);  /* see openiboot */
2622 		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2623 	}
2624 
2625 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2626 
2627 	/*
2628 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2629 	 * writing to the EPCTL register..
2630 	 */
2631 
2632 	/* set to read 1 8byte packet */
2633 	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2634 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2635 
2636 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2637 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2638 	       DXEPCTL_USBACTEP,
2639 	       hsotg->regs + DOEPCTL0);
2640 
2641 	/* enable, but don't activate EP0in */
2642 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2643 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2644 
2645 	dwc2_hsotg_enqueue_setup(hsotg);
2646 
2647 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2648 		dwc2_readl(hsotg->regs + DIEPCTL0),
2649 		dwc2_readl(hsotg->regs + DOEPCTL0));
2650 
2651 	/* clear global NAKs */
2652 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2653 	if (!is_usb_reset)
2654 		val |= DCTL_SFTDISCON;
2655 	__orr32(hsotg->regs + DCTL, val);
2656 
2657 	/* must be at-least 3ms to allow bus to see disconnect */
2658 	mdelay(3);
2659 
2660 	hsotg->lx_state = DWC2_L0;
2661 }
2662 
2663 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2664 {
2665 	/* set the soft-disconnect bit */
2666 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2667 }
2668 
2669 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2670 {
2671 	/* remove the soft-disconnect and let's go */
2672 	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2673 }
2674 
2675 /**
2676  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
2677  * @hsotg: The device state:
2678  *
2679  * This interrupt indicates one of the following conditions occurred while
2680  * transmitting an ISOC transaction.
2681  * - Corrupted IN Token for ISOC EP.
2682  * - Packet not complete in FIFO.
2683  *
2684  * The following actions will be taken:
2685  * - Determine the EP
2686  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
2687  */
2688 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
2689 {
2690 	struct dwc2_hsotg_ep *hs_ep;
2691 	u32 epctrl;
2692 	u32 idx;
2693 
2694 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
2695 
2696 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
2697 		hs_ep = hsotg->eps_in[idx];
2698 		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
2699 		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
2700 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
2701 			epctrl |= DXEPCTL_SNAK;
2702 			epctrl |= DXEPCTL_EPDIS;
2703 			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
2704 		}
2705 	}
2706 
2707 	/* Clear interrupt */
2708 	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
2709 }
2710 
2711 /**
2712  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
2713  * @hsotg: The device state:
2714  *
2715  * This interrupt indicates one of the following conditions occurred while
2716  * transmitting an ISOC transaction.
2717  * - Corrupted OUT Token for ISOC EP.
2718  * - Packet not complete in FIFO.
2719  *
2720  * The following actions will be taken:
2721  * - Determine the EP
2722  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
2723  */
2724 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
2725 {
2726 	u32 gintsts;
2727 	u32 gintmsk;
2728 	u32 epctrl;
2729 	struct dwc2_hsotg_ep *hs_ep;
2730 	int idx;
2731 
2732 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
2733 
2734 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
2735 		hs_ep = hsotg->eps_out[idx];
2736 		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
2737 		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
2738 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
2739 			/* Unmask GOUTNAKEFF interrupt */
2740 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2741 			gintmsk |= GINTSTS_GOUTNAKEFF;
2742 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
2743 
2744 			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
2745 			if (!(gintsts & GINTSTS_GOUTNAKEFF))
2746 				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2747 		}
2748 	}
2749 
2750 	/* Clear interrupt */
2751 	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
2752 }
2753 
2754 /**
2755  * dwc2_hsotg_irq - handle device interrupt
2756  * @irq: The IRQ number triggered
2757  * @pw: The pw value when registered the handler.
2758  */
2759 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2760 {
2761 	struct dwc2_hsotg *hsotg = pw;
2762 	int retry_count = 8;
2763 	u32 gintsts;
2764 	u32 gintmsk;
2765 
2766 	if (!dwc2_is_device_mode(hsotg))
2767 		return IRQ_NONE;
2768 
2769 	spin_lock(&hsotg->lock);
2770 irq_retry:
2771 	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
2772 	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2773 
2774 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2775 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2776 
2777 	gintsts &= gintmsk;
2778 
2779 	if (gintsts & GINTSTS_RESETDET) {
2780 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2781 
2782 		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2783 
2784 		/* This event must be used only if controller is suspended */
2785 		if (hsotg->lx_state == DWC2_L2) {
2786 			dwc2_exit_hibernation(hsotg, true);
2787 			hsotg->lx_state = DWC2_L0;
2788 		}
2789 	}
2790 
2791 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2792 
2793 		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
2794 		u32 connected = hsotg->connected;
2795 
2796 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2797 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2798 			dwc2_readl(hsotg->regs + GNPTXSTS));
2799 
2800 		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2801 
2802 		/* Report disconnection if it is not already done. */
2803 		dwc2_hsotg_disconnect(hsotg);
2804 
2805 		if (usb_status & GOTGCTL_BSESVLD && connected)
2806 			dwc2_hsotg_core_init_disconnected(hsotg, true);
2807 	}
2808 
2809 	if (gintsts & GINTSTS_ENUMDONE) {
2810 		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2811 
2812 		dwc2_hsotg_irq_enumdone(hsotg);
2813 	}
2814 
2815 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2816 		u32 daint = dwc2_readl(hsotg->regs + DAINT);
2817 		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2818 		u32 daint_out, daint_in;
2819 		int ep;
2820 
2821 		daint &= daintmsk;
2822 		daint_out = daint >> DAINT_OUTEP_SHIFT;
2823 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2824 
2825 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2826 
2827 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2828 						ep++, daint_out >>= 1) {
2829 			if (daint_out & 1)
2830 				dwc2_hsotg_epint(hsotg, ep, 0);
2831 		}
2832 
2833 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
2834 						ep++, daint_in >>= 1) {
2835 			if (daint_in & 1)
2836 				dwc2_hsotg_epint(hsotg, ep, 1);
2837 		}
2838 	}
2839 
2840 	/* check both FIFOs */
2841 
2842 	if (gintsts & GINTSTS_NPTXFEMP) {
2843 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2844 
2845 		/*
2846 		 * Disable the interrupt to stop it happening again
2847 		 * unless one of these endpoint routines decides that
2848 		 * it needs re-enabling
2849 		 */
2850 
2851 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2852 		dwc2_hsotg_irq_fifoempty(hsotg, false);
2853 	}
2854 
2855 	if (gintsts & GINTSTS_PTXFEMP) {
2856 		dev_dbg(hsotg->dev, "PTxFEmp\n");
2857 
2858 		/* See note in GINTSTS_NPTxFEmp */
2859 
2860 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2861 		dwc2_hsotg_irq_fifoempty(hsotg, true);
2862 	}
2863 
2864 	if (gintsts & GINTSTS_RXFLVL) {
2865 		/*
2866 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2867 		 * we need to retry dwc2_hsotg_handle_rx if this is still
2868 		 * set.
2869 		 */
2870 
2871 		dwc2_hsotg_handle_rx(hsotg);
2872 	}
2873 
2874 	if (gintsts & GINTSTS_ERLYSUSP) {
2875 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2876 		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2877 	}
2878 
2879 	/*
2880 	 * these next two seem to crop-up occasionally causing the core
2881 	 * to shutdown the USB transfer, so try clearing them and logging
2882 	 * the occurrence.
2883 	 */
2884 
2885 	if (gintsts & GINTSTS_GOUTNAKEFF) {
2886 		u8 idx;
2887 		u32 epctrl;
2888 		u32 gintmsk;
2889 		struct dwc2_hsotg_ep *hs_ep;
2890 
2891 		/* Mask this interrupt */
2892 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2893 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
2894 		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
2895 
2896 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
2897 		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
2898 			hs_ep = hsotg->eps_out[idx];
2899 			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
2900 
2901 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
2902 				epctrl |= DXEPCTL_SNAK;
2903 				epctrl |= DXEPCTL_EPDIS;
2904 				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
2905 			}
2906 		}
2907 
2908 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
2909 	}
2910 
2911 	if (gintsts & GINTSTS_GINNAKEFF) {
2912 		dev_info(hsotg->dev, "GINNakEff triggered\n");
2913 
2914 		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2915 
2916 		dwc2_hsotg_dump(hsotg);
2917 	}
2918 
2919 	if (gintsts & GINTSTS_INCOMPL_SOIN)
2920 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
2921 
2922 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
2923 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
2924 
2925 	/*
2926 	 * if we've had fifo events, we should try and go around the
2927 	 * loop again to see if there's any point in returning yet.
2928 	 */
2929 
2930 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2931 			goto irq_retry;
2932 
2933 	spin_unlock(&hsotg->lock);
2934 
2935 	return IRQ_HANDLED;
2936 }
2937 
2938 /**
2939  * dwc2_hsotg_ep_enable - enable the given endpoint
2940  * @ep: The USB endpint to configure
2941  * @desc: The USB endpoint descriptor to configure with.
2942  *
2943  * This is called from the USB gadget code's usb_ep_enable().
2944  */
2945 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2946 			       const struct usb_endpoint_descriptor *desc)
2947 {
2948 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2949 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2950 	unsigned long flags;
2951 	unsigned int index = hs_ep->index;
2952 	u32 epctrl_reg;
2953 	u32 epctrl;
2954 	u32 mps;
2955 	u32 mask;
2956 	unsigned int dir_in;
2957 	unsigned int i, val, size;
2958 	int ret = 0;
2959 
2960 	dev_dbg(hsotg->dev,
2961 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2962 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2963 		desc->wMaxPacketSize, desc->bInterval);
2964 
2965 	/* not to be called for EP0 */
2966 	if (index == 0) {
2967 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
2968 		return -EINVAL;
2969 	}
2970 
2971 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2972 	if (dir_in != hs_ep->dir_in) {
2973 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2974 		return -EINVAL;
2975 	}
2976 
2977 	mps = usb_endpoint_maxp(desc);
2978 
2979 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2980 
2981 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2982 	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2983 
2984 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2985 		__func__, epctrl, epctrl_reg);
2986 
2987 	spin_lock_irqsave(&hsotg->lock, flags);
2988 
2989 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2990 	epctrl |= DXEPCTL_MPS(mps);
2991 
2992 	/*
2993 	 * mark the endpoint as active, otherwise the core may ignore
2994 	 * transactions entirely for this endpoint
2995 	 */
2996 	epctrl |= DXEPCTL_USBACTEP;
2997 
2998 	/* update the endpoint state */
2999 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
3000 
3001 	/* default, set to non-periodic */
3002 	hs_ep->isochronous = 0;
3003 	hs_ep->periodic = 0;
3004 	hs_ep->halted = 0;
3005 	hs_ep->interval = desc->bInterval;
3006 
3007 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3008 	case USB_ENDPOINT_XFER_ISOC:
3009 		epctrl |= DXEPCTL_EPTYPE_ISO;
3010 		epctrl |= DXEPCTL_SETEVENFR;
3011 		hs_ep->isochronous = 1;
3012 		hs_ep->interval = 1 << (desc->bInterval - 1);
3013 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3014 		if (dir_in) {
3015 			hs_ep->periodic = 1;
3016 			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3017 			mask |= DIEPMSK_NAKMSK;
3018 			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3019 		} else {
3020 			mask = dwc2_readl(hsotg->regs + DOEPMSK);
3021 			mask |= DOEPMSK_OUTTKNEPDISMSK;
3022 			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3023 		}
3024 		break;
3025 
3026 	case USB_ENDPOINT_XFER_BULK:
3027 		epctrl |= DXEPCTL_EPTYPE_BULK;
3028 		break;
3029 
3030 	case USB_ENDPOINT_XFER_INT:
3031 		if (dir_in)
3032 			hs_ep->periodic = 1;
3033 
3034 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3035 			hs_ep->interval = 1 << (desc->bInterval - 1);
3036 
3037 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3038 		break;
3039 
3040 	case USB_ENDPOINT_XFER_CONTROL:
3041 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3042 		break;
3043 	}
3044 
3045 	/*
3046 	 * if the hardware has dedicated fifos, we must give each IN EP
3047 	 * a unique tx-fifo even if it is non-periodic.
3048 	 */
3049 	if (dir_in && hsotg->dedicated_fifos) {
3050 		u32 fifo_index = 0;
3051 		u32 fifo_size = UINT_MAX;
3052 		size = hs_ep->ep.maxpacket*hs_ep->mc;
3053 		for (i = 1; i < hsotg->num_of_eps; ++i) {
3054 			if (hsotg->fifo_map & (1<<i))
3055 				continue;
3056 			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3057 			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
3058 			if (val < size)
3059 				continue;
3060 			/* Search for smallest acceptable fifo */
3061 			if (val < fifo_size) {
3062 				fifo_size = val;
3063 				fifo_index = i;
3064 			}
3065 		}
3066 		if (!fifo_index) {
3067 			dev_err(hsotg->dev,
3068 				"%s: No suitable fifo found\n", __func__);
3069 			ret = -ENOMEM;
3070 			goto error;
3071 		}
3072 		hsotg->fifo_map |= 1 << fifo_index;
3073 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3074 		hs_ep->fifo_index = fifo_index;
3075 		hs_ep->fifo_size = fifo_size;
3076 	}
3077 
3078 	/* for non control endpoints, set PID to D0 */
3079 	if (index && !hs_ep->isochronous)
3080 		epctrl |= DXEPCTL_SETD0PID;
3081 
3082 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3083 		__func__, epctrl);
3084 
3085 	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3086 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3087 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3088 
3089 	/* enable the endpoint interrupt */
3090 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3091 
3092 error:
3093 	spin_unlock_irqrestore(&hsotg->lock, flags);
3094 	return ret;
3095 }
3096 
3097 /**
3098  * dwc2_hsotg_ep_disable - disable given endpoint
3099  * @ep: The endpoint to disable.
3100  */
3101 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3102 {
3103 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3104 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3105 	int dir_in = hs_ep->dir_in;
3106 	int index = hs_ep->index;
3107 	unsigned long flags;
3108 	u32 epctrl_reg;
3109 	u32 ctrl;
3110 
3111 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3112 
3113 	if (ep == &hsotg->eps_out[0]->ep) {
3114 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3115 		return -EINVAL;
3116 	}
3117 
3118 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3119 
3120 	spin_lock_irqsave(&hsotg->lock, flags);
3121 
3122 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3123 	ctrl &= ~DXEPCTL_EPENA;
3124 	ctrl &= ~DXEPCTL_USBACTEP;
3125 	ctrl |= DXEPCTL_SNAK;
3126 
3127 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3128 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3129 
3130 	/* disable endpoint interrupts */
3131 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3132 
3133 	/* terminate all requests with shutdown */
3134 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
3135 
3136 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
3137 	hs_ep->fifo_index = 0;
3138 	hs_ep->fifo_size = 0;
3139 
3140 	spin_unlock_irqrestore(&hsotg->lock, flags);
3141 	return 0;
3142 }
3143 
3144 /**
3145  * on_list - check request is on the given endpoint
3146  * @ep: The endpoint to check.
3147  * @test: The request to test if it is on the endpoint.
3148  */
3149 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3150 {
3151 	struct dwc2_hsotg_req *req, *treq;
3152 
3153 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
3154 		if (req == test)
3155 			return true;
3156 	}
3157 
3158 	return false;
3159 }
3160 
3161 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3162 							u32 bit, u32 timeout)
3163 {
3164 	u32 i;
3165 
3166 	for (i = 0; i < timeout; i++) {
3167 		if (dwc2_readl(hs_otg->regs + reg) & bit)
3168 			return 0;
3169 		udelay(1);
3170 	}
3171 
3172 	return -ETIMEDOUT;
3173 }
3174 
3175 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3176 						struct dwc2_hsotg_ep *hs_ep)
3177 {
3178 	u32 epctrl_reg;
3179 	u32 epint_reg;
3180 
3181 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3182 		DOEPCTL(hs_ep->index);
3183 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3184 		DOEPINT(hs_ep->index);
3185 
3186 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3187 			hs_ep->name);
3188 	if (hs_ep->dir_in) {
3189 		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3190 		/* Wait for Nak effect */
3191 		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3192 						DXEPINT_INEPNAKEFF, 100))
3193 			dev_warn(hsotg->dev,
3194 				"%s: timeout DIEPINT.NAKEFF\n", __func__);
3195 	} else {
3196 		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3197 			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3198 
3199 		/* Wait for global nak to take effect */
3200 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3201 						GINTSTS_GOUTNAKEFF, 100))
3202 			dev_warn(hsotg->dev,
3203 				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
3204 	}
3205 
3206 	/* Disable ep */
3207 	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3208 
3209 	/* Wait for ep to be disabled */
3210 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3211 		dev_warn(hsotg->dev,
3212 			"%s: timeout DOEPCTL.EPDisable\n", __func__);
3213 
3214 	if (hs_ep->dir_in) {
3215 		if (hsotg->dedicated_fifos) {
3216 			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
3217 				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
3218 			/* Wait for fifo flush */
3219 			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
3220 							GRSTCTL_TXFFLSH, 100))
3221 				dev_warn(hsotg->dev,
3222 					"%s: timeout flushing fifos\n",
3223 					__func__);
3224 		}
3225 		/* TODO: Flush shared tx fifo */
3226 	} else {
3227 		/* Remove global NAKs */
3228 		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3229 	}
3230 }
3231 
3232 /**
3233  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3234  * @ep: The endpoint to dequeue.
3235  * @req: The request to be removed from a queue.
3236  */
3237 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3238 {
3239 	struct dwc2_hsotg_req *hs_req = our_req(req);
3240 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3241 	struct dwc2_hsotg *hs = hs_ep->parent;
3242 	unsigned long flags;
3243 
3244 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3245 
3246 	spin_lock_irqsave(&hs->lock, flags);
3247 
3248 	if (!on_list(hs_ep, hs_req)) {
3249 		spin_unlock_irqrestore(&hs->lock, flags);
3250 		return -EINVAL;
3251 	}
3252 
3253 	/* Dequeue already started request */
3254 	if (req == &hs_ep->req->req)
3255 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
3256 
3257 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3258 	spin_unlock_irqrestore(&hs->lock, flags);
3259 
3260 	return 0;
3261 }
3262 
3263 /**
3264  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3265  * @ep: The endpoint to set halt.
3266  * @value: Set or unset the halt.
3267  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
3268  *       the endpoint is busy processing requests.
3269  *
3270  * We need to stall the endpoint immediately if request comes from set_feature
3271  * protocol command handler.
3272  */
3273 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3274 {
3275 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3276 	struct dwc2_hsotg *hs = hs_ep->parent;
3277 	int index = hs_ep->index;
3278 	u32 epreg;
3279 	u32 epctl;
3280 	u32 xfertype;
3281 
3282 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
3283 
3284 	if (index == 0) {
3285 		if (value)
3286 			dwc2_hsotg_stall_ep0(hs);
3287 		else
3288 			dev_warn(hs->dev,
3289 				 "%s: can't clear halt on ep0\n", __func__);
3290 		return 0;
3291 	}
3292 
3293 	if (hs_ep->isochronous) {
3294 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
3295 		return -EINVAL;
3296 	}
3297 
3298 	if (!now && value && !list_empty(&hs_ep->queue)) {
3299 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
3300 			ep->name);
3301 		return -EAGAIN;
3302 	}
3303 
3304 	if (hs_ep->dir_in) {
3305 		epreg = DIEPCTL(index);
3306 		epctl = dwc2_readl(hs->regs + epreg);
3307 
3308 		if (value) {
3309 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3310 			if (epctl & DXEPCTL_EPENA)
3311 				epctl |= DXEPCTL_EPDIS;
3312 		} else {
3313 			epctl &= ~DXEPCTL_STALL;
3314 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
3315 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
3316 				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
3317 					epctl |= DXEPCTL_SETD0PID;
3318 		}
3319 		dwc2_writel(epctl, hs->regs + epreg);
3320 	} else {
3321 
3322 		epreg = DOEPCTL(index);
3323 		epctl = dwc2_readl(hs->regs + epreg);
3324 
3325 		if (value)
3326 			epctl |= DXEPCTL_STALL;
3327 		else {
3328 			epctl &= ~DXEPCTL_STALL;
3329 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
3330 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
3331 				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
3332 					epctl |= DXEPCTL_SETD0PID;
3333 		}
3334 		dwc2_writel(epctl, hs->regs + epreg);
3335 	}
3336 
3337 	hs_ep->halted = value;
3338 
3339 	return 0;
3340 }
3341 
3342 /**
3343  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3344  * @ep: The endpoint to set halt.
3345  * @value: Set or unset the halt.
3346  */
3347 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3348 {
3349 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3350 	struct dwc2_hsotg *hs = hs_ep->parent;
3351 	unsigned long flags = 0;
3352 	int ret = 0;
3353 
3354 	spin_lock_irqsave(&hs->lock, flags);
3355 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
3356 	spin_unlock_irqrestore(&hs->lock, flags);
3357 
3358 	return ret;
3359 }
3360 
3361 static struct usb_ep_ops dwc2_hsotg_ep_ops = {
3362 	.enable		= dwc2_hsotg_ep_enable,
3363 	.disable	= dwc2_hsotg_ep_disable,
3364 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
3365 	.free_request	= dwc2_hsotg_ep_free_request,
3366 	.queue		= dwc2_hsotg_ep_queue_lock,
3367 	.dequeue	= dwc2_hsotg_ep_dequeue,
3368 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
3369 	/* note, don't believe we have any call for the fifo routines */
3370 };
3371 
3372 /**
3373  * dwc2_hsotg_init - initalize the usb core
3374  * @hsotg: The driver state
3375  */
3376 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3377 {
3378 	u32 trdtim;
3379 	u32 usbcfg;
3380 	/* unmask subset of endpoint interrupts */
3381 
3382 	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3383 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3384 		    hsotg->regs + DIEPMSK);
3385 
3386 	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3387 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3388 		    hsotg->regs + DOEPMSK);
3389 
3390 	dwc2_writel(0, hsotg->regs + DAINTMSK);
3391 
3392 	/* Be in disconnected state until gadget is registered */
3393 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3394 
3395 	/* setup fifos */
3396 
3397 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3398 		dwc2_readl(hsotg->regs + GRXFSIZ),
3399 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3400 
3401 	dwc2_hsotg_init_fifo(hsotg);
3402 
3403 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3404 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3405 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3406 		GUSBCFG_HNPCAP);
3407 
3408 	/* set the PLL on, remove the HNP/SRP and set the PHY */
3409 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3410 	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3411 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
3412 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3413 
3414 	if (using_dma(hsotg))
3415 		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3416 }
3417 
3418 /**
3419  * dwc2_hsotg_udc_start - prepare the udc for work
3420  * @gadget: The usb gadget state
3421  * @driver: The usb gadget driver
3422  *
3423  * Perform initialization to prepare udc device and driver
3424  * to work.
3425  */
3426 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3427 			   struct usb_gadget_driver *driver)
3428 {
3429 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3430 	unsigned long flags;
3431 	int ret;
3432 
3433 	if (!hsotg) {
3434 		pr_err("%s: called with no device\n", __func__);
3435 		return -ENODEV;
3436 	}
3437 
3438 	if (!driver) {
3439 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
3440 		return -EINVAL;
3441 	}
3442 
3443 	if (driver->max_speed < USB_SPEED_FULL)
3444 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3445 
3446 	if (!driver->setup) {
3447 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3448 		return -EINVAL;
3449 	}
3450 
3451 	WARN_ON(hsotg->driver);
3452 
3453 	driver->driver.bus = NULL;
3454 	hsotg->driver = driver;
3455 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3456 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3457 
3458 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
3459 		ret = dwc2_lowlevel_hw_enable(hsotg);
3460 		if (ret)
3461 			goto err;
3462 	}
3463 
3464 	if (!IS_ERR_OR_NULL(hsotg->uphy))
3465 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3466 
3467 	spin_lock_irqsave(&hsotg->lock, flags);
3468 	if (dwc2_hw_is_device(hsotg)) {
3469 		dwc2_hsotg_init(hsotg);
3470 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3471 	}
3472 
3473 	hsotg->enabled = 0;
3474 	spin_unlock_irqrestore(&hsotg->lock, flags);
3475 
3476 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3477 
3478 	return 0;
3479 
3480 err:
3481 	hsotg->driver = NULL;
3482 	return ret;
3483 }
3484 
3485 /**
3486  * dwc2_hsotg_udc_stop - stop the udc
3487  * @gadget: The usb gadget state
3488  * @driver: The usb gadget driver
3489  *
3490  * Stop udc hw block and stay tunned for future transmissions
3491  */
3492 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3493 {
3494 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3495 	unsigned long flags = 0;
3496 	int ep;
3497 
3498 	if (!hsotg)
3499 		return -ENODEV;
3500 
3501 	/* all endpoints should be shutdown */
3502 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3503 		if (hsotg->eps_in[ep])
3504 			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3505 		if (hsotg->eps_out[ep])
3506 			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3507 	}
3508 
3509 	spin_lock_irqsave(&hsotg->lock, flags);
3510 
3511 	hsotg->driver = NULL;
3512 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3513 	hsotg->enabled = 0;
3514 
3515 	spin_unlock_irqrestore(&hsotg->lock, flags);
3516 
3517 	if (!IS_ERR_OR_NULL(hsotg->uphy))
3518 		otg_set_peripheral(hsotg->uphy->otg, NULL);
3519 
3520 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3521 		dwc2_lowlevel_hw_disable(hsotg);
3522 
3523 	return 0;
3524 }
3525 
3526 /**
3527  * dwc2_hsotg_gadget_getframe - read the frame number
3528  * @gadget: The usb gadget state
3529  *
3530  * Read the {micro} frame number
3531  */
3532 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3533 {
3534 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3535 }
3536 
3537 /**
3538  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3539  * @gadget: The usb gadget state
3540  * @is_on: Current state of the USB PHY
3541  *
3542  * Connect/Disconnect the USB PHY pullup
3543  */
3544 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3545 {
3546 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3547 	unsigned long flags = 0;
3548 
3549 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
3550 			hsotg->op_state);
3551 
3552 	/* Don't modify pullup state while in host mode */
3553 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3554 		hsotg->enabled = is_on;
3555 		return 0;
3556 	}
3557 
3558 	spin_lock_irqsave(&hsotg->lock, flags);
3559 	if (is_on) {
3560 		hsotg->enabled = 1;
3561 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3562 		dwc2_hsotg_core_connect(hsotg);
3563 	} else {
3564 		dwc2_hsotg_core_disconnect(hsotg);
3565 		dwc2_hsotg_disconnect(hsotg);
3566 		hsotg->enabled = 0;
3567 	}
3568 
3569 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3570 	spin_unlock_irqrestore(&hsotg->lock, flags);
3571 
3572 	return 0;
3573 }
3574 
3575 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3576 {
3577 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3578 	unsigned long flags;
3579 
3580 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3581 	spin_lock_irqsave(&hsotg->lock, flags);
3582 
3583 	/*
3584 	 * If controller is hibernated, it must exit from hibernation
3585 	 * before being initialized / de-initialized
3586 	 */
3587 	if (hsotg->lx_state == DWC2_L2)
3588 		dwc2_exit_hibernation(hsotg, false);
3589 
3590 	if (is_active) {
3591 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3592 
3593 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3594 		if (hsotg->enabled)
3595 			dwc2_hsotg_core_connect(hsotg);
3596 	} else {
3597 		dwc2_hsotg_core_disconnect(hsotg);
3598 		dwc2_hsotg_disconnect(hsotg);
3599 	}
3600 
3601 	spin_unlock_irqrestore(&hsotg->lock, flags);
3602 	return 0;
3603 }
3604 
3605 /**
3606  * dwc2_hsotg_vbus_draw - report bMaxPower field
3607  * @gadget: The usb gadget state
3608  * @mA: Amount of current
3609  *
3610  * Report how much power the device may consume to the phy.
3611  */
3612 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3613 {
3614 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3615 
3616 	if (IS_ERR_OR_NULL(hsotg->uphy))
3617 		return -ENOTSUPP;
3618 	return usb_phy_set_power(hsotg->uphy, mA);
3619 }
3620 
3621 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
3622 	.get_frame	= dwc2_hsotg_gadget_getframe,
3623 	.udc_start		= dwc2_hsotg_udc_start,
3624 	.udc_stop		= dwc2_hsotg_udc_stop,
3625 	.pullup                 = dwc2_hsotg_pullup,
3626 	.vbus_session		= dwc2_hsotg_vbus_session,
3627 	.vbus_draw		= dwc2_hsotg_vbus_draw,
3628 };
3629 
3630 /**
3631  * dwc2_hsotg_initep - initialise a single endpoint
3632  * @hsotg: The device state.
3633  * @hs_ep: The endpoint to be initialised.
3634  * @epnum: The endpoint number
3635  *
3636  * Initialise the given endpoint (as part of the probe and device state
3637  * creation) to give to the gadget driver. Setup the endpoint name, any
3638  * direction information and other state that may be required.
3639  */
3640 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
3641 				       struct dwc2_hsotg_ep *hs_ep,
3642 				       int epnum,
3643 				       bool dir_in)
3644 {
3645 	char *dir;
3646 
3647 	if (epnum == 0)
3648 		dir = "";
3649 	else if (dir_in)
3650 		dir = "in";
3651 	else
3652 		dir = "out";
3653 
3654 	hs_ep->dir_in = dir_in;
3655 	hs_ep->index = epnum;
3656 
3657 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3658 
3659 	INIT_LIST_HEAD(&hs_ep->queue);
3660 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3661 
3662 	/* add to the list of endpoints known by the gadget driver */
3663 	if (epnum)
3664 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3665 
3666 	hs_ep->parent = hsotg;
3667 	hs_ep->ep.name = hs_ep->name;
3668 	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3669 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3670 
3671 	if (epnum == 0) {
3672 		hs_ep->ep.caps.type_control = true;
3673 	} else {
3674 		hs_ep->ep.caps.type_iso = true;
3675 		hs_ep->ep.caps.type_bulk = true;
3676 		hs_ep->ep.caps.type_int = true;
3677 	}
3678 
3679 	if (dir_in)
3680 		hs_ep->ep.caps.dir_in = true;
3681 	else
3682 		hs_ep->ep.caps.dir_out = true;
3683 
3684 	/*
3685 	 * if we're using dma, we need to set the next-endpoint pointer
3686 	 * to be something valid.
3687 	 */
3688 
3689 	if (using_dma(hsotg)) {
3690 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3691 		if (dir_in)
3692 			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3693 		else
3694 			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3695 	}
3696 }
3697 
3698 /**
3699  * dwc2_hsotg_hw_cfg - read HW configuration registers
3700  * @param: The device state
3701  *
3702  * Read the USB core HW configuration registers
3703  */
3704 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3705 {
3706 	u32 cfg;
3707 	u32 ep_type;
3708 	u32 i;
3709 
3710 	/* check hardware configuration */
3711 
3712 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
3713 
3714 	/* Add ep0 */
3715 	hsotg->num_of_eps++;
3716 
3717 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3718 								GFP_KERNEL);
3719 	if (!hsotg->eps_in[0])
3720 		return -ENOMEM;
3721 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3722 	hsotg->eps_out[0] = hsotg->eps_in[0];
3723 
3724 	cfg = hsotg->hw_params.dev_ep_dirs;
3725 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3726 		ep_type = cfg & 3;
3727 		/* Direction in or both */
3728 		if (!(ep_type & 2)) {
3729 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3730 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3731 			if (!hsotg->eps_in[i])
3732 				return -ENOMEM;
3733 		}
3734 		/* Direction out or both */
3735 		if (!(ep_type & 1)) {
3736 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3737 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3738 			if (!hsotg->eps_out[i])
3739 				return -ENOMEM;
3740 		}
3741 	}
3742 
3743 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
3744 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3745 
3746 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3747 		 hsotg->num_of_eps,
3748 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
3749 		 hsotg->fifo_mem);
3750 	return 0;
3751 }
3752 
3753 /**
3754  * dwc2_hsotg_dump - dump state of the udc
3755  * @param: The device state
3756  */
3757 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3758 {
3759 #ifdef DEBUG
3760 	struct device *dev = hsotg->dev;
3761 	void __iomem *regs = hsotg->regs;
3762 	u32 val;
3763 	int idx;
3764 
3765 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3766 		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
3767 		 dwc2_readl(regs + DIEPMSK));
3768 
3769 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3770 		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3771 
3772 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3773 		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3774 
3775 	/* show periodic fifo settings */
3776 
3777 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3778 		val = dwc2_readl(regs + DPTXFSIZN(idx));
3779 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3780 			 val >> FIFOSIZE_DEPTH_SHIFT,
3781 			 val & FIFOSIZE_STARTADDR_MASK);
3782 	}
3783 
3784 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3785 		dev_info(dev,
3786 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3787 			 dwc2_readl(regs + DIEPCTL(idx)),
3788 			 dwc2_readl(regs + DIEPTSIZ(idx)),
3789 			 dwc2_readl(regs + DIEPDMA(idx)));
3790 
3791 		val = dwc2_readl(regs + DOEPCTL(idx));
3792 		dev_info(dev,
3793 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3794 			 idx, dwc2_readl(regs + DOEPCTL(idx)),
3795 			 dwc2_readl(regs + DOEPTSIZ(idx)),
3796 			 dwc2_readl(regs + DOEPDMA(idx)));
3797 
3798 	}
3799 
3800 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3801 		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
3802 #endif
3803 }
3804 
3805 #ifdef CONFIG_OF
3806 static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3807 {
3808 	struct device_node *np = hsotg->dev->of_node;
3809 	u32 len = 0;
3810 	u32 i = 0;
3811 
3812 	/* Enable dma if requested in device tree */
3813 	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3814 
3815 	/*
3816 	* Register TX periodic fifo size per endpoint.
3817 	* EP0 is excluded since it has no fifo configuration.
3818 	*/
3819 	if (!of_find_property(np, "g-tx-fifo-size", &len))
3820 		goto rx_fifo;
3821 
3822 	len /= sizeof(u32);
3823 
3824 	/* Read tx fifo sizes other than ep0 */
3825 	if (of_property_read_u32_array(np, "g-tx-fifo-size",
3826 						&hsotg->g_tx_fifo_sz[1], len))
3827 		goto rx_fifo;
3828 
3829 	/* Add ep0 */
3830 	len++;
3831 
3832 	/* Make remaining TX fifos unavailable */
3833 	if (len < MAX_EPS_CHANNELS) {
3834 		for (i = len; i < MAX_EPS_CHANNELS; i++)
3835 			hsotg->g_tx_fifo_sz[i] = 0;
3836 	}
3837 
3838 rx_fifo:
3839 	/* Register RX fifo size */
3840 	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3841 
3842 	/* Register NPTX fifo size */
3843 	of_property_read_u32(np, "g-np-tx-fifo-size",
3844 						&hsotg->g_np_g_tx_fifo_sz);
3845 }
3846 #else
3847 static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3848 #endif
3849 
3850 /**
3851  * dwc2_gadget_init - init function for gadget
3852  * @dwc2: The data structure for the DWC2 driver.
3853  * @irq: The IRQ number for the controller.
3854  */
3855 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3856 {
3857 	struct device *dev = hsotg->dev;
3858 	int epnum;
3859 	int ret;
3860 	int i;
3861 	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3862 
3863 	/* Initialize to legacy fifo configuration values */
3864 	hsotg->g_rx_fifo_sz = 2048;
3865 	hsotg->g_np_g_tx_fifo_sz = 1024;
3866 	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3867 	/* Device tree specific probe */
3868 	dwc2_hsotg_of_probe(hsotg);
3869 
3870 	/* Check against largest possible value. */
3871 	if (hsotg->g_np_g_tx_fifo_sz >
3872 	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
3873 		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
3874 			 hsotg->g_np_g_tx_fifo_sz,
3875 			 hsotg->hw_params.dev_nperio_tx_fifo_size);
3876 		hsotg->g_np_g_tx_fifo_sz =
3877 			hsotg->hw_params.dev_nperio_tx_fifo_size;
3878 	}
3879 
3880 	/* Dump fifo information */
3881 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3882 						hsotg->g_np_g_tx_fifo_sz);
3883 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3884 	for (i = 0; i < MAX_EPS_CHANNELS; i++)
3885 		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3886 						hsotg->g_tx_fifo_sz[i]);
3887 
3888 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3889 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3890 	hsotg->gadget.name = dev_name(dev);
3891 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
3892 		hsotg->gadget.is_otg = 1;
3893 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3894 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3895 
3896 	ret = dwc2_hsotg_hw_cfg(hsotg);
3897 	if (ret) {
3898 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3899 		return ret;
3900 	}
3901 
3902 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3903 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3904 	if (!hsotg->ctrl_buff)
3905 		return -ENOMEM;
3906 
3907 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3908 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3909 	if (!hsotg->ep0_buff)
3910 		return -ENOMEM;
3911 
3912 	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3913 				dev_name(hsotg->dev), hsotg);
3914 	if (ret < 0) {
3915 		dev_err(dev, "cannot claim IRQ for gadget\n");
3916 		return ret;
3917 	}
3918 
3919 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3920 
3921 	if (hsotg->num_of_eps == 0) {
3922 		dev_err(dev, "wrong number of EPs (zero)\n");
3923 		return -EINVAL;
3924 	}
3925 
3926 	/* setup endpoint information */
3927 
3928 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3929 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3930 
3931 	/* allocate EP0 request */
3932 
3933 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3934 						     GFP_KERNEL);
3935 	if (!hsotg->ctrl_req) {
3936 		dev_err(dev, "failed to allocate ctrl req\n");
3937 		return -ENOMEM;
3938 	}
3939 
3940 	/* initialise the endpoints now the core has been initialised */
3941 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3942 		if (hsotg->eps_in[epnum])
3943 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3944 								epnum, 1);
3945 		if (hsotg->eps_out[epnum])
3946 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3947 								epnum, 0);
3948 	}
3949 
3950 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3951 	if (ret)
3952 		return ret;
3953 
3954 	dwc2_hsotg_dump(hsotg);
3955 
3956 	return 0;
3957 }
3958 
3959 /**
3960  * dwc2_hsotg_remove - remove function for hsotg driver
3961  * @pdev: The platform information for the driver
3962  */
3963 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3964 {
3965 	usb_del_gadget_udc(&hsotg->gadget);
3966 
3967 	return 0;
3968 }
3969 
3970 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3971 {
3972 	unsigned long flags;
3973 
3974 	if (hsotg->lx_state != DWC2_L0)
3975 		return 0;
3976 
3977 	if (hsotg->driver) {
3978 		int ep;
3979 
3980 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3981 			 hsotg->driver->driver.name);
3982 
3983 		spin_lock_irqsave(&hsotg->lock, flags);
3984 		if (hsotg->enabled)
3985 			dwc2_hsotg_core_disconnect(hsotg);
3986 		dwc2_hsotg_disconnect(hsotg);
3987 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3988 		spin_unlock_irqrestore(&hsotg->lock, flags);
3989 
3990 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3991 			if (hsotg->eps_in[ep])
3992 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3993 			if (hsotg->eps_out[ep])
3994 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3995 		}
3996 	}
3997 
3998 	return 0;
3999 }
4000 
4001 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4002 {
4003 	unsigned long flags;
4004 
4005 	if (hsotg->lx_state == DWC2_L2)
4006 		return 0;
4007 
4008 	if (hsotg->driver) {
4009 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4010 			 hsotg->driver->driver.name);
4011 
4012 		spin_lock_irqsave(&hsotg->lock, flags);
4013 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4014 		if (hsotg->enabled)
4015 			dwc2_hsotg_core_connect(hsotg);
4016 		spin_unlock_irqrestore(&hsotg->lock, flags);
4017 	}
4018 
4019 	return 0;
4020 }
4021 
4022 /**
4023  * dwc2_backup_device_registers() - Backup controller device registers.
4024  * When suspending usb bus, registers needs to be backuped
4025  * if controller power is disabled once suspended.
4026  *
4027  * @hsotg: Programming view of the DWC_otg controller
4028  */
4029 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4030 {
4031 	struct dwc2_dregs_backup *dr;
4032 	int i;
4033 
4034 	dev_dbg(hsotg->dev, "%s\n", __func__);
4035 
4036 	/* Backup dev regs */
4037 	dr = &hsotg->dr_backup;
4038 
4039 	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4040 	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4041 	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4042 	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4043 	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4044 
4045 	for (i = 0; i < hsotg->num_of_eps; i++) {
4046 		/* Backup IN EPs */
4047 		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4048 
4049 		/* Ensure DATA PID is correctly configured */
4050 		if (dr->diepctl[i] & DXEPCTL_DPID)
4051 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4052 		else
4053 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4054 
4055 		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4056 		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4057 
4058 		/* Backup OUT EPs */
4059 		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4060 
4061 		/* Ensure DATA PID is correctly configured */
4062 		if (dr->doepctl[i] & DXEPCTL_DPID)
4063 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4064 		else
4065 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4066 
4067 		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4068 		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4069 	}
4070 	dr->valid = true;
4071 	return 0;
4072 }
4073 
4074 /**
4075  * dwc2_restore_device_registers() - Restore controller device registers.
4076  * When resuming usb bus, device registers needs to be restored
4077  * if controller power were disabled.
4078  *
4079  * @hsotg: Programming view of the DWC_otg controller
4080  */
4081 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4082 {
4083 	struct dwc2_dregs_backup *dr;
4084 	u32 dctl;
4085 	int i;
4086 
4087 	dev_dbg(hsotg->dev, "%s\n", __func__);
4088 
4089 	/* Restore dev regs */
4090 	dr = &hsotg->dr_backup;
4091 	if (!dr->valid) {
4092 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4093 			__func__);
4094 		return -EINVAL;
4095 	}
4096 	dr->valid = false;
4097 
4098 	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4099 	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4100 	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4101 	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4102 	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4103 
4104 	for (i = 0; i < hsotg->num_of_eps; i++) {
4105 		/* Restore IN EPs */
4106 		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4107 		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4108 		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4109 
4110 		/* Restore OUT EPs */
4111 		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4112 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4113 		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4114 	}
4115 
4116 	/* Set the Power-On Programming done bit */
4117 	dctl = dwc2_readl(hsotg->regs + DCTL);
4118 	dctl |= DCTL_PWRONPRGDONE;
4119 	dwc2_writel(dctl, hsotg->regs + DCTL);
4120 
4121 	return 0;
4122 }
4123