xref: /linux/drivers/usb/dwc2/gadget.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 
31 #include "core.h"
32 #include "hw.h"
33 
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36 {
37 	return container_of(req, struct dwc2_hsotg_req, req);
38 }
39 
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41 {
42 	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 }
44 
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46 {
47 	return container_of(gadget, struct dwc2_hsotg, gadget);
48 }
49 
50 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
51 {
52 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
53 }
54 
55 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
56 {
57 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
58 }
59 
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 						u32 ep_index, u32 dir_in)
62 {
63 	if (dir_in)
64 		return hsotg->eps_in[ep_index];
65 	else
66 		return hsotg->eps_out[ep_index];
67 }
68 
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 
72 /**
73  * using_dma - return the DMA status of the driver.
74  * @hsotg: The driver state.
75  *
76  * Return true if we're using DMA.
77  *
78  * Currently, we have the DMA support code worked into everywhere
79  * that needs it, but the AMBA DMA implementation in the hardware can
80  * only DMA from 32bit aligned addresses. This means that gadgets such
81  * as the CDC Ethernet cannot work as they often pass packets which are
82  * not 32bit aligned.
83  *
84  * Unfortunately the choice to use DMA or not is global to the controller
85  * and seems to be only settable when the controller is being put through
86  * a core reset. This means we either need to fix the gadgets to take
87  * account of DMA alignment, or add bounce buffers (yuerk).
88  *
89  * g_using_dma is set depending on dts flag.
90  */
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
92 {
93 	return hsotg->params.g_dma;
94 }
95 
96 /*
97  * using_desc_dma - return the descriptor DMA status of the driver.
98  * @hsotg: The driver state.
99  *
100  * Return true if we're using descriptor DMA.
101  */
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
103 {
104 	return hsotg->params.g_dma_desc;
105 }
106 
107 /**
108  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109  * @hs_ep: The endpoint
110  *
111  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
112  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
113  */
114 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
115 {
116 	hs_ep->target_frame += hs_ep->interval;
117 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
118 		hs_ep->frame_overrun = true;
119 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
120 	} else {
121 		hs_ep->frame_overrun = false;
122 	}
123 }
124 
125 /**
126  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
127  * @hsotg: The device state
128  * @ints: A bitmask of the interrupts to enable
129  */
130 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
131 {
132 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
133 	u32 new_gsintmsk;
134 
135 	new_gsintmsk = gsintmsk | ints;
136 
137 	if (new_gsintmsk != gsintmsk) {
138 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
139 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
140 	}
141 }
142 
143 /**
144  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
145  * @hsotg: The device state
146  * @ints: A bitmask of the interrupts to enable
147  */
148 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
149 {
150 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
151 	u32 new_gsintmsk;
152 
153 	new_gsintmsk = gsintmsk & ~ints;
154 
155 	if (new_gsintmsk != gsintmsk)
156 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
157 }
158 
159 /**
160  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
161  * @hsotg: The device state
162  * @ep: The endpoint index
163  * @dir_in: True if direction is in.
164  * @en: The enable value, true to enable
165  *
166  * Set or clear the mask for an individual endpoint's interrupt
167  * request.
168  */
169 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
170 				  unsigned int ep, unsigned int dir_in,
171 				 unsigned int en)
172 {
173 	unsigned long flags;
174 	u32 bit = 1 << ep;
175 	u32 daint;
176 
177 	if (!dir_in)
178 		bit <<= 16;
179 
180 	local_irq_save(flags);
181 	daint = dwc2_readl(hsotg, DAINTMSK);
182 	if (en)
183 		daint |= bit;
184 	else
185 		daint &= ~bit;
186 	dwc2_writel(hsotg, daint, DAINTMSK);
187 	local_irq_restore(flags);
188 }
189 
190 /**
191  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
192  *
193  * @hsotg: Programming view of the DWC_otg controller
194  */
195 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
196 {
197 	if (hsotg->hw_params.en_multiple_tx_fifo)
198 		/* In dedicated FIFO mode we need count of IN EPs */
199 		return hsotg->hw_params.num_dev_in_eps;
200 	else
201 		/* In shared FIFO mode we need count of Periodic IN EPs */
202 		return hsotg->hw_params.num_dev_perio_in_ep;
203 }
204 
205 /**
206  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
207  * device mode TX FIFOs
208  *
209  * @hsotg: Programming view of the DWC_otg controller
210  */
211 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
212 {
213 	int addr;
214 	int tx_addr_max;
215 	u32 np_tx_fifo_size;
216 
217 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
218 				hsotg->params.g_np_tx_fifo_size);
219 
220 	/* Get Endpoint Info Control block size in DWORDs. */
221 	tx_addr_max = hsotg->hw_params.total_fifo_size;
222 
223 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
224 	if (tx_addr_max <= addr)
225 		return 0;
226 
227 	return tx_addr_max - addr;
228 }
229 
230 /**
231  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
232  * TX FIFOs
233  *
234  * @hsotg: Programming view of the DWC_otg controller
235  */
236 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
237 {
238 	int tx_fifo_count;
239 	int tx_fifo_depth;
240 
241 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
242 
243 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
244 
245 	if (!tx_fifo_count)
246 		return tx_fifo_depth;
247 	else
248 		return tx_fifo_depth / tx_fifo_count;
249 }
250 
251 /**
252  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
253  * @hsotg: The device instance.
254  */
255 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
256 {
257 	unsigned int ep;
258 	unsigned int addr;
259 	int timeout;
260 
261 	u32 val;
262 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
263 
264 	/* Reset fifo map if not correctly cleared during previous session */
265 	WARN_ON(hsotg->fifo_map);
266 	hsotg->fifo_map = 0;
267 
268 	/* set RX/NPTX FIFO sizes */
269 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
270 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
271 		    FIFOSIZE_STARTADDR_SHIFT) |
272 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
273 		    GNPTXFSIZ);
274 
275 	/*
276 	 * arange all the rest of the TX FIFOs, as some versions of this
277 	 * block have overlapping default addresses. This also ensures
278 	 * that if the settings have been changed, then they are set to
279 	 * known values.
280 	 */
281 
282 	/* start at the end of the GNPTXFSIZ, rounded up */
283 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
284 
285 	/*
286 	 * Configure fifos sizes from provided configuration and assign
287 	 * them to endpoints dynamically according to maxpacket size value of
288 	 * given endpoint.
289 	 */
290 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
291 		if (!txfsz[ep])
292 			continue;
293 		val = addr;
294 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
295 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
296 			  "insufficient fifo memory");
297 		addr += txfsz[ep];
298 
299 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
300 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
301 	}
302 
303 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
304 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
305 		    GDFIFOCFG);
306 	/*
307 	 * according to p428 of the design guide, we need to ensure that
308 	 * all fifos are flushed before continuing
309 	 */
310 
311 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
312 	       GRSTCTL_RXFFLSH, GRSTCTL);
313 
314 	/* wait until the fifos are both flushed */
315 	timeout = 100;
316 	while (1) {
317 		val = dwc2_readl(hsotg, GRSTCTL);
318 
319 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
320 			break;
321 
322 		if (--timeout == 0) {
323 			dev_err(hsotg->dev,
324 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
325 				__func__, val);
326 			break;
327 		}
328 
329 		udelay(1);
330 	}
331 
332 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
333 }
334 
335 /**
336  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
337  * @ep: USB endpoint to allocate request for.
338  * @flags: Allocation flags
339  *
340  * Allocate a new USB request structure appropriate for the specified endpoint
341  */
342 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
343 						       gfp_t flags)
344 {
345 	struct dwc2_hsotg_req *req;
346 
347 	req = kzalloc(sizeof(*req), flags);
348 	if (!req)
349 		return NULL;
350 
351 	INIT_LIST_HEAD(&req->queue);
352 
353 	return &req->req;
354 }
355 
356 /**
357  * is_ep_periodic - return true if the endpoint is in periodic mode.
358  * @hs_ep: The endpoint to query.
359  *
360  * Returns true if the endpoint is in periodic mode, meaning it is being
361  * used for an Interrupt or ISO transfer.
362  */
363 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
364 {
365 	return hs_ep->periodic;
366 }
367 
368 /**
369  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
370  * @hsotg: The device state.
371  * @hs_ep: The endpoint for the request
372  * @hs_req: The request being processed.
373  *
374  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
375  * of a request to ensure the buffer is ready for access by the caller.
376  */
377 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
378 				 struct dwc2_hsotg_ep *hs_ep,
379 				struct dwc2_hsotg_req *hs_req)
380 {
381 	struct usb_request *req = &hs_req->req;
382 
383 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
384 }
385 
386 /*
387  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
388  * for Control endpoint
389  * @hsotg: The device state.
390  *
391  * This function will allocate 4 descriptor chains for EP 0: 2 for
392  * Setup stage, per one for IN and OUT data/status transactions.
393  */
394 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
395 {
396 	hsotg->setup_desc[0] =
397 		dmam_alloc_coherent(hsotg->dev,
398 				    sizeof(struct dwc2_dma_desc),
399 				    &hsotg->setup_desc_dma[0],
400 				    GFP_KERNEL);
401 	if (!hsotg->setup_desc[0])
402 		goto fail;
403 
404 	hsotg->setup_desc[1] =
405 		dmam_alloc_coherent(hsotg->dev,
406 				    sizeof(struct dwc2_dma_desc),
407 				    &hsotg->setup_desc_dma[1],
408 				    GFP_KERNEL);
409 	if (!hsotg->setup_desc[1])
410 		goto fail;
411 
412 	hsotg->ctrl_in_desc =
413 		dmam_alloc_coherent(hsotg->dev,
414 				    sizeof(struct dwc2_dma_desc),
415 				    &hsotg->ctrl_in_desc_dma,
416 				    GFP_KERNEL);
417 	if (!hsotg->ctrl_in_desc)
418 		goto fail;
419 
420 	hsotg->ctrl_out_desc =
421 		dmam_alloc_coherent(hsotg->dev,
422 				    sizeof(struct dwc2_dma_desc),
423 				    &hsotg->ctrl_out_desc_dma,
424 				    GFP_KERNEL);
425 	if (!hsotg->ctrl_out_desc)
426 		goto fail;
427 
428 	return 0;
429 
430 fail:
431 	return -ENOMEM;
432 }
433 
434 /**
435  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
436  * @hsotg: The controller state.
437  * @hs_ep: The endpoint we're going to write for.
438  * @hs_req: The request to write data for.
439  *
440  * This is called when the TxFIFO has some space in it to hold a new
441  * transmission and we have something to give it. The actual setup of
442  * the data size is done elsewhere, so all we have to do is to actually
443  * write the data.
444  *
445  * The return value is zero if there is more space (or nothing was done)
446  * otherwise -ENOSPC is returned if the FIFO space was used up.
447  *
448  * This routine is only needed for PIO
449  */
450 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
451 				 struct dwc2_hsotg_ep *hs_ep,
452 				struct dwc2_hsotg_req *hs_req)
453 {
454 	bool periodic = is_ep_periodic(hs_ep);
455 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
456 	int buf_pos = hs_req->req.actual;
457 	int to_write = hs_ep->size_loaded;
458 	void *data;
459 	int can_write;
460 	int pkt_round;
461 	int max_transfer;
462 
463 	to_write -= (buf_pos - hs_ep->last_load);
464 
465 	/* if there's nothing to write, get out early */
466 	if (to_write == 0)
467 		return 0;
468 
469 	if (periodic && !hsotg->dedicated_fifos) {
470 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
471 		int size_left;
472 		int size_done;
473 
474 		/*
475 		 * work out how much data was loaded so we can calculate
476 		 * how much data is left in the fifo.
477 		 */
478 
479 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
480 
481 		/*
482 		 * if shared fifo, we cannot write anything until the
483 		 * previous data has been completely sent.
484 		 */
485 		if (hs_ep->fifo_load != 0) {
486 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
487 			return -ENOSPC;
488 		}
489 
490 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
491 			__func__, size_left,
492 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
493 
494 		/* how much of the data has moved */
495 		size_done = hs_ep->size_loaded - size_left;
496 
497 		/* how much data is left in the fifo */
498 		can_write = hs_ep->fifo_load - size_done;
499 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
500 			__func__, can_write);
501 
502 		can_write = hs_ep->fifo_size - can_write;
503 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
504 			__func__, can_write);
505 
506 		if (can_write <= 0) {
507 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
508 			return -ENOSPC;
509 		}
510 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
511 		can_write = dwc2_readl(hsotg,
512 				       DTXFSTS(hs_ep->fifo_index));
513 
514 		can_write &= 0xffff;
515 		can_write *= 4;
516 	} else {
517 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
518 			dev_dbg(hsotg->dev,
519 				"%s: no queue slots available (0x%08x)\n",
520 				__func__, gnptxsts);
521 
522 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
523 			return -ENOSPC;
524 		}
525 
526 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
527 		can_write *= 4;	/* fifo size is in 32bit quantities. */
528 	}
529 
530 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
531 
532 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
533 		__func__, gnptxsts, can_write, to_write, max_transfer);
534 
535 	/*
536 	 * limit to 512 bytes of data, it seems at least on the non-periodic
537 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
538 	 * fragment of the end of the transfer in it.
539 	 */
540 	if (can_write > 512 && !periodic)
541 		can_write = 512;
542 
543 	/*
544 	 * limit the write to one max-packet size worth of data, but allow
545 	 * the transfer to return that it did not run out of fifo space
546 	 * doing it.
547 	 */
548 	if (to_write > max_transfer) {
549 		to_write = max_transfer;
550 
551 		/* it's needed only when we do not use dedicated fifos */
552 		if (!hsotg->dedicated_fifos)
553 			dwc2_hsotg_en_gsint(hsotg,
554 					    periodic ? GINTSTS_PTXFEMP :
555 					   GINTSTS_NPTXFEMP);
556 	}
557 
558 	/* see if we can write data */
559 
560 	if (to_write > can_write) {
561 		to_write = can_write;
562 		pkt_round = to_write % max_transfer;
563 
564 		/*
565 		 * Round the write down to an
566 		 * exact number of packets.
567 		 *
568 		 * Note, we do not currently check to see if we can ever
569 		 * write a full packet or not to the FIFO.
570 		 */
571 
572 		if (pkt_round)
573 			to_write -= pkt_round;
574 
575 		/*
576 		 * enable correct FIFO interrupt to alert us when there
577 		 * is more room left.
578 		 */
579 
580 		/* it's needed only when we do not use dedicated fifos */
581 		if (!hsotg->dedicated_fifos)
582 			dwc2_hsotg_en_gsint(hsotg,
583 					    periodic ? GINTSTS_PTXFEMP :
584 					   GINTSTS_NPTXFEMP);
585 	}
586 
587 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
588 		to_write, hs_req->req.length, can_write, buf_pos);
589 
590 	if (to_write <= 0)
591 		return -ENOSPC;
592 
593 	hs_req->req.actual = buf_pos + to_write;
594 	hs_ep->total_data += to_write;
595 
596 	if (periodic)
597 		hs_ep->fifo_load += to_write;
598 
599 	to_write = DIV_ROUND_UP(to_write, 4);
600 	data = hs_req->req.buf + buf_pos;
601 
602 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
603 
604 	return (to_write >= can_write) ? -ENOSPC : 0;
605 }
606 
607 /**
608  * get_ep_limit - get the maximum data legnth for this endpoint
609  * @hs_ep: The endpoint
610  *
611  * Return the maximum data that can be queued in one go on a given endpoint
612  * so that transfers that are too long can be split.
613  */
614 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
615 {
616 	int index = hs_ep->index;
617 	unsigned int maxsize;
618 	unsigned int maxpkt;
619 
620 	if (index != 0) {
621 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
622 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
623 	} else {
624 		maxsize = 64 + 64;
625 		if (hs_ep->dir_in)
626 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
627 		else
628 			maxpkt = 2;
629 	}
630 
631 	/* we made the constant loading easier above by using +1 */
632 	maxpkt--;
633 	maxsize--;
634 
635 	/*
636 	 * constrain by packet count if maxpkts*pktsize is greater
637 	 * than the length register size.
638 	 */
639 
640 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
641 		maxsize = maxpkt * hs_ep->ep.maxpacket;
642 
643 	return maxsize;
644 }
645 
646 /**
647  * dwc2_hsotg_read_frameno - read current frame number
648  * @hsotg: The device instance
649  *
650  * Return the current frame number
651  */
652 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
653 {
654 	u32 dsts;
655 
656 	dsts = dwc2_readl(hsotg, DSTS);
657 	dsts &= DSTS_SOFFN_MASK;
658 	dsts >>= DSTS_SOFFN_SHIFT;
659 
660 	return dsts;
661 }
662 
663 /**
664  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
665  * DMA descriptor chain prepared for specific endpoint
666  * @hs_ep: The endpoint
667  *
668  * Return the maximum data that can be queued in one go on a given endpoint
669  * depending on its descriptor chain capacity so that transfers that
670  * are too long can be split.
671  */
672 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
673 {
674 	int is_isoc = hs_ep->isochronous;
675 	unsigned int maxsize;
676 
677 	if (is_isoc)
678 		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
679 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
680 	else
681 		maxsize = DEV_DMA_NBYTES_LIMIT;
682 
683 	/* Above size of one descriptor was chosen, multiple it */
684 	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
685 
686 	return maxsize;
687 }
688 
689 /*
690  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
691  * @hs_ep: The endpoint
692  * @mask: RX/TX bytes mask to be defined
693  *
694  * Returns maximum data payload for one descriptor after analyzing endpoint
695  * characteristics.
696  * DMA descriptor transfer bytes limit depends on EP type:
697  * Control out - MPS,
698  * Isochronous - descriptor rx/tx bytes bitfield limit,
699  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
700  * have concatenations from various descriptors within one packet.
701  *
702  * Selects corresponding mask for RX/TX bytes as well.
703  */
704 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
705 {
706 	u32 mps = hs_ep->ep.maxpacket;
707 	int dir_in = hs_ep->dir_in;
708 	u32 desc_size = 0;
709 
710 	if (!hs_ep->index && !dir_in) {
711 		desc_size = mps;
712 		*mask = DEV_DMA_NBYTES_MASK;
713 	} else if (hs_ep->isochronous) {
714 		if (dir_in) {
715 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
716 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
717 		} else {
718 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
719 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
720 		}
721 	} else {
722 		desc_size = DEV_DMA_NBYTES_LIMIT;
723 		*mask = DEV_DMA_NBYTES_MASK;
724 
725 		/* Round down desc_size to be mps multiple */
726 		desc_size -= desc_size % mps;
727 	}
728 
729 	return desc_size;
730 }
731 
732 /*
733  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
734  * @hs_ep: The endpoint
735  * @dma_buff: DMA address to use
736  * @len: Length of the transfer
737  *
738  * This function will iterate over descriptor chain and fill its entries
739  * with corresponding information based on transfer data.
740  */
741 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
742 						 dma_addr_t dma_buff,
743 						 unsigned int len)
744 {
745 	struct dwc2_hsotg *hsotg = hs_ep->parent;
746 	int dir_in = hs_ep->dir_in;
747 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
748 	u32 mps = hs_ep->ep.maxpacket;
749 	u32 maxsize = 0;
750 	u32 offset = 0;
751 	u32 mask = 0;
752 	int i;
753 
754 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
755 
756 	hs_ep->desc_count = (len / maxsize) +
757 				((len % maxsize) ? 1 : 0);
758 	if (len == 0)
759 		hs_ep->desc_count = 1;
760 
761 	for (i = 0; i < hs_ep->desc_count; ++i) {
762 		desc->status = 0;
763 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
764 				 << DEV_DMA_BUFF_STS_SHIFT);
765 
766 		if (len > maxsize) {
767 			if (!hs_ep->index && !dir_in)
768 				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
769 
770 			desc->status |= (maxsize <<
771 						DEV_DMA_NBYTES_SHIFT & mask);
772 			desc->buf = dma_buff + offset;
773 
774 			len -= maxsize;
775 			offset += maxsize;
776 		} else {
777 			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
778 
779 			if (dir_in)
780 				desc->status |= (len % mps) ? DEV_DMA_SHORT :
781 					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
782 			if (len > maxsize)
783 				dev_err(hsotg->dev, "wrong len %d\n", len);
784 
785 			desc->status |=
786 				len << DEV_DMA_NBYTES_SHIFT & mask;
787 			desc->buf = dma_buff + offset;
788 		}
789 
790 		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
791 		desc->status |= (DEV_DMA_BUFF_STS_HREADY
792 				 << DEV_DMA_BUFF_STS_SHIFT);
793 		desc++;
794 	}
795 }
796 
797 /*
798  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
799  * @hs_ep: The isochronous endpoint.
800  * @dma_buff: usb requests dma buffer.
801  * @len: usb request transfer length.
802  *
803  * Fills next free descriptor with the data of the arrived usb request,
804  * frame info, sets Last and IOC bits increments next_desc. If filled
805  * descriptor is not the first one, removes L bit from the previous descriptor
806  * status.
807  */
808 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
809 				      dma_addr_t dma_buff, unsigned int len)
810 {
811 	struct dwc2_dma_desc *desc;
812 	struct dwc2_hsotg *hsotg = hs_ep->parent;
813 	u32 index;
814 	u32 maxsize = 0;
815 	u32 mask = 0;
816 	u8 pid = 0;
817 
818 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
819 
820 	index = hs_ep->next_desc;
821 	desc = &hs_ep->desc_list[index];
822 
823 	/* Check if descriptor chain full */
824 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
825 	    DEV_DMA_BUFF_STS_HREADY) {
826 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
827 		return 1;
828 	}
829 
830 	/* Clear L bit of previous desc if more than one entries in the chain */
831 	if (hs_ep->next_desc)
832 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
833 
834 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
835 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
836 
837 	desc->status = 0;
838 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
839 
840 	desc->buf = dma_buff;
841 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
842 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
843 
844 	if (hs_ep->dir_in) {
845 		if (len)
846 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
847 		else
848 			pid = 1;
849 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
850 				 DEV_DMA_ISOC_PID_MASK) |
851 				((len % hs_ep->ep.maxpacket) ?
852 				 DEV_DMA_SHORT : 0) |
853 				((hs_ep->target_frame <<
854 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
855 				 DEV_DMA_ISOC_FRNUM_MASK);
856 	}
857 
858 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
859 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
860 
861 	/* Increment frame number by interval for IN */
862 	if (hs_ep->dir_in)
863 		dwc2_gadget_incr_frame_num(hs_ep);
864 
865 	/* Update index of last configured entry in the chain */
866 	hs_ep->next_desc++;
867 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_GENERIC)
868 		hs_ep->next_desc = 0;
869 
870 	return 0;
871 }
872 
873 /*
874  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
875  * @hs_ep: The isochronous endpoint.
876  *
877  * Prepare descriptor chain for isochronous endpoints. Afterwards
878  * write DMA address to HW and enable the endpoint.
879  */
880 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
881 {
882 	struct dwc2_hsotg *hsotg = hs_ep->parent;
883 	struct dwc2_hsotg_req *hs_req, *treq;
884 	int index = hs_ep->index;
885 	int ret;
886 	int i;
887 	u32 dma_reg;
888 	u32 depctl;
889 	u32 ctrl;
890 	struct dwc2_dma_desc *desc;
891 
892 	if (list_empty(&hs_ep->queue)) {
893 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
894 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
895 		return;
896 	}
897 
898 	/* Initialize descriptor chain by Host Busy status */
899 	for (i = 0; i < MAX_DMA_DESC_NUM_GENERIC; i++) {
900 		desc = &hs_ep->desc_list[i];
901 		desc->status = 0;
902 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
903 				    << DEV_DMA_BUFF_STS_SHIFT);
904 	}
905 
906 	hs_ep->next_desc = 0;
907 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
908 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
909 						 hs_req->req.length);
910 		if (ret)
911 			break;
912 	}
913 
914 	hs_ep->compl_desc = 0;
915 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
916 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
917 
918 	/* write descriptor chain address to control register */
919 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
920 
921 	ctrl = dwc2_readl(hsotg, depctl);
922 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
923 	dwc2_writel(hsotg, ctrl, depctl);
924 }
925 
926 /**
927  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
928  * @hsotg: The controller state.
929  * @hs_ep: The endpoint to process a request for
930  * @hs_req: The request to start.
931  * @continuing: True if we are doing more for the current request.
932  *
933  * Start the given request running by setting the endpoint registers
934  * appropriately, and writing any data to the FIFOs.
935  */
936 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
937 				 struct dwc2_hsotg_ep *hs_ep,
938 				struct dwc2_hsotg_req *hs_req,
939 				bool continuing)
940 {
941 	struct usb_request *ureq = &hs_req->req;
942 	int index = hs_ep->index;
943 	int dir_in = hs_ep->dir_in;
944 	u32 epctrl_reg;
945 	u32 epsize_reg;
946 	u32 epsize;
947 	u32 ctrl;
948 	unsigned int length;
949 	unsigned int packets;
950 	unsigned int maxreq;
951 	unsigned int dma_reg;
952 
953 	if (index != 0) {
954 		if (hs_ep->req && !continuing) {
955 			dev_err(hsotg->dev, "%s: active request\n", __func__);
956 			WARN_ON(1);
957 			return;
958 		} else if (hs_ep->req != hs_req && continuing) {
959 			dev_err(hsotg->dev,
960 				"%s: continue different req\n", __func__);
961 			WARN_ON(1);
962 			return;
963 		}
964 	}
965 
966 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
967 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
968 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
969 
970 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
971 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
972 		hs_ep->dir_in ? "in" : "out");
973 
974 	/* If endpoint is stalled, we will restart request later */
975 	ctrl = dwc2_readl(hsotg, epctrl_reg);
976 
977 	if (index && ctrl & DXEPCTL_STALL) {
978 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
979 		return;
980 	}
981 
982 	length = ureq->length - ureq->actual;
983 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
984 		ureq->length, ureq->actual);
985 
986 	if (!using_desc_dma(hsotg))
987 		maxreq = get_ep_limit(hs_ep);
988 	else
989 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
990 
991 	if (length > maxreq) {
992 		int round = maxreq % hs_ep->ep.maxpacket;
993 
994 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
995 			__func__, length, maxreq, round);
996 
997 		/* round down to multiple of packets */
998 		if (round)
999 			maxreq -= round;
1000 
1001 		length = maxreq;
1002 	}
1003 
1004 	if (length)
1005 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1006 	else
1007 		packets = 1;	/* send one packet if length is zero. */
1008 
1009 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1010 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1011 		return;
1012 	}
1013 
1014 	if (dir_in && index != 0)
1015 		if (hs_ep->isochronous)
1016 			epsize = DXEPTSIZ_MC(packets);
1017 		else
1018 			epsize = DXEPTSIZ_MC(1);
1019 	else
1020 		epsize = 0;
1021 
1022 	/*
1023 	 * zero length packet should be programmed on its own and should not
1024 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1025 	 */
1026 	if (dir_in && ureq->zero && !continuing) {
1027 		/* Test if zlp is actually required. */
1028 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1029 		    !(ureq->length % hs_ep->ep.maxpacket))
1030 			hs_ep->send_zlp = 1;
1031 	}
1032 
1033 	epsize |= DXEPTSIZ_PKTCNT(packets);
1034 	epsize |= DXEPTSIZ_XFERSIZE(length);
1035 
1036 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1037 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1038 
1039 	/* store the request as the current one we're doing */
1040 	hs_ep->req = hs_req;
1041 
1042 	if (using_desc_dma(hsotg)) {
1043 		u32 offset = 0;
1044 		u32 mps = hs_ep->ep.maxpacket;
1045 
1046 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1047 		if (!dir_in) {
1048 			if (!index)
1049 				length = mps;
1050 			else if (length % mps)
1051 				length += (mps - (length % mps));
1052 		}
1053 
1054 		/*
1055 		 * If more data to send, adjust DMA for EP0 out data stage.
1056 		 * ureq->dma stays unchanged, hence increment it by already
1057 		 * passed passed data count before starting new transaction.
1058 		 */
1059 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1060 		    continuing)
1061 			offset = ureq->actual;
1062 
1063 		/* Fill DDMA chain entries */
1064 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1065 						     length);
1066 
1067 		/* write descriptor chain address to control register */
1068 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1069 
1070 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1071 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1072 	} else {
1073 		/* write size / packets */
1074 		dwc2_writel(hsotg, epsize, epsize_reg);
1075 
1076 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1077 			/*
1078 			 * write DMA address to control register, buffer
1079 			 * already synced by dwc2_hsotg_ep_queue().
1080 			 */
1081 
1082 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1083 
1084 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1085 				__func__, &ureq->dma, dma_reg);
1086 		}
1087 	}
1088 
1089 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1090 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1091 		dwc2_gadget_incr_frame_num(hs_ep);
1092 
1093 		if (hs_ep->target_frame & 0x1)
1094 			ctrl |= DXEPCTL_SETODDFR;
1095 		else
1096 			ctrl |= DXEPCTL_SETEVENFR;
1097 	}
1098 
1099 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1100 
1101 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1102 
1103 	/* For Setup request do not clear NAK */
1104 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1105 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1106 
1107 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1108 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1109 
1110 	/*
1111 	 * set these, it seems that DMA support increments past the end
1112 	 * of the packet buffer so we need to calculate the length from
1113 	 * this information.
1114 	 */
1115 	hs_ep->size_loaded = length;
1116 	hs_ep->last_load = ureq->actual;
1117 
1118 	if (dir_in && !using_dma(hsotg)) {
1119 		/* set these anyway, we may need them for non-periodic in */
1120 		hs_ep->fifo_load = 0;
1121 
1122 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1123 	}
1124 
1125 	/*
1126 	 * Note, trying to clear the NAK here causes problems with transmit
1127 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1128 	 */
1129 
1130 	/* check ep is enabled */
1131 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1132 		dev_dbg(hsotg->dev,
1133 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1134 			 index, dwc2_readl(hsotg, epctrl_reg));
1135 
1136 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1137 		__func__, dwc2_readl(hsotg, epctrl_reg));
1138 
1139 	/* enable ep interrupts */
1140 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1141 }
1142 
1143 /**
1144  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1145  * @hsotg: The device state.
1146  * @hs_ep: The endpoint the request is on.
1147  * @req: The request being processed.
1148  *
1149  * We've been asked to queue a request, so ensure that the memory buffer
1150  * is correctly setup for DMA. If we've been passed an extant DMA address
1151  * then ensure the buffer has been synced to memory. If our buffer has no
1152  * DMA memory, then we map the memory and mark our request to allow us to
1153  * cleanup on completion.
1154  */
1155 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1156 			      struct dwc2_hsotg_ep *hs_ep,
1157 			     struct usb_request *req)
1158 {
1159 	int ret;
1160 
1161 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1162 	if (ret)
1163 		goto dma_error;
1164 
1165 	return 0;
1166 
1167 dma_error:
1168 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1169 		__func__, req->buf, req->length);
1170 
1171 	return -EIO;
1172 }
1173 
1174 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1175 						 struct dwc2_hsotg_ep *hs_ep,
1176 						 struct dwc2_hsotg_req *hs_req)
1177 {
1178 	void *req_buf = hs_req->req.buf;
1179 
1180 	/* If dma is not being used or buffer is aligned */
1181 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1182 		return 0;
1183 
1184 	WARN_ON(hs_req->saved_req_buf);
1185 
1186 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1187 		hs_ep->ep.name, req_buf, hs_req->req.length);
1188 
1189 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1190 	if (!hs_req->req.buf) {
1191 		hs_req->req.buf = req_buf;
1192 		dev_err(hsotg->dev,
1193 			"%s: unable to allocate memory for bounce buffer\n",
1194 			__func__);
1195 		return -ENOMEM;
1196 	}
1197 
1198 	/* Save actual buffer */
1199 	hs_req->saved_req_buf = req_buf;
1200 
1201 	if (hs_ep->dir_in)
1202 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1203 	return 0;
1204 }
1205 
1206 static void
1207 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1208 					 struct dwc2_hsotg_ep *hs_ep,
1209 					 struct dwc2_hsotg_req *hs_req)
1210 {
1211 	/* If dma is not being used or buffer was aligned */
1212 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1213 		return;
1214 
1215 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1216 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1217 
1218 	/* Copy data from bounce buffer on successful out transfer */
1219 	if (!hs_ep->dir_in && !hs_req->req.status)
1220 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1221 		       hs_req->req.actual);
1222 
1223 	/* Free bounce buffer */
1224 	kfree(hs_req->req.buf);
1225 
1226 	hs_req->req.buf = hs_req->saved_req_buf;
1227 	hs_req->saved_req_buf = NULL;
1228 }
1229 
1230 /**
1231  * dwc2_gadget_target_frame_elapsed - Checks target frame
1232  * @hs_ep: The driver endpoint to check
1233  *
1234  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1235  * corresponding transfer.
1236  */
1237 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1238 {
1239 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1240 	u32 target_frame = hs_ep->target_frame;
1241 	u32 current_frame = hsotg->frame_number;
1242 	bool frame_overrun = hs_ep->frame_overrun;
1243 
1244 	if (!frame_overrun && current_frame >= target_frame)
1245 		return true;
1246 
1247 	if (frame_overrun && current_frame >= target_frame &&
1248 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1249 		return true;
1250 
1251 	return false;
1252 }
1253 
1254 /*
1255  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1256  * @hsotg: The driver state
1257  * @hs_ep: the ep descriptor chain is for
1258  *
1259  * Called to update EP0 structure's pointers depend on stage of
1260  * control transfer.
1261  */
1262 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1263 					  struct dwc2_hsotg_ep *hs_ep)
1264 {
1265 	switch (hsotg->ep0_state) {
1266 	case DWC2_EP0_SETUP:
1267 	case DWC2_EP0_STATUS_OUT:
1268 		hs_ep->desc_list = hsotg->setup_desc[0];
1269 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1270 		break;
1271 	case DWC2_EP0_DATA_IN:
1272 	case DWC2_EP0_STATUS_IN:
1273 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1274 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1275 		break;
1276 	case DWC2_EP0_DATA_OUT:
1277 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1278 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1279 		break;
1280 	default:
1281 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1282 			hsotg->ep0_state);
1283 		return -EINVAL;
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1290 			       gfp_t gfp_flags)
1291 {
1292 	struct dwc2_hsotg_req *hs_req = our_req(req);
1293 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1294 	struct dwc2_hsotg *hs = hs_ep->parent;
1295 	bool first;
1296 	int ret;
1297 	u32 maxsize = 0;
1298 	u32 mask = 0;
1299 
1300 
1301 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1302 		ep->name, req, req->length, req->buf, req->no_interrupt,
1303 		req->zero, req->short_not_ok);
1304 
1305 	/* Prevent new request submission when controller is suspended */
1306 	if (hs->lx_state != DWC2_L0) {
1307 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1308 			__func__);
1309 		return -EAGAIN;
1310 	}
1311 
1312 	/* initialise status of the request */
1313 	INIT_LIST_HEAD(&hs_req->queue);
1314 	req->actual = 0;
1315 	req->status = -EINPROGRESS;
1316 
1317 	/* In DDMA mode for ISOC's don't queue request if length greater
1318 	 * than descriptor limits.
1319 	 */
1320 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1321 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1322 		if (hs_ep->dir_in && req->length > maxsize) {
1323 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1324 				req->length, maxsize);
1325 			return -EINVAL;
1326 		}
1327 
1328 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1329 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1330 				req->length, hs_ep->ep.maxpacket);
1331 			return -EINVAL;
1332 		}
1333 	}
1334 
1335 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1336 	if (ret)
1337 		return ret;
1338 
1339 	/* if we're using DMA, sync the buffers as necessary */
1340 	if (using_dma(hs)) {
1341 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1342 		if (ret)
1343 			return ret;
1344 	}
1345 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1346 	if (using_desc_dma(hs) && !hs_ep->index) {
1347 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1348 		if (ret)
1349 			return ret;
1350 	}
1351 
1352 	first = list_empty(&hs_ep->queue);
1353 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1354 
1355 	/*
1356 	 * Handle DDMA isochronous transfers separately - just add new entry
1357 	 * to the descriptor chain.
1358 	 * Transfer will be started once SW gets either one of NAK or
1359 	 * OutTknEpDis interrupts.
1360 	 */
1361 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1362 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1363 			dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1364 						   hs_req->req.length);
1365 		}
1366 		return 0;
1367 	}
1368 
1369 	if (first) {
1370 		if (!hs_ep->isochronous) {
1371 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1372 			return 0;
1373 		}
1374 
1375 		/* Update current frame number value. */
1376 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1377 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1378 			dwc2_gadget_incr_frame_num(hs_ep);
1379 			/* Update current frame number value once more as it
1380 			 * changes here.
1381 			 */
1382 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1383 		}
1384 
1385 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1386 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1387 	}
1388 	return 0;
1389 }
1390 
1391 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1392 				    gfp_t gfp_flags)
1393 {
1394 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1395 	struct dwc2_hsotg *hs = hs_ep->parent;
1396 	unsigned long flags = 0;
1397 	int ret = 0;
1398 
1399 	spin_lock_irqsave(&hs->lock, flags);
1400 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1401 	spin_unlock_irqrestore(&hs->lock, flags);
1402 
1403 	return ret;
1404 }
1405 
1406 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1407 				       struct usb_request *req)
1408 {
1409 	struct dwc2_hsotg_req *hs_req = our_req(req);
1410 
1411 	kfree(hs_req);
1412 }
1413 
1414 /**
1415  * dwc2_hsotg_complete_oursetup - setup completion callback
1416  * @ep: The endpoint the request was on.
1417  * @req: The request completed.
1418  *
1419  * Called on completion of any requests the driver itself
1420  * submitted that need cleaning up.
1421  */
1422 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1423 					 struct usb_request *req)
1424 {
1425 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1426 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1427 
1428 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1429 
1430 	dwc2_hsotg_ep_free_request(ep, req);
1431 }
1432 
1433 /**
1434  * ep_from_windex - convert control wIndex value to endpoint
1435  * @hsotg: The driver state.
1436  * @windex: The control request wIndex field (in host order).
1437  *
1438  * Convert the given wIndex into a pointer to an driver endpoint
1439  * structure, or return NULL if it is not a valid endpoint.
1440  */
1441 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1442 					    u32 windex)
1443 {
1444 	struct dwc2_hsotg_ep *ep;
1445 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1446 	int idx = windex & 0x7F;
1447 
1448 	if (windex >= 0x100)
1449 		return NULL;
1450 
1451 	if (idx > hsotg->num_of_eps)
1452 		return NULL;
1453 
1454 	ep = index_to_ep(hsotg, idx, dir);
1455 
1456 	if (idx && ep->dir_in != dir)
1457 		return NULL;
1458 
1459 	return ep;
1460 }
1461 
1462 /**
1463  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1464  * @hsotg: The driver state.
1465  * @testmode: requested usb test mode
1466  * Enable usb Test Mode requested by the Host.
1467  */
1468 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1469 {
1470 	int dctl = dwc2_readl(hsotg, DCTL);
1471 
1472 	dctl &= ~DCTL_TSTCTL_MASK;
1473 	switch (testmode) {
1474 	case TEST_J:
1475 	case TEST_K:
1476 	case TEST_SE0_NAK:
1477 	case TEST_PACKET:
1478 	case TEST_FORCE_EN:
1479 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1480 		break;
1481 	default:
1482 		return -EINVAL;
1483 	}
1484 	dwc2_writel(hsotg, dctl, DCTL);
1485 	return 0;
1486 }
1487 
1488 /**
1489  * dwc2_hsotg_send_reply - send reply to control request
1490  * @hsotg: The device state
1491  * @ep: Endpoint 0
1492  * @buff: Buffer for request
1493  * @length: Length of reply.
1494  *
1495  * Create a request and queue it on the given endpoint. This is useful as
1496  * an internal method of sending replies to certain control requests, etc.
1497  */
1498 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1499 				 struct dwc2_hsotg_ep *ep,
1500 				void *buff,
1501 				int length)
1502 {
1503 	struct usb_request *req;
1504 	int ret;
1505 
1506 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1507 
1508 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1509 	hsotg->ep0_reply = req;
1510 	if (!req) {
1511 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1512 		return -ENOMEM;
1513 	}
1514 
1515 	req->buf = hsotg->ep0_buff;
1516 	req->length = length;
1517 	/*
1518 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1519 	 * STATUS stage.
1520 	 */
1521 	req->zero = 0;
1522 	req->complete = dwc2_hsotg_complete_oursetup;
1523 
1524 	if (length)
1525 		memcpy(req->buf, buff, length);
1526 
1527 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1528 	if (ret) {
1529 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1530 		return ret;
1531 	}
1532 
1533 	return 0;
1534 }
1535 
1536 /**
1537  * dwc2_hsotg_process_req_status - process request GET_STATUS
1538  * @hsotg: The device state
1539  * @ctrl: USB control request
1540  */
1541 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1542 					 struct usb_ctrlrequest *ctrl)
1543 {
1544 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1545 	struct dwc2_hsotg_ep *ep;
1546 	__le16 reply;
1547 	int ret;
1548 
1549 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1550 
1551 	if (!ep0->dir_in) {
1552 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1553 		return -EINVAL;
1554 	}
1555 
1556 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1557 	case USB_RECIP_DEVICE:
1558 		/*
1559 		 * bit 0 => self powered
1560 		 * bit 1 => remote wakeup
1561 		 */
1562 		reply = cpu_to_le16(0);
1563 		break;
1564 
1565 	case USB_RECIP_INTERFACE:
1566 		/* currently, the data result should be zero */
1567 		reply = cpu_to_le16(0);
1568 		break;
1569 
1570 	case USB_RECIP_ENDPOINT:
1571 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1572 		if (!ep)
1573 			return -ENOENT;
1574 
1575 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1576 		break;
1577 
1578 	default:
1579 		return 0;
1580 	}
1581 
1582 	if (le16_to_cpu(ctrl->wLength) != 2)
1583 		return -EINVAL;
1584 
1585 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1586 	if (ret) {
1587 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1588 		return ret;
1589 	}
1590 
1591 	return 1;
1592 }
1593 
1594 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1595 
1596 /**
1597  * get_ep_head - return the first request on the endpoint
1598  * @hs_ep: The controller endpoint to get
1599  *
1600  * Get the first request on the endpoint.
1601  */
1602 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1603 {
1604 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1605 					queue);
1606 }
1607 
1608 /**
1609  * dwc2_gadget_start_next_request - Starts next request from ep queue
1610  * @hs_ep: Endpoint structure
1611  *
1612  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1613  * in its handler. Hence we need to unmask it here to be able to do
1614  * resynchronization.
1615  */
1616 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1617 {
1618 	u32 mask;
1619 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1620 	int dir_in = hs_ep->dir_in;
1621 	struct dwc2_hsotg_req *hs_req;
1622 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1623 
1624 	if (!list_empty(&hs_ep->queue)) {
1625 		hs_req = get_ep_head(hs_ep);
1626 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1627 		return;
1628 	}
1629 	if (!hs_ep->isochronous)
1630 		return;
1631 
1632 	if (dir_in) {
1633 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1634 			__func__);
1635 	} else {
1636 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1637 			__func__);
1638 		mask = dwc2_readl(hsotg, epmsk_reg);
1639 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1640 		dwc2_writel(hsotg, mask, epmsk_reg);
1641 	}
1642 }
1643 
1644 /**
1645  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1646  * @hsotg: The device state
1647  * @ctrl: USB control request
1648  */
1649 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1650 					  struct usb_ctrlrequest *ctrl)
1651 {
1652 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1653 	struct dwc2_hsotg_req *hs_req;
1654 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1655 	struct dwc2_hsotg_ep *ep;
1656 	int ret;
1657 	bool halted;
1658 	u32 recip;
1659 	u32 wValue;
1660 	u32 wIndex;
1661 
1662 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1663 		__func__, set ? "SET" : "CLEAR");
1664 
1665 	wValue = le16_to_cpu(ctrl->wValue);
1666 	wIndex = le16_to_cpu(ctrl->wIndex);
1667 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1668 
1669 	switch (recip) {
1670 	case USB_RECIP_DEVICE:
1671 		switch (wValue) {
1672 		case USB_DEVICE_REMOTE_WAKEUP:
1673 			hsotg->remote_wakeup_allowed = 1;
1674 			break;
1675 
1676 		case USB_DEVICE_TEST_MODE:
1677 			if ((wIndex & 0xff) != 0)
1678 				return -EINVAL;
1679 			if (!set)
1680 				return -EINVAL;
1681 
1682 			hsotg->test_mode = wIndex >> 8;
1683 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1684 			if (ret) {
1685 				dev_err(hsotg->dev,
1686 					"%s: failed to send reply\n", __func__);
1687 				return ret;
1688 			}
1689 			break;
1690 		default:
1691 			return -ENOENT;
1692 		}
1693 		break;
1694 
1695 	case USB_RECIP_ENDPOINT:
1696 		ep = ep_from_windex(hsotg, wIndex);
1697 		if (!ep) {
1698 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1699 				__func__, wIndex);
1700 			return -ENOENT;
1701 		}
1702 
1703 		switch (wValue) {
1704 		case USB_ENDPOINT_HALT:
1705 			halted = ep->halted;
1706 
1707 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1708 
1709 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1710 			if (ret) {
1711 				dev_err(hsotg->dev,
1712 					"%s: failed to send reply\n", __func__);
1713 				return ret;
1714 			}
1715 
1716 			/*
1717 			 * we have to complete all requests for ep if it was
1718 			 * halted, and the halt was cleared by CLEAR_FEATURE
1719 			 */
1720 
1721 			if (!set && halted) {
1722 				/*
1723 				 * If we have request in progress,
1724 				 * then complete it
1725 				 */
1726 				if (ep->req) {
1727 					hs_req = ep->req;
1728 					ep->req = NULL;
1729 					list_del_init(&hs_req->queue);
1730 					if (hs_req->req.complete) {
1731 						spin_unlock(&hsotg->lock);
1732 						usb_gadget_giveback_request(
1733 							&ep->ep, &hs_req->req);
1734 						spin_lock(&hsotg->lock);
1735 					}
1736 				}
1737 
1738 				/* If we have pending request, then start it */
1739 				if (!ep->req)
1740 					dwc2_gadget_start_next_request(ep);
1741 			}
1742 
1743 			break;
1744 
1745 		default:
1746 			return -ENOENT;
1747 		}
1748 		break;
1749 	default:
1750 		return -ENOENT;
1751 	}
1752 	return 1;
1753 }
1754 
1755 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1756 
1757 /**
1758  * dwc2_hsotg_stall_ep0 - stall ep0
1759  * @hsotg: The device state
1760  *
1761  * Set stall for ep0 as response for setup request.
1762  */
1763 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1764 {
1765 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1766 	u32 reg;
1767 	u32 ctrl;
1768 
1769 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1770 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1771 
1772 	/*
1773 	 * DxEPCTL_Stall will be cleared by EP once it has
1774 	 * taken effect, so no need to clear later.
1775 	 */
1776 
1777 	ctrl = dwc2_readl(hsotg, reg);
1778 	ctrl |= DXEPCTL_STALL;
1779 	ctrl |= DXEPCTL_CNAK;
1780 	dwc2_writel(hsotg, ctrl, reg);
1781 
1782 	dev_dbg(hsotg->dev,
1783 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1784 		ctrl, reg, dwc2_readl(hsotg, reg));
1785 
1786 	 /*
1787 	  * complete won't be called, so we enqueue
1788 	  * setup request here
1789 	  */
1790 	 dwc2_hsotg_enqueue_setup(hsotg);
1791 }
1792 
1793 /**
1794  * dwc2_hsotg_process_control - process a control request
1795  * @hsotg: The device state
1796  * @ctrl: The control request received
1797  *
1798  * The controller has received the SETUP phase of a control request, and
1799  * needs to work out what to do next (and whether to pass it on to the
1800  * gadget driver).
1801  */
1802 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1803 				       struct usb_ctrlrequest *ctrl)
1804 {
1805 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1806 	int ret = 0;
1807 	u32 dcfg;
1808 
1809 	dev_dbg(hsotg->dev,
1810 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1811 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1812 		ctrl->wIndex, ctrl->wLength);
1813 
1814 	if (ctrl->wLength == 0) {
1815 		ep0->dir_in = 1;
1816 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1817 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1818 		ep0->dir_in = 1;
1819 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1820 	} else {
1821 		ep0->dir_in = 0;
1822 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1823 	}
1824 
1825 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1826 		switch (ctrl->bRequest) {
1827 		case USB_REQ_SET_ADDRESS:
1828 			hsotg->connected = 1;
1829 			dcfg = dwc2_readl(hsotg, DCFG);
1830 			dcfg &= ~DCFG_DEVADDR_MASK;
1831 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1832 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1833 			dwc2_writel(hsotg, dcfg, DCFG);
1834 
1835 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1836 
1837 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1838 			return;
1839 
1840 		case USB_REQ_GET_STATUS:
1841 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1842 			break;
1843 
1844 		case USB_REQ_CLEAR_FEATURE:
1845 		case USB_REQ_SET_FEATURE:
1846 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1847 			break;
1848 		}
1849 	}
1850 
1851 	/* as a fallback, try delivering it to the driver to deal with */
1852 
1853 	if (ret == 0 && hsotg->driver) {
1854 		spin_unlock(&hsotg->lock);
1855 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1856 		spin_lock(&hsotg->lock);
1857 		if (ret < 0)
1858 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1859 	}
1860 
1861 	/*
1862 	 * the request is either unhandlable, or is not formatted correctly
1863 	 * so respond with a STALL for the status stage to indicate failure.
1864 	 */
1865 
1866 	if (ret < 0)
1867 		dwc2_hsotg_stall_ep0(hsotg);
1868 }
1869 
1870 /**
1871  * dwc2_hsotg_complete_setup - completion of a setup transfer
1872  * @ep: The endpoint the request was on.
1873  * @req: The request completed.
1874  *
1875  * Called on completion of any requests the driver itself submitted for
1876  * EP0 setup packets
1877  */
1878 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1879 				      struct usb_request *req)
1880 {
1881 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1882 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1883 
1884 	if (req->status < 0) {
1885 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1886 		return;
1887 	}
1888 
1889 	spin_lock(&hsotg->lock);
1890 	if (req->actual == 0)
1891 		dwc2_hsotg_enqueue_setup(hsotg);
1892 	else
1893 		dwc2_hsotg_process_control(hsotg, req->buf);
1894 	spin_unlock(&hsotg->lock);
1895 }
1896 
1897 /**
1898  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1899  * @hsotg: The device state.
1900  *
1901  * Enqueue a request on EP0 if necessary to received any SETUP packets
1902  * received from the host.
1903  */
1904 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1905 {
1906 	struct usb_request *req = hsotg->ctrl_req;
1907 	struct dwc2_hsotg_req *hs_req = our_req(req);
1908 	int ret;
1909 
1910 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1911 
1912 	req->zero = 0;
1913 	req->length = 8;
1914 	req->buf = hsotg->ctrl_buff;
1915 	req->complete = dwc2_hsotg_complete_setup;
1916 
1917 	if (!list_empty(&hs_req->queue)) {
1918 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1919 		return;
1920 	}
1921 
1922 	hsotg->eps_out[0]->dir_in = 0;
1923 	hsotg->eps_out[0]->send_zlp = 0;
1924 	hsotg->ep0_state = DWC2_EP0_SETUP;
1925 
1926 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1927 	if (ret < 0) {
1928 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1929 		/*
1930 		 * Don't think there's much we can do other than watch the
1931 		 * driver fail.
1932 		 */
1933 	}
1934 }
1935 
1936 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1937 				   struct dwc2_hsotg_ep *hs_ep)
1938 {
1939 	u32 ctrl;
1940 	u8 index = hs_ep->index;
1941 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1942 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1943 
1944 	if (hs_ep->dir_in)
1945 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1946 			index);
1947 	else
1948 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1949 			index);
1950 	if (using_desc_dma(hsotg)) {
1951 		/* Not specific buffer needed for ep0 ZLP */
1952 		dma_addr_t dma = hs_ep->desc_list_dma;
1953 
1954 		if (!index)
1955 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1956 
1957 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1958 	} else {
1959 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1960 			    DXEPTSIZ_XFERSIZE(0),
1961 			    epsiz_reg);
1962 	}
1963 
1964 	ctrl = dwc2_readl(hsotg, epctl_reg);
1965 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1966 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1967 	ctrl |= DXEPCTL_USBACTEP;
1968 	dwc2_writel(hsotg, ctrl, epctl_reg);
1969 }
1970 
1971 /**
1972  * dwc2_hsotg_complete_request - complete a request given to us
1973  * @hsotg: The device state.
1974  * @hs_ep: The endpoint the request was on.
1975  * @hs_req: The request to complete.
1976  * @result: The result code (0 => Ok, otherwise errno)
1977  *
1978  * The given request has finished, so call the necessary completion
1979  * if it has one and then look to see if we can start a new request
1980  * on the endpoint.
1981  *
1982  * Note, expects the ep to already be locked as appropriate.
1983  */
1984 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1985 					struct dwc2_hsotg_ep *hs_ep,
1986 				       struct dwc2_hsotg_req *hs_req,
1987 				       int result)
1988 {
1989 	if (!hs_req) {
1990 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1991 		return;
1992 	}
1993 
1994 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1995 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1996 
1997 	/*
1998 	 * only replace the status if we've not already set an error
1999 	 * from a previous transaction
2000 	 */
2001 
2002 	if (hs_req->req.status == -EINPROGRESS)
2003 		hs_req->req.status = result;
2004 
2005 	if (using_dma(hsotg))
2006 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2007 
2008 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2009 
2010 	hs_ep->req = NULL;
2011 	list_del_init(&hs_req->queue);
2012 
2013 	/*
2014 	 * call the complete request with the locks off, just in case the
2015 	 * request tries to queue more work for this endpoint.
2016 	 */
2017 
2018 	if (hs_req->req.complete) {
2019 		spin_unlock(&hsotg->lock);
2020 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2021 		spin_lock(&hsotg->lock);
2022 	}
2023 
2024 	/* In DDMA don't need to proceed to starting of next ISOC request */
2025 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2026 		return;
2027 
2028 	/*
2029 	 * Look to see if there is anything else to do. Note, the completion
2030 	 * of the previous request may have caused a new request to be started
2031 	 * so be careful when doing this.
2032 	 */
2033 
2034 	if (!hs_ep->req && result >= 0)
2035 		dwc2_gadget_start_next_request(hs_ep);
2036 }
2037 
2038 /*
2039  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2040  * @hs_ep: The endpoint the request was on.
2041  *
2042  * Get first request from the ep queue, determine descriptor on which complete
2043  * happened. SW discovers which descriptor currently in use by HW, adjusts
2044  * dma_address and calculates index of completed descriptor based on the value
2045  * of DEPDMA register. Update actual length of request, giveback to gadget.
2046  */
2047 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2048 {
2049 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2050 	struct dwc2_hsotg_req *hs_req;
2051 	struct usb_request *ureq;
2052 	u32 desc_sts;
2053 	u32 mask;
2054 
2055 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2056 
2057 	/* Process only descriptors with buffer status set to DMA done */
2058 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2059 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2060 
2061 		hs_req = get_ep_head(hs_ep);
2062 		if (!hs_req) {
2063 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2064 			return;
2065 		}
2066 		ureq = &hs_req->req;
2067 
2068 		/* Check completion status */
2069 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2070 			DEV_DMA_STS_SUCC) {
2071 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2072 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2073 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2074 				DEV_DMA_ISOC_NBYTES_SHIFT);
2075 
2076 			/* Adjust actual len for ISOC Out if len is
2077 			 * not align of 4
2078 			 */
2079 			if (!hs_ep->dir_in && ureq->length & 0x3)
2080 				ureq->actual += 4 - (ureq->length & 0x3);
2081 		}
2082 
2083 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2084 
2085 		hs_ep->compl_desc++;
2086 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_GENERIC - 1))
2087 			hs_ep->compl_desc = 0;
2088 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2089 	}
2090 }
2091 
2092 /*
2093  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2094  * @hs_ep: The isochronous endpoint.
2095  *
2096  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2097  * interrupt. Reset target frame and next_desc to allow to start
2098  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2099  * interrupt for OUT direction.
2100  */
2101 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2102 {
2103 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2104 
2105 	if (!hs_ep->dir_in)
2106 		dwc2_flush_rx_fifo(hsotg);
2107 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2108 
2109 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2110 	hs_ep->next_desc = 0;
2111 	hs_ep->compl_desc = 0;
2112 }
2113 
2114 /**
2115  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2116  * @hsotg: The device state.
2117  * @ep_idx: The endpoint index for the data
2118  * @size: The size of data in the fifo, in bytes
2119  *
2120  * The FIFO status shows there is data to read from the FIFO for a given
2121  * endpoint, so sort out whether we need to read the data into a request
2122  * that has been made for that endpoint.
2123  */
2124 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2125 {
2126 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2127 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2128 	int to_read;
2129 	int max_req;
2130 	int read_ptr;
2131 
2132 	if (!hs_req) {
2133 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2134 		int ptr;
2135 
2136 		dev_dbg(hsotg->dev,
2137 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2138 			 __func__, size, ep_idx, epctl);
2139 
2140 		/* dump the data from the FIFO, we've nothing we can do */
2141 		for (ptr = 0; ptr < size; ptr += 4)
2142 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2143 
2144 		return;
2145 	}
2146 
2147 	to_read = size;
2148 	read_ptr = hs_req->req.actual;
2149 	max_req = hs_req->req.length - read_ptr;
2150 
2151 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2152 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2153 
2154 	if (to_read > max_req) {
2155 		/*
2156 		 * more data appeared than we where willing
2157 		 * to deal with in this request.
2158 		 */
2159 
2160 		/* currently we don't deal this */
2161 		WARN_ON_ONCE(1);
2162 	}
2163 
2164 	hs_ep->total_data += to_read;
2165 	hs_req->req.actual += to_read;
2166 	to_read = DIV_ROUND_UP(to_read, 4);
2167 
2168 	/*
2169 	 * note, we might over-write the buffer end by 3 bytes depending on
2170 	 * alignment of the data.
2171 	 */
2172 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2173 		       hs_req->req.buf + read_ptr, to_read);
2174 }
2175 
2176 /**
2177  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2178  * @hsotg: The device instance
2179  * @dir_in: If IN zlp
2180  *
2181  * Generate a zero-length IN packet request for terminating a SETUP
2182  * transaction.
2183  *
2184  * Note, since we don't write any data to the TxFIFO, then it is
2185  * currently believed that we do not need to wait for any space in
2186  * the TxFIFO.
2187  */
2188 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2189 {
2190 	/* eps_out[0] is used in both directions */
2191 	hsotg->eps_out[0]->dir_in = dir_in;
2192 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2193 
2194 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2195 }
2196 
2197 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2198 					    u32 epctl_reg)
2199 {
2200 	u32 ctrl;
2201 
2202 	ctrl = dwc2_readl(hsotg, epctl_reg);
2203 	if (ctrl & DXEPCTL_EOFRNUM)
2204 		ctrl |= DXEPCTL_SETEVENFR;
2205 	else
2206 		ctrl |= DXEPCTL_SETODDFR;
2207 	dwc2_writel(hsotg, ctrl, epctl_reg);
2208 }
2209 
2210 /*
2211  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2212  * @hs_ep - The endpoint on which transfer went
2213  *
2214  * Iterate over endpoints descriptor chain and get info on bytes remained
2215  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2216  */
2217 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2218 {
2219 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2220 	unsigned int bytes_rem = 0;
2221 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2222 	int i;
2223 	u32 status;
2224 
2225 	if (!desc)
2226 		return -EINVAL;
2227 
2228 	for (i = 0; i < hs_ep->desc_count; ++i) {
2229 		status = desc->status;
2230 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2231 
2232 		if (status & DEV_DMA_STS_MASK)
2233 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2234 				i, status & DEV_DMA_STS_MASK);
2235 	}
2236 
2237 	return bytes_rem;
2238 }
2239 
2240 /**
2241  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2242  * @hsotg: The device instance
2243  * @epnum: The endpoint received from
2244  *
2245  * The RXFIFO has delivered an OutDone event, which means that the data
2246  * transfer for an OUT endpoint has been completed, either by a short
2247  * packet or by the finish of a transfer.
2248  */
2249 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2250 {
2251 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2252 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2253 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2254 	struct usb_request *req = &hs_req->req;
2255 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2256 	int result = 0;
2257 
2258 	if (!hs_req) {
2259 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2260 		return;
2261 	}
2262 
2263 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2264 		dev_dbg(hsotg->dev, "zlp packet received\n");
2265 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2266 		dwc2_hsotg_enqueue_setup(hsotg);
2267 		return;
2268 	}
2269 
2270 	if (using_desc_dma(hsotg))
2271 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2272 
2273 	if (using_dma(hsotg)) {
2274 		unsigned int size_done;
2275 
2276 		/*
2277 		 * Calculate the size of the transfer by checking how much
2278 		 * is left in the endpoint size register and then working it
2279 		 * out from the amount we loaded for the transfer.
2280 		 *
2281 		 * We need to do this as DMA pointers are always 32bit aligned
2282 		 * so may overshoot/undershoot the transfer.
2283 		 */
2284 
2285 		size_done = hs_ep->size_loaded - size_left;
2286 		size_done += hs_ep->last_load;
2287 
2288 		req->actual = size_done;
2289 	}
2290 
2291 	/* if there is more request to do, schedule new transfer */
2292 	if (req->actual < req->length && size_left == 0) {
2293 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2294 		return;
2295 	}
2296 
2297 	if (req->actual < req->length && req->short_not_ok) {
2298 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2299 			__func__, req->actual, req->length);
2300 
2301 		/*
2302 		 * todo - what should we return here? there's no one else
2303 		 * even bothering to check the status.
2304 		 */
2305 	}
2306 
2307 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2308 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2309 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2310 		/* Move to STATUS IN */
2311 		dwc2_hsotg_ep0_zlp(hsotg, true);
2312 		return;
2313 	}
2314 
2315 	/*
2316 	 * Slave mode OUT transfers do not go through XferComplete so
2317 	 * adjust the ISOC parity here.
2318 	 */
2319 	if (!using_dma(hsotg)) {
2320 		if (hs_ep->isochronous && hs_ep->interval == 1)
2321 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2322 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2323 			dwc2_gadget_incr_frame_num(hs_ep);
2324 	}
2325 
2326 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2327 }
2328 
2329 /**
2330  * dwc2_hsotg_handle_rx - RX FIFO has data
2331  * @hsotg: The device instance
2332  *
2333  * The IRQ handler has detected that the RX FIFO has some data in it
2334  * that requires processing, so find out what is in there and do the
2335  * appropriate read.
2336  *
2337  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2338  * chunks, so if you have x packets received on an endpoint you'll get x
2339  * FIFO events delivered, each with a packet's worth of data in it.
2340  *
2341  * When using DMA, we should not be processing events from the RXFIFO
2342  * as the actual data should be sent to the memory directly and we turn
2343  * on the completion interrupts to get notifications of transfer completion.
2344  */
2345 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2346 {
2347 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2348 	u32 epnum, status, size;
2349 
2350 	WARN_ON(using_dma(hsotg));
2351 
2352 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2353 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2354 
2355 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2356 	size >>= GRXSTS_BYTECNT_SHIFT;
2357 
2358 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2359 		__func__, grxstsr, size, epnum);
2360 
2361 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2362 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2363 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2364 		break;
2365 
2366 	case GRXSTS_PKTSTS_OUTDONE:
2367 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2368 			dwc2_hsotg_read_frameno(hsotg));
2369 
2370 		if (!using_dma(hsotg))
2371 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2372 		break;
2373 
2374 	case GRXSTS_PKTSTS_SETUPDONE:
2375 		dev_dbg(hsotg->dev,
2376 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2377 			dwc2_hsotg_read_frameno(hsotg),
2378 			dwc2_readl(hsotg, DOEPCTL(0)));
2379 		/*
2380 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2381 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2382 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2383 		 */
2384 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2385 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2386 		break;
2387 
2388 	case GRXSTS_PKTSTS_OUTRX:
2389 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2390 		break;
2391 
2392 	case GRXSTS_PKTSTS_SETUPRX:
2393 		dev_dbg(hsotg->dev,
2394 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2395 			dwc2_hsotg_read_frameno(hsotg),
2396 			dwc2_readl(hsotg, DOEPCTL(0)));
2397 
2398 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2399 
2400 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2401 		break;
2402 
2403 	default:
2404 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2405 			 __func__, grxstsr);
2406 
2407 		dwc2_hsotg_dump(hsotg);
2408 		break;
2409 	}
2410 }
2411 
2412 /**
2413  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2414  * @mps: The maximum packet size in bytes.
2415  */
2416 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2417 {
2418 	switch (mps) {
2419 	case 64:
2420 		return D0EPCTL_MPS_64;
2421 	case 32:
2422 		return D0EPCTL_MPS_32;
2423 	case 16:
2424 		return D0EPCTL_MPS_16;
2425 	case 8:
2426 		return D0EPCTL_MPS_8;
2427 	}
2428 
2429 	/* bad max packet size, warn and return invalid result */
2430 	WARN_ON(1);
2431 	return (u32)-1;
2432 }
2433 
2434 /**
2435  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2436  * @hsotg: The driver state.
2437  * @ep: The index number of the endpoint
2438  * @mps: The maximum packet size in bytes
2439  * @mc: The multicount value
2440  * @dir_in: True if direction is in.
2441  *
2442  * Configure the maximum packet size for the given endpoint, updating
2443  * the hardware control registers to reflect this.
2444  */
2445 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2446 					unsigned int ep, unsigned int mps,
2447 					unsigned int mc, unsigned int dir_in)
2448 {
2449 	struct dwc2_hsotg_ep *hs_ep;
2450 	u32 reg;
2451 
2452 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2453 	if (!hs_ep)
2454 		return;
2455 
2456 	if (ep == 0) {
2457 		u32 mps_bytes = mps;
2458 
2459 		/* EP0 is a special case */
2460 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2461 		if (mps > 3)
2462 			goto bad_mps;
2463 		hs_ep->ep.maxpacket = mps_bytes;
2464 		hs_ep->mc = 1;
2465 	} else {
2466 		if (mps > 1024)
2467 			goto bad_mps;
2468 		hs_ep->mc = mc;
2469 		if (mc > 3)
2470 			goto bad_mps;
2471 		hs_ep->ep.maxpacket = mps;
2472 	}
2473 
2474 	if (dir_in) {
2475 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2476 		reg &= ~DXEPCTL_MPS_MASK;
2477 		reg |= mps;
2478 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2479 	} else {
2480 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2481 		reg &= ~DXEPCTL_MPS_MASK;
2482 		reg |= mps;
2483 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2484 	}
2485 
2486 	return;
2487 
2488 bad_mps:
2489 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2490 }
2491 
2492 /**
2493  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2494  * @hsotg: The driver state
2495  * @idx: The index for the endpoint (0..15)
2496  */
2497 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2498 {
2499 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2500 		    GRSTCTL);
2501 
2502 	/* wait until the fifo is flushed */
2503 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2504 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2505 			 __func__);
2506 }
2507 
2508 /**
2509  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2510  * @hsotg: The driver state
2511  * @hs_ep: The driver endpoint to check.
2512  *
2513  * Check to see if there is a request that has data to send, and if so
2514  * make an attempt to write data into the FIFO.
2515  */
2516 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2517 			    struct dwc2_hsotg_ep *hs_ep)
2518 {
2519 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2520 
2521 	if (!hs_ep->dir_in || !hs_req) {
2522 		/**
2523 		 * if request is not enqueued, we disable interrupts
2524 		 * for endpoints, excepting ep0
2525 		 */
2526 		if (hs_ep->index != 0)
2527 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2528 					      hs_ep->dir_in, 0);
2529 		return 0;
2530 	}
2531 
2532 	if (hs_req->req.actual < hs_req->req.length) {
2533 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2534 			hs_ep->index);
2535 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 /**
2542  * dwc2_hsotg_complete_in - complete IN transfer
2543  * @hsotg: The device state.
2544  * @hs_ep: The endpoint that has just completed.
2545  *
2546  * An IN transfer has been completed, update the transfer's state and then
2547  * call the relevant completion routines.
2548  */
2549 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2550 				   struct dwc2_hsotg_ep *hs_ep)
2551 {
2552 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2553 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2554 	int size_left, size_done;
2555 
2556 	if (!hs_req) {
2557 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2558 		return;
2559 	}
2560 
2561 	/* Finish ZLP handling for IN EP0 transactions */
2562 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2563 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2564 
2565 		/*
2566 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2567 		 * changed to IN. Change back to complete OUT transfer request
2568 		 */
2569 		hs_ep->dir_in = 0;
2570 
2571 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2572 		if (hsotg->test_mode) {
2573 			int ret;
2574 
2575 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2576 			if (ret < 0) {
2577 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2578 					hsotg->test_mode);
2579 				dwc2_hsotg_stall_ep0(hsotg);
2580 				return;
2581 			}
2582 		}
2583 		dwc2_hsotg_enqueue_setup(hsotg);
2584 		return;
2585 	}
2586 
2587 	/*
2588 	 * Calculate the size of the transfer by checking how much is left
2589 	 * in the endpoint size register and then working it out from
2590 	 * the amount we loaded for the transfer.
2591 	 *
2592 	 * We do this even for DMA, as the transfer may have incremented
2593 	 * past the end of the buffer (DMA transfers are always 32bit
2594 	 * aligned).
2595 	 */
2596 	if (using_desc_dma(hsotg)) {
2597 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2598 		if (size_left < 0)
2599 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2600 				size_left);
2601 	} else {
2602 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2603 	}
2604 
2605 	size_done = hs_ep->size_loaded - size_left;
2606 	size_done += hs_ep->last_load;
2607 
2608 	if (hs_req->req.actual != size_done)
2609 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2610 			__func__, hs_req->req.actual, size_done);
2611 
2612 	hs_req->req.actual = size_done;
2613 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2614 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2615 
2616 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2617 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2618 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2619 		return;
2620 	}
2621 
2622 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2623 	if (hs_ep->send_zlp) {
2624 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2625 		hs_ep->send_zlp = 0;
2626 		/* transfer will be completed on next complete interrupt */
2627 		return;
2628 	}
2629 
2630 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2631 		/* Move to STATUS OUT */
2632 		dwc2_hsotg_ep0_zlp(hsotg, false);
2633 		return;
2634 	}
2635 
2636 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2637 }
2638 
2639 /**
2640  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2641  * @hsotg: The device state.
2642  * @idx: Index of ep.
2643  * @dir_in: Endpoint direction 1-in 0-out.
2644  *
2645  * Reads for endpoint with given index and direction, by masking
2646  * epint_reg with coresponding mask.
2647  */
2648 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2649 					  unsigned int idx, int dir_in)
2650 {
2651 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2652 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2653 	u32 ints;
2654 	u32 mask;
2655 	u32 diepempmsk;
2656 
2657 	mask = dwc2_readl(hsotg, epmsk_reg);
2658 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2659 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2660 	mask |= DXEPINT_SETUP_RCVD;
2661 
2662 	ints = dwc2_readl(hsotg, epint_reg);
2663 	ints &= mask;
2664 	return ints;
2665 }
2666 
2667 /**
2668  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2669  * @hs_ep: The endpoint on which interrupt is asserted.
2670  *
2671  * This interrupt indicates that the endpoint has been disabled per the
2672  * application's request.
2673  *
2674  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2675  * in case of ISOC completes current request.
2676  *
2677  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2678  * request starts it.
2679  */
2680 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2681 {
2682 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2683 	struct dwc2_hsotg_req *hs_req;
2684 	unsigned char idx = hs_ep->index;
2685 	int dir_in = hs_ep->dir_in;
2686 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2687 	int dctl = dwc2_readl(hsotg, DCTL);
2688 
2689 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2690 
2691 	if (dir_in) {
2692 		int epctl = dwc2_readl(hsotg, epctl_reg);
2693 
2694 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2695 
2696 		if (hs_ep->isochronous) {
2697 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2698 			return;
2699 		}
2700 
2701 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2702 			int dctl = dwc2_readl(hsotg, DCTL);
2703 
2704 			dctl |= DCTL_CGNPINNAK;
2705 			dwc2_writel(hsotg, dctl, DCTL);
2706 		}
2707 		return;
2708 	}
2709 
2710 	if (dctl & DCTL_GOUTNAKSTS) {
2711 		dctl |= DCTL_CGOUTNAK;
2712 		dwc2_writel(hsotg, dctl, DCTL);
2713 	}
2714 
2715 	if (!hs_ep->isochronous)
2716 		return;
2717 
2718 	if (list_empty(&hs_ep->queue)) {
2719 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2720 			__func__, hs_ep);
2721 		return;
2722 	}
2723 
2724 	do {
2725 		hs_req = get_ep_head(hs_ep);
2726 		if (hs_req)
2727 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2728 						    -ENODATA);
2729 		dwc2_gadget_incr_frame_num(hs_ep);
2730 		/* Update current frame number value. */
2731 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2732 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2733 
2734 	dwc2_gadget_start_next_request(hs_ep);
2735 }
2736 
2737 /**
2738  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2739  * @ep: The endpoint on which interrupt is asserted.
2740  *
2741  * This is starting point for ISOC-OUT transfer, synchronization done with
2742  * first out token received from host while corresponding EP is disabled.
2743  *
2744  * Device does not know initial frame in which out token will come. For this
2745  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2746  * getting this interrupt SW starts calculation for next transfer frame.
2747  */
2748 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2749 {
2750 	struct dwc2_hsotg *hsotg = ep->parent;
2751 	int dir_in = ep->dir_in;
2752 	u32 doepmsk;
2753 
2754 	if (dir_in || !ep->isochronous)
2755 		return;
2756 
2757 	if (using_desc_dma(hsotg)) {
2758 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2759 			/* Start first ISO Out */
2760 			ep->target_frame = hsotg->frame_number;
2761 			dwc2_gadget_start_isoc_ddma(ep);
2762 		}
2763 		return;
2764 	}
2765 
2766 	if (ep->interval > 1 &&
2767 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2768 		u32 ctrl;
2769 
2770 		ep->target_frame = hsotg->frame_number;
2771 		dwc2_gadget_incr_frame_num(ep);
2772 
2773 		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2774 		if (ep->target_frame & 0x1)
2775 			ctrl |= DXEPCTL_SETODDFR;
2776 		else
2777 			ctrl |= DXEPCTL_SETEVENFR;
2778 
2779 		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2780 	}
2781 
2782 	dwc2_gadget_start_next_request(ep);
2783 	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2784 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2785 	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2786 }
2787 
2788 /**
2789  * dwc2_gadget_handle_nak - handle NAK interrupt
2790  * @hs_ep: The endpoint on which interrupt is asserted.
2791  *
2792  * This is starting point for ISOC-IN transfer, synchronization done with
2793  * first IN token received from host while corresponding EP is disabled.
2794  *
2795  * Device does not know when first one token will arrive from host. On first
2796  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2797  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2798  * sent in response to that as there was no data in FIFO. SW is basing on this
2799  * interrupt to obtain frame in which token has come and then based on the
2800  * interval calculates next frame for transfer.
2801  */
2802 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2803 {
2804 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2805 	int dir_in = hs_ep->dir_in;
2806 
2807 	if (!dir_in || !hs_ep->isochronous)
2808 		return;
2809 
2810 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2811 
2812 		if (using_desc_dma(hsotg)) {
2813 			hs_ep->target_frame = hsotg->frame_number;
2814 			dwc2_gadget_incr_frame_num(hs_ep);
2815 			dwc2_gadget_start_isoc_ddma(hs_ep);
2816 			return;
2817 		}
2818 
2819 		hs_ep->target_frame = hsotg->frame_number;
2820 		if (hs_ep->interval > 1) {
2821 			u32 ctrl = dwc2_readl(hsotg,
2822 					      DIEPCTL(hs_ep->index));
2823 			if (hs_ep->target_frame & 0x1)
2824 				ctrl |= DXEPCTL_SETODDFR;
2825 			else
2826 				ctrl |= DXEPCTL_SETEVENFR;
2827 
2828 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2829 		}
2830 
2831 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2832 					    get_ep_head(hs_ep), 0);
2833 	}
2834 
2835 	if (!using_desc_dma(hsotg))
2836 		dwc2_gadget_incr_frame_num(hs_ep);
2837 }
2838 
2839 /**
2840  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2841  * @hsotg: The driver state
2842  * @idx: The index for the endpoint (0..15)
2843  * @dir_in: Set if this is an IN endpoint
2844  *
2845  * Process and clear any interrupt pending for an individual endpoint
2846  */
2847 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2848 			     int dir_in)
2849 {
2850 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2851 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2852 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2853 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2854 	u32 ints;
2855 	u32 ctrl;
2856 
2857 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2858 	ctrl = dwc2_readl(hsotg, epctl_reg);
2859 
2860 	/* Clear endpoint interrupts */
2861 	dwc2_writel(hsotg, ints, epint_reg);
2862 
2863 	if (!hs_ep) {
2864 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2865 			__func__, idx, dir_in ? "in" : "out");
2866 		return;
2867 	}
2868 
2869 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2870 		__func__, idx, dir_in ? "in" : "out", ints);
2871 
2872 	/* Don't process XferCompl interrupt if it is a setup packet */
2873 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2874 		ints &= ~DXEPINT_XFERCOMPL;
2875 
2876 	/*
2877 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2878 	 * stage and xfercomplete was generated without SETUP phase done
2879 	 * interrupt. SW should parse received setup packet only after host's
2880 	 * exit from setup phase of control transfer.
2881 	 */
2882 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2883 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2884 		ints &= ~DXEPINT_XFERCOMPL;
2885 
2886 	if (ints & DXEPINT_XFERCOMPL) {
2887 		dev_dbg(hsotg->dev,
2888 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2889 			__func__, dwc2_readl(hsotg, epctl_reg),
2890 			dwc2_readl(hsotg, epsiz_reg));
2891 
2892 		/* In DDMA handle isochronous requests separately */
2893 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2894 			/* XferCompl set along with BNA */
2895 			if (!(ints & DXEPINT_BNAINTR))
2896 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2897 		} else if (dir_in) {
2898 			/*
2899 			 * We get OutDone from the FIFO, so we only
2900 			 * need to look at completing IN requests here
2901 			 * if operating slave mode
2902 			 */
2903 			if (hs_ep->isochronous && hs_ep->interval > 1)
2904 				dwc2_gadget_incr_frame_num(hs_ep);
2905 
2906 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2907 			if (ints & DXEPINT_NAKINTRPT)
2908 				ints &= ~DXEPINT_NAKINTRPT;
2909 
2910 			if (idx == 0 && !hs_ep->req)
2911 				dwc2_hsotg_enqueue_setup(hsotg);
2912 		} else if (using_dma(hsotg)) {
2913 			/*
2914 			 * We're using DMA, we need to fire an OutDone here
2915 			 * as we ignore the RXFIFO.
2916 			 */
2917 			if (hs_ep->isochronous && hs_ep->interval > 1)
2918 				dwc2_gadget_incr_frame_num(hs_ep);
2919 
2920 			dwc2_hsotg_handle_outdone(hsotg, idx);
2921 		}
2922 	}
2923 
2924 	if (ints & DXEPINT_EPDISBLD)
2925 		dwc2_gadget_handle_ep_disabled(hs_ep);
2926 
2927 	if (ints & DXEPINT_OUTTKNEPDIS)
2928 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2929 
2930 	if (ints & DXEPINT_NAKINTRPT)
2931 		dwc2_gadget_handle_nak(hs_ep);
2932 
2933 	if (ints & DXEPINT_AHBERR)
2934 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2935 
2936 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2937 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2938 
2939 		if (using_dma(hsotg) && idx == 0) {
2940 			/*
2941 			 * this is the notification we've received a
2942 			 * setup packet. In non-DMA mode we'd get this
2943 			 * from the RXFIFO, instead we need to process
2944 			 * the setup here.
2945 			 */
2946 
2947 			if (dir_in)
2948 				WARN_ON_ONCE(1);
2949 			else
2950 				dwc2_hsotg_handle_outdone(hsotg, 0);
2951 		}
2952 	}
2953 
2954 	if (ints & DXEPINT_STSPHSERCVD) {
2955 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2956 
2957 		/* Safety check EP0 state when STSPHSERCVD asserted */
2958 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2959 			/* Move to STATUS IN for DDMA */
2960 			if (using_desc_dma(hsotg))
2961 				dwc2_hsotg_ep0_zlp(hsotg, true);
2962 		}
2963 
2964 	}
2965 
2966 	if (ints & DXEPINT_BACK2BACKSETUP)
2967 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2968 
2969 	if (ints & DXEPINT_BNAINTR) {
2970 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2971 		if (hs_ep->isochronous)
2972 			dwc2_gadget_handle_isoc_bna(hs_ep);
2973 	}
2974 
2975 	if (dir_in && !hs_ep->isochronous) {
2976 		/* not sure if this is important, but we'll clear it anyway */
2977 		if (ints & DXEPINT_INTKNTXFEMP) {
2978 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2979 				__func__, idx);
2980 		}
2981 
2982 		/* this probably means something bad is happening */
2983 		if (ints & DXEPINT_INTKNEPMIS) {
2984 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2985 				 __func__, idx);
2986 		}
2987 
2988 		/* FIFO has space or is empty (see GAHBCFG) */
2989 		if (hsotg->dedicated_fifos &&
2990 		    ints & DXEPINT_TXFEMP) {
2991 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2992 				__func__, idx);
2993 			if (!using_dma(hsotg))
2994 				dwc2_hsotg_trytx(hsotg, hs_ep);
2995 		}
2996 	}
2997 }
2998 
2999 /**
3000  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3001  * @hsotg: The device state.
3002  *
3003  * Handle updating the device settings after the enumeration phase has
3004  * been completed.
3005  */
3006 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3007 {
3008 	u32 dsts = dwc2_readl(hsotg, DSTS);
3009 	int ep0_mps = 0, ep_mps = 8;
3010 
3011 	/*
3012 	 * This should signal the finish of the enumeration phase
3013 	 * of the USB handshaking, so we should now know what rate
3014 	 * we connected at.
3015 	 */
3016 
3017 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3018 
3019 	/*
3020 	 * note, since we're limited by the size of transfer on EP0, and
3021 	 * it seems IN transfers must be a even number of packets we do
3022 	 * not advertise a 64byte MPS on EP0.
3023 	 */
3024 
3025 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3026 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3027 	case DSTS_ENUMSPD_FS:
3028 	case DSTS_ENUMSPD_FS48:
3029 		hsotg->gadget.speed = USB_SPEED_FULL;
3030 		ep0_mps = EP0_MPS_LIMIT;
3031 		ep_mps = 1023;
3032 		break;
3033 
3034 	case DSTS_ENUMSPD_HS:
3035 		hsotg->gadget.speed = USB_SPEED_HIGH;
3036 		ep0_mps = EP0_MPS_LIMIT;
3037 		ep_mps = 1024;
3038 		break;
3039 
3040 	case DSTS_ENUMSPD_LS:
3041 		hsotg->gadget.speed = USB_SPEED_LOW;
3042 		ep0_mps = 8;
3043 		ep_mps = 8;
3044 		/*
3045 		 * note, we don't actually support LS in this driver at the
3046 		 * moment, and the documentation seems to imply that it isn't
3047 		 * supported by the PHYs on some of the devices.
3048 		 */
3049 		break;
3050 	}
3051 	dev_info(hsotg->dev, "new device is %s\n",
3052 		 usb_speed_string(hsotg->gadget.speed));
3053 
3054 	/*
3055 	 * we should now know the maximum packet size for an
3056 	 * endpoint, so set the endpoints to a default value.
3057 	 */
3058 
3059 	if (ep0_mps) {
3060 		int i;
3061 		/* Initialize ep0 for both in and out directions */
3062 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3063 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3064 		for (i = 1; i < hsotg->num_of_eps; i++) {
3065 			if (hsotg->eps_in[i])
3066 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3067 							    0, 1);
3068 			if (hsotg->eps_out[i])
3069 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3070 							    0, 0);
3071 		}
3072 	}
3073 
3074 	/* ensure after enumeration our EP0 is active */
3075 
3076 	dwc2_hsotg_enqueue_setup(hsotg);
3077 
3078 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3079 		dwc2_readl(hsotg, DIEPCTL0),
3080 		dwc2_readl(hsotg, DOEPCTL0));
3081 }
3082 
3083 /**
3084  * kill_all_requests - remove all requests from the endpoint's queue
3085  * @hsotg: The device state.
3086  * @ep: The endpoint the requests may be on.
3087  * @result: The result code to use.
3088  *
3089  * Go through the requests on the given endpoint and mark them
3090  * completed with the given result code.
3091  */
3092 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3093 			      struct dwc2_hsotg_ep *ep,
3094 			      int result)
3095 {
3096 	struct dwc2_hsotg_req *req, *treq;
3097 	unsigned int size;
3098 
3099 	ep->req = NULL;
3100 
3101 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3102 		dwc2_hsotg_complete_request(hsotg, ep, req,
3103 					    result);
3104 
3105 	if (!hsotg->dedicated_fifos)
3106 		return;
3107 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3108 	if (size < ep->fifo_size)
3109 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3110 }
3111 
3112 /**
3113  * dwc2_hsotg_disconnect - disconnect service
3114  * @hsotg: The device state.
3115  *
3116  * The device has been disconnected. Remove all current
3117  * transactions and signal the gadget driver that this
3118  * has happened.
3119  */
3120 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3121 {
3122 	unsigned int ep;
3123 
3124 	if (!hsotg->connected)
3125 		return;
3126 
3127 	hsotg->connected = 0;
3128 	hsotg->test_mode = 0;
3129 
3130 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3131 		if (hsotg->eps_in[ep])
3132 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3133 					  -ESHUTDOWN);
3134 		if (hsotg->eps_out[ep])
3135 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3136 					  -ESHUTDOWN);
3137 	}
3138 
3139 	call_gadget(hsotg, disconnect);
3140 	hsotg->lx_state = DWC2_L3;
3141 
3142 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3143 }
3144 
3145 /**
3146  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3147  * @hsotg: The device state:
3148  * @periodic: True if this is a periodic FIFO interrupt
3149  */
3150 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3151 {
3152 	struct dwc2_hsotg_ep *ep;
3153 	int epno, ret;
3154 
3155 	/* look through for any more data to transmit */
3156 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3157 		ep = index_to_ep(hsotg, epno, 1);
3158 
3159 		if (!ep)
3160 			continue;
3161 
3162 		if (!ep->dir_in)
3163 			continue;
3164 
3165 		if ((periodic && !ep->periodic) ||
3166 		    (!periodic && ep->periodic))
3167 			continue;
3168 
3169 		ret = dwc2_hsotg_trytx(hsotg, ep);
3170 		if (ret < 0)
3171 			break;
3172 	}
3173 }
3174 
3175 /* IRQ flags which will trigger a retry around the IRQ loop */
3176 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3177 			GINTSTS_PTXFEMP |  \
3178 			GINTSTS_RXFLVL)
3179 
3180 /**
3181  * dwc2_hsotg_core_init - issue softreset to the core
3182  * @hsotg: The device state
3183  * @is_usb_reset: Usb resetting flag
3184  *
3185  * Issue a soft reset to the core, and await the core finishing it.
3186  */
3187 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3188 				       bool is_usb_reset)
3189 {
3190 	u32 intmsk;
3191 	u32 val;
3192 	u32 usbcfg;
3193 	u32 dcfg = 0;
3194 
3195 	/* Kill any ep0 requests as controller will be reinitialized */
3196 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3197 
3198 	if (!is_usb_reset)
3199 		if (dwc2_core_reset(hsotg, true))
3200 			return;
3201 
3202 	/*
3203 	 * we must now enable ep0 ready for host detection and then
3204 	 * set configuration.
3205 	 */
3206 
3207 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3208 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3209 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3210 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3211 
3212 	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3213 	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3214 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3215 		/* FS/LS Dedicated Transceiver Interface */
3216 		usbcfg |= GUSBCFG_PHYSEL;
3217 	} else {
3218 		/* set the PLL on, remove the HNP/SRP and set the PHY */
3219 		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3220 		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3221 			(val << GUSBCFG_USBTRDTIM_SHIFT);
3222 	}
3223 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
3224 
3225 	dwc2_hsotg_init_fifo(hsotg);
3226 
3227 	if (!is_usb_reset)
3228 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3229 
3230 	dcfg |= DCFG_EPMISCNT(1);
3231 
3232 	switch (hsotg->params.speed) {
3233 	case DWC2_SPEED_PARAM_LOW:
3234 		dcfg |= DCFG_DEVSPD_LS;
3235 		break;
3236 	case DWC2_SPEED_PARAM_FULL:
3237 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3238 			dcfg |= DCFG_DEVSPD_FS48;
3239 		else
3240 			dcfg |= DCFG_DEVSPD_FS;
3241 		break;
3242 	default:
3243 		dcfg |= DCFG_DEVSPD_HS;
3244 	}
3245 
3246 	if (hsotg->params.ipg_isoc_en)
3247 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3248 
3249 	dwc2_writel(hsotg, dcfg,  DCFG);
3250 
3251 	/* Clear any pending OTG interrupts */
3252 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3253 
3254 	/* Clear any pending interrupts */
3255 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3256 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3257 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3258 		GINTSTS_USBRST | GINTSTS_RESETDET |
3259 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3260 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3261 		GINTSTS_LPMTRANRCVD;
3262 
3263 	if (!using_desc_dma(hsotg))
3264 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3265 
3266 	if (!hsotg->params.external_id_pin_ctl)
3267 		intmsk |= GINTSTS_CONIDSTSCHNG;
3268 
3269 	dwc2_writel(hsotg, intmsk, GINTMSK);
3270 
3271 	if (using_dma(hsotg)) {
3272 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3273 			    hsotg->params.ahbcfg,
3274 			    GAHBCFG);
3275 
3276 		/* Set DDMA mode support in the core if needed */
3277 		if (using_desc_dma(hsotg))
3278 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3279 
3280 	} else {
3281 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3282 						(GAHBCFG_NP_TXF_EMP_LVL |
3283 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3284 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3285 	}
3286 
3287 	/*
3288 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3289 	 * when we have no data to transfer. Otherwise we get being flooded by
3290 	 * interrupts.
3291 	 */
3292 
3293 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3294 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3295 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3296 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3297 		DIEPMSK);
3298 
3299 	/*
3300 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3301 	 * DMA mode we may need this and StsPhseRcvd.
3302 	 */
3303 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3304 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3305 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3306 		DOEPMSK_SETUPMSK,
3307 		DOEPMSK);
3308 
3309 	/* Enable BNA interrupt for DDMA */
3310 	if (using_desc_dma(hsotg)) {
3311 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3312 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3313 	}
3314 
3315 	dwc2_writel(hsotg, 0, DAINTMSK);
3316 
3317 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3318 		dwc2_readl(hsotg, DIEPCTL0),
3319 		dwc2_readl(hsotg, DOEPCTL0));
3320 
3321 	/* enable in and out endpoint interrupts */
3322 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3323 
3324 	/*
3325 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3326 	 * the data. In DMA mode, we get events from the FIFO but also
3327 	 * things we cannot process, so do not use it.
3328 	 */
3329 	if (!using_dma(hsotg))
3330 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3331 
3332 	/* Enable interrupts for EP0 in and out */
3333 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3334 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3335 
3336 	if (!is_usb_reset) {
3337 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3338 		udelay(10);  /* see openiboot */
3339 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3340 	}
3341 
3342 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3343 
3344 	/*
3345 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3346 	 * writing to the EPCTL register..
3347 	 */
3348 
3349 	/* set to read 1 8byte packet */
3350 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3351 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3352 
3353 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3354 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3355 	       DXEPCTL_USBACTEP,
3356 	       DOEPCTL0);
3357 
3358 	/* enable, but don't activate EP0in */
3359 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3360 	       DXEPCTL_USBACTEP, DIEPCTL0);
3361 
3362 	/* clear global NAKs */
3363 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3364 	if (!is_usb_reset)
3365 		val |= DCTL_SFTDISCON;
3366 	dwc2_set_bit(hsotg, DCTL, val);
3367 
3368 	/* configure the core to support LPM */
3369 	dwc2_gadget_init_lpm(hsotg);
3370 
3371 	/* must be at-least 3ms to allow bus to see disconnect */
3372 	mdelay(3);
3373 
3374 	hsotg->lx_state = DWC2_L0;
3375 
3376 	dwc2_hsotg_enqueue_setup(hsotg);
3377 
3378 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3379 		dwc2_readl(hsotg, DIEPCTL0),
3380 		dwc2_readl(hsotg, DOEPCTL0));
3381 }
3382 
3383 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3384 {
3385 	/* set the soft-disconnect bit */
3386 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3387 }
3388 
3389 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3390 {
3391 	/* remove the soft-disconnect and let's go */
3392 	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3393 }
3394 
3395 /**
3396  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3397  * @hsotg: The device state:
3398  *
3399  * This interrupt indicates one of the following conditions occurred while
3400  * transmitting an ISOC transaction.
3401  * - Corrupted IN Token for ISOC EP.
3402  * - Packet not complete in FIFO.
3403  *
3404  * The following actions will be taken:
3405  * - Determine the EP
3406  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3407  */
3408 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3409 {
3410 	struct dwc2_hsotg_ep *hs_ep;
3411 	u32 epctrl;
3412 	u32 daintmsk;
3413 	u32 idx;
3414 
3415 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3416 
3417 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3418 
3419 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3420 		hs_ep = hsotg->eps_in[idx];
3421 		/* Proceed only unmasked ISOC EPs */
3422 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3423 			continue;
3424 
3425 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3426 		if ((epctrl & DXEPCTL_EPENA) &&
3427 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3428 			epctrl |= DXEPCTL_SNAK;
3429 			epctrl |= DXEPCTL_EPDIS;
3430 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3431 		}
3432 	}
3433 
3434 	/* Clear interrupt */
3435 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3436 }
3437 
3438 /**
3439  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3440  * @hsotg: The device state:
3441  *
3442  * This interrupt indicates one of the following conditions occurred while
3443  * transmitting an ISOC transaction.
3444  * - Corrupted OUT Token for ISOC EP.
3445  * - Packet not complete in FIFO.
3446  *
3447  * The following actions will be taken:
3448  * - Determine the EP
3449  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3450  */
3451 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3452 {
3453 	u32 gintsts;
3454 	u32 gintmsk;
3455 	u32 daintmsk;
3456 	u32 epctrl;
3457 	struct dwc2_hsotg_ep *hs_ep;
3458 	int idx;
3459 
3460 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3461 
3462 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3463 	daintmsk >>= DAINT_OUTEP_SHIFT;
3464 
3465 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3466 		hs_ep = hsotg->eps_out[idx];
3467 		/* Proceed only unmasked ISOC EPs */
3468 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3469 			continue;
3470 
3471 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3472 		if ((epctrl & DXEPCTL_EPENA) &&
3473 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3474 			/* Unmask GOUTNAKEFF interrupt */
3475 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3476 			gintmsk |= GINTSTS_GOUTNAKEFF;
3477 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3478 
3479 			gintsts = dwc2_readl(hsotg, GINTSTS);
3480 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3481 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3482 				break;
3483 			}
3484 		}
3485 	}
3486 
3487 	/* Clear interrupt */
3488 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3489 }
3490 
3491 /**
3492  * dwc2_hsotg_irq - handle device interrupt
3493  * @irq: The IRQ number triggered
3494  * @pw: The pw value when registered the handler.
3495  */
3496 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3497 {
3498 	struct dwc2_hsotg *hsotg = pw;
3499 	int retry_count = 8;
3500 	u32 gintsts;
3501 	u32 gintmsk;
3502 
3503 	if (!dwc2_is_device_mode(hsotg))
3504 		return IRQ_NONE;
3505 
3506 	spin_lock(&hsotg->lock);
3507 irq_retry:
3508 	gintsts = dwc2_readl(hsotg, GINTSTS);
3509 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3510 
3511 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3512 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3513 
3514 	gintsts &= gintmsk;
3515 
3516 	if (gintsts & GINTSTS_RESETDET) {
3517 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3518 
3519 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3520 
3521 		/* This event must be used only if controller is suspended */
3522 		if (hsotg->lx_state == DWC2_L2) {
3523 			dwc2_exit_partial_power_down(hsotg, true);
3524 			hsotg->lx_state = DWC2_L0;
3525 		}
3526 	}
3527 
3528 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3529 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3530 		u32 connected = hsotg->connected;
3531 
3532 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3533 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3534 			dwc2_readl(hsotg, GNPTXSTS));
3535 
3536 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3537 
3538 		/* Report disconnection if it is not already done. */
3539 		dwc2_hsotg_disconnect(hsotg);
3540 
3541 		/* Reset device address to zero */
3542 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3543 
3544 		if (usb_status & GOTGCTL_BSESVLD && connected)
3545 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3546 	}
3547 
3548 	if (gintsts & GINTSTS_ENUMDONE) {
3549 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3550 
3551 		dwc2_hsotg_irq_enumdone(hsotg);
3552 	}
3553 
3554 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3555 		u32 daint = dwc2_readl(hsotg, DAINT);
3556 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3557 		u32 daint_out, daint_in;
3558 		int ep;
3559 
3560 		daint &= daintmsk;
3561 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3562 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3563 
3564 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3565 
3566 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3567 						ep++, daint_out >>= 1) {
3568 			if (daint_out & 1)
3569 				dwc2_hsotg_epint(hsotg, ep, 0);
3570 		}
3571 
3572 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3573 						ep++, daint_in >>= 1) {
3574 			if (daint_in & 1)
3575 				dwc2_hsotg_epint(hsotg, ep, 1);
3576 		}
3577 	}
3578 
3579 	/* check both FIFOs */
3580 
3581 	if (gintsts & GINTSTS_NPTXFEMP) {
3582 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3583 
3584 		/*
3585 		 * Disable the interrupt to stop it happening again
3586 		 * unless one of these endpoint routines decides that
3587 		 * it needs re-enabling
3588 		 */
3589 
3590 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3591 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3592 	}
3593 
3594 	if (gintsts & GINTSTS_PTXFEMP) {
3595 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3596 
3597 		/* See note in GINTSTS_NPTxFEmp */
3598 
3599 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3600 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3601 	}
3602 
3603 	if (gintsts & GINTSTS_RXFLVL) {
3604 		/*
3605 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3606 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3607 		 * set.
3608 		 */
3609 
3610 		dwc2_hsotg_handle_rx(hsotg);
3611 	}
3612 
3613 	if (gintsts & GINTSTS_ERLYSUSP) {
3614 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3615 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3616 	}
3617 
3618 	/*
3619 	 * these next two seem to crop-up occasionally causing the core
3620 	 * to shutdown the USB transfer, so try clearing them and logging
3621 	 * the occurrence.
3622 	 */
3623 
3624 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3625 		u8 idx;
3626 		u32 epctrl;
3627 		u32 gintmsk;
3628 		u32 daintmsk;
3629 		struct dwc2_hsotg_ep *hs_ep;
3630 
3631 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3632 		daintmsk >>= DAINT_OUTEP_SHIFT;
3633 		/* Mask this interrupt */
3634 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3635 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3636 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3637 
3638 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3639 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3640 			hs_ep = hsotg->eps_out[idx];
3641 			/* Proceed only unmasked ISOC EPs */
3642 			if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3643 				continue;
3644 
3645 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3646 
3647 			if (epctrl & DXEPCTL_EPENA) {
3648 				epctrl |= DXEPCTL_SNAK;
3649 				epctrl |= DXEPCTL_EPDIS;
3650 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3651 			}
3652 		}
3653 
3654 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3655 	}
3656 
3657 	if (gintsts & GINTSTS_GINNAKEFF) {
3658 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3659 
3660 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3661 
3662 		dwc2_hsotg_dump(hsotg);
3663 	}
3664 
3665 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3666 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3667 
3668 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3669 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3670 
3671 	/*
3672 	 * if we've had fifo events, we should try and go around the
3673 	 * loop again to see if there's any point in returning yet.
3674 	 */
3675 
3676 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3677 		goto irq_retry;
3678 
3679 	spin_unlock(&hsotg->lock);
3680 
3681 	return IRQ_HANDLED;
3682 }
3683 
3684 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3685 				   struct dwc2_hsotg_ep *hs_ep)
3686 {
3687 	u32 epctrl_reg;
3688 	u32 epint_reg;
3689 
3690 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3691 		DOEPCTL(hs_ep->index);
3692 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3693 		DOEPINT(hs_ep->index);
3694 
3695 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3696 		hs_ep->name);
3697 
3698 	if (hs_ep->dir_in) {
3699 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3700 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3701 			/* Wait for Nak effect */
3702 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3703 						    DXEPINT_INEPNAKEFF, 100))
3704 				dev_warn(hsotg->dev,
3705 					 "%s: timeout DIEPINT.NAKEFF\n",
3706 					 __func__);
3707 		} else {
3708 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3709 			/* Wait for Nak effect */
3710 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3711 						    GINTSTS_GINNAKEFF, 100))
3712 				dev_warn(hsotg->dev,
3713 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3714 					 __func__);
3715 		}
3716 	} else {
3717 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3718 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3719 
3720 		/* Wait for global nak to take effect */
3721 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3722 					    GINTSTS_GOUTNAKEFF, 100))
3723 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3724 				 __func__);
3725 	}
3726 
3727 	/* Disable ep */
3728 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3729 
3730 	/* Wait for ep to be disabled */
3731 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3732 		dev_warn(hsotg->dev,
3733 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3734 
3735 	/* Clear EPDISBLD interrupt */
3736 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3737 
3738 	if (hs_ep->dir_in) {
3739 		unsigned short fifo_index;
3740 
3741 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3742 			fifo_index = hs_ep->fifo_index;
3743 		else
3744 			fifo_index = 0;
3745 
3746 		/* Flush TX FIFO */
3747 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3748 
3749 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3750 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3751 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3752 
3753 	} else {
3754 		/* Remove global NAKs */
3755 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3756 	}
3757 }
3758 
3759 /**
3760  * dwc2_hsotg_ep_enable - enable the given endpoint
3761  * @ep: The USB endpint to configure
3762  * @desc: The USB endpoint descriptor to configure with.
3763  *
3764  * This is called from the USB gadget code's usb_ep_enable().
3765  */
3766 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3767 				const struct usb_endpoint_descriptor *desc)
3768 {
3769 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3770 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3771 	unsigned long flags;
3772 	unsigned int index = hs_ep->index;
3773 	u32 epctrl_reg;
3774 	u32 epctrl;
3775 	u32 mps;
3776 	u32 mc;
3777 	u32 mask;
3778 	unsigned int dir_in;
3779 	unsigned int i, val, size;
3780 	int ret = 0;
3781 	unsigned char ep_type;
3782 
3783 	dev_dbg(hsotg->dev,
3784 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3785 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3786 		desc->wMaxPacketSize, desc->bInterval);
3787 
3788 	/* not to be called for EP0 */
3789 	if (index == 0) {
3790 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3791 		return -EINVAL;
3792 	}
3793 
3794 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3795 	if (dir_in != hs_ep->dir_in) {
3796 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3797 		return -EINVAL;
3798 	}
3799 
3800 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3801 	mps = usb_endpoint_maxp(desc);
3802 	mc = usb_endpoint_maxp_mult(desc);
3803 
3804 	/* ISOC IN in DDMA supported bInterval up to 10 */
3805 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3806 	    dir_in && desc->bInterval > 10) {
3807 		dev_err(hsotg->dev,
3808 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3809 		return -EINVAL;
3810 	}
3811 
3812 	/* High bandwidth ISOC OUT in DDMA not supported */
3813 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3814 	    !dir_in && mc > 1) {
3815 		dev_err(hsotg->dev,
3816 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3817 		return -EINVAL;
3818 	}
3819 
3820 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3821 
3822 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3823 	epctrl = dwc2_readl(hsotg, epctrl_reg);
3824 
3825 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3826 		__func__, epctrl, epctrl_reg);
3827 
3828 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3829 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3830 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3831 			MAX_DMA_DESC_NUM_GENERIC *
3832 			sizeof(struct dwc2_dma_desc),
3833 			&hs_ep->desc_list_dma, GFP_ATOMIC);
3834 		if (!hs_ep->desc_list) {
3835 			ret = -ENOMEM;
3836 			goto error2;
3837 		}
3838 	}
3839 
3840 	spin_lock_irqsave(&hsotg->lock, flags);
3841 
3842 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3843 	epctrl |= DXEPCTL_MPS(mps);
3844 
3845 	/*
3846 	 * mark the endpoint as active, otherwise the core may ignore
3847 	 * transactions entirely for this endpoint
3848 	 */
3849 	epctrl |= DXEPCTL_USBACTEP;
3850 
3851 	/* update the endpoint state */
3852 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3853 
3854 	/* default, set to non-periodic */
3855 	hs_ep->isochronous = 0;
3856 	hs_ep->periodic = 0;
3857 	hs_ep->halted = 0;
3858 	hs_ep->interval = desc->bInterval;
3859 
3860 	switch (ep_type) {
3861 	case USB_ENDPOINT_XFER_ISOC:
3862 		epctrl |= DXEPCTL_EPTYPE_ISO;
3863 		epctrl |= DXEPCTL_SETEVENFR;
3864 		hs_ep->isochronous = 1;
3865 		hs_ep->interval = 1 << (desc->bInterval - 1);
3866 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3867 		hs_ep->next_desc = 0;
3868 		hs_ep->compl_desc = 0;
3869 		if (dir_in) {
3870 			hs_ep->periodic = 1;
3871 			mask = dwc2_readl(hsotg, DIEPMSK);
3872 			mask |= DIEPMSK_NAKMSK;
3873 			dwc2_writel(hsotg, mask, DIEPMSK);
3874 		} else {
3875 			mask = dwc2_readl(hsotg, DOEPMSK);
3876 			mask |= DOEPMSK_OUTTKNEPDISMSK;
3877 			dwc2_writel(hsotg, mask, DOEPMSK);
3878 		}
3879 		break;
3880 
3881 	case USB_ENDPOINT_XFER_BULK:
3882 		epctrl |= DXEPCTL_EPTYPE_BULK;
3883 		break;
3884 
3885 	case USB_ENDPOINT_XFER_INT:
3886 		if (dir_in)
3887 			hs_ep->periodic = 1;
3888 
3889 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3890 			hs_ep->interval = 1 << (desc->bInterval - 1);
3891 
3892 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3893 		break;
3894 
3895 	case USB_ENDPOINT_XFER_CONTROL:
3896 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3897 		break;
3898 	}
3899 
3900 	/*
3901 	 * if the hardware has dedicated fifos, we must give each IN EP
3902 	 * a unique tx-fifo even if it is non-periodic.
3903 	 */
3904 	if (dir_in && hsotg->dedicated_fifos) {
3905 		u32 fifo_index = 0;
3906 		u32 fifo_size = UINT_MAX;
3907 
3908 		size = hs_ep->ep.maxpacket * hs_ep->mc;
3909 		for (i = 1; i < hsotg->num_of_eps; ++i) {
3910 			if (hsotg->fifo_map & (1 << i))
3911 				continue;
3912 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
3913 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3914 			if (val < size)
3915 				continue;
3916 			/* Search for smallest acceptable fifo */
3917 			if (val < fifo_size) {
3918 				fifo_size = val;
3919 				fifo_index = i;
3920 			}
3921 		}
3922 		if (!fifo_index) {
3923 			dev_err(hsotg->dev,
3924 				"%s: No suitable fifo found\n", __func__);
3925 			ret = -ENOMEM;
3926 			goto error1;
3927 		}
3928 		hsotg->fifo_map |= 1 << fifo_index;
3929 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3930 		hs_ep->fifo_index = fifo_index;
3931 		hs_ep->fifo_size = fifo_size;
3932 	}
3933 
3934 	/* for non control endpoints, set PID to D0 */
3935 	if (index && !hs_ep->isochronous)
3936 		epctrl |= DXEPCTL_SETD0PID;
3937 
3938 	/* WA for Full speed ISOC IN in DDMA mode.
3939 	 * By Clear NAK status of EP, core will send ZLP
3940 	 * to IN token and assert NAK interrupt relying
3941 	 * on TxFIFO status only
3942 	 */
3943 
3944 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
3945 	    hs_ep->isochronous && dir_in) {
3946 		/* The WA applies only to core versions from 2.72a
3947 		 * to 4.00a (including both). Also for FS_IOT_1.00a
3948 		 * and HS_IOT_1.00a.
3949 		 */
3950 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
3951 
3952 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
3953 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
3954 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
3955 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
3956 			epctrl |= DXEPCTL_CNAK;
3957 	}
3958 
3959 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3960 		__func__, epctrl);
3961 
3962 	dwc2_writel(hsotg, epctrl, epctrl_reg);
3963 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3964 		__func__, dwc2_readl(hsotg, epctrl_reg));
3965 
3966 	/* enable the endpoint interrupt */
3967 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3968 
3969 error1:
3970 	spin_unlock_irqrestore(&hsotg->lock, flags);
3971 
3972 error2:
3973 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3974 		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3975 			sizeof(struct dwc2_dma_desc),
3976 			hs_ep->desc_list, hs_ep->desc_list_dma);
3977 		hs_ep->desc_list = NULL;
3978 	}
3979 
3980 	return ret;
3981 }
3982 
3983 /**
3984  * dwc2_hsotg_ep_disable - disable given endpoint
3985  * @ep: The endpoint to disable.
3986  */
3987 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3988 {
3989 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3990 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3991 	int dir_in = hs_ep->dir_in;
3992 	int index = hs_ep->index;
3993 	unsigned long flags;
3994 	u32 epctrl_reg;
3995 	u32 ctrl;
3996 
3997 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3998 
3999 	if (ep == &hsotg->eps_out[0]->ep) {
4000 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4001 		return -EINVAL;
4002 	}
4003 
4004 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4005 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4006 		return -EINVAL;
4007 	}
4008 
4009 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4010 
4011 	spin_lock_irqsave(&hsotg->lock, flags);
4012 
4013 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4014 
4015 	if (ctrl & DXEPCTL_EPENA)
4016 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4017 
4018 	ctrl &= ~DXEPCTL_EPENA;
4019 	ctrl &= ~DXEPCTL_USBACTEP;
4020 	ctrl |= DXEPCTL_SNAK;
4021 
4022 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4023 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4024 
4025 	/* disable endpoint interrupts */
4026 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4027 
4028 	/* terminate all requests with shutdown */
4029 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4030 
4031 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4032 	hs_ep->fifo_index = 0;
4033 	hs_ep->fifo_size = 0;
4034 
4035 	spin_unlock_irqrestore(&hsotg->lock, flags);
4036 	return 0;
4037 }
4038 
4039 /**
4040  * on_list - check request is on the given endpoint
4041  * @ep: The endpoint to check.
4042  * @test: The request to test if it is on the endpoint.
4043  */
4044 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4045 {
4046 	struct dwc2_hsotg_req *req, *treq;
4047 
4048 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4049 		if (req == test)
4050 			return true;
4051 	}
4052 
4053 	return false;
4054 }
4055 
4056 /**
4057  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4058  * @ep: The endpoint to dequeue.
4059  * @req: The request to be removed from a queue.
4060  */
4061 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4062 {
4063 	struct dwc2_hsotg_req *hs_req = our_req(req);
4064 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4065 	struct dwc2_hsotg *hs = hs_ep->parent;
4066 	unsigned long flags;
4067 
4068 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4069 
4070 	spin_lock_irqsave(&hs->lock, flags);
4071 
4072 	if (!on_list(hs_ep, hs_req)) {
4073 		spin_unlock_irqrestore(&hs->lock, flags);
4074 		return -EINVAL;
4075 	}
4076 
4077 	/* Dequeue already started request */
4078 	if (req == &hs_ep->req->req)
4079 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4080 
4081 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4082 	spin_unlock_irqrestore(&hs->lock, flags);
4083 
4084 	return 0;
4085 }
4086 
4087 /**
4088  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4089  * @ep: The endpoint to set halt.
4090  * @value: Set or unset the halt.
4091  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4092  *       the endpoint is busy processing requests.
4093  *
4094  * We need to stall the endpoint immediately if request comes from set_feature
4095  * protocol command handler.
4096  */
4097 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4098 {
4099 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4100 	struct dwc2_hsotg *hs = hs_ep->parent;
4101 	int index = hs_ep->index;
4102 	u32 epreg;
4103 	u32 epctl;
4104 	u32 xfertype;
4105 
4106 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4107 
4108 	if (index == 0) {
4109 		if (value)
4110 			dwc2_hsotg_stall_ep0(hs);
4111 		else
4112 			dev_warn(hs->dev,
4113 				 "%s: can't clear halt on ep0\n", __func__);
4114 		return 0;
4115 	}
4116 
4117 	if (hs_ep->isochronous) {
4118 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4119 		return -EINVAL;
4120 	}
4121 
4122 	if (!now && value && !list_empty(&hs_ep->queue)) {
4123 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4124 			ep->name);
4125 		return -EAGAIN;
4126 	}
4127 
4128 	if (hs_ep->dir_in) {
4129 		epreg = DIEPCTL(index);
4130 		epctl = dwc2_readl(hs, epreg);
4131 
4132 		if (value) {
4133 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4134 			if (epctl & DXEPCTL_EPENA)
4135 				epctl |= DXEPCTL_EPDIS;
4136 		} else {
4137 			epctl &= ~DXEPCTL_STALL;
4138 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4139 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4140 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4141 				epctl |= DXEPCTL_SETD0PID;
4142 		}
4143 		dwc2_writel(hs, epctl, epreg);
4144 	} else {
4145 		epreg = DOEPCTL(index);
4146 		epctl = dwc2_readl(hs, epreg);
4147 
4148 		if (value) {
4149 			epctl |= DXEPCTL_STALL;
4150 		} else {
4151 			epctl &= ~DXEPCTL_STALL;
4152 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4153 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4154 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4155 				epctl |= DXEPCTL_SETD0PID;
4156 		}
4157 		dwc2_writel(hs, epctl, epreg);
4158 	}
4159 
4160 	hs_ep->halted = value;
4161 
4162 	return 0;
4163 }
4164 
4165 /**
4166  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4167  * @ep: The endpoint to set halt.
4168  * @value: Set or unset the halt.
4169  */
4170 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4171 {
4172 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4173 	struct dwc2_hsotg *hs = hs_ep->parent;
4174 	unsigned long flags = 0;
4175 	int ret = 0;
4176 
4177 	spin_lock_irqsave(&hs->lock, flags);
4178 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4179 	spin_unlock_irqrestore(&hs->lock, flags);
4180 
4181 	return ret;
4182 }
4183 
4184 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4185 	.enable		= dwc2_hsotg_ep_enable,
4186 	.disable	= dwc2_hsotg_ep_disable,
4187 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4188 	.free_request	= dwc2_hsotg_ep_free_request,
4189 	.queue		= dwc2_hsotg_ep_queue_lock,
4190 	.dequeue	= dwc2_hsotg_ep_dequeue,
4191 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4192 	/* note, don't believe we have any call for the fifo routines */
4193 };
4194 
4195 /**
4196  * dwc2_hsotg_init - initialize the usb core
4197  * @hsotg: The driver state
4198  */
4199 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4200 {
4201 	u32 trdtim;
4202 	u32 usbcfg;
4203 	/* unmask subset of endpoint interrupts */
4204 
4205 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4206 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4207 		    DIEPMSK);
4208 
4209 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4210 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4211 		    DOEPMSK);
4212 
4213 	dwc2_writel(hsotg, 0, DAINTMSK);
4214 
4215 	/* Be in disconnected state until gadget is registered */
4216 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4217 
4218 	/* setup fifos */
4219 
4220 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4221 		dwc2_readl(hsotg, GRXFSIZ),
4222 		dwc2_readl(hsotg, GNPTXFSIZ));
4223 
4224 	dwc2_hsotg_init_fifo(hsotg);
4225 
4226 	/* keep other bits untouched (so e.g. forced modes are not lost) */
4227 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
4228 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4229 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4230 
4231 	/* set the PLL on, remove the HNP/SRP and set the PHY */
4232 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4233 	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4234 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4235 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
4236 
4237 	if (using_dma(hsotg))
4238 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4239 }
4240 
4241 /**
4242  * dwc2_hsotg_udc_start - prepare the udc for work
4243  * @gadget: The usb gadget state
4244  * @driver: The usb gadget driver
4245  *
4246  * Perform initialization to prepare udc device and driver
4247  * to work.
4248  */
4249 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4250 				struct usb_gadget_driver *driver)
4251 {
4252 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4253 	unsigned long flags;
4254 	int ret;
4255 
4256 	if (!hsotg) {
4257 		pr_err("%s: called with no device\n", __func__);
4258 		return -ENODEV;
4259 	}
4260 
4261 	if (!driver) {
4262 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4263 		return -EINVAL;
4264 	}
4265 
4266 	if (driver->max_speed < USB_SPEED_FULL)
4267 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4268 
4269 	if (!driver->setup) {
4270 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4271 		return -EINVAL;
4272 	}
4273 
4274 	WARN_ON(hsotg->driver);
4275 
4276 	driver->driver.bus = NULL;
4277 	hsotg->driver = driver;
4278 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4279 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4280 
4281 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4282 		ret = dwc2_lowlevel_hw_enable(hsotg);
4283 		if (ret)
4284 			goto err;
4285 	}
4286 
4287 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4288 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4289 
4290 	spin_lock_irqsave(&hsotg->lock, flags);
4291 	if (dwc2_hw_is_device(hsotg)) {
4292 		dwc2_hsotg_init(hsotg);
4293 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4294 	}
4295 
4296 	hsotg->enabled = 0;
4297 	spin_unlock_irqrestore(&hsotg->lock, flags);
4298 
4299 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4300 
4301 	return 0;
4302 
4303 err:
4304 	hsotg->driver = NULL;
4305 	return ret;
4306 }
4307 
4308 /**
4309  * dwc2_hsotg_udc_stop - stop the udc
4310  * @gadget: The usb gadget state
4311  *
4312  * Stop udc hw block and stay tunned for future transmissions
4313  */
4314 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4315 {
4316 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4317 	unsigned long flags = 0;
4318 	int ep;
4319 
4320 	if (!hsotg)
4321 		return -ENODEV;
4322 
4323 	/* all endpoints should be shutdown */
4324 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4325 		if (hsotg->eps_in[ep])
4326 			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4327 		if (hsotg->eps_out[ep])
4328 			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4329 	}
4330 
4331 	spin_lock_irqsave(&hsotg->lock, flags);
4332 
4333 	hsotg->driver = NULL;
4334 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4335 	hsotg->enabled = 0;
4336 
4337 	spin_unlock_irqrestore(&hsotg->lock, flags);
4338 
4339 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4340 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4341 
4342 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4343 		dwc2_lowlevel_hw_disable(hsotg);
4344 
4345 	return 0;
4346 }
4347 
4348 /**
4349  * dwc2_hsotg_gadget_getframe - read the frame number
4350  * @gadget: The usb gadget state
4351  *
4352  * Read the {micro} frame number
4353  */
4354 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4355 {
4356 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4357 }
4358 
4359 /**
4360  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4361  * @gadget: The usb gadget state
4362  * @is_on: Current state of the USB PHY
4363  *
4364  * Connect/Disconnect the USB PHY pullup
4365  */
4366 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4367 {
4368 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4369 	unsigned long flags = 0;
4370 
4371 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4372 		hsotg->op_state);
4373 
4374 	/* Don't modify pullup state while in host mode */
4375 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4376 		hsotg->enabled = is_on;
4377 		return 0;
4378 	}
4379 
4380 	spin_lock_irqsave(&hsotg->lock, flags);
4381 	if (is_on) {
4382 		hsotg->enabled = 1;
4383 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4384 		/* Enable ACG feature in device mode,if supported */
4385 		dwc2_enable_acg(hsotg);
4386 		dwc2_hsotg_core_connect(hsotg);
4387 	} else {
4388 		dwc2_hsotg_core_disconnect(hsotg);
4389 		dwc2_hsotg_disconnect(hsotg);
4390 		hsotg->enabled = 0;
4391 	}
4392 
4393 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4394 	spin_unlock_irqrestore(&hsotg->lock, flags);
4395 
4396 	return 0;
4397 }
4398 
4399 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4400 {
4401 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4402 	unsigned long flags;
4403 
4404 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4405 	spin_lock_irqsave(&hsotg->lock, flags);
4406 
4407 	/*
4408 	 * If controller is hibernated, it must exit from power_down
4409 	 * before being initialized / de-initialized
4410 	 */
4411 	if (hsotg->lx_state == DWC2_L2)
4412 		dwc2_exit_partial_power_down(hsotg, false);
4413 
4414 	if (is_active) {
4415 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4416 
4417 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4418 		if (hsotg->enabled) {
4419 			/* Enable ACG feature in device mode,if supported */
4420 			dwc2_enable_acg(hsotg);
4421 			dwc2_hsotg_core_connect(hsotg);
4422 		}
4423 	} else {
4424 		dwc2_hsotg_core_disconnect(hsotg);
4425 		dwc2_hsotg_disconnect(hsotg);
4426 	}
4427 
4428 	spin_unlock_irqrestore(&hsotg->lock, flags);
4429 	return 0;
4430 }
4431 
4432 /**
4433  * dwc2_hsotg_vbus_draw - report bMaxPower field
4434  * @gadget: The usb gadget state
4435  * @mA: Amount of current
4436  *
4437  * Report how much power the device may consume to the phy.
4438  */
4439 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4440 {
4441 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4442 
4443 	if (IS_ERR_OR_NULL(hsotg->uphy))
4444 		return -ENOTSUPP;
4445 	return usb_phy_set_power(hsotg->uphy, mA);
4446 }
4447 
4448 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4449 	.get_frame	= dwc2_hsotg_gadget_getframe,
4450 	.udc_start		= dwc2_hsotg_udc_start,
4451 	.udc_stop		= dwc2_hsotg_udc_stop,
4452 	.pullup                 = dwc2_hsotg_pullup,
4453 	.vbus_session		= dwc2_hsotg_vbus_session,
4454 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4455 };
4456 
4457 /**
4458  * dwc2_hsotg_initep - initialise a single endpoint
4459  * @hsotg: The device state.
4460  * @hs_ep: The endpoint to be initialised.
4461  * @epnum: The endpoint number
4462  * @dir_in: True if direction is in.
4463  *
4464  * Initialise the given endpoint (as part of the probe and device state
4465  * creation) to give to the gadget driver. Setup the endpoint name, any
4466  * direction information and other state that may be required.
4467  */
4468 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4469 			      struct dwc2_hsotg_ep *hs_ep,
4470 				       int epnum,
4471 				       bool dir_in)
4472 {
4473 	char *dir;
4474 
4475 	if (epnum == 0)
4476 		dir = "";
4477 	else if (dir_in)
4478 		dir = "in";
4479 	else
4480 		dir = "out";
4481 
4482 	hs_ep->dir_in = dir_in;
4483 	hs_ep->index = epnum;
4484 
4485 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4486 
4487 	INIT_LIST_HEAD(&hs_ep->queue);
4488 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4489 
4490 	/* add to the list of endpoints known by the gadget driver */
4491 	if (epnum)
4492 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4493 
4494 	hs_ep->parent = hsotg;
4495 	hs_ep->ep.name = hs_ep->name;
4496 
4497 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4498 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4499 	else
4500 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4501 					   epnum ? 1024 : EP0_MPS_LIMIT);
4502 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4503 
4504 	if (epnum == 0) {
4505 		hs_ep->ep.caps.type_control = true;
4506 	} else {
4507 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4508 			hs_ep->ep.caps.type_iso = true;
4509 			hs_ep->ep.caps.type_bulk = true;
4510 		}
4511 		hs_ep->ep.caps.type_int = true;
4512 	}
4513 
4514 	if (dir_in)
4515 		hs_ep->ep.caps.dir_in = true;
4516 	else
4517 		hs_ep->ep.caps.dir_out = true;
4518 
4519 	/*
4520 	 * if we're using dma, we need to set the next-endpoint pointer
4521 	 * to be something valid.
4522 	 */
4523 
4524 	if (using_dma(hsotg)) {
4525 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4526 
4527 		if (dir_in)
4528 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4529 		else
4530 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4531 	}
4532 }
4533 
4534 /**
4535  * dwc2_hsotg_hw_cfg - read HW configuration registers
4536  * @hsotg: Programming view of the DWC_otg controller
4537  *
4538  * Read the USB core HW configuration registers
4539  */
4540 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4541 {
4542 	u32 cfg;
4543 	u32 ep_type;
4544 	u32 i;
4545 
4546 	/* check hardware configuration */
4547 
4548 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4549 
4550 	/* Add ep0 */
4551 	hsotg->num_of_eps++;
4552 
4553 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4554 					sizeof(struct dwc2_hsotg_ep),
4555 					GFP_KERNEL);
4556 	if (!hsotg->eps_in[0])
4557 		return -ENOMEM;
4558 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4559 	hsotg->eps_out[0] = hsotg->eps_in[0];
4560 
4561 	cfg = hsotg->hw_params.dev_ep_dirs;
4562 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4563 		ep_type = cfg & 3;
4564 		/* Direction in or both */
4565 		if (!(ep_type & 2)) {
4566 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4567 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4568 			if (!hsotg->eps_in[i])
4569 				return -ENOMEM;
4570 		}
4571 		/* Direction out or both */
4572 		if (!(ep_type & 1)) {
4573 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4574 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4575 			if (!hsotg->eps_out[i])
4576 				return -ENOMEM;
4577 		}
4578 	}
4579 
4580 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4581 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4582 
4583 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4584 		 hsotg->num_of_eps,
4585 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4586 		 hsotg->fifo_mem);
4587 	return 0;
4588 }
4589 
4590 /**
4591  * dwc2_hsotg_dump - dump state of the udc
4592  * @hsotg: Programming view of the DWC_otg controller
4593  *
4594  */
4595 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4596 {
4597 #ifdef DEBUG
4598 	struct device *dev = hsotg->dev;
4599 	u32 val;
4600 	int idx;
4601 
4602 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4603 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4604 		 dwc2_readl(hsotg, DIEPMSK));
4605 
4606 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4607 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4608 
4609 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4610 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4611 
4612 	/* show periodic fifo settings */
4613 
4614 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4615 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4616 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4617 			 val >> FIFOSIZE_DEPTH_SHIFT,
4618 			 val & FIFOSIZE_STARTADDR_MASK);
4619 	}
4620 
4621 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4622 		dev_info(dev,
4623 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4624 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4625 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4626 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4627 
4628 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4629 		dev_info(dev,
4630 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4631 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4632 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4633 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4634 	}
4635 
4636 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4637 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4638 #endif
4639 }
4640 
4641 /**
4642  * dwc2_gadget_init - init function for gadget
4643  * @hsotg: Programming view of the DWC_otg controller
4644  *
4645  */
4646 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4647 {
4648 	struct device *dev = hsotg->dev;
4649 	int epnum;
4650 	int ret;
4651 
4652 	/* Dump fifo information */
4653 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4654 		hsotg->params.g_np_tx_fifo_size);
4655 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4656 
4657 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4658 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4659 	hsotg->gadget.name = dev_name(dev);
4660 	hsotg->remote_wakeup_allowed = 0;
4661 
4662 	if (hsotg->params.lpm)
4663 		hsotg->gadget.lpm_capable = true;
4664 
4665 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4666 		hsotg->gadget.is_otg = 1;
4667 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4668 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4669 
4670 	ret = dwc2_hsotg_hw_cfg(hsotg);
4671 	if (ret) {
4672 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4673 		return ret;
4674 	}
4675 
4676 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4677 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4678 	if (!hsotg->ctrl_buff)
4679 		return -ENOMEM;
4680 
4681 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4682 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4683 	if (!hsotg->ep0_buff)
4684 		return -ENOMEM;
4685 
4686 	if (using_desc_dma(hsotg)) {
4687 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4688 		if (ret < 0)
4689 			return ret;
4690 	}
4691 
4692 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4693 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4694 	if (ret < 0) {
4695 		dev_err(dev, "cannot claim IRQ for gadget\n");
4696 		return ret;
4697 	}
4698 
4699 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4700 
4701 	if (hsotg->num_of_eps == 0) {
4702 		dev_err(dev, "wrong number of EPs (zero)\n");
4703 		return -EINVAL;
4704 	}
4705 
4706 	/* setup endpoint information */
4707 
4708 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4709 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4710 
4711 	/* allocate EP0 request */
4712 
4713 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4714 						     GFP_KERNEL);
4715 	if (!hsotg->ctrl_req) {
4716 		dev_err(dev, "failed to allocate ctrl req\n");
4717 		return -ENOMEM;
4718 	}
4719 
4720 	/* initialise the endpoints now the core has been initialised */
4721 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4722 		if (hsotg->eps_in[epnum])
4723 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4724 					  epnum, 1);
4725 		if (hsotg->eps_out[epnum])
4726 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4727 					  epnum, 0);
4728 	}
4729 
4730 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4731 	if (ret) {
4732 		dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
4733 					   hsotg->ctrl_req);
4734 		return ret;
4735 	}
4736 	dwc2_hsotg_dump(hsotg);
4737 
4738 	return 0;
4739 }
4740 
4741 /**
4742  * dwc2_hsotg_remove - remove function for hsotg driver
4743  * @hsotg: Programming view of the DWC_otg controller
4744  *
4745  */
4746 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4747 {
4748 	usb_del_gadget_udc(&hsotg->gadget);
4749 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4750 
4751 	return 0;
4752 }
4753 
4754 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4755 {
4756 	unsigned long flags;
4757 
4758 	if (hsotg->lx_state != DWC2_L0)
4759 		return 0;
4760 
4761 	if (hsotg->driver) {
4762 		int ep;
4763 
4764 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4765 			 hsotg->driver->driver.name);
4766 
4767 		spin_lock_irqsave(&hsotg->lock, flags);
4768 		if (hsotg->enabled)
4769 			dwc2_hsotg_core_disconnect(hsotg);
4770 		dwc2_hsotg_disconnect(hsotg);
4771 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4772 		spin_unlock_irqrestore(&hsotg->lock, flags);
4773 
4774 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4775 			if (hsotg->eps_in[ep])
4776 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4777 			if (hsotg->eps_out[ep])
4778 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4779 		}
4780 	}
4781 
4782 	return 0;
4783 }
4784 
4785 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4786 {
4787 	unsigned long flags;
4788 
4789 	if (hsotg->lx_state == DWC2_L2)
4790 		return 0;
4791 
4792 	if (hsotg->driver) {
4793 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4794 			 hsotg->driver->driver.name);
4795 
4796 		spin_lock_irqsave(&hsotg->lock, flags);
4797 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4798 		if (hsotg->enabled) {
4799 			/* Enable ACG feature in device mode,if supported */
4800 			dwc2_enable_acg(hsotg);
4801 			dwc2_hsotg_core_connect(hsotg);
4802 		}
4803 		spin_unlock_irqrestore(&hsotg->lock, flags);
4804 	}
4805 
4806 	return 0;
4807 }
4808 
4809 /**
4810  * dwc2_backup_device_registers() - Backup controller device registers.
4811  * When suspending usb bus, registers needs to be backuped
4812  * if controller power is disabled once suspended.
4813  *
4814  * @hsotg: Programming view of the DWC_otg controller
4815  */
4816 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4817 {
4818 	struct dwc2_dregs_backup *dr;
4819 	int i;
4820 
4821 	dev_dbg(hsotg->dev, "%s\n", __func__);
4822 
4823 	/* Backup dev regs */
4824 	dr = &hsotg->dr_backup;
4825 
4826 	dr->dcfg = dwc2_readl(hsotg, DCFG);
4827 	dr->dctl = dwc2_readl(hsotg, DCTL);
4828 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
4829 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
4830 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
4831 
4832 	for (i = 0; i < hsotg->num_of_eps; i++) {
4833 		/* Backup IN EPs */
4834 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
4835 
4836 		/* Ensure DATA PID is correctly configured */
4837 		if (dr->diepctl[i] & DXEPCTL_DPID)
4838 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4839 		else
4840 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4841 
4842 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
4843 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
4844 
4845 		/* Backup OUT EPs */
4846 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
4847 
4848 		/* Ensure DATA PID is correctly configured */
4849 		if (dr->doepctl[i] & DXEPCTL_DPID)
4850 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4851 		else
4852 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4853 
4854 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
4855 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
4856 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
4857 	}
4858 	dr->valid = true;
4859 	return 0;
4860 }
4861 
4862 /**
4863  * dwc2_restore_device_registers() - Restore controller device registers.
4864  * When resuming usb bus, device registers needs to be restored
4865  * if controller power were disabled.
4866  *
4867  * @hsotg: Programming view of the DWC_otg controller
4868  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
4869  *
4870  * Return: 0 if successful, negative error code otherwise
4871  */
4872 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
4873 {
4874 	struct dwc2_dregs_backup *dr;
4875 	int i;
4876 
4877 	dev_dbg(hsotg->dev, "%s\n", __func__);
4878 
4879 	/* Restore dev regs */
4880 	dr = &hsotg->dr_backup;
4881 	if (!dr->valid) {
4882 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4883 			__func__);
4884 		return -EINVAL;
4885 	}
4886 	dr->valid = false;
4887 
4888 	if (!remote_wakeup)
4889 		dwc2_writel(hsotg, dr->dctl, DCTL);
4890 
4891 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
4892 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
4893 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
4894 
4895 	for (i = 0; i < hsotg->num_of_eps; i++) {
4896 		/* Restore IN EPs */
4897 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
4898 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
4899 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
4900 		/** WA for enabled EPx's IN in DDMA mode. On entering to
4901 		 * hibernation wrong value read and saved from DIEPDMAx,
4902 		 * as result BNA interrupt asserted on hibernation exit
4903 		 * by restoring from saved area.
4904 		 */
4905 		if (hsotg->params.g_dma_desc &&
4906 		    (dr->diepctl[i] & DXEPCTL_EPENA))
4907 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
4908 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
4909 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
4910 		/* Restore OUT EPs */
4911 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
4912 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
4913 		 * hibernation wrong value read and saved from DOEPDMAx,
4914 		 * as result BNA interrupt asserted on hibernation exit
4915 		 * by restoring from saved area.
4916 		 */
4917 		if (hsotg->params.g_dma_desc &&
4918 		    (dr->doepctl[i] & DXEPCTL_EPENA))
4919 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
4920 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
4921 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
4922 	}
4923 
4924 	return 0;
4925 }
4926 
4927 /**
4928  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
4929  *
4930  * @hsotg: Programming view of DWC_otg controller
4931  *
4932  */
4933 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
4934 {
4935 	u32 val;
4936 
4937 	if (!hsotg->params.lpm)
4938 		return;
4939 
4940 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
4941 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
4942 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
4943 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
4944 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
4945 	dwc2_writel(hsotg, val, GLPMCFG);
4946 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
4947 }
4948 
4949 /**
4950  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
4951  *
4952  * @hsotg: Programming view of the DWC_otg controller
4953  *
4954  * Return non-zero if failed to enter to hibernation.
4955  */
4956 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
4957 {
4958 	u32 gpwrdn;
4959 	int ret = 0;
4960 
4961 	/* Change to L2(suspend) state */
4962 	hsotg->lx_state = DWC2_L2;
4963 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
4964 	ret = dwc2_backup_global_registers(hsotg);
4965 	if (ret) {
4966 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
4967 			__func__);
4968 		return ret;
4969 	}
4970 	ret = dwc2_backup_device_registers(hsotg);
4971 	if (ret) {
4972 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
4973 			__func__);
4974 		return ret;
4975 	}
4976 
4977 	gpwrdn = GPWRDN_PWRDNRSTN;
4978 	gpwrdn |= GPWRDN_PMUACTV;
4979 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
4980 	udelay(10);
4981 
4982 	/* Set flag to indicate that we are in hibernation */
4983 	hsotg->hibernated = 1;
4984 
4985 	/* Enable interrupts from wake up logic */
4986 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
4987 	gpwrdn |= GPWRDN_PMUINTSEL;
4988 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
4989 	udelay(10);
4990 
4991 	/* Unmask device mode interrupts in GPWRDN */
4992 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
4993 	gpwrdn |= GPWRDN_RST_DET_MSK;
4994 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
4995 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
4996 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
4997 	udelay(10);
4998 
4999 	/* Enable Power Down Clamp */
5000 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5001 	gpwrdn |= GPWRDN_PWRDNCLMP;
5002 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5003 	udelay(10);
5004 
5005 	/* Switch off VDD */
5006 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5007 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5008 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5009 	udelay(10);
5010 
5011 	/* Save gpwrdn register for further usage if stschng interrupt */
5012 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5013 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5014 
5015 	return ret;
5016 }
5017 
5018 /**
5019  * dwc2_gadget_exit_hibernation()
5020  * This function is for exiting from Device mode hibernation by host initiated
5021  * resume/reset and device initiated remote-wakeup.
5022  *
5023  * @hsotg: Programming view of the DWC_otg controller
5024  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5025  * @reset: indicates whether resume is initiated by Reset.
5026  *
5027  * Return non-zero if failed to exit from hibernation.
5028  */
5029 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5030 				 int rem_wakeup, int reset)
5031 {
5032 	u32 pcgcctl;
5033 	u32 gpwrdn;
5034 	u32 dctl;
5035 	int ret = 0;
5036 	struct dwc2_gregs_backup *gr;
5037 	struct dwc2_dregs_backup *dr;
5038 
5039 	gr = &hsotg->gr_backup;
5040 	dr = &hsotg->dr_backup;
5041 
5042 	if (!hsotg->hibernated) {
5043 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5044 		return 1;
5045 	}
5046 	dev_dbg(hsotg->dev,
5047 		"%s: called with rem_wakeup = %d reset = %d\n",
5048 		__func__, rem_wakeup, reset);
5049 
5050 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5051 
5052 	if (!reset) {
5053 		/* Clear all pending interupts */
5054 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5055 	}
5056 
5057 	/* De-assert Restore */
5058 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5059 	gpwrdn &= ~GPWRDN_RESTORE;
5060 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5061 	udelay(10);
5062 
5063 	if (!rem_wakeup) {
5064 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5065 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5066 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5067 	}
5068 
5069 	/* Restore GUSBCFG, DCFG and DCTL */
5070 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5071 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5072 	dwc2_writel(hsotg, dr->dctl, DCTL);
5073 
5074 	/* De-assert Wakeup Logic */
5075 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5076 	gpwrdn &= ~GPWRDN_PMUACTV;
5077 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5078 
5079 	if (rem_wakeup) {
5080 		udelay(10);
5081 		/* Start Remote Wakeup Signaling */
5082 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5083 	} else {
5084 		udelay(50);
5085 		/* Set Device programming done bit */
5086 		dctl = dwc2_readl(hsotg, DCTL);
5087 		dctl |= DCTL_PWRONPRGDONE;
5088 		dwc2_writel(hsotg, dctl, DCTL);
5089 	}
5090 	/* Wait for interrupts which must be cleared */
5091 	mdelay(2);
5092 	/* Clear all pending interupts */
5093 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5094 
5095 	/* Restore global registers */
5096 	ret = dwc2_restore_global_registers(hsotg);
5097 	if (ret) {
5098 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5099 			__func__);
5100 		return ret;
5101 	}
5102 
5103 	/* Restore device registers */
5104 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5105 	if (ret) {
5106 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5107 			__func__);
5108 		return ret;
5109 	}
5110 
5111 	if (rem_wakeup) {
5112 		mdelay(10);
5113 		dctl = dwc2_readl(hsotg, DCTL);
5114 		dctl &= ~DCTL_RMTWKUPSIG;
5115 		dwc2_writel(hsotg, dctl, DCTL);
5116 	}
5117 
5118 	hsotg->hibernated = 0;
5119 	hsotg->lx_state = DWC2_L0;
5120 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5121 
5122 	return ret;
5123 }
5124