xref: /linux/drivers/usb/dwc2/gadget.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /**
2  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright 2008 Openmoko, Inc.
6  * Copyright 2008 Simtec Electronics
7  *      Ben Dooks <ben@simtec.co.uk>
8  *      http://armlinux.simtec.co.uk/
9  *
10  * S3C USB2.0 High-speed / OtG driver
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/debugfs.h>
24 #include <linux/mutex.h>
25 #include <linux/seq_file.h>
26 #include <linux/delay.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29 #include <linux/clk.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/of_platform.h>
32 #include <linux/phy/phy.h>
33 
34 #include <linux/usb/ch9.h>
35 #include <linux/usb/gadget.h>
36 #include <linux/usb/phy.h>
37 #include <linux/platform_data/s3c-hsotg.h>
38 
39 #include "core.h"
40 #include "hw.h"
41 
42 /* conversion functions */
43 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
44 {
45 	return container_of(req, struct s3c_hsotg_req, req);
46 }
47 
48 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
49 {
50 	return container_of(ep, struct s3c_hsotg_ep, ep);
51 }
52 
53 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
54 {
55 	return container_of(gadget, struct dwc2_hsotg, gadget);
56 }
57 
58 static inline void __orr32(void __iomem *ptr, u32 val)
59 {
60 	writel(readl(ptr) | val, ptr);
61 }
62 
63 static inline void __bic32(void __iomem *ptr, u32 val)
64 {
65 	writel(readl(ptr) & ~val, ptr);
66 }
67 
68 /* forward decleration of functions */
69 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
70 
71 /**
72  * using_dma - return the DMA status of the driver.
73  * @hsotg: The driver state.
74  *
75  * Return true if we're using DMA.
76  *
77  * Currently, we have the DMA support code worked into everywhere
78  * that needs it, but the AMBA DMA implementation in the hardware can
79  * only DMA from 32bit aligned addresses. This means that gadgets such
80  * as the CDC Ethernet cannot work as they often pass packets which are
81  * not 32bit aligned.
82  *
83  * Unfortunately the choice to use DMA or not is global to the controller
84  * and seems to be only settable when the controller is being put through
85  * a core reset. This means we either need to fix the gadgets to take
86  * account of DMA alignment, or add bounce buffers (yuerk).
87  *
88  * Until this issue is sorted out, we always return 'false'.
89  */
90 static inline bool using_dma(struct dwc2_hsotg *hsotg)
91 {
92 	return false;	/* support is not complete */
93 }
94 
95 /**
96  * s3c_hsotg_en_gsint - enable one or more of the general interrupt
97  * @hsotg: The device state
98  * @ints: A bitmask of the interrupts to enable
99  */
100 static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
101 {
102 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
103 	u32 new_gsintmsk;
104 
105 	new_gsintmsk = gsintmsk | ints;
106 
107 	if (new_gsintmsk != gsintmsk) {
108 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
109 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
110 	}
111 }
112 
113 /**
114  * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
115  * @hsotg: The device state
116  * @ints: A bitmask of the interrupts to enable
117  */
118 static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
119 {
120 	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
121 	u32 new_gsintmsk;
122 
123 	new_gsintmsk = gsintmsk & ~ints;
124 
125 	if (new_gsintmsk != gsintmsk)
126 		writel(new_gsintmsk, hsotg->regs + GINTMSK);
127 }
128 
129 /**
130  * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
131  * @hsotg: The device state
132  * @ep: The endpoint index
133  * @dir_in: True if direction is in.
134  * @en: The enable value, true to enable
135  *
136  * Set or clear the mask for an individual endpoint's interrupt
137  * request.
138  */
139 static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
140 				 unsigned int ep, unsigned int dir_in,
141 				 unsigned int en)
142 {
143 	unsigned long flags;
144 	u32 bit = 1 << ep;
145 	u32 daint;
146 
147 	if (!dir_in)
148 		bit <<= 16;
149 
150 	local_irq_save(flags);
151 	daint = readl(hsotg->regs + DAINTMSK);
152 	if (en)
153 		daint |= bit;
154 	else
155 		daint &= ~bit;
156 	writel(daint, hsotg->regs + DAINTMSK);
157 	local_irq_restore(flags);
158 }
159 
160 /**
161  * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
162  * @hsotg: The device instance.
163  */
164 static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
165 {
166 	unsigned int ep;
167 	unsigned int addr;
168 	unsigned int size;
169 	int timeout;
170 	u32 val;
171 
172 	/* set FIFO sizes to 2048/1024 */
173 
174 	writel(2048, hsotg->regs + GRXFSIZ);
175 	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
176 		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
177 
178 	/*
179 	 * arange all the rest of the TX FIFOs, as some versions of this
180 	 * block have overlapping default addresses. This also ensures
181 	 * that if the settings have been changed, then they are set to
182 	 * known values.
183 	 */
184 
185 	/* start at the end of the GNPTXFSIZ, rounded up */
186 	addr = 2048 + 1024;
187 
188 	/*
189 	 * Because we have not enough memory to have each TX FIFO of size at
190 	 * least 3072 bytes (the maximum single packet size), we create four
191 	 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing
192 	 * them to endpoints dynamically according to maxpacket size value of
193 	 * given endpoint.
194 	 */
195 
196 	/* 256*4=1024 bytes FIFO length */
197 	size = 256;
198 	for (ep = 1; ep <= 4; ep++) {
199 		val = addr;
200 		val |= size << FIFOSIZE_DEPTH_SHIFT;
201 		WARN_ONCE(addr + size > hsotg->fifo_mem,
202 			  "insufficient fifo memory");
203 		addr += size;
204 
205 		writel(val, hsotg->regs + DPTXFSIZN(ep));
206 	}
207 	/* 768*4=3072 bytes FIFO length */
208 	size = 768;
209 	for (ep = 5; ep <= 8; ep++) {
210 		val = addr;
211 		val |= size << FIFOSIZE_DEPTH_SHIFT;
212 		WARN_ONCE(addr + size > hsotg->fifo_mem,
213 			  "insufficient fifo memory");
214 		addr += size;
215 
216 		writel(val, hsotg->regs + DPTXFSIZN(ep));
217 	}
218 
219 	/*
220 	 * according to p428 of the design guide, we need to ensure that
221 	 * all fifos are flushed before continuing
222 	 */
223 
224 	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
225 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
226 
227 	/* wait until the fifos are both flushed */
228 	timeout = 100;
229 	while (1) {
230 		val = readl(hsotg->regs + GRSTCTL);
231 
232 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
233 			break;
234 
235 		if (--timeout == 0) {
236 			dev_err(hsotg->dev,
237 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
238 				__func__, val);
239 		}
240 
241 		udelay(1);
242 	}
243 
244 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
245 }
246 
247 /**
248  * @ep: USB endpoint to allocate request for.
249  * @flags: Allocation flags
250  *
251  * Allocate a new USB request structure appropriate for the specified endpoint
252  */
253 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
254 						      gfp_t flags)
255 {
256 	struct s3c_hsotg_req *req;
257 
258 	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
259 	if (!req)
260 		return NULL;
261 
262 	INIT_LIST_HEAD(&req->queue);
263 
264 	return &req->req;
265 }
266 
267 /**
268  * is_ep_periodic - return true if the endpoint is in periodic mode.
269  * @hs_ep: The endpoint to query.
270  *
271  * Returns true if the endpoint is in periodic mode, meaning it is being
272  * used for an Interrupt or ISO transfer.
273  */
274 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
275 {
276 	return hs_ep->periodic;
277 }
278 
279 /**
280  * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
281  * @hsotg: The device state.
282  * @hs_ep: The endpoint for the request
283  * @hs_req: The request being processed.
284  *
285  * This is the reverse of s3c_hsotg_map_dma(), called for the completion
286  * of a request to ensure the buffer is ready for access by the caller.
287  */
288 static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
289 				struct s3c_hsotg_ep *hs_ep,
290 				struct s3c_hsotg_req *hs_req)
291 {
292 	struct usb_request *req = &hs_req->req;
293 
294 	/* ignore this if we're not moving any data */
295 	if (hs_req->req.length == 0)
296 		return;
297 
298 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
299 }
300 
301 /**
302  * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
303  * @hsotg: The controller state.
304  * @hs_ep: The endpoint we're going to write for.
305  * @hs_req: The request to write data for.
306  *
307  * This is called when the TxFIFO has some space in it to hold a new
308  * transmission and we have something to give it. The actual setup of
309  * the data size is done elsewhere, so all we have to do is to actually
310  * write the data.
311  *
312  * The return value is zero if there is more space (or nothing was done)
313  * otherwise -ENOSPC is returned if the FIFO space was used up.
314  *
315  * This routine is only needed for PIO
316  */
317 static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
318 				struct s3c_hsotg_ep *hs_ep,
319 				struct s3c_hsotg_req *hs_req)
320 {
321 	bool periodic = is_ep_periodic(hs_ep);
322 	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
323 	int buf_pos = hs_req->req.actual;
324 	int to_write = hs_ep->size_loaded;
325 	void *data;
326 	int can_write;
327 	int pkt_round;
328 	int max_transfer;
329 
330 	to_write -= (buf_pos - hs_ep->last_load);
331 
332 	/* if there's nothing to write, get out early */
333 	if (to_write == 0)
334 		return 0;
335 
336 	if (periodic && !hsotg->dedicated_fifos) {
337 		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
338 		int size_left;
339 		int size_done;
340 
341 		/*
342 		 * work out how much data was loaded so we can calculate
343 		 * how much data is left in the fifo.
344 		 */
345 
346 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
347 
348 		/*
349 		 * if shared fifo, we cannot write anything until the
350 		 * previous data has been completely sent.
351 		 */
352 		if (hs_ep->fifo_load != 0) {
353 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
354 			return -ENOSPC;
355 		}
356 
357 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
358 			__func__, size_left,
359 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
360 
361 		/* how much of the data has moved */
362 		size_done = hs_ep->size_loaded - size_left;
363 
364 		/* how much data is left in the fifo */
365 		can_write = hs_ep->fifo_load - size_done;
366 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
367 			__func__, can_write);
368 
369 		can_write = hs_ep->fifo_size - can_write;
370 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
371 			__func__, can_write);
372 
373 		if (can_write <= 0) {
374 			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
375 			return -ENOSPC;
376 		}
377 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
378 		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
379 
380 		can_write &= 0xffff;
381 		can_write *= 4;
382 	} else {
383 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
384 			dev_dbg(hsotg->dev,
385 				"%s: no queue slots available (0x%08x)\n",
386 				__func__, gnptxsts);
387 
388 			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
389 			return -ENOSPC;
390 		}
391 
392 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
393 		can_write *= 4;	/* fifo size is in 32bit quantities. */
394 	}
395 
396 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
397 
398 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
399 		 __func__, gnptxsts, can_write, to_write, max_transfer);
400 
401 	/*
402 	 * limit to 512 bytes of data, it seems at least on the non-periodic
403 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
404 	 * fragment of the end of the transfer in it.
405 	 */
406 	if (can_write > 512 && !periodic)
407 		can_write = 512;
408 
409 	/*
410 	 * limit the write to one max-packet size worth of data, but allow
411 	 * the transfer to return that it did not run out of fifo space
412 	 * doing it.
413 	 */
414 	if (to_write > max_transfer) {
415 		to_write = max_transfer;
416 
417 		/* it's needed only when we do not use dedicated fifos */
418 		if (!hsotg->dedicated_fifos)
419 			s3c_hsotg_en_gsint(hsotg,
420 					   periodic ? GINTSTS_PTXFEMP :
421 					   GINTSTS_NPTXFEMP);
422 	}
423 
424 	/* see if we can write data */
425 
426 	if (to_write > can_write) {
427 		to_write = can_write;
428 		pkt_round = to_write % max_transfer;
429 
430 		/*
431 		 * Round the write down to an
432 		 * exact number of packets.
433 		 *
434 		 * Note, we do not currently check to see if we can ever
435 		 * write a full packet or not to the FIFO.
436 		 */
437 
438 		if (pkt_round)
439 			to_write -= pkt_round;
440 
441 		/*
442 		 * enable correct FIFO interrupt to alert us when there
443 		 * is more room left.
444 		 */
445 
446 		/* it's needed only when we do not use dedicated fifos */
447 		if (!hsotg->dedicated_fifos)
448 			s3c_hsotg_en_gsint(hsotg,
449 					   periodic ? GINTSTS_PTXFEMP :
450 					   GINTSTS_NPTXFEMP);
451 	}
452 
453 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
454 		 to_write, hs_req->req.length, can_write, buf_pos);
455 
456 	if (to_write <= 0)
457 		return -ENOSPC;
458 
459 	hs_req->req.actual = buf_pos + to_write;
460 	hs_ep->total_data += to_write;
461 
462 	if (periodic)
463 		hs_ep->fifo_load += to_write;
464 
465 	to_write = DIV_ROUND_UP(to_write, 4);
466 	data = hs_req->req.buf + buf_pos;
467 
468 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
469 
470 	return (to_write >= can_write) ? -ENOSPC : 0;
471 }
472 
473 /**
474  * get_ep_limit - get the maximum data legnth for this endpoint
475  * @hs_ep: The endpoint
476  *
477  * Return the maximum data that can be queued in one go on a given endpoint
478  * so that transfers that are too long can be split.
479  */
480 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
481 {
482 	int index = hs_ep->index;
483 	unsigned maxsize;
484 	unsigned maxpkt;
485 
486 	if (index != 0) {
487 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
488 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
489 	} else {
490 		maxsize = 64+64;
491 		if (hs_ep->dir_in)
492 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
493 		else
494 			maxpkt = 2;
495 	}
496 
497 	/* we made the constant loading easier above by using +1 */
498 	maxpkt--;
499 	maxsize--;
500 
501 	/*
502 	 * constrain by packet count if maxpkts*pktsize is greater
503 	 * than the length register size.
504 	 */
505 
506 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
507 		maxsize = maxpkt * hs_ep->ep.maxpacket;
508 
509 	return maxsize;
510 }
511 
512 /**
513  * s3c_hsotg_start_req - start a USB request from an endpoint's queue
514  * @hsotg: The controller state.
515  * @hs_ep: The endpoint to process a request for
516  * @hs_req: The request to start.
517  * @continuing: True if we are doing more for the current request.
518  *
519  * Start the given request running by setting the endpoint registers
520  * appropriately, and writing any data to the FIFOs.
521  */
522 static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
523 				struct s3c_hsotg_ep *hs_ep,
524 				struct s3c_hsotg_req *hs_req,
525 				bool continuing)
526 {
527 	struct usb_request *ureq = &hs_req->req;
528 	int index = hs_ep->index;
529 	int dir_in = hs_ep->dir_in;
530 	u32 epctrl_reg;
531 	u32 epsize_reg;
532 	u32 epsize;
533 	u32 ctrl;
534 	unsigned length;
535 	unsigned packets;
536 	unsigned maxreq;
537 
538 	if (index != 0) {
539 		if (hs_ep->req && !continuing) {
540 			dev_err(hsotg->dev, "%s: active request\n", __func__);
541 			WARN_ON(1);
542 			return;
543 		} else if (hs_ep->req != hs_req && continuing) {
544 			dev_err(hsotg->dev,
545 				"%s: continue different req\n", __func__);
546 			WARN_ON(1);
547 			return;
548 		}
549 	}
550 
551 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
552 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
553 
554 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
555 		__func__, readl(hsotg->regs + epctrl_reg), index,
556 		hs_ep->dir_in ? "in" : "out");
557 
558 	/* If endpoint is stalled, we will restart request later */
559 	ctrl = readl(hsotg->regs + epctrl_reg);
560 
561 	if (ctrl & DXEPCTL_STALL) {
562 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
563 		return;
564 	}
565 
566 	length = ureq->length - ureq->actual;
567 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
568 		ureq->length, ureq->actual);
569 	if (0)
570 		dev_dbg(hsotg->dev,
571 			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
572 			ureq->buf, length, &ureq->dma,
573 			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
574 
575 	maxreq = get_ep_limit(hs_ep);
576 	if (length > maxreq) {
577 		int round = maxreq % hs_ep->ep.maxpacket;
578 
579 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
580 			__func__, length, maxreq, round);
581 
582 		/* round down to multiple of packets */
583 		if (round)
584 			maxreq -= round;
585 
586 		length = maxreq;
587 	}
588 
589 	if (length)
590 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
591 	else
592 		packets = 1;	/* send one packet if length is zero. */
593 
594 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
595 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
596 		return;
597 	}
598 
599 	if (dir_in && index != 0)
600 		if (hs_ep->isochronous)
601 			epsize = DXEPTSIZ_MC(packets);
602 		else
603 			epsize = DXEPTSIZ_MC(1);
604 	else
605 		epsize = 0;
606 
607 	if (index != 0 && ureq->zero) {
608 		/*
609 		 * test for the packets being exactly right for the
610 		 * transfer
611 		 */
612 
613 		if (length == (packets * hs_ep->ep.maxpacket))
614 			packets++;
615 	}
616 
617 	epsize |= DXEPTSIZ_PKTCNT(packets);
618 	epsize |= DXEPTSIZ_XFERSIZE(length);
619 
620 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
621 		__func__, packets, length, ureq->length, epsize, epsize_reg);
622 
623 	/* store the request as the current one we're doing */
624 	hs_ep->req = hs_req;
625 
626 	/* write size / packets */
627 	writel(epsize, hsotg->regs + epsize_reg);
628 
629 	if (using_dma(hsotg) && !continuing) {
630 		unsigned int dma_reg;
631 
632 		/*
633 		 * write DMA address to control register, buffer already
634 		 * synced by s3c_hsotg_ep_queue().
635 		 */
636 
637 		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
638 		writel(ureq->dma, hsotg->regs + dma_reg);
639 
640 		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
641 			__func__, &ureq->dma, dma_reg);
642 	}
643 
644 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
645 	ctrl |= DXEPCTL_USBACTEP;
646 
647 	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
648 
649 	/* For Setup request do not clear NAK */
650 	if (hsotg->setup && index == 0)
651 		hsotg->setup = 0;
652 	else
653 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
654 
655 
656 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
657 	writel(ctrl, hsotg->regs + epctrl_reg);
658 
659 	/*
660 	 * set these, it seems that DMA support increments past the end
661 	 * of the packet buffer so we need to calculate the length from
662 	 * this information.
663 	 */
664 	hs_ep->size_loaded = length;
665 	hs_ep->last_load = ureq->actual;
666 
667 	if (dir_in && !using_dma(hsotg)) {
668 		/* set these anyway, we may need them for non-periodic in */
669 		hs_ep->fifo_load = 0;
670 
671 		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
672 	}
673 
674 	/*
675 	 * clear the INTknTXFEmpMsk when we start request, more as a aide
676 	 * to debugging to see what is going on.
677 	 */
678 	if (dir_in)
679 		writel(DIEPMSK_INTKNTXFEMPMSK,
680 		       hsotg->regs + DIEPINT(index));
681 
682 	/*
683 	 * Note, trying to clear the NAK here causes problems with transmit
684 	 * on the S3C6400 ending up with the TXFIFO becoming full.
685 	 */
686 
687 	/* check ep is enabled */
688 	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
689 		dev_warn(hsotg->dev,
690 			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
691 			 index, readl(hsotg->regs + epctrl_reg));
692 
693 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
694 		__func__, readl(hsotg->regs + epctrl_reg));
695 
696 	/* enable ep interrupts */
697 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
698 }
699 
700 /**
701  * s3c_hsotg_map_dma - map the DMA memory being used for the request
702  * @hsotg: The device state.
703  * @hs_ep: The endpoint the request is on.
704  * @req: The request being processed.
705  *
706  * We've been asked to queue a request, so ensure that the memory buffer
707  * is correctly setup for DMA. If we've been passed an extant DMA address
708  * then ensure the buffer has been synced to memory. If our buffer has no
709  * DMA memory, then we map the memory and mark our request to allow us to
710  * cleanup on completion.
711  */
712 static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
713 			     struct s3c_hsotg_ep *hs_ep,
714 			     struct usb_request *req)
715 {
716 	struct s3c_hsotg_req *hs_req = our_req(req);
717 	int ret;
718 
719 	/* if the length is zero, ignore the DMA data */
720 	if (hs_req->req.length == 0)
721 		return 0;
722 
723 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
724 	if (ret)
725 		goto dma_error;
726 
727 	return 0;
728 
729 dma_error:
730 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
731 		__func__, req->buf, req->length);
732 
733 	return -EIO;
734 }
735 
736 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
737 			      gfp_t gfp_flags)
738 {
739 	struct s3c_hsotg_req *hs_req = our_req(req);
740 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
741 	struct dwc2_hsotg *hs = hs_ep->parent;
742 	bool first;
743 
744 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
745 		ep->name, req, req->length, req->buf, req->no_interrupt,
746 		req->zero, req->short_not_ok);
747 
748 	/* initialise status of the request */
749 	INIT_LIST_HEAD(&hs_req->queue);
750 	req->actual = 0;
751 	req->status = -EINPROGRESS;
752 
753 	/* if we're using DMA, sync the buffers as necessary */
754 	if (using_dma(hs)) {
755 		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
756 		if (ret)
757 			return ret;
758 	}
759 
760 	first = list_empty(&hs_ep->queue);
761 	list_add_tail(&hs_req->queue, &hs_ep->queue);
762 
763 	if (first)
764 		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
765 
766 	return 0;
767 }
768 
769 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
770 			      gfp_t gfp_flags)
771 {
772 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
773 	struct dwc2_hsotg *hs = hs_ep->parent;
774 	unsigned long flags = 0;
775 	int ret = 0;
776 
777 	spin_lock_irqsave(&hs->lock, flags);
778 	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
779 	spin_unlock_irqrestore(&hs->lock, flags);
780 
781 	return ret;
782 }
783 
784 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
785 				      struct usb_request *req)
786 {
787 	struct s3c_hsotg_req *hs_req = our_req(req);
788 
789 	kfree(hs_req);
790 }
791 
792 /**
793  * s3c_hsotg_complete_oursetup - setup completion callback
794  * @ep: The endpoint the request was on.
795  * @req: The request completed.
796  *
797  * Called on completion of any requests the driver itself
798  * submitted that need cleaning up.
799  */
800 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
801 					struct usb_request *req)
802 {
803 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
804 	struct dwc2_hsotg *hsotg = hs_ep->parent;
805 
806 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
807 
808 	s3c_hsotg_ep_free_request(ep, req);
809 }
810 
811 /**
812  * ep_from_windex - convert control wIndex value to endpoint
813  * @hsotg: The driver state.
814  * @windex: The control request wIndex field (in host order).
815  *
816  * Convert the given wIndex into a pointer to an driver endpoint
817  * structure, or return NULL if it is not a valid endpoint.
818  */
819 static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
820 					   u32 windex)
821 {
822 	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
823 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
824 	int idx = windex & 0x7F;
825 
826 	if (windex >= 0x100)
827 		return NULL;
828 
829 	if (idx > hsotg->num_of_eps)
830 		return NULL;
831 
832 	if (idx && ep->dir_in != dir)
833 		return NULL;
834 
835 	return ep;
836 }
837 
838 /**
839  * s3c_hsotg_send_reply - send reply to control request
840  * @hsotg: The device state
841  * @ep: Endpoint 0
842  * @buff: Buffer for request
843  * @length: Length of reply.
844  *
845  * Create a request and queue it on the given endpoint. This is useful as
846  * an internal method of sending replies to certain control requests, etc.
847  */
848 static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
849 				struct s3c_hsotg_ep *ep,
850 				void *buff,
851 				int length)
852 {
853 	struct usb_request *req;
854 	int ret;
855 
856 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
857 
858 	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
859 	hsotg->ep0_reply = req;
860 	if (!req) {
861 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
862 		return -ENOMEM;
863 	}
864 
865 	req->buf = hsotg->ep0_buff;
866 	req->length = length;
867 	req->zero = 1; /* always do zero-length final transfer */
868 	req->complete = s3c_hsotg_complete_oursetup;
869 
870 	if (length)
871 		memcpy(req->buf, buff, length);
872 	else
873 		ep->sent_zlp = 1;
874 
875 	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
876 	if (ret) {
877 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
878 		return ret;
879 	}
880 
881 	return 0;
882 }
883 
884 /**
885  * s3c_hsotg_process_req_status - process request GET_STATUS
886  * @hsotg: The device state
887  * @ctrl: USB control request
888  */
889 static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
890 					struct usb_ctrlrequest *ctrl)
891 {
892 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
893 	struct s3c_hsotg_ep *ep;
894 	__le16 reply;
895 	int ret;
896 
897 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
898 
899 	if (!ep0->dir_in) {
900 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
901 		return -EINVAL;
902 	}
903 
904 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
905 	case USB_RECIP_DEVICE:
906 		reply = cpu_to_le16(0); /* bit 0 => self powered,
907 					 * bit 1 => remote wakeup */
908 		break;
909 
910 	case USB_RECIP_INTERFACE:
911 		/* currently, the data result should be zero */
912 		reply = cpu_to_le16(0);
913 		break;
914 
915 	case USB_RECIP_ENDPOINT:
916 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
917 		if (!ep)
918 			return -ENOENT;
919 
920 		reply = cpu_to_le16(ep->halted ? 1 : 0);
921 		break;
922 
923 	default:
924 		return 0;
925 	}
926 
927 	if (le16_to_cpu(ctrl->wLength) != 2)
928 		return -EINVAL;
929 
930 	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
931 	if (ret) {
932 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
933 		return ret;
934 	}
935 
936 	return 1;
937 }
938 
939 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
940 
941 /**
942  * get_ep_head - return the first request on the endpoint
943  * @hs_ep: The controller endpoint to get
944  *
945  * Get the first request on the endpoint.
946  */
947 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
948 {
949 	if (list_empty(&hs_ep->queue))
950 		return NULL;
951 
952 	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
953 }
954 
955 /**
956  * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
957  * @hsotg: The device state
958  * @ctrl: USB control request
959  */
960 static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
961 					 struct usb_ctrlrequest *ctrl)
962 {
963 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
964 	struct s3c_hsotg_req *hs_req;
965 	bool restart;
966 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
967 	struct s3c_hsotg_ep *ep;
968 	int ret;
969 	bool halted;
970 
971 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
972 		__func__, set ? "SET" : "CLEAR");
973 
974 	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
975 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
976 		if (!ep) {
977 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
978 				__func__, le16_to_cpu(ctrl->wIndex));
979 			return -ENOENT;
980 		}
981 
982 		switch (le16_to_cpu(ctrl->wValue)) {
983 		case USB_ENDPOINT_HALT:
984 			halted = ep->halted;
985 
986 			s3c_hsotg_ep_sethalt(&ep->ep, set);
987 
988 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
989 			if (ret) {
990 				dev_err(hsotg->dev,
991 					"%s: failed to send reply\n", __func__);
992 				return ret;
993 			}
994 
995 			/*
996 			 * we have to complete all requests for ep if it was
997 			 * halted, and the halt was cleared by CLEAR_FEATURE
998 			 */
999 
1000 			if (!set && halted) {
1001 				/*
1002 				 * If we have request in progress,
1003 				 * then complete it
1004 				 */
1005 				if (ep->req) {
1006 					hs_req = ep->req;
1007 					ep->req = NULL;
1008 					list_del_init(&hs_req->queue);
1009 					usb_gadget_giveback_request(&ep->ep,
1010 								    &hs_req->req);
1011 				}
1012 
1013 				/* If we have pending request, then start it */
1014 				restart = !list_empty(&ep->queue);
1015 				if (restart) {
1016 					hs_req = get_ep_head(ep);
1017 					s3c_hsotg_start_req(hsotg, ep,
1018 							    hs_req, false);
1019 				}
1020 			}
1021 
1022 			break;
1023 
1024 		default:
1025 			return -ENOENT;
1026 		}
1027 	} else
1028 		return -ENOENT;  /* currently only deal with endpoint */
1029 
1030 	return 1;
1031 }
1032 
1033 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1034 
1035 /**
1036  * s3c_hsotg_stall_ep0 - stall ep0
1037  * @hsotg: The device state
1038  *
1039  * Set stall for ep0 as response for setup request.
1040  */
1041 static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1042 {
1043 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1044 	u32 reg;
1045 	u32 ctrl;
1046 
1047 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1048 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1049 
1050 	/*
1051 	 * DxEPCTL_Stall will be cleared by EP once it has
1052 	 * taken effect, so no need to clear later.
1053 	 */
1054 
1055 	ctrl = readl(hsotg->regs + reg);
1056 	ctrl |= DXEPCTL_STALL;
1057 	ctrl |= DXEPCTL_CNAK;
1058 	writel(ctrl, hsotg->regs + reg);
1059 
1060 	dev_dbg(hsotg->dev,
1061 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1062 		ctrl, reg, readl(hsotg->regs + reg));
1063 
1064 	 /*
1065 	  * complete won't be called, so we enqueue
1066 	  * setup request here
1067 	  */
1068 	 s3c_hsotg_enqueue_setup(hsotg);
1069 }
1070 
1071 /**
1072  * s3c_hsotg_process_control - process a control request
1073  * @hsotg: The device state
1074  * @ctrl: The control request received
1075  *
1076  * The controller has received the SETUP phase of a control request, and
1077  * needs to work out what to do next (and whether to pass it on to the
1078  * gadget driver).
1079  */
1080 static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1081 				      struct usb_ctrlrequest *ctrl)
1082 {
1083 	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1084 	int ret = 0;
1085 	u32 dcfg;
1086 
1087 	ep0->sent_zlp = 0;
1088 
1089 	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1090 		 ctrl->bRequest, ctrl->bRequestType,
1091 		 ctrl->wValue, ctrl->wLength);
1092 
1093 	/*
1094 	 * record the direction of the request, for later use when enquing
1095 	 * packets onto EP0.
1096 	 */
1097 
1098 	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1099 	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1100 
1101 	/*
1102 	 * if we've no data with this request, then the last part of the
1103 	 * transaction is going to implicitly be IN.
1104 	 */
1105 	if (ctrl->wLength == 0)
1106 		ep0->dir_in = 1;
1107 
1108 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1109 		switch (ctrl->bRequest) {
1110 		case USB_REQ_SET_ADDRESS:
1111 			dcfg = readl(hsotg->regs + DCFG);
1112 			dcfg &= ~DCFG_DEVADDR_MASK;
1113 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1114 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1115 			writel(dcfg, hsotg->regs + DCFG);
1116 
1117 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1118 
1119 			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1120 			return;
1121 
1122 		case USB_REQ_GET_STATUS:
1123 			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1124 			break;
1125 
1126 		case USB_REQ_CLEAR_FEATURE:
1127 		case USB_REQ_SET_FEATURE:
1128 			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1129 			break;
1130 		}
1131 	}
1132 
1133 	/* as a fallback, try delivering it to the driver to deal with */
1134 
1135 	if (ret == 0 && hsotg->driver) {
1136 		spin_unlock(&hsotg->lock);
1137 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1138 		spin_lock(&hsotg->lock);
1139 		if (ret < 0)
1140 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1141 	}
1142 
1143 	/*
1144 	 * the request is either unhandlable, or is not formatted correctly
1145 	 * so respond with a STALL for the status stage to indicate failure.
1146 	 */
1147 
1148 	if (ret < 0)
1149 		s3c_hsotg_stall_ep0(hsotg);
1150 }
1151 
1152 /**
1153  * s3c_hsotg_complete_setup - completion of a setup transfer
1154  * @ep: The endpoint the request was on.
1155  * @req: The request completed.
1156  *
1157  * Called on completion of any requests the driver itself submitted for
1158  * EP0 setup packets
1159  */
1160 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1161 				     struct usb_request *req)
1162 {
1163 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1164 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1165 
1166 	if (req->status < 0) {
1167 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1168 		return;
1169 	}
1170 
1171 	spin_lock(&hsotg->lock);
1172 	if (req->actual == 0)
1173 		s3c_hsotg_enqueue_setup(hsotg);
1174 	else
1175 		s3c_hsotg_process_control(hsotg, req->buf);
1176 	spin_unlock(&hsotg->lock);
1177 }
1178 
1179 /**
1180  * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1181  * @hsotg: The device state.
1182  *
1183  * Enqueue a request on EP0 if necessary to received any SETUP packets
1184  * received from the host.
1185  */
1186 static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1187 {
1188 	struct usb_request *req = hsotg->ctrl_req;
1189 	struct s3c_hsotg_req *hs_req = our_req(req);
1190 	int ret;
1191 
1192 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1193 
1194 	req->zero = 0;
1195 	req->length = 8;
1196 	req->buf = hsotg->ctrl_buff;
1197 	req->complete = s3c_hsotg_complete_setup;
1198 
1199 	if (!list_empty(&hs_req->queue)) {
1200 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1201 		return;
1202 	}
1203 
1204 	hsotg->eps[0].dir_in = 0;
1205 
1206 	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1207 	if (ret < 0) {
1208 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1209 		/*
1210 		 * Don't think there's much we can do other than watch the
1211 		 * driver fail.
1212 		 */
1213 	}
1214 }
1215 
1216 /**
1217  * s3c_hsotg_complete_request - complete a request given to us
1218  * @hsotg: The device state.
1219  * @hs_ep: The endpoint the request was on.
1220  * @hs_req: The request to complete.
1221  * @result: The result code (0 => Ok, otherwise errno)
1222  *
1223  * The given request has finished, so call the necessary completion
1224  * if it has one and then look to see if we can start a new request
1225  * on the endpoint.
1226  *
1227  * Note, expects the ep to already be locked as appropriate.
1228  */
1229 static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1230 				       struct s3c_hsotg_ep *hs_ep,
1231 				       struct s3c_hsotg_req *hs_req,
1232 				       int result)
1233 {
1234 	bool restart;
1235 
1236 	if (!hs_req) {
1237 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1238 		return;
1239 	}
1240 
1241 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1242 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1243 
1244 	/*
1245 	 * only replace the status if we've not already set an error
1246 	 * from a previous transaction
1247 	 */
1248 
1249 	if (hs_req->req.status == -EINPROGRESS)
1250 		hs_req->req.status = result;
1251 
1252 	hs_ep->req = NULL;
1253 	list_del_init(&hs_req->queue);
1254 
1255 	if (using_dma(hsotg))
1256 		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1257 
1258 	/*
1259 	 * call the complete request with the locks off, just in case the
1260 	 * request tries to queue more work for this endpoint.
1261 	 */
1262 
1263 	if (hs_req->req.complete) {
1264 		spin_unlock(&hsotg->lock);
1265 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1266 		spin_lock(&hsotg->lock);
1267 	}
1268 
1269 	/*
1270 	 * Look to see if there is anything else to do. Note, the completion
1271 	 * of the previous request may have caused a new request to be started
1272 	 * so be careful when doing this.
1273 	 */
1274 
1275 	if (!hs_ep->req && result >= 0) {
1276 		restart = !list_empty(&hs_ep->queue);
1277 		if (restart) {
1278 			hs_req = get_ep_head(hs_ep);
1279 			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1280 		}
1281 	}
1282 }
1283 
1284 /**
1285  * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1286  * @hsotg: The device state.
1287  * @ep_idx: The endpoint index for the data
1288  * @size: The size of data in the fifo, in bytes
1289  *
1290  * The FIFO status shows there is data to read from the FIFO for a given
1291  * endpoint, so sort out whether we need to read the data into a request
1292  * that has been made for that endpoint.
1293  */
1294 static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1295 {
1296 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1297 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1298 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1299 	int to_read;
1300 	int max_req;
1301 	int read_ptr;
1302 
1303 
1304 	if (!hs_req) {
1305 		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1306 		int ptr;
1307 
1308 		dev_warn(hsotg->dev,
1309 			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1310 			 __func__, size, ep_idx, epctl);
1311 
1312 		/* dump the data from the FIFO, we've nothing we can do */
1313 		for (ptr = 0; ptr < size; ptr += 4)
1314 			(void)readl(fifo);
1315 
1316 		return;
1317 	}
1318 
1319 	to_read = size;
1320 	read_ptr = hs_req->req.actual;
1321 	max_req = hs_req->req.length - read_ptr;
1322 
1323 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1324 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1325 
1326 	if (to_read > max_req) {
1327 		/*
1328 		 * more data appeared than we where willing
1329 		 * to deal with in this request.
1330 		 */
1331 
1332 		/* currently we don't deal this */
1333 		WARN_ON_ONCE(1);
1334 	}
1335 
1336 	hs_ep->total_data += to_read;
1337 	hs_req->req.actual += to_read;
1338 	to_read = DIV_ROUND_UP(to_read, 4);
1339 
1340 	/*
1341 	 * note, we might over-write the buffer end by 3 bytes depending on
1342 	 * alignment of the data.
1343 	 */
1344 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1345 }
1346 
1347 /**
1348  * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1349  * @hsotg: The device instance
1350  * @req: The request currently on this endpoint
1351  *
1352  * Generate a zero-length IN packet request for terminating a SETUP
1353  * transaction.
1354  *
1355  * Note, since we don't write any data to the TxFIFO, then it is
1356  * currently believed that we do not need to wait for any space in
1357  * the TxFIFO.
1358  */
1359 static void s3c_hsotg_send_zlp(struct dwc2_hsotg *hsotg,
1360 			       struct s3c_hsotg_req *req)
1361 {
1362 	u32 ctrl;
1363 
1364 	if (!req) {
1365 		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1366 		return;
1367 	}
1368 
1369 	if (req->req.length == 0) {
1370 		hsotg->eps[0].sent_zlp = 1;
1371 		s3c_hsotg_enqueue_setup(hsotg);
1372 		return;
1373 	}
1374 
1375 	hsotg->eps[0].dir_in = 1;
1376 	hsotg->eps[0].sent_zlp = 1;
1377 
1378 	dev_dbg(hsotg->dev, "sending zero-length packet\n");
1379 
1380 	/* issue a zero-sized packet to terminate this */
1381 	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1382 	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1383 
1384 	ctrl = readl(hsotg->regs + DIEPCTL0);
1385 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1386 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1387 	ctrl |= DXEPCTL_USBACTEP;
1388 	writel(ctrl, hsotg->regs + DIEPCTL0);
1389 }
1390 
1391 /**
1392  * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1393  * @hsotg: The device instance
1394  * @epnum: The endpoint received from
1395  * @was_setup: Set if processing a SetupDone event.
1396  *
1397  * The RXFIFO has delivered an OutDone event, which means that the data
1398  * transfer for an OUT endpoint has been completed, either by a short
1399  * packet or by the finish of a transfer.
1400  */
1401 static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg,
1402 				     int epnum, bool was_setup)
1403 {
1404 	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1405 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1406 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1407 	struct usb_request *req = &hs_req->req;
1408 	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1409 	int result = 0;
1410 
1411 	if (!hs_req) {
1412 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1413 		return;
1414 	}
1415 
1416 	if (using_dma(hsotg)) {
1417 		unsigned size_done;
1418 
1419 		/*
1420 		 * Calculate the size of the transfer by checking how much
1421 		 * is left in the endpoint size register and then working it
1422 		 * out from the amount we loaded for the transfer.
1423 		 *
1424 		 * We need to do this as DMA pointers are always 32bit aligned
1425 		 * so may overshoot/undershoot the transfer.
1426 		 */
1427 
1428 		size_done = hs_ep->size_loaded - size_left;
1429 		size_done += hs_ep->last_load;
1430 
1431 		req->actual = size_done;
1432 	}
1433 
1434 	/* if there is more request to do, schedule new transfer */
1435 	if (req->actual < req->length && size_left == 0) {
1436 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1437 		return;
1438 	} else if (epnum == 0) {
1439 		/*
1440 		 * After was_setup = 1 =>
1441 		 * set CNAK for non Setup requests
1442 		 */
1443 		hsotg->setup = was_setup ? 0 : 1;
1444 	}
1445 
1446 	if (req->actual < req->length && req->short_not_ok) {
1447 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1448 			__func__, req->actual, req->length);
1449 
1450 		/*
1451 		 * todo - what should we return here? there's no one else
1452 		 * even bothering to check the status.
1453 		 */
1454 	}
1455 
1456 	if (epnum == 0) {
1457 		/*
1458 		 * Condition req->complete != s3c_hsotg_complete_setup says:
1459 		 * send ZLP when we have an asynchronous request from gadget
1460 		 */
1461 		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1462 			s3c_hsotg_send_zlp(hsotg, hs_req);
1463 	}
1464 
1465 	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1466 }
1467 
1468 /**
1469  * s3c_hsotg_read_frameno - read current frame number
1470  * @hsotg: The device instance
1471  *
1472  * Return the current frame number
1473  */
1474 static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1475 {
1476 	u32 dsts;
1477 
1478 	dsts = readl(hsotg->regs + DSTS);
1479 	dsts &= DSTS_SOFFN_MASK;
1480 	dsts >>= DSTS_SOFFN_SHIFT;
1481 
1482 	return dsts;
1483 }
1484 
1485 /**
1486  * s3c_hsotg_handle_rx - RX FIFO has data
1487  * @hsotg: The device instance
1488  *
1489  * The IRQ handler has detected that the RX FIFO has some data in it
1490  * that requires processing, so find out what is in there and do the
1491  * appropriate read.
1492  *
1493  * The RXFIFO is a true FIFO, the packets coming out are still in packet
1494  * chunks, so if you have x packets received on an endpoint you'll get x
1495  * FIFO events delivered, each with a packet's worth of data in it.
1496  *
1497  * When using DMA, we should not be processing events from the RXFIFO
1498  * as the actual data should be sent to the memory directly and we turn
1499  * on the completion interrupts to get notifications of transfer completion.
1500  */
1501 static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1502 {
1503 	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1504 	u32 epnum, status, size;
1505 
1506 	WARN_ON(using_dma(hsotg));
1507 
1508 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1509 	status = grxstsr & GRXSTS_PKTSTS_MASK;
1510 
1511 	size = grxstsr & GRXSTS_BYTECNT_MASK;
1512 	size >>= GRXSTS_BYTECNT_SHIFT;
1513 
1514 	if (1)
1515 		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1516 			__func__, grxstsr, size, epnum);
1517 
1518 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1519 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1520 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1521 		break;
1522 
1523 	case GRXSTS_PKTSTS_OUTDONE:
1524 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1525 			s3c_hsotg_read_frameno(hsotg));
1526 
1527 		if (!using_dma(hsotg))
1528 			s3c_hsotg_handle_outdone(hsotg, epnum, false);
1529 		break;
1530 
1531 	case GRXSTS_PKTSTS_SETUPDONE:
1532 		dev_dbg(hsotg->dev,
1533 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1534 			s3c_hsotg_read_frameno(hsotg),
1535 			readl(hsotg->regs + DOEPCTL(0)));
1536 
1537 		s3c_hsotg_handle_outdone(hsotg, epnum, true);
1538 		break;
1539 
1540 	case GRXSTS_PKTSTS_OUTRX:
1541 		s3c_hsotg_rx_data(hsotg, epnum, size);
1542 		break;
1543 
1544 	case GRXSTS_PKTSTS_SETUPRX:
1545 		dev_dbg(hsotg->dev,
1546 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1547 			s3c_hsotg_read_frameno(hsotg),
1548 			readl(hsotg->regs + DOEPCTL(0)));
1549 
1550 		s3c_hsotg_rx_data(hsotg, epnum, size);
1551 		break;
1552 
1553 	default:
1554 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1555 			 __func__, grxstsr);
1556 
1557 		s3c_hsotg_dump(hsotg);
1558 		break;
1559 	}
1560 }
1561 
1562 /**
1563  * s3c_hsotg_ep0_mps - turn max packet size into register setting
1564  * @mps: The maximum packet size in bytes.
1565  */
1566 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1567 {
1568 	switch (mps) {
1569 	case 64:
1570 		return D0EPCTL_MPS_64;
1571 	case 32:
1572 		return D0EPCTL_MPS_32;
1573 	case 16:
1574 		return D0EPCTL_MPS_16;
1575 	case 8:
1576 		return D0EPCTL_MPS_8;
1577 	}
1578 
1579 	/* bad max packet size, warn and return invalid result */
1580 	WARN_ON(1);
1581 	return (u32)-1;
1582 }
1583 
1584 /**
1585  * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1586  * @hsotg: The driver state.
1587  * @ep: The index number of the endpoint
1588  * @mps: The maximum packet size in bytes
1589  *
1590  * Configure the maximum packet size for the given endpoint, updating
1591  * the hardware control registers to reflect this.
1592  */
1593 static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1594 				       unsigned int ep, unsigned int mps)
1595 {
1596 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1597 	void __iomem *regs = hsotg->regs;
1598 	u32 mpsval;
1599 	u32 mcval;
1600 	u32 reg;
1601 
1602 	if (ep == 0) {
1603 		/* EP0 is a special case */
1604 		mpsval = s3c_hsotg_ep0_mps(mps);
1605 		if (mpsval > 3)
1606 			goto bad_mps;
1607 		hs_ep->ep.maxpacket = mps;
1608 		hs_ep->mc = 1;
1609 	} else {
1610 		mpsval = mps & DXEPCTL_MPS_MASK;
1611 		if (mpsval > 1024)
1612 			goto bad_mps;
1613 		mcval = ((mps >> 11) & 0x3) + 1;
1614 		hs_ep->mc = mcval;
1615 		if (mcval > 3)
1616 			goto bad_mps;
1617 		hs_ep->ep.maxpacket = mpsval;
1618 	}
1619 
1620 	/*
1621 	 * update both the in and out endpoint controldir_ registers, even
1622 	 * if one of the directions may not be in use.
1623 	 */
1624 
1625 	reg = readl(regs + DIEPCTL(ep));
1626 	reg &= ~DXEPCTL_MPS_MASK;
1627 	reg |= mpsval;
1628 	writel(reg, regs + DIEPCTL(ep));
1629 
1630 	if (ep) {
1631 		reg = readl(regs + DOEPCTL(ep));
1632 		reg &= ~DXEPCTL_MPS_MASK;
1633 		reg |= mpsval;
1634 		writel(reg, regs + DOEPCTL(ep));
1635 	}
1636 
1637 	return;
1638 
1639 bad_mps:
1640 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1641 }
1642 
1643 /**
1644  * s3c_hsotg_txfifo_flush - flush Tx FIFO
1645  * @hsotg: The driver state
1646  * @idx: The index for the endpoint (0..15)
1647  */
1648 static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1649 {
1650 	int timeout;
1651 	int val;
1652 
1653 	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1654 		hsotg->regs + GRSTCTL);
1655 
1656 	/* wait until the fifo is flushed */
1657 	timeout = 100;
1658 
1659 	while (1) {
1660 		val = readl(hsotg->regs + GRSTCTL);
1661 
1662 		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1663 			break;
1664 
1665 		if (--timeout == 0) {
1666 			dev_err(hsotg->dev,
1667 				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1668 				__func__, val);
1669 			break;
1670 		}
1671 
1672 		udelay(1);
1673 	}
1674 }
1675 
1676 /**
1677  * s3c_hsotg_trytx - check to see if anything needs transmitting
1678  * @hsotg: The driver state
1679  * @hs_ep: The driver endpoint to check.
1680  *
1681  * Check to see if there is a request that has data to send, and if so
1682  * make an attempt to write data into the FIFO.
1683  */
1684 static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1685 			   struct s3c_hsotg_ep *hs_ep)
1686 {
1687 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1688 
1689 	if (!hs_ep->dir_in || !hs_req) {
1690 		/**
1691 		 * if request is not enqueued, we disable interrupts
1692 		 * for endpoints, excepting ep0
1693 		 */
1694 		if (hs_ep->index != 0)
1695 			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1696 					     hs_ep->dir_in, 0);
1697 		return 0;
1698 	}
1699 
1700 	if (hs_req->req.actual < hs_req->req.length) {
1701 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1702 			hs_ep->index);
1703 		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 /**
1710  * s3c_hsotg_complete_in - complete IN transfer
1711  * @hsotg: The device state.
1712  * @hs_ep: The endpoint that has just completed.
1713  *
1714  * An IN transfer has been completed, update the transfer's state and then
1715  * call the relevant completion routines.
1716  */
1717 static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1718 				  struct s3c_hsotg_ep *hs_ep)
1719 {
1720 	struct s3c_hsotg_req *hs_req = hs_ep->req;
1721 	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1722 	int size_left, size_done;
1723 
1724 	if (!hs_req) {
1725 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1726 		return;
1727 	}
1728 
1729 	/* Finish ZLP handling for IN EP0 transactions */
1730 	if (hsotg->eps[0].sent_zlp) {
1731 		dev_dbg(hsotg->dev, "zlp packet received\n");
1732 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1733 		return;
1734 	}
1735 
1736 	/*
1737 	 * Calculate the size of the transfer by checking how much is left
1738 	 * in the endpoint size register and then working it out from
1739 	 * the amount we loaded for the transfer.
1740 	 *
1741 	 * We do this even for DMA, as the transfer may have incremented
1742 	 * past the end of the buffer (DMA transfers are always 32bit
1743 	 * aligned).
1744 	 */
1745 
1746 	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1747 
1748 	size_done = hs_ep->size_loaded - size_left;
1749 	size_done += hs_ep->last_load;
1750 
1751 	if (hs_req->req.actual != size_done)
1752 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1753 			__func__, hs_req->req.actual, size_done);
1754 
1755 	hs_req->req.actual = size_done;
1756 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1757 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1758 
1759 	/*
1760 	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1761 	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1762 	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1763 	 * inform the host that no more data is available.
1764 	 * The state of req.zero member is checked to be sure that the value to
1765 	 * send is smaller than wValue expected from host.
1766 	 * Check req.length to NOT send another ZLP when the current one is
1767 	 * under completion (the one for which this completion has been called).
1768 	 */
1769 	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1770 	    hs_req->req.length == hs_req->req.actual &&
1771 	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1772 
1773 		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1774 		s3c_hsotg_send_zlp(hsotg, hs_req);
1775 
1776 		return;
1777 	}
1778 
1779 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1780 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1781 		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1782 	} else
1783 		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1784 }
1785 
1786 /**
1787  * s3c_hsotg_epint - handle an in/out endpoint interrupt
1788  * @hsotg: The driver state
1789  * @idx: The index for the endpoint (0..15)
1790  * @dir_in: Set if this is an IN endpoint
1791  *
1792  * Process and clear any interrupt pending for an individual endpoint
1793  */
1794 static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1795 			    int dir_in)
1796 {
1797 	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1798 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1799 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1800 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1801 	u32 ints;
1802 	u32 ctrl;
1803 
1804 	ints = readl(hsotg->regs + epint_reg);
1805 	ctrl = readl(hsotg->regs + epctl_reg);
1806 
1807 	/* Clear endpoint interrupts */
1808 	writel(ints, hsotg->regs + epint_reg);
1809 
1810 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1811 		__func__, idx, dir_in ? "in" : "out", ints);
1812 
1813 	if (ints & DXEPINT_XFERCOMPL) {
1814 		if (hs_ep->isochronous && hs_ep->interval == 1) {
1815 			if (ctrl & DXEPCTL_EOFRNUM)
1816 				ctrl |= DXEPCTL_SETEVENFR;
1817 			else
1818 				ctrl |= DXEPCTL_SETODDFR;
1819 			writel(ctrl, hsotg->regs + epctl_reg);
1820 		}
1821 
1822 		dev_dbg(hsotg->dev,
1823 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1824 			__func__, readl(hsotg->regs + epctl_reg),
1825 			readl(hsotg->regs + epsiz_reg));
1826 
1827 		/*
1828 		 * we get OutDone from the FIFO, so we only need to look
1829 		 * at completing IN requests here
1830 		 */
1831 		if (dir_in) {
1832 			s3c_hsotg_complete_in(hsotg, hs_ep);
1833 
1834 			if (idx == 0 && !hs_ep->req)
1835 				s3c_hsotg_enqueue_setup(hsotg);
1836 		} else if (using_dma(hsotg)) {
1837 			/*
1838 			 * We're using DMA, we need to fire an OutDone here
1839 			 * as we ignore the RXFIFO.
1840 			 */
1841 
1842 			s3c_hsotg_handle_outdone(hsotg, idx, false);
1843 		}
1844 	}
1845 
1846 	if (ints & DXEPINT_EPDISBLD) {
1847 		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1848 
1849 		if (dir_in) {
1850 			int epctl = readl(hsotg->regs + epctl_reg);
1851 
1852 			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1853 
1854 			if ((epctl & DXEPCTL_STALL) &&
1855 				(epctl & DXEPCTL_EPTYPE_BULK)) {
1856 				int dctl = readl(hsotg->regs + DCTL);
1857 
1858 				dctl |= DCTL_CGNPINNAK;
1859 				writel(dctl, hsotg->regs + DCTL);
1860 			}
1861 		}
1862 	}
1863 
1864 	if (ints & DXEPINT_AHBERR)
1865 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1866 
1867 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1868 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1869 
1870 		if (using_dma(hsotg) && idx == 0) {
1871 			/*
1872 			 * this is the notification we've received a
1873 			 * setup packet. In non-DMA mode we'd get this
1874 			 * from the RXFIFO, instead we need to process
1875 			 * the setup here.
1876 			 */
1877 
1878 			if (dir_in)
1879 				WARN_ON_ONCE(1);
1880 			else
1881 				s3c_hsotg_handle_outdone(hsotg, 0, true);
1882 		}
1883 	}
1884 
1885 	if (ints & DXEPINT_BACK2BACKSETUP)
1886 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1887 
1888 	if (dir_in && !hs_ep->isochronous) {
1889 		/* not sure if this is important, but we'll clear it anyway */
1890 		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1891 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1892 				__func__, idx);
1893 		}
1894 
1895 		/* this probably means something bad is happening */
1896 		if (ints & DIEPMSK_INTKNEPMISMSK) {
1897 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1898 				 __func__, idx);
1899 		}
1900 
1901 		/* FIFO has space or is empty (see GAHBCFG) */
1902 		if (hsotg->dedicated_fifos &&
1903 		    ints & DIEPMSK_TXFIFOEMPTY) {
1904 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1905 				__func__, idx);
1906 			if (!using_dma(hsotg))
1907 				s3c_hsotg_trytx(hsotg, hs_ep);
1908 		}
1909 	}
1910 }
1911 
1912 /**
1913  * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1914  * @hsotg: The device state.
1915  *
1916  * Handle updating the device settings after the enumeration phase has
1917  * been completed.
1918  */
1919 static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1920 {
1921 	u32 dsts = readl(hsotg->regs + DSTS);
1922 	int ep0_mps = 0, ep_mps = 8;
1923 
1924 	/*
1925 	 * This should signal the finish of the enumeration phase
1926 	 * of the USB handshaking, so we should now know what rate
1927 	 * we connected at.
1928 	 */
1929 
1930 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1931 
1932 	/*
1933 	 * note, since we're limited by the size of transfer on EP0, and
1934 	 * it seems IN transfers must be a even number of packets we do
1935 	 * not advertise a 64byte MPS on EP0.
1936 	 */
1937 
1938 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1939 	switch (dsts & DSTS_ENUMSPD_MASK) {
1940 	case DSTS_ENUMSPD_FS:
1941 	case DSTS_ENUMSPD_FS48:
1942 		hsotg->gadget.speed = USB_SPEED_FULL;
1943 		ep0_mps = EP0_MPS_LIMIT;
1944 		ep_mps = 1023;
1945 		break;
1946 
1947 	case DSTS_ENUMSPD_HS:
1948 		hsotg->gadget.speed = USB_SPEED_HIGH;
1949 		ep0_mps = EP0_MPS_LIMIT;
1950 		ep_mps = 1024;
1951 		break;
1952 
1953 	case DSTS_ENUMSPD_LS:
1954 		hsotg->gadget.speed = USB_SPEED_LOW;
1955 		/*
1956 		 * note, we don't actually support LS in this driver at the
1957 		 * moment, and the documentation seems to imply that it isn't
1958 		 * supported by the PHYs on some of the devices.
1959 		 */
1960 		break;
1961 	}
1962 	dev_info(hsotg->dev, "new device is %s\n",
1963 		 usb_speed_string(hsotg->gadget.speed));
1964 
1965 	/*
1966 	 * we should now know the maximum packet size for an
1967 	 * endpoint, so set the endpoints to a default value.
1968 	 */
1969 
1970 	if (ep0_mps) {
1971 		int i;
1972 		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1973 		for (i = 1; i < hsotg->num_of_eps; i++)
1974 			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1975 	}
1976 
1977 	/* ensure after enumeration our EP0 is active */
1978 
1979 	s3c_hsotg_enqueue_setup(hsotg);
1980 
1981 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1982 		readl(hsotg->regs + DIEPCTL0),
1983 		readl(hsotg->regs + DOEPCTL0));
1984 }
1985 
1986 /**
1987  * kill_all_requests - remove all requests from the endpoint's queue
1988  * @hsotg: The device state.
1989  * @ep: The endpoint the requests may be on.
1990  * @result: The result code to use.
1991  * @force: Force removal of any current requests
1992  *
1993  * Go through the requests on the given endpoint and mark them
1994  * completed with the given result code.
1995  */
1996 static void kill_all_requests(struct dwc2_hsotg *hsotg,
1997 			      struct s3c_hsotg_ep *ep,
1998 			      int result, bool force)
1999 {
2000 	struct s3c_hsotg_req *req, *treq;
2001 	unsigned size;
2002 
2003 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2004 		/*
2005 		 * currently, we can't do much about an already
2006 		 * running request on an in endpoint
2007 		 */
2008 
2009 		if (ep->req == req && ep->dir_in && !force)
2010 			continue;
2011 
2012 		s3c_hsotg_complete_request(hsotg, ep, req,
2013 					   result);
2014 	}
2015 	if (!hsotg->dedicated_fifos)
2016 		return;
2017 	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2018 	if (size < ep->fifo_size)
2019 		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2020 }
2021 
2022 /**
2023  * s3c_hsotg_disconnect - disconnect service
2024  * @hsotg: The device state.
2025  *
2026  * The device has been disconnected. Remove all current
2027  * transactions and signal the gadget driver that this
2028  * has happened.
2029  */
2030 void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2031 {
2032 	unsigned ep;
2033 
2034 	if (!hsotg->connected)
2035 		return;
2036 
2037 	hsotg->connected = 0;
2038 	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2039 		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2040 
2041 	call_gadget(hsotg, disconnect);
2042 }
2043 EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2044 
2045 /**
2046  * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2047  * @hsotg: The device state:
2048  * @periodic: True if this is a periodic FIFO interrupt
2049  */
2050 static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2051 {
2052 	struct s3c_hsotg_ep *ep;
2053 	int epno, ret;
2054 
2055 	/* look through for any more data to transmit */
2056 
2057 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2058 		ep = &hsotg->eps[epno];
2059 
2060 		if (!ep->dir_in)
2061 			continue;
2062 
2063 		if ((periodic && !ep->periodic) ||
2064 		    (!periodic && ep->periodic))
2065 			continue;
2066 
2067 		ret = s3c_hsotg_trytx(hsotg, ep);
2068 		if (ret < 0)
2069 			break;
2070 	}
2071 }
2072 
2073 /* IRQ flags which will trigger a retry around the IRQ loop */
2074 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2075 			GINTSTS_PTXFEMP |  \
2076 			GINTSTS_RXFLVL)
2077 
2078 /**
2079  * s3c_hsotg_corereset - issue softreset to the core
2080  * @hsotg: The device state
2081  *
2082  * Issue a soft reset to the core, and await the core finishing it.
2083  */
2084 static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2085 {
2086 	int timeout;
2087 	u32 grstctl;
2088 
2089 	dev_dbg(hsotg->dev, "resetting core\n");
2090 
2091 	/* issue soft reset */
2092 	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2093 
2094 	timeout = 10000;
2095 	do {
2096 		grstctl = readl(hsotg->regs + GRSTCTL);
2097 	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2098 
2099 	if (grstctl & GRSTCTL_CSFTRST) {
2100 		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2101 		return -EINVAL;
2102 	}
2103 
2104 	timeout = 10000;
2105 
2106 	while (1) {
2107 		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2108 
2109 		if (timeout-- < 0) {
2110 			dev_info(hsotg->dev,
2111 				 "%s: reset failed, GRSTCTL=%08x\n",
2112 				 __func__, grstctl);
2113 			return -ETIMEDOUT;
2114 		}
2115 
2116 		if (!(grstctl & GRSTCTL_AHBIDLE))
2117 			continue;
2118 
2119 		break;		/* reset done */
2120 	}
2121 
2122 	dev_dbg(hsotg->dev, "reset successful\n");
2123 	return 0;
2124 }
2125 
2126 /**
2127  * s3c_hsotg_core_init - issue softreset to the core
2128  * @hsotg: The device state
2129  *
2130  * Issue a soft reset to the core, and await the core finishing it.
2131  */
2132 void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2133 {
2134 	s3c_hsotg_corereset(hsotg);
2135 
2136 	/*
2137 	 * we must now enable ep0 ready for host detection and then
2138 	 * set configuration.
2139 	 */
2140 
2141 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2142 	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2143 	       (0x5 << 10), hsotg->regs + GUSBCFG);
2144 
2145 	s3c_hsotg_init_fifo(hsotg);
2146 
2147 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2148 
2149 	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2150 
2151 	/* Clear any pending OTG interrupts */
2152 	writel(0xffffffff, hsotg->regs + GOTGINT);
2153 
2154 	/* Clear any pending interrupts */
2155 	writel(0xffffffff, hsotg->regs + GINTSTS);
2156 
2157 	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2158 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2159 		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2160 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2161 		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
2162 		hsotg->regs + GINTMSK);
2163 
2164 	if (using_dma(hsotg))
2165 		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2166 		       GAHBCFG_HBSTLEN_INCR4,
2167 		       hsotg->regs + GAHBCFG);
2168 	else
2169 		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2170 						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
2171 		       GAHBCFG_GLBL_INTR_EN,
2172 		       hsotg->regs + GAHBCFG);
2173 
2174 	/*
2175 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2176 	 * when we have no data to transfer. Otherwise we get being flooded by
2177 	 * interrupts.
2178 	 */
2179 
2180 	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
2181 		DIEPMSK_INTKNTXFEMPMSK : 0) |
2182 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2183 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2184 		DIEPMSK_INTKNEPMISMSK,
2185 		hsotg->regs + DIEPMSK);
2186 
2187 	/*
2188 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2189 	 * DMA mode we may need this.
2190 	 */
2191 	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2192 				    DIEPMSK_TIMEOUTMSK) : 0) |
2193 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2194 		DOEPMSK_SETUPMSK,
2195 		hsotg->regs + DOEPMSK);
2196 
2197 	writel(0, hsotg->regs + DAINTMSK);
2198 
2199 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2200 		readl(hsotg->regs + DIEPCTL0),
2201 		readl(hsotg->regs + DOEPCTL0));
2202 
2203 	/* enable in and out endpoint interrupts */
2204 	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2205 
2206 	/*
2207 	 * Enable the RXFIFO when in slave mode, as this is how we collect
2208 	 * the data. In DMA mode, we get events from the FIFO but also
2209 	 * things we cannot process, so do not use it.
2210 	 */
2211 	if (!using_dma(hsotg))
2212 		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2213 
2214 	/* Enable interrupts for EP0 in and out */
2215 	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2216 	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2217 
2218 	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2219 	udelay(10);  /* see openiboot */
2220 	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2221 
2222 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2223 
2224 	/*
2225 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2226 	 * writing to the EPCTL register..
2227 	 */
2228 
2229 	/* set to read 1 8byte packet */
2230 	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2231 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2232 
2233 	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2234 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2235 	       DXEPCTL_USBACTEP,
2236 	       hsotg->regs + DOEPCTL0);
2237 
2238 	/* enable, but don't activate EP0in */
2239 	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2240 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2241 
2242 	s3c_hsotg_enqueue_setup(hsotg);
2243 
2244 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2245 		readl(hsotg->regs + DIEPCTL0),
2246 		readl(hsotg->regs + DOEPCTL0));
2247 
2248 	/* clear global NAKs */
2249 	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2250 	       hsotg->regs + DCTL);
2251 
2252 	/* must be at-least 3ms to allow bus to see disconnect */
2253 	mdelay(3);
2254 
2255 	hsotg->last_rst = jiffies;
2256 }
2257 
2258 static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2259 {
2260 	/* set the soft-disconnect bit */
2261 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2262 }
2263 
2264 void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2265 {
2266 	/* remove the soft-disconnect and let's go */
2267 	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2268 }
2269 
2270 /**
2271  * s3c_hsotg_irq - handle device interrupt
2272  * @irq: The IRQ number triggered
2273  * @pw: The pw value when registered the handler.
2274  */
2275 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2276 {
2277 	struct dwc2_hsotg *hsotg = pw;
2278 	int retry_count = 8;
2279 	u32 gintsts;
2280 	u32 gintmsk;
2281 
2282 	spin_lock(&hsotg->lock);
2283 irq_retry:
2284 	gintsts = readl(hsotg->regs + GINTSTS);
2285 	gintmsk = readl(hsotg->regs + GINTMSK);
2286 
2287 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2288 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2289 
2290 	gintsts &= gintmsk;
2291 
2292 	if (gintsts & GINTSTS_ENUMDONE) {
2293 		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2294 
2295 		s3c_hsotg_irq_enumdone(hsotg);
2296 		hsotg->connected = 1;
2297 	}
2298 
2299 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2300 		u32 daint = readl(hsotg->regs + DAINT);
2301 		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2302 		u32 daint_out, daint_in;
2303 		int ep;
2304 
2305 		daint &= daintmsk;
2306 		daint_out = daint >> DAINT_OUTEP_SHIFT;
2307 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2308 
2309 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2310 
2311 		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2312 			if (daint_out & 1)
2313 				s3c_hsotg_epint(hsotg, ep, 0);
2314 		}
2315 
2316 		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2317 			if (daint_in & 1)
2318 				s3c_hsotg_epint(hsotg, ep, 1);
2319 		}
2320 	}
2321 
2322 	if (gintsts & GINTSTS_USBRST) {
2323 
2324 		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2325 
2326 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2327 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2328 			readl(hsotg->regs + GNPTXSTS));
2329 
2330 		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2331 
2332 		if (usb_status & GOTGCTL_BSESVLD) {
2333 			if (time_after(jiffies, hsotg->last_rst +
2334 				       msecs_to_jiffies(200))) {
2335 
2336 				kill_all_requests(hsotg, &hsotg->eps[0],
2337 							  -ECONNRESET, true);
2338 
2339 				s3c_hsotg_core_init_disconnected(hsotg);
2340 				s3c_hsotg_core_connect(hsotg);
2341 			}
2342 		}
2343 	}
2344 
2345 	/* check both FIFOs */
2346 
2347 	if (gintsts & GINTSTS_NPTXFEMP) {
2348 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2349 
2350 		/*
2351 		 * Disable the interrupt to stop it happening again
2352 		 * unless one of these endpoint routines decides that
2353 		 * it needs re-enabling
2354 		 */
2355 
2356 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2357 		s3c_hsotg_irq_fifoempty(hsotg, false);
2358 	}
2359 
2360 	if (gintsts & GINTSTS_PTXFEMP) {
2361 		dev_dbg(hsotg->dev, "PTxFEmp\n");
2362 
2363 		/* See note in GINTSTS_NPTxFEmp */
2364 
2365 		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2366 		s3c_hsotg_irq_fifoempty(hsotg, true);
2367 	}
2368 
2369 	if (gintsts & GINTSTS_RXFLVL) {
2370 		/*
2371 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2372 		 * we need to retry s3c_hsotg_handle_rx if this is still
2373 		 * set.
2374 		 */
2375 
2376 		s3c_hsotg_handle_rx(hsotg);
2377 	}
2378 
2379 	if (gintsts & GINTSTS_ERLYSUSP) {
2380 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2381 		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2382 	}
2383 
2384 	/*
2385 	 * these next two seem to crop-up occasionally causing the core
2386 	 * to shutdown the USB transfer, so try clearing them and logging
2387 	 * the occurrence.
2388 	 */
2389 
2390 	if (gintsts & GINTSTS_GOUTNAKEFF) {
2391 		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2392 
2393 		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2394 
2395 		s3c_hsotg_dump(hsotg);
2396 	}
2397 
2398 	if (gintsts & GINTSTS_GINNAKEFF) {
2399 		dev_info(hsotg->dev, "GINNakEff triggered\n");
2400 
2401 		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2402 
2403 		s3c_hsotg_dump(hsotg);
2404 	}
2405 
2406 	/*
2407 	 * if we've had fifo events, we should try and go around the
2408 	 * loop again to see if there's any point in returning yet.
2409 	 */
2410 
2411 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2412 			goto irq_retry;
2413 
2414 	spin_unlock(&hsotg->lock);
2415 
2416 	return IRQ_HANDLED;
2417 }
2418 
2419 /**
2420  * s3c_hsotg_ep_enable - enable the given endpoint
2421  * @ep: The USB endpint to configure
2422  * @desc: The USB endpoint descriptor to configure with.
2423  *
2424  * This is called from the USB gadget code's usb_ep_enable().
2425  */
2426 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2427 			       const struct usb_endpoint_descriptor *desc)
2428 {
2429 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2430 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2431 	unsigned long flags;
2432 	int index = hs_ep->index;
2433 	u32 epctrl_reg;
2434 	u32 epctrl;
2435 	u32 mps;
2436 	int dir_in;
2437 	int i, val, size;
2438 	int ret = 0;
2439 
2440 	dev_dbg(hsotg->dev,
2441 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2442 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2443 		desc->wMaxPacketSize, desc->bInterval);
2444 
2445 	/* not to be called for EP0 */
2446 	WARN_ON(index == 0);
2447 
2448 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2449 	if (dir_in != hs_ep->dir_in) {
2450 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2451 		return -EINVAL;
2452 	}
2453 
2454 	mps = usb_endpoint_maxp(desc);
2455 
2456 	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2457 
2458 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2459 	epctrl = readl(hsotg->regs + epctrl_reg);
2460 
2461 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2462 		__func__, epctrl, epctrl_reg);
2463 
2464 	spin_lock_irqsave(&hsotg->lock, flags);
2465 
2466 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2467 	epctrl |= DXEPCTL_MPS(mps);
2468 
2469 	/*
2470 	 * mark the endpoint as active, otherwise the core may ignore
2471 	 * transactions entirely for this endpoint
2472 	 */
2473 	epctrl |= DXEPCTL_USBACTEP;
2474 
2475 	/*
2476 	 * set the NAK status on the endpoint, otherwise we might try and
2477 	 * do something with data that we've yet got a request to process
2478 	 * since the RXFIFO will take data for an endpoint even if the
2479 	 * size register hasn't been set.
2480 	 */
2481 
2482 	epctrl |= DXEPCTL_SNAK;
2483 
2484 	/* update the endpoint state */
2485 	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2486 
2487 	/* default, set to non-periodic */
2488 	hs_ep->isochronous = 0;
2489 	hs_ep->periodic = 0;
2490 	hs_ep->halted = 0;
2491 	hs_ep->interval = desc->bInterval;
2492 
2493 	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2494 		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2495 
2496 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2497 	case USB_ENDPOINT_XFER_ISOC:
2498 		epctrl |= DXEPCTL_EPTYPE_ISO;
2499 		epctrl |= DXEPCTL_SETEVENFR;
2500 		hs_ep->isochronous = 1;
2501 		if (dir_in)
2502 			hs_ep->periodic = 1;
2503 		break;
2504 
2505 	case USB_ENDPOINT_XFER_BULK:
2506 		epctrl |= DXEPCTL_EPTYPE_BULK;
2507 		break;
2508 
2509 	case USB_ENDPOINT_XFER_INT:
2510 		if (dir_in)
2511 			hs_ep->periodic = 1;
2512 
2513 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2514 		break;
2515 
2516 	case USB_ENDPOINT_XFER_CONTROL:
2517 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2518 		break;
2519 	}
2520 
2521 	/*
2522 	 * if the hardware has dedicated fifos, we must give each IN EP
2523 	 * a unique tx-fifo even if it is non-periodic.
2524 	 */
2525 	if (dir_in && hsotg->dedicated_fifos) {
2526 		size = hs_ep->ep.maxpacket*hs_ep->mc;
2527 		for (i = 1; i <= 8; ++i) {
2528 			if (hsotg->fifo_map & (1<<i))
2529 				continue;
2530 			val = readl(hsotg->regs + DPTXFSIZN(i));
2531 			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2532 			if (val < size)
2533 				continue;
2534 			hsotg->fifo_map |= 1<<i;
2535 
2536 			epctrl |= DXEPCTL_TXFNUM(i);
2537 			hs_ep->fifo_index = i;
2538 			hs_ep->fifo_size = val;
2539 			break;
2540 		}
2541 		if (i == 8) {
2542 			ret = -ENOMEM;
2543 			goto error;
2544 		}
2545 	}
2546 
2547 	/* for non control endpoints, set PID to D0 */
2548 	if (index)
2549 		epctrl |= DXEPCTL_SETD0PID;
2550 
2551 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2552 		__func__, epctrl);
2553 
2554 	writel(epctrl, hsotg->regs + epctrl_reg);
2555 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2556 		__func__, readl(hsotg->regs + epctrl_reg));
2557 
2558 	/* enable the endpoint interrupt */
2559 	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2560 
2561 error:
2562 	spin_unlock_irqrestore(&hsotg->lock, flags);
2563 	return ret;
2564 }
2565 
2566 /**
2567  * s3c_hsotg_ep_disable - disable given endpoint
2568  * @ep: The endpoint to disable.
2569  */
2570 static int s3c_hsotg_ep_disable_force(struct usb_ep *ep, bool force)
2571 {
2572 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2573 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2574 	int dir_in = hs_ep->dir_in;
2575 	int index = hs_ep->index;
2576 	unsigned long flags;
2577 	u32 epctrl_reg;
2578 	u32 ctrl;
2579 
2580 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2581 
2582 	if (ep == &hsotg->eps[0].ep) {
2583 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2584 		return -EINVAL;
2585 	}
2586 
2587 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2588 
2589 	spin_lock_irqsave(&hsotg->lock, flags);
2590 	/* terminate all requests with shutdown */
2591 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, force);
2592 
2593 	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2594 	hs_ep->fifo_index = 0;
2595 	hs_ep->fifo_size = 0;
2596 
2597 	ctrl = readl(hsotg->regs + epctrl_reg);
2598 	ctrl &= ~DXEPCTL_EPENA;
2599 	ctrl &= ~DXEPCTL_USBACTEP;
2600 	ctrl |= DXEPCTL_SNAK;
2601 
2602 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2603 	writel(ctrl, hsotg->regs + epctrl_reg);
2604 
2605 	/* disable endpoint interrupts */
2606 	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2607 
2608 	spin_unlock_irqrestore(&hsotg->lock, flags);
2609 	return 0;
2610 }
2611 
2612 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2613 {
2614 	return s3c_hsotg_ep_disable_force(ep, false);
2615 }
2616 /**
2617  * on_list - check request is on the given endpoint
2618  * @ep: The endpoint to check.
2619  * @test: The request to test if it is on the endpoint.
2620  */
2621 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2622 {
2623 	struct s3c_hsotg_req *req, *treq;
2624 
2625 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2626 		if (req == test)
2627 			return true;
2628 	}
2629 
2630 	return false;
2631 }
2632 
2633 /**
2634  * s3c_hsotg_ep_dequeue - dequeue given endpoint
2635  * @ep: The endpoint to dequeue.
2636  * @req: The request to be removed from a queue.
2637  */
2638 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2639 {
2640 	struct s3c_hsotg_req *hs_req = our_req(req);
2641 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2642 	struct dwc2_hsotg *hs = hs_ep->parent;
2643 	unsigned long flags;
2644 
2645 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2646 
2647 	spin_lock_irqsave(&hs->lock, flags);
2648 
2649 	if (!on_list(hs_ep, hs_req)) {
2650 		spin_unlock_irqrestore(&hs->lock, flags);
2651 		return -EINVAL;
2652 	}
2653 
2654 	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2655 	spin_unlock_irqrestore(&hs->lock, flags);
2656 
2657 	return 0;
2658 }
2659 
2660 /**
2661  * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2662  * @ep: The endpoint to set halt.
2663  * @value: Set or unset the halt.
2664  */
2665 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2666 {
2667 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2668 	struct dwc2_hsotg *hs = hs_ep->parent;
2669 	int index = hs_ep->index;
2670 	u32 epreg;
2671 	u32 epctl;
2672 	u32 xfertype;
2673 
2674 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2675 
2676 	if (index == 0) {
2677 		if (value)
2678 			s3c_hsotg_stall_ep0(hs);
2679 		else
2680 			dev_warn(hs->dev,
2681 				 "%s: can't clear halt on ep0\n", __func__);
2682 		return 0;
2683 	}
2684 
2685 	/* write both IN and OUT control registers */
2686 
2687 	epreg = DIEPCTL(index);
2688 	epctl = readl(hs->regs + epreg);
2689 
2690 	if (value) {
2691 		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
2692 		if (epctl & DXEPCTL_EPENA)
2693 			epctl |= DXEPCTL_EPDIS;
2694 	} else {
2695 		epctl &= ~DXEPCTL_STALL;
2696 		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2697 		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2698 			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2699 				epctl |= DXEPCTL_SETD0PID;
2700 	}
2701 
2702 	writel(epctl, hs->regs + epreg);
2703 
2704 	epreg = DOEPCTL(index);
2705 	epctl = readl(hs->regs + epreg);
2706 
2707 	if (value)
2708 		epctl |= DXEPCTL_STALL;
2709 	else {
2710 		epctl &= ~DXEPCTL_STALL;
2711 		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2712 		if (xfertype == DXEPCTL_EPTYPE_BULK ||
2713 			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2714 				epctl |= DXEPCTL_SETD0PID;
2715 	}
2716 
2717 	writel(epctl, hs->regs + epreg);
2718 
2719 	hs_ep->halted = value;
2720 
2721 	return 0;
2722 }
2723 
2724 /**
2725  * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2726  * @ep: The endpoint to set halt.
2727  * @value: Set or unset the halt.
2728  */
2729 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2730 {
2731 	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2732 	struct dwc2_hsotg *hs = hs_ep->parent;
2733 	unsigned long flags = 0;
2734 	int ret = 0;
2735 
2736 	spin_lock_irqsave(&hs->lock, flags);
2737 	ret = s3c_hsotg_ep_sethalt(ep, value);
2738 	spin_unlock_irqrestore(&hs->lock, flags);
2739 
2740 	return ret;
2741 }
2742 
2743 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2744 	.enable		= s3c_hsotg_ep_enable,
2745 	.disable	= s3c_hsotg_ep_disable,
2746 	.alloc_request	= s3c_hsotg_ep_alloc_request,
2747 	.free_request	= s3c_hsotg_ep_free_request,
2748 	.queue		= s3c_hsotg_ep_queue_lock,
2749 	.dequeue	= s3c_hsotg_ep_dequeue,
2750 	.set_halt	= s3c_hsotg_ep_sethalt_lock,
2751 	/* note, don't believe we have any call for the fifo routines */
2752 };
2753 
2754 /**
2755  * s3c_hsotg_phy_enable - enable platform phy dev
2756  * @hsotg: The driver state
2757  *
2758  * A wrapper for platform code responsible for controlling
2759  * low-level USB code
2760  */
2761 static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2762 {
2763 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2764 
2765 	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2766 
2767 	if (hsotg->uphy)
2768 		usb_phy_init(hsotg->uphy);
2769 	else if (hsotg->plat && hsotg->plat->phy_init)
2770 		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2771 	else {
2772 		phy_init(hsotg->phy);
2773 		phy_power_on(hsotg->phy);
2774 	}
2775 }
2776 
2777 /**
2778  * s3c_hsotg_phy_disable - disable platform phy dev
2779  * @hsotg: The driver state
2780  *
2781  * A wrapper for platform code responsible for controlling
2782  * low-level USB code
2783  */
2784 static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2785 {
2786 	struct platform_device *pdev = to_platform_device(hsotg->dev);
2787 
2788 	if (hsotg->uphy)
2789 		usb_phy_shutdown(hsotg->uphy);
2790 	else if (hsotg->plat && hsotg->plat->phy_exit)
2791 		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2792 	else {
2793 		phy_power_off(hsotg->phy);
2794 		phy_exit(hsotg->phy);
2795 	}
2796 }
2797 
2798 /**
2799  * s3c_hsotg_init - initalize the usb core
2800  * @hsotg: The driver state
2801  */
2802 static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2803 {
2804 	/* unmask subset of endpoint interrupts */
2805 
2806 	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2807 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
2808 		hsotg->regs + DIEPMSK);
2809 
2810 	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
2811 		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
2812 		hsotg->regs + DOEPMSK);
2813 
2814 	writel(0, hsotg->regs + DAINTMSK);
2815 
2816 	/* Be in disconnected state until gadget is registered */
2817 	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2818 
2819 	if (0) {
2820 		/* post global nak until we're ready */
2821 		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2822 		       hsotg->regs + DCTL);
2823 	}
2824 
2825 	/* setup fifos */
2826 
2827 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2828 		readl(hsotg->regs + GRXFSIZ),
2829 		readl(hsotg->regs + GNPTXFSIZ));
2830 
2831 	s3c_hsotg_init_fifo(hsotg);
2832 
2833 	/* set the PLL on, remove the HNP/SRP and set the PHY */
2834 	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2835 	       hsotg->regs + GUSBCFG);
2836 
2837 	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2838 	       hsotg->regs + GAHBCFG);
2839 }
2840 
2841 /**
2842  * s3c_hsotg_udc_start - prepare the udc for work
2843  * @gadget: The usb gadget state
2844  * @driver: The usb gadget driver
2845  *
2846  * Perform initialization to prepare udc device and driver
2847  * to work.
2848  */
2849 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2850 			   struct usb_gadget_driver *driver)
2851 {
2852 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2853 	unsigned long flags;
2854 	int ret;
2855 
2856 	if (!hsotg) {
2857 		pr_err("%s: called with no device\n", __func__);
2858 		return -ENODEV;
2859 	}
2860 
2861 	if (!driver) {
2862 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
2863 		return -EINVAL;
2864 	}
2865 
2866 	if (driver->max_speed < USB_SPEED_FULL)
2867 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2868 
2869 	if (!driver->setup) {
2870 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2871 		return -EINVAL;
2872 	}
2873 
2874 	mutex_lock(&hsotg->init_mutex);
2875 	WARN_ON(hsotg->driver);
2876 
2877 	driver->driver.bus = NULL;
2878 	hsotg->driver = driver;
2879 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2880 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2881 
2882 	clk_enable(hsotg->clk);
2883 
2884 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
2885 				    hsotg->supplies);
2886 	if (ret) {
2887 		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2888 		goto err;
2889 	}
2890 
2891 	s3c_hsotg_phy_enable(hsotg);
2892 
2893 	spin_lock_irqsave(&hsotg->lock, flags);
2894 	s3c_hsotg_init(hsotg);
2895 	s3c_hsotg_core_init_disconnected(hsotg);
2896 	hsotg->enabled = 0;
2897 	spin_unlock_irqrestore(&hsotg->lock, flags);
2898 
2899 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2900 
2901 	mutex_unlock(&hsotg->init_mutex);
2902 
2903 	return 0;
2904 
2905 err:
2906 	mutex_unlock(&hsotg->init_mutex);
2907 	hsotg->driver = NULL;
2908 	return ret;
2909 }
2910 
2911 /**
2912  * s3c_hsotg_udc_stop - stop the udc
2913  * @gadget: The usb gadget state
2914  * @driver: The usb gadget driver
2915  *
2916  * Stop udc hw block and stay tunned for future transmissions
2917  */
2918 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2919 {
2920 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2921 	unsigned long flags = 0;
2922 	int ep;
2923 
2924 	if (!hsotg)
2925 		return -ENODEV;
2926 
2927 	mutex_lock(&hsotg->init_mutex);
2928 
2929 	/* all endpoints should be shutdown */
2930 	for (ep = 1; ep < hsotg->num_of_eps; ep++)
2931 		s3c_hsotg_ep_disable_force(&hsotg->eps[ep].ep, true);
2932 
2933 	spin_lock_irqsave(&hsotg->lock, flags);
2934 
2935 	hsotg->driver = NULL;
2936 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2937 	hsotg->enabled = 0;
2938 
2939 	spin_unlock_irqrestore(&hsotg->lock, flags);
2940 
2941 	s3c_hsotg_phy_disable(hsotg);
2942 
2943 	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2944 
2945 	clk_disable(hsotg->clk);
2946 
2947 	mutex_unlock(&hsotg->init_mutex);
2948 
2949 	return 0;
2950 }
2951 
2952 /**
2953  * s3c_hsotg_gadget_getframe - read the frame number
2954  * @gadget: The usb gadget state
2955  *
2956  * Read the {micro} frame number
2957  */
2958 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2959 {
2960 	return s3c_hsotg_read_frameno(to_hsotg(gadget));
2961 }
2962 
2963 /**
2964  * s3c_hsotg_pullup - connect/disconnect the USB PHY
2965  * @gadget: The usb gadget state
2966  * @is_on: Current state of the USB PHY
2967  *
2968  * Connect/Disconnect the USB PHY pullup
2969  */
2970 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
2971 {
2972 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2973 	unsigned long flags = 0;
2974 
2975 	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2976 
2977 	mutex_lock(&hsotg->init_mutex);
2978 	spin_lock_irqsave(&hsotg->lock, flags);
2979 	if (is_on) {
2980 		clk_enable(hsotg->clk);
2981 		hsotg->enabled = 1;
2982 		s3c_hsotg_core_connect(hsotg);
2983 	} else {
2984 		s3c_hsotg_core_disconnect(hsotg);
2985 		hsotg->enabled = 0;
2986 		clk_disable(hsotg->clk);
2987 	}
2988 
2989 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2990 	spin_unlock_irqrestore(&hsotg->lock, flags);
2991 	mutex_unlock(&hsotg->init_mutex);
2992 
2993 	return 0;
2994 }
2995 
2996 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2997 	.get_frame	= s3c_hsotg_gadget_getframe,
2998 	.udc_start		= s3c_hsotg_udc_start,
2999 	.udc_stop		= s3c_hsotg_udc_stop,
3000 	.pullup                 = s3c_hsotg_pullup,
3001 };
3002 
3003 /**
3004  * s3c_hsotg_initep - initialise a single endpoint
3005  * @hsotg: The device state.
3006  * @hs_ep: The endpoint to be initialised.
3007  * @epnum: The endpoint number
3008  *
3009  * Initialise the given endpoint (as part of the probe and device state
3010  * creation) to give to the gadget driver. Setup the endpoint name, any
3011  * direction information and other state that may be required.
3012  */
3013 static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3014 				       struct s3c_hsotg_ep *hs_ep,
3015 				       int epnum)
3016 {
3017 	char *dir;
3018 
3019 	if (epnum == 0)
3020 		dir = "";
3021 	else if ((epnum % 2) == 0) {
3022 		dir = "out";
3023 	} else {
3024 		dir = "in";
3025 		hs_ep->dir_in = 1;
3026 	}
3027 
3028 	hs_ep->index = epnum;
3029 
3030 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3031 
3032 	INIT_LIST_HEAD(&hs_ep->queue);
3033 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3034 
3035 	/* add to the list of endpoints known by the gadget driver */
3036 	if (epnum)
3037 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3038 
3039 	hs_ep->parent = hsotg;
3040 	hs_ep->ep.name = hs_ep->name;
3041 	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3042 	hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3043 
3044 	/*
3045 	 * if we're using dma, we need to set the next-endpoint pointer
3046 	 * to be something valid.
3047 	 */
3048 
3049 	if (using_dma(hsotg)) {
3050 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3051 		writel(next, hsotg->regs + DIEPCTL(epnum));
3052 		writel(next, hsotg->regs + DOEPCTL(epnum));
3053 	}
3054 }
3055 
3056 /**
3057  * s3c_hsotg_hw_cfg - read HW configuration registers
3058  * @param: The device state
3059  *
3060  * Read the USB core HW configuration registers
3061  */
3062 static void s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3063 {
3064 	u32 cfg2, cfg3, cfg4;
3065 	/* check hardware configuration */
3066 
3067 	cfg2 = readl(hsotg->regs + 0x48);
3068 	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3069 
3070 	cfg3 = readl(hsotg->regs + 0x4C);
3071 	hsotg->fifo_mem = (cfg3 >> 16);
3072 
3073 	cfg4 = readl(hsotg->regs + 0x50);
3074 	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3075 
3076 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3077 		 hsotg->num_of_eps,
3078 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
3079 		 hsotg->fifo_mem);
3080 }
3081 
3082 /**
3083  * s3c_hsotg_dump - dump state of the udc
3084  * @param: The device state
3085  */
3086 static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3087 {
3088 #ifdef DEBUG
3089 	struct device *dev = hsotg->dev;
3090 	void __iomem *regs = hsotg->regs;
3091 	u32 val;
3092 	int idx;
3093 
3094 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3095 		 readl(regs + DCFG), readl(regs + DCTL),
3096 		 readl(regs + DIEPMSK));
3097 
3098 	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3099 		 readl(regs + GAHBCFG), readl(regs + 0x44));
3100 
3101 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3102 		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3103 
3104 	/* show periodic fifo settings */
3105 
3106 	for (idx = 1; idx <= 15; idx++) {
3107 		val = readl(regs + DPTXFSIZN(idx));
3108 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3109 			 val >> FIFOSIZE_DEPTH_SHIFT,
3110 			 val & FIFOSIZE_STARTADDR_MASK);
3111 	}
3112 
3113 	for (idx = 0; idx < 15; idx++) {
3114 		dev_info(dev,
3115 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3116 			 readl(regs + DIEPCTL(idx)),
3117 			 readl(regs + DIEPTSIZ(idx)),
3118 			 readl(regs + DIEPDMA(idx)));
3119 
3120 		val = readl(regs + DOEPCTL(idx));
3121 		dev_info(dev,
3122 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3123 			 idx, readl(regs + DOEPCTL(idx)),
3124 			 readl(regs + DOEPTSIZ(idx)),
3125 			 readl(regs + DOEPDMA(idx)));
3126 
3127 	}
3128 
3129 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3130 		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3131 #endif
3132 }
3133 
3134 /**
3135  * state_show - debugfs: show overall driver and device state.
3136  * @seq: The seq file to write to.
3137  * @v: Unused parameter.
3138  *
3139  * This debugfs entry shows the overall state of the hardware and
3140  * some general information about each of the endpoints available
3141  * to the system.
3142  */
3143 static int state_show(struct seq_file *seq, void *v)
3144 {
3145 	struct dwc2_hsotg *hsotg = seq->private;
3146 	void __iomem *regs = hsotg->regs;
3147 	int idx;
3148 
3149 	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3150 		 readl(regs + DCFG),
3151 		 readl(regs + DCTL),
3152 		 readl(regs + DSTS));
3153 
3154 	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3155 		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3156 
3157 	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3158 		   readl(regs + GINTMSK),
3159 		   readl(regs + GINTSTS));
3160 
3161 	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3162 		   readl(regs + DAINTMSK),
3163 		   readl(regs + DAINT));
3164 
3165 	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3166 		   readl(regs + GNPTXSTS),
3167 		   readl(regs + GRXSTSR));
3168 
3169 	seq_puts(seq, "\nEndpoint status:\n");
3170 
3171 	for (idx = 0; idx < 15; idx++) {
3172 		u32 in, out;
3173 
3174 		in = readl(regs + DIEPCTL(idx));
3175 		out = readl(regs + DOEPCTL(idx));
3176 
3177 		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3178 			   idx, in, out);
3179 
3180 		in = readl(regs + DIEPTSIZ(idx));
3181 		out = readl(regs + DOEPTSIZ(idx));
3182 
3183 		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3184 			   in, out);
3185 
3186 		seq_puts(seq, "\n");
3187 	}
3188 
3189 	return 0;
3190 }
3191 
3192 static int state_open(struct inode *inode, struct file *file)
3193 {
3194 	return single_open(file, state_show, inode->i_private);
3195 }
3196 
3197 static const struct file_operations state_fops = {
3198 	.owner		= THIS_MODULE,
3199 	.open		= state_open,
3200 	.read		= seq_read,
3201 	.llseek		= seq_lseek,
3202 	.release	= single_release,
3203 };
3204 
3205 /**
3206  * fifo_show - debugfs: show the fifo information
3207  * @seq: The seq_file to write data to.
3208  * @v: Unused parameter.
3209  *
3210  * Show the FIFO information for the overall fifo and all the
3211  * periodic transmission FIFOs.
3212  */
3213 static int fifo_show(struct seq_file *seq, void *v)
3214 {
3215 	struct dwc2_hsotg *hsotg = seq->private;
3216 	void __iomem *regs = hsotg->regs;
3217 	u32 val;
3218 	int idx;
3219 
3220 	seq_puts(seq, "Non-periodic FIFOs:\n");
3221 	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3222 
3223 	val = readl(regs + GNPTXFSIZ);
3224 	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3225 		   val >> FIFOSIZE_DEPTH_SHIFT,
3226 		   val & FIFOSIZE_DEPTH_MASK);
3227 
3228 	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3229 
3230 	for (idx = 1; idx <= 15; idx++) {
3231 		val = readl(regs + DPTXFSIZN(idx));
3232 
3233 		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3234 			   val >> FIFOSIZE_DEPTH_SHIFT,
3235 			   val & FIFOSIZE_STARTADDR_MASK);
3236 	}
3237 
3238 	return 0;
3239 }
3240 
3241 static int fifo_open(struct inode *inode, struct file *file)
3242 {
3243 	return single_open(file, fifo_show, inode->i_private);
3244 }
3245 
3246 static const struct file_operations fifo_fops = {
3247 	.owner		= THIS_MODULE,
3248 	.open		= fifo_open,
3249 	.read		= seq_read,
3250 	.llseek		= seq_lseek,
3251 	.release	= single_release,
3252 };
3253 
3254 
3255 static const char *decode_direction(int is_in)
3256 {
3257 	return is_in ? "in" : "out";
3258 }
3259 
3260 /**
3261  * ep_show - debugfs: show the state of an endpoint.
3262  * @seq: The seq_file to write data to.
3263  * @v: Unused parameter.
3264  *
3265  * This debugfs entry shows the state of the given endpoint (one is
3266  * registered for each available).
3267  */
3268 static int ep_show(struct seq_file *seq, void *v)
3269 {
3270 	struct s3c_hsotg_ep *ep = seq->private;
3271 	struct dwc2_hsotg *hsotg = ep->parent;
3272 	struct s3c_hsotg_req *req;
3273 	void __iomem *regs = hsotg->regs;
3274 	int index = ep->index;
3275 	int show_limit = 15;
3276 	unsigned long flags;
3277 
3278 	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3279 		   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3280 
3281 	/* first show the register state */
3282 
3283 	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3284 		   readl(regs + DIEPCTL(index)),
3285 		   readl(regs + DOEPCTL(index)));
3286 
3287 	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3288 		   readl(regs + DIEPDMA(index)),
3289 		   readl(regs + DOEPDMA(index)));
3290 
3291 	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3292 		   readl(regs + DIEPINT(index)),
3293 		   readl(regs + DOEPINT(index)));
3294 
3295 	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3296 		   readl(regs + DIEPTSIZ(index)),
3297 		   readl(regs + DOEPTSIZ(index)));
3298 
3299 	seq_puts(seq, "\n");
3300 	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3301 	seq_printf(seq, "total_data=%ld\n", ep->total_data);
3302 
3303 	seq_printf(seq, "request list (%p,%p):\n",
3304 		   ep->queue.next, ep->queue.prev);
3305 
3306 	spin_lock_irqsave(&hsotg->lock, flags);
3307 
3308 	list_for_each_entry(req, &ep->queue, queue) {
3309 		if (--show_limit < 0) {
3310 			seq_puts(seq, "not showing more requests...\n");
3311 			break;
3312 		}
3313 
3314 		seq_printf(seq, "%c req %p: %d bytes @%p, ",
3315 			   req == ep->req ? '*' : ' ',
3316 			   req, req->req.length, req->req.buf);
3317 		seq_printf(seq, "%d done, res %d\n",
3318 			   req->req.actual, req->req.status);
3319 	}
3320 
3321 	spin_unlock_irqrestore(&hsotg->lock, flags);
3322 
3323 	return 0;
3324 }
3325 
3326 static int ep_open(struct inode *inode, struct file *file)
3327 {
3328 	return single_open(file, ep_show, inode->i_private);
3329 }
3330 
3331 static const struct file_operations ep_fops = {
3332 	.owner		= THIS_MODULE,
3333 	.open		= ep_open,
3334 	.read		= seq_read,
3335 	.llseek		= seq_lseek,
3336 	.release	= single_release,
3337 };
3338 
3339 /**
3340  * s3c_hsotg_create_debug - create debugfs directory and files
3341  * @hsotg: The driver state
3342  *
3343  * Create the debugfs files to allow the user to get information
3344  * about the state of the system. The directory name is created
3345  * with the same name as the device itself, in case we end up
3346  * with multiple blocks in future systems.
3347  */
3348 static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3349 {
3350 	struct dentry *root;
3351 	unsigned epidx;
3352 
3353 	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3354 	hsotg->debug_root = root;
3355 	if (IS_ERR(root)) {
3356 		dev_err(hsotg->dev, "cannot create debug root\n");
3357 		return;
3358 	}
3359 
3360 	/* create general state file */
3361 
3362 	hsotg->debug_file = debugfs_create_file("state", 0444, root,
3363 						hsotg, &state_fops);
3364 
3365 	if (IS_ERR(hsotg->debug_file))
3366 		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3367 
3368 	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3369 						hsotg, &fifo_fops);
3370 
3371 	if (IS_ERR(hsotg->debug_fifo))
3372 		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3373 
3374 	/* create one file for each endpoint */
3375 
3376 	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3377 		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3378 
3379 		ep->debugfs = debugfs_create_file(ep->name, 0444,
3380 						  root, ep, &ep_fops);
3381 
3382 		if (IS_ERR(ep->debugfs))
3383 			dev_err(hsotg->dev, "failed to create %s debug file\n",
3384 				ep->name);
3385 	}
3386 }
3387 
3388 /**
3389  * s3c_hsotg_delete_debug - cleanup debugfs entries
3390  * @hsotg: The driver state
3391  *
3392  * Cleanup (remove) the debugfs files for use on module exit.
3393  */
3394 static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3395 {
3396 	unsigned epidx;
3397 
3398 	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3399 		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3400 		debugfs_remove(ep->debugfs);
3401 	}
3402 
3403 	debugfs_remove(hsotg->debug_file);
3404 	debugfs_remove(hsotg->debug_fifo);
3405 	debugfs_remove(hsotg->debug_root);
3406 }
3407 
3408 /**
3409  * dwc2_gadget_init - init function for gadget
3410  * @dwc2: The data structure for the DWC2 driver.
3411  * @irq: The IRQ number for the controller.
3412  */
3413 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3414 {
3415 	struct device *dev = hsotg->dev;
3416 	struct s3c_hsotg_plat *plat = dev->platform_data;
3417 	struct phy *phy;
3418 	struct usb_phy *uphy;
3419 	struct s3c_hsotg_ep *eps;
3420 	int epnum;
3421 	int ret;
3422 	int i;
3423 
3424 	/* Set default UTMI width */
3425 	hsotg->phyif = GUSBCFG_PHYIF16;
3426 
3427 	/*
3428 	 * Attempt to find a generic PHY, then look for an old style
3429 	 * USB PHY, finally fall back to pdata
3430 	 */
3431 	phy = devm_phy_get(dev, "usb2-phy");
3432 	if (IS_ERR(phy)) {
3433 		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3434 		if (IS_ERR(uphy)) {
3435 			/* Fallback for pdata */
3436 			plat = dev_get_platdata(dev);
3437 			if (!plat) {
3438 				dev_err(dev,
3439 				"no platform data or transceiver defined\n");
3440 				return -EPROBE_DEFER;
3441 			}
3442 			hsotg->plat = plat;
3443 		} else
3444 			hsotg->uphy = uphy;
3445 	} else {
3446 		hsotg->phy = phy;
3447 		/*
3448 		 * If using the generic PHY framework, check if the PHY bus
3449 		 * width is 8-bit and set the phyif appropriately.
3450 		 */
3451 		if (phy_get_bus_width(phy) == 8)
3452 			hsotg->phyif = GUSBCFG_PHYIF8;
3453 	}
3454 
3455 	hsotg->clk = devm_clk_get(dev, "otg");
3456 	if (IS_ERR(hsotg->clk)) {
3457 		hsotg->clk = NULL;
3458 		dev_dbg(dev, "cannot get otg clock\n");
3459 	}
3460 
3461 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3462 	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3463 	hsotg->gadget.name = dev_name(dev);
3464 
3465 	/* reset the system */
3466 
3467 	ret = clk_prepare_enable(hsotg->clk);
3468 	if (ret) {
3469 		dev_err(dev, "failed to enable otg clk\n");
3470 		goto err_clk;
3471 	}
3472 
3473 
3474 	/* regulators */
3475 
3476 	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3477 		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3478 
3479 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3480 				 hsotg->supplies);
3481 	if (ret) {
3482 		dev_err(dev, "failed to request supplies: %d\n", ret);
3483 		goto err_clk;
3484 	}
3485 
3486 	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3487 				    hsotg->supplies);
3488 
3489 	if (ret) {
3490 		dev_err(dev, "failed to enable supplies: %d\n", ret);
3491 		goto err_supplies;
3492 	}
3493 
3494 	/* usb phy enable */
3495 	s3c_hsotg_phy_enable(hsotg);
3496 
3497 	s3c_hsotg_corereset(hsotg);
3498 	s3c_hsotg_hw_cfg(hsotg);
3499 	s3c_hsotg_init(hsotg);
3500 
3501 	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
3502 				dev_name(hsotg->dev), hsotg);
3503 	if (ret < 0) {
3504 		s3c_hsotg_phy_disable(hsotg);
3505 		clk_disable_unprepare(hsotg->clk);
3506 		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3507 				       hsotg->supplies);
3508 		dev_err(dev, "cannot claim IRQ for gadget\n");
3509 		goto err_clk;
3510 	}
3511 
3512 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3513 
3514 	if (hsotg->num_of_eps == 0) {
3515 		dev_err(dev, "wrong number of EPs (zero)\n");
3516 		ret = -EINVAL;
3517 		goto err_supplies;
3518 	}
3519 
3520 	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3521 		      GFP_KERNEL);
3522 	if (!eps) {
3523 		ret = -ENOMEM;
3524 		goto err_supplies;
3525 	}
3526 
3527 	hsotg->eps = eps;
3528 
3529 	/* setup endpoint information */
3530 
3531 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3532 	hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3533 
3534 	/* allocate EP0 request */
3535 
3536 	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3537 						     GFP_KERNEL);
3538 	if (!hsotg->ctrl_req) {
3539 		dev_err(dev, "failed to allocate ctrl req\n");
3540 		ret = -ENOMEM;
3541 		goto err_ep_mem;
3542 	}
3543 
3544 	/* initialise the endpoints now the core has been initialised */
3545 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3546 		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3547 
3548 	/* disable power and clock */
3549 	s3c_hsotg_phy_disable(hsotg);
3550 
3551 	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3552 				    hsotg->supplies);
3553 	if (ret) {
3554 		dev_err(dev, "failed to disable supplies: %d\n", ret);
3555 		goto err_ep_mem;
3556 	}
3557 
3558 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3559 	if (ret)
3560 		goto err_ep_mem;
3561 
3562 	s3c_hsotg_create_debug(hsotg);
3563 
3564 	s3c_hsotg_dump(hsotg);
3565 
3566 	return 0;
3567 
3568 err_ep_mem:
3569 	kfree(eps);
3570 err_supplies:
3571 	s3c_hsotg_phy_disable(hsotg);
3572 err_clk:
3573 	clk_disable_unprepare(hsotg->clk);
3574 
3575 	return ret;
3576 }
3577 EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3578 
3579 /**
3580  * s3c_hsotg_remove - remove function for hsotg driver
3581  * @pdev: The platform information for the driver
3582  */
3583 int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3584 {
3585 	usb_del_gadget_udc(&hsotg->gadget);
3586 	s3c_hsotg_delete_debug(hsotg);
3587 	clk_disable_unprepare(hsotg->clk);
3588 
3589 	return 0;
3590 }
3591 EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3592 
3593 int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3594 {
3595 	unsigned long flags;
3596 	int ret = 0;
3597 
3598 	mutex_lock(&hsotg->init_mutex);
3599 
3600 	if (hsotg->driver) {
3601 		int ep;
3602 
3603 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3604 			 hsotg->driver->driver.name);
3605 
3606 		spin_lock_irqsave(&hsotg->lock, flags);
3607 		if (hsotg->enabled)
3608 			s3c_hsotg_core_disconnect(hsotg);
3609 		s3c_hsotg_disconnect(hsotg);
3610 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3611 		spin_unlock_irqrestore(&hsotg->lock, flags);
3612 
3613 		s3c_hsotg_phy_disable(hsotg);
3614 
3615 		for (ep = 0; ep < hsotg->num_of_eps; ep++)
3616 			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3617 
3618 		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3619 					     hsotg->supplies);
3620 		clk_disable(hsotg->clk);
3621 	}
3622 
3623 	mutex_unlock(&hsotg->init_mutex);
3624 
3625 	return ret;
3626 }
3627 EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3628 
3629 int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3630 {
3631 	unsigned long flags;
3632 	int ret = 0;
3633 
3634 	mutex_lock(&hsotg->init_mutex);
3635 
3636 	if (hsotg->driver) {
3637 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3638 			 hsotg->driver->driver.name);
3639 
3640 		clk_enable(hsotg->clk);
3641 		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3642 					    hsotg->supplies);
3643 
3644 		s3c_hsotg_phy_enable(hsotg);
3645 
3646 		spin_lock_irqsave(&hsotg->lock, flags);
3647 		s3c_hsotg_core_init_disconnected(hsotg);
3648 		if (hsotg->enabled)
3649 			s3c_hsotg_core_connect(hsotg);
3650 		spin_unlock_irqrestore(&hsotg->lock, flags);
3651 	}
3652 	mutex_unlock(&hsotg->init_mutex);
3653 
3654 	return ret;
3655 }
3656 EXPORT_SYMBOL_GPL(s3c_hsotg_resume);
3657