1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 26 #include <linux/usb/ch9.h> 27 #include <linux/usb/gadget.h> 28 #include <linux/usb/phy.h> 29 #include <linux/usb/composite.h> 30 31 32 #include "core.h" 33 #include "hw.h" 34 35 /* conversion functions */ 36 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 37 { 38 return container_of(req, struct dwc2_hsotg_req, req); 39 } 40 41 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 42 { 43 return container_of(ep, struct dwc2_hsotg_ep, ep); 44 } 45 46 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 47 { 48 return container_of(gadget, struct dwc2_hsotg, gadget); 49 } 50 51 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 52 { 53 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 54 } 55 56 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 57 { 58 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 59 } 60 61 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 62 u32 ep_index, u32 dir_in) 63 { 64 if (dir_in) 65 return hsotg->eps_in[ep_index]; 66 else 67 return hsotg->eps_out[ep_index]; 68 } 69 70 /* forward declaration of functions */ 71 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 72 73 /** 74 * using_dma - return the DMA status of the driver. 75 * @hsotg: The driver state. 76 * 77 * Return true if we're using DMA. 78 * 79 * Currently, we have the DMA support code worked into everywhere 80 * that needs it, but the AMBA DMA implementation in the hardware can 81 * only DMA from 32bit aligned addresses. This means that gadgets such 82 * as the CDC Ethernet cannot work as they often pass packets which are 83 * not 32bit aligned. 84 * 85 * Unfortunately the choice to use DMA or not is global to the controller 86 * and seems to be only settable when the controller is being put through 87 * a core reset. This means we either need to fix the gadgets to take 88 * account of DMA alignment, or add bounce buffers (yuerk). 89 * 90 * g_using_dma is set depending on dts flag. 91 */ 92 static inline bool using_dma(struct dwc2_hsotg *hsotg) 93 { 94 return hsotg->params.g_dma; 95 } 96 97 /* 98 * using_desc_dma - return the descriptor DMA status of the driver. 99 * @hsotg: The driver state. 100 * 101 * Return true if we're using descriptor DMA. 102 */ 103 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 104 { 105 return hsotg->params.g_dma_desc; 106 } 107 108 /** 109 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 110 * @hs_ep: The endpoint 111 * 112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 113 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 114 */ 115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 116 { 117 struct dwc2_hsotg *hsotg = hs_ep->parent; 118 u16 limit = DSTS_SOFFN_LIMIT; 119 120 if (hsotg->gadget.speed != USB_SPEED_HIGH) 121 limit >>= 3; 122 123 hs_ep->target_frame += hs_ep->interval; 124 if (hs_ep->target_frame > limit) { 125 hs_ep->frame_overrun = true; 126 hs_ep->target_frame &= limit; 127 } else { 128 hs_ep->frame_overrun = false; 129 } 130 } 131 132 /** 133 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 134 * by one. 135 * @hs_ep: The endpoint. 136 * 137 * This function used in service interval based scheduling flow to calculate 138 * descriptor frame number filed value. For service interval mode frame 139 * number in descriptor should point to last (u)frame in the interval. 140 * 141 */ 142 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 143 { 144 struct dwc2_hsotg *hsotg = hs_ep->parent; 145 u16 limit = DSTS_SOFFN_LIMIT; 146 147 if (hsotg->gadget.speed != USB_SPEED_HIGH) 148 limit >>= 3; 149 150 if (hs_ep->target_frame) 151 hs_ep->target_frame -= 1; 152 else 153 hs_ep->target_frame = limit; 154 } 155 156 /** 157 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 158 * @hsotg: The device state 159 * @ints: A bitmask of the interrupts to enable 160 */ 161 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 162 { 163 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 164 u32 new_gsintmsk; 165 166 new_gsintmsk = gsintmsk | ints; 167 168 if (new_gsintmsk != gsintmsk) { 169 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 170 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 171 } 172 } 173 174 /** 175 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 176 * @hsotg: The device state 177 * @ints: A bitmask of the interrupts to enable 178 */ 179 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 180 { 181 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 182 u32 new_gsintmsk; 183 184 new_gsintmsk = gsintmsk & ~ints; 185 186 if (new_gsintmsk != gsintmsk) 187 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 188 } 189 190 /** 191 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 192 * @hsotg: The device state 193 * @ep: The endpoint index 194 * @dir_in: True if direction is in. 195 * @en: The enable value, true to enable 196 * 197 * Set or clear the mask for an individual endpoint's interrupt 198 * request. 199 */ 200 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 201 unsigned int ep, unsigned int dir_in, 202 unsigned int en) 203 { 204 unsigned long flags; 205 u32 bit = 1 << ep; 206 u32 daint; 207 208 if (!dir_in) 209 bit <<= 16; 210 211 local_irq_save(flags); 212 daint = dwc2_readl(hsotg, DAINTMSK); 213 if (en) 214 daint |= bit; 215 else 216 daint &= ~bit; 217 dwc2_writel(hsotg, daint, DAINTMSK); 218 local_irq_restore(flags); 219 } 220 221 /** 222 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 223 * 224 * @hsotg: Programming view of the DWC_otg controller 225 */ 226 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 227 { 228 if (hsotg->hw_params.en_multiple_tx_fifo) 229 /* In dedicated FIFO mode we need count of IN EPs */ 230 return hsotg->hw_params.num_dev_in_eps; 231 else 232 /* In shared FIFO mode we need count of Periodic IN EPs */ 233 return hsotg->hw_params.num_dev_perio_in_ep; 234 } 235 236 /** 237 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 238 * device mode TX FIFOs 239 * 240 * @hsotg: Programming view of the DWC_otg controller 241 */ 242 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 243 { 244 int addr; 245 int tx_addr_max; 246 u32 np_tx_fifo_size; 247 248 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 249 hsotg->params.g_np_tx_fifo_size); 250 251 /* Get Endpoint Info Control block size in DWORDs. */ 252 tx_addr_max = hsotg->hw_params.total_fifo_size; 253 254 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 255 if (tx_addr_max <= addr) 256 return 0; 257 258 return tx_addr_max - addr; 259 } 260 261 /** 262 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 263 * 264 * @hsotg: Programming view of the DWC_otg controller 265 * 266 */ 267 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 268 { 269 u32 gintsts2; 270 u32 gintmsk2; 271 272 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 273 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 274 gintsts2 &= gintmsk2; 275 276 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 277 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 278 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 279 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 280 } 281 } 282 283 /** 284 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 285 * TX FIFOs 286 * 287 * @hsotg: Programming view of the DWC_otg controller 288 */ 289 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 290 { 291 int tx_fifo_count; 292 int tx_fifo_depth; 293 294 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 295 296 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 297 298 if (!tx_fifo_count) 299 return tx_fifo_depth; 300 else 301 return tx_fifo_depth / tx_fifo_count; 302 } 303 304 /** 305 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 306 * @hsotg: The device instance. 307 */ 308 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 309 { 310 unsigned int ep; 311 unsigned int addr; 312 int timeout; 313 314 u32 val; 315 u32 *txfsz = hsotg->params.g_tx_fifo_size; 316 317 /* Reset fifo map if not correctly cleared during previous session */ 318 WARN_ON(hsotg->fifo_map); 319 hsotg->fifo_map = 0; 320 321 /* set RX/NPTX FIFO sizes */ 322 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 323 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 324 FIFOSIZE_STARTADDR_SHIFT) | 325 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 326 GNPTXFSIZ); 327 328 /* 329 * arange all the rest of the TX FIFOs, as some versions of this 330 * block have overlapping default addresses. This also ensures 331 * that if the settings have been changed, then they are set to 332 * known values. 333 */ 334 335 /* start at the end of the GNPTXFSIZ, rounded up */ 336 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 337 338 /* 339 * Configure fifos sizes from provided configuration and assign 340 * them to endpoints dynamically according to maxpacket size value of 341 * given endpoint. 342 */ 343 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 344 if (!txfsz[ep]) 345 continue; 346 val = addr; 347 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 348 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 349 "insufficient fifo memory"); 350 addr += txfsz[ep]; 351 352 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 353 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 354 } 355 356 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 357 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 358 GDFIFOCFG); 359 /* 360 * according to p428 of the design guide, we need to ensure that 361 * all fifos are flushed before continuing 362 */ 363 364 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 365 GRSTCTL_RXFFLSH, GRSTCTL); 366 367 /* wait until the fifos are both flushed */ 368 timeout = 100; 369 while (1) { 370 val = dwc2_readl(hsotg, GRSTCTL); 371 372 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 373 break; 374 375 if (--timeout == 0) { 376 dev_err(hsotg->dev, 377 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 378 __func__, val); 379 break; 380 } 381 382 udelay(1); 383 } 384 385 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 386 } 387 388 /** 389 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 390 * @ep: USB endpoint to allocate request for. 391 * @flags: Allocation flags 392 * 393 * Allocate a new USB request structure appropriate for the specified endpoint 394 */ 395 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 396 gfp_t flags) 397 { 398 struct dwc2_hsotg_req *req; 399 400 req = kzalloc(sizeof(*req), flags); 401 if (!req) 402 return NULL; 403 404 INIT_LIST_HEAD(&req->queue); 405 406 return &req->req; 407 } 408 409 /** 410 * is_ep_periodic - return true if the endpoint is in periodic mode. 411 * @hs_ep: The endpoint to query. 412 * 413 * Returns true if the endpoint is in periodic mode, meaning it is being 414 * used for an Interrupt or ISO transfer. 415 */ 416 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 417 { 418 return hs_ep->periodic; 419 } 420 421 /** 422 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 423 * @hsotg: The device state. 424 * @hs_ep: The endpoint for the request 425 * @hs_req: The request being processed. 426 * 427 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 428 * of a request to ensure the buffer is ready for access by the caller. 429 */ 430 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 431 struct dwc2_hsotg_ep *hs_ep, 432 struct dwc2_hsotg_req *hs_req) 433 { 434 struct usb_request *req = &hs_req->req; 435 436 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir); 437 } 438 439 /* 440 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 441 * for Control endpoint 442 * @hsotg: The device state. 443 * 444 * This function will allocate 4 descriptor chains for EP 0: 2 for 445 * Setup stage, per one for IN and OUT data/status transactions. 446 */ 447 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 448 { 449 hsotg->setup_desc[0] = 450 dmam_alloc_coherent(hsotg->dev, 451 sizeof(struct dwc2_dma_desc), 452 &hsotg->setup_desc_dma[0], 453 GFP_KERNEL); 454 if (!hsotg->setup_desc[0]) 455 goto fail; 456 457 hsotg->setup_desc[1] = 458 dmam_alloc_coherent(hsotg->dev, 459 sizeof(struct dwc2_dma_desc), 460 &hsotg->setup_desc_dma[1], 461 GFP_KERNEL); 462 if (!hsotg->setup_desc[1]) 463 goto fail; 464 465 hsotg->ctrl_in_desc = 466 dmam_alloc_coherent(hsotg->dev, 467 sizeof(struct dwc2_dma_desc), 468 &hsotg->ctrl_in_desc_dma, 469 GFP_KERNEL); 470 if (!hsotg->ctrl_in_desc) 471 goto fail; 472 473 hsotg->ctrl_out_desc = 474 dmam_alloc_coherent(hsotg->dev, 475 sizeof(struct dwc2_dma_desc), 476 &hsotg->ctrl_out_desc_dma, 477 GFP_KERNEL); 478 if (!hsotg->ctrl_out_desc) 479 goto fail; 480 481 return 0; 482 483 fail: 484 return -ENOMEM; 485 } 486 487 /** 488 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 489 * @hsotg: The controller state. 490 * @hs_ep: The endpoint we're going to write for. 491 * @hs_req: The request to write data for. 492 * 493 * This is called when the TxFIFO has some space in it to hold a new 494 * transmission and we have something to give it. The actual setup of 495 * the data size is done elsewhere, so all we have to do is to actually 496 * write the data. 497 * 498 * The return value is zero if there is more space (or nothing was done) 499 * otherwise -ENOSPC is returned if the FIFO space was used up. 500 * 501 * This routine is only needed for PIO 502 */ 503 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 504 struct dwc2_hsotg_ep *hs_ep, 505 struct dwc2_hsotg_req *hs_req) 506 { 507 bool periodic = is_ep_periodic(hs_ep); 508 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 509 int buf_pos = hs_req->req.actual; 510 int to_write = hs_ep->size_loaded; 511 void *data; 512 int can_write; 513 int pkt_round; 514 int max_transfer; 515 516 to_write -= (buf_pos - hs_ep->last_load); 517 518 /* if there's nothing to write, get out early */ 519 if (to_write == 0) 520 return 0; 521 522 if (periodic && !hsotg->dedicated_fifos) { 523 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 524 int size_left; 525 int size_done; 526 527 /* 528 * work out how much data was loaded so we can calculate 529 * how much data is left in the fifo. 530 */ 531 532 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 533 534 /* 535 * if shared fifo, we cannot write anything until the 536 * previous data has been completely sent. 537 */ 538 if (hs_ep->fifo_load != 0) { 539 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 540 return -ENOSPC; 541 } 542 543 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 544 __func__, size_left, 545 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 546 547 /* how much of the data has moved */ 548 size_done = hs_ep->size_loaded - size_left; 549 550 /* how much data is left in the fifo */ 551 can_write = hs_ep->fifo_load - size_done; 552 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 553 __func__, can_write); 554 555 can_write = hs_ep->fifo_size - can_write; 556 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 557 __func__, can_write); 558 559 if (can_write <= 0) { 560 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 561 return -ENOSPC; 562 } 563 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 564 can_write = dwc2_readl(hsotg, 565 DTXFSTS(hs_ep->fifo_index)); 566 567 can_write &= 0xffff; 568 can_write *= 4; 569 } else { 570 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 571 dev_dbg(hsotg->dev, 572 "%s: no queue slots available (0x%08x)\n", 573 __func__, gnptxsts); 574 575 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 576 return -ENOSPC; 577 } 578 579 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 580 can_write *= 4; /* fifo size is in 32bit quantities. */ 581 } 582 583 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 584 585 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 586 __func__, gnptxsts, can_write, to_write, max_transfer); 587 588 /* 589 * limit to 512 bytes of data, it seems at least on the non-periodic 590 * FIFO, requests of >512 cause the endpoint to get stuck with a 591 * fragment of the end of the transfer in it. 592 */ 593 if (can_write > 512 && !periodic) 594 can_write = 512; 595 596 /* 597 * limit the write to one max-packet size worth of data, but allow 598 * the transfer to return that it did not run out of fifo space 599 * doing it. 600 */ 601 if (to_write > max_transfer) { 602 to_write = max_transfer; 603 604 /* it's needed only when we do not use dedicated fifos */ 605 if (!hsotg->dedicated_fifos) 606 dwc2_hsotg_en_gsint(hsotg, 607 periodic ? GINTSTS_PTXFEMP : 608 GINTSTS_NPTXFEMP); 609 } 610 611 /* see if we can write data */ 612 613 if (to_write > can_write) { 614 to_write = can_write; 615 pkt_round = to_write % max_transfer; 616 617 /* 618 * Round the write down to an 619 * exact number of packets. 620 * 621 * Note, we do not currently check to see if we can ever 622 * write a full packet or not to the FIFO. 623 */ 624 625 if (pkt_round) 626 to_write -= pkt_round; 627 628 /* 629 * enable correct FIFO interrupt to alert us when there 630 * is more room left. 631 */ 632 633 /* it's needed only when we do not use dedicated fifos */ 634 if (!hsotg->dedicated_fifos) 635 dwc2_hsotg_en_gsint(hsotg, 636 periodic ? GINTSTS_PTXFEMP : 637 GINTSTS_NPTXFEMP); 638 } 639 640 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 641 to_write, hs_req->req.length, can_write, buf_pos); 642 643 if (to_write <= 0) 644 return -ENOSPC; 645 646 hs_req->req.actual = buf_pos + to_write; 647 hs_ep->total_data += to_write; 648 649 if (periodic) 650 hs_ep->fifo_load += to_write; 651 652 to_write = DIV_ROUND_UP(to_write, 4); 653 data = hs_req->req.buf + buf_pos; 654 655 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 656 657 return (to_write >= can_write) ? -ENOSPC : 0; 658 } 659 660 /** 661 * get_ep_limit - get the maximum data legnth for this endpoint 662 * @hs_ep: The endpoint 663 * 664 * Return the maximum data that can be queued in one go on a given endpoint 665 * so that transfers that are too long can be split. 666 */ 667 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 668 { 669 int index = hs_ep->index; 670 unsigned int maxsize; 671 unsigned int maxpkt; 672 673 if (index != 0) { 674 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 675 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 676 } else { 677 maxsize = 64 + 64; 678 if (hs_ep->dir_in) 679 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 680 else 681 maxpkt = 2; 682 } 683 684 /* we made the constant loading easier above by using +1 */ 685 maxpkt--; 686 maxsize--; 687 688 /* 689 * constrain by packet count if maxpkts*pktsize is greater 690 * than the length register size. 691 */ 692 693 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 694 maxsize = maxpkt * hs_ep->ep.maxpacket; 695 696 return maxsize; 697 } 698 699 /** 700 * dwc2_hsotg_read_frameno - read current frame number 701 * @hsotg: The device instance 702 * 703 * Return the current frame number 704 */ 705 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 706 { 707 u32 dsts; 708 709 dsts = dwc2_readl(hsotg, DSTS); 710 dsts &= DSTS_SOFFN_MASK; 711 dsts >>= DSTS_SOFFN_SHIFT; 712 713 return dsts; 714 } 715 716 /** 717 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 718 * DMA descriptor chain prepared for specific endpoint 719 * @hs_ep: The endpoint 720 * 721 * Return the maximum data that can be queued in one go on a given endpoint 722 * depending on its descriptor chain capacity so that transfers that 723 * are too long can be split. 724 */ 725 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 726 { 727 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 728 int is_isoc = hs_ep->isochronous; 729 unsigned int maxsize; 730 u32 mps = hs_ep->ep.maxpacket; 731 int dir_in = hs_ep->dir_in; 732 733 if (is_isoc) 734 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 735 DEV_DMA_ISOC_RX_NBYTES_LIMIT) * 736 MAX_DMA_DESC_NUM_HS_ISOC; 737 else 738 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; 739 740 /* Interrupt OUT EP with mps not multiple of 4 */ 741 if (hs_ep->index) 742 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 743 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC; 744 745 return maxsize; 746 } 747 748 /* 749 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 750 * @hs_ep: The endpoint 751 * @mask: RX/TX bytes mask to be defined 752 * 753 * Returns maximum data payload for one descriptor after analyzing endpoint 754 * characteristics. 755 * DMA descriptor transfer bytes limit depends on EP type: 756 * Control out - MPS, 757 * Isochronous - descriptor rx/tx bytes bitfield limit, 758 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 759 * have concatenations from various descriptors within one packet. 760 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds 761 * to a single descriptor. 762 * 763 * Selects corresponding mask for RX/TX bytes as well. 764 */ 765 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 766 { 767 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 768 u32 mps = hs_ep->ep.maxpacket; 769 int dir_in = hs_ep->dir_in; 770 u32 desc_size = 0; 771 772 if (!hs_ep->index && !dir_in) { 773 desc_size = mps; 774 *mask = DEV_DMA_NBYTES_MASK; 775 } else if (hs_ep->isochronous) { 776 if (dir_in) { 777 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 778 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 779 } else { 780 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 781 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 782 } 783 } else { 784 desc_size = DEV_DMA_NBYTES_LIMIT; 785 *mask = DEV_DMA_NBYTES_MASK; 786 787 /* Round down desc_size to be mps multiple */ 788 desc_size -= desc_size % mps; 789 } 790 791 /* Interrupt OUT EP with mps not multiple of 4 */ 792 if (hs_ep->index) 793 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) { 794 desc_size = mps; 795 *mask = DEV_DMA_NBYTES_MASK; 796 } 797 798 return desc_size; 799 } 800 801 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, 802 struct dwc2_dma_desc **desc, 803 dma_addr_t dma_buff, 804 unsigned int len, 805 bool true_last) 806 { 807 int dir_in = hs_ep->dir_in; 808 u32 mps = hs_ep->ep.maxpacket; 809 u32 maxsize = 0; 810 u32 offset = 0; 811 u32 mask = 0; 812 int i; 813 814 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 815 816 hs_ep->desc_count = (len / maxsize) + 817 ((len % maxsize) ? 1 : 0); 818 if (len == 0) 819 hs_ep->desc_count = 1; 820 821 for (i = 0; i < hs_ep->desc_count; ++i) { 822 (*desc)->status = 0; 823 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY 824 << DEV_DMA_BUFF_STS_SHIFT); 825 826 if (len > maxsize) { 827 if (!hs_ep->index && !dir_in) 828 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 829 830 (*desc)->status |= 831 maxsize << DEV_DMA_NBYTES_SHIFT & mask; 832 (*desc)->buf = dma_buff + offset; 833 834 len -= maxsize; 835 offset += maxsize; 836 } else { 837 if (true_last) 838 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 839 840 if (dir_in) 841 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : 842 ((hs_ep->send_zlp && true_last) ? 843 DEV_DMA_SHORT : 0); 844 845 (*desc)->status |= 846 len << DEV_DMA_NBYTES_SHIFT & mask; 847 (*desc)->buf = dma_buff + offset; 848 } 849 850 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; 851 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY 852 << DEV_DMA_BUFF_STS_SHIFT); 853 (*desc)++; 854 } 855 } 856 857 /* 858 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 859 * @hs_ep: The endpoint 860 * @ureq: Request to transfer 861 * @offset: offset in bytes 862 * @len: Length of the transfer 863 * 864 * This function will iterate over descriptor chain and fill its entries 865 * with corresponding information based on transfer data. 866 */ 867 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 868 dma_addr_t dma_buff, 869 unsigned int len) 870 { 871 struct usb_request *ureq = NULL; 872 struct dwc2_dma_desc *desc = hs_ep->desc_list; 873 struct scatterlist *sg; 874 int i; 875 u8 desc_count = 0; 876 877 if (hs_ep->req) 878 ureq = &hs_ep->req->req; 879 880 /* non-DMA sg buffer */ 881 if (!ureq || !ureq->num_sgs) { 882 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 883 dma_buff, len, true); 884 return; 885 } 886 887 /* DMA sg buffer */ 888 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) { 889 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 890 sg_dma_address(sg) + sg->offset, sg_dma_len(sg), 891 sg_is_last(sg)); 892 desc_count += hs_ep->desc_count; 893 } 894 895 hs_ep->desc_count = desc_count; 896 } 897 898 /* 899 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 900 * @hs_ep: The isochronous endpoint. 901 * @dma_buff: usb requests dma buffer. 902 * @len: usb request transfer length. 903 * 904 * Fills next free descriptor with the data of the arrived usb request, 905 * frame info, sets Last and IOC bits increments next_desc. If filled 906 * descriptor is not the first one, removes L bit from the previous descriptor 907 * status. 908 */ 909 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 910 dma_addr_t dma_buff, unsigned int len) 911 { 912 struct dwc2_dma_desc *desc; 913 struct dwc2_hsotg *hsotg = hs_ep->parent; 914 u32 index; 915 u32 mask = 0; 916 u8 pid = 0; 917 918 dwc2_gadget_get_desc_params(hs_ep, &mask); 919 920 index = hs_ep->next_desc; 921 desc = &hs_ep->desc_list[index]; 922 923 /* Check if descriptor chain full */ 924 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 925 DEV_DMA_BUFF_STS_HREADY) { 926 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 927 return 1; 928 } 929 930 /* Clear L bit of previous desc if more than one entries in the chain */ 931 if (hs_ep->next_desc) 932 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 933 934 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 935 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 936 937 desc->status = 0; 938 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 939 940 desc->buf = dma_buff; 941 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 942 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 943 944 if (hs_ep->dir_in) { 945 if (len) 946 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 947 else 948 pid = 1; 949 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 950 DEV_DMA_ISOC_PID_MASK) | 951 ((len % hs_ep->ep.maxpacket) ? 952 DEV_DMA_SHORT : 0) | 953 ((hs_ep->target_frame << 954 DEV_DMA_ISOC_FRNUM_SHIFT) & 955 DEV_DMA_ISOC_FRNUM_MASK); 956 } 957 958 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 959 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 960 961 /* Increment frame number by interval for IN */ 962 if (hs_ep->dir_in) 963 dwc2_gadget_incr_frame_num(hs_ep); 964 965 /* Update index of last configured entry in the chain */ 966 hs_ep->next_desc++; 967 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) 968 hs_ep->next_desc = 0; 969 970 return 0; 971 } 972 973 /* 974 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 975 * @hs_ep: The isochronous endpoint. 976 * 977 * Prepare descriptor chain for isochronous endpoints. Afterwards 978 * write DMA address to HW and enable the endpoint. 979 */ 980 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 981 { 982 struct dwc2_hsotg *hsotg = hs_ep->parent; 983 struct dwc2_hsotg_req *hs_req, *treq; 984 int index = hs_ep->index; 985 int ret; 986 int i; 987 u32 dma_reg; 988 u32 depctl; 989 u32 ctrl; 990 struct dwc2_dma_desc *desc; 991 992 if (list_empty(&hs_ep->queue)) { 993 hs_ep->target_frame = TARGET_FRAME_INITIAL; 994 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 995 return; 996 } 997 998 /* Initialize descriptor chain by Host Busy status */ 999 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { 1000 desc = &hs_ep->desc_list[i]; 1001 desc->status = 0; 1002 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 1003 << DEV_DMA_BUFF_STS_SHIFT); 1004 } 1005 1006 hs_ep->next_desc = 0; 1007 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 1008 dma_addr_t dma_addr = hs_req->req.dma; 1009 1010 if (hs_req->req.num_sgs) { 1011 WARN_ON(hs_req->req.num_sgs > 1); 1012 dma_addr = sg_dma_address(hs_req->req.sg); 1013 } 1014 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1015 hs_req->req.length); 1016 if (ret) 1017 break; 1018 } 1019 1020 hs_ep->compl_desc = 0; 1021 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1022 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 1023 1024 /* write descriptor chain address to control register */ 1025 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1026 1027 ctrl = dwc2_readl(hsotg, depctl); 1028 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 1029 dwc2_writel(hsotg, ctrl, depctl); 1030 } 1031 1032 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep); 1033 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 1034 struct dwc2_hsotg_ep *hs_ep, 1035 struct dwc2_hsotg_req *hs_req, 1036 int result); 1037 1038 /** 1039 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 1040 * @hsotg: The controller state. 1041 * @hs_ep: The endpoint to process a request for 1042 * @hs_req: The request to start. 1043 * @continuing: True if we are doing more for the current request. 1044 * 1045 * Start the given request running by setting the endpoint registers 1046 * appropriately, and writing any data to the FIFOs. 1047 */ 1048 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 1049 struct dwc2_hsotg_ep *hs_ep, 1050 struct dwc2_hsotg_req *hs_req, 1051 bool continuing) 1052 { 1053 struct usb_request *ureq = &hs_req->req; 1054 int index = hs_ep->index; 1055 int dir_in = hs_ep->dir_in; 1056 u32 epctrl_reg; 1057 u32 epsize_reg; 1058 u32 epsize; 1059 u32 ctrl; 1060 unsigned int length; 1061 unsigned int packets; 1062 unsigned int maxreq; 1063 unsigned int dma_reg; 1064 1065 if (index != 0) { 1066 if (hs_ep->req && !continuing) { 1067 dev_err(hsotg->dev, "%s: active request\n", __func__); 1068 WARN_ON(1); 1069 return; 1070 } else if (hs_ep->req != hs_req && continuing) { 1071 dev_err(hsotg->dev, 1072 "%s: continue different req\n", __func__); 1073 WARN_ON(1); 1074 return; 1075 } 1076 } 1077 1078 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1079 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1080 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1081 1082 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1083 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1084 hs_ep->dir_in ? "in" : "out"); 1085 1086 /* If endpoint is stalled, we will restart request later */ 1087 ctrl = dwc2_readl(hsotg, epctrl_reg); 1088 1089 if (index && ctrl & DXEPCTL_STALL) { 1090 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1091 return; 1092 } 1093 1094 length = ureq->length - ureq->actual; 1095 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1096 ureq->length, ureq->actual); 1097 1098 if (!using_desc_dma(hsotg)) 1099 maxreq = get_ep_limit(hs_ep); 1100 else 1101 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1102 1103 if (length > maxreq) { 1104 int round = maxreq % hs_ep->ep.maxpacket; 1105 1106 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1107 __func__, length, maxreq, round); 1108 1109 /* round down to multiple of packets */ 1110 if (round) 1111 maxreq -= round; 1112 1113 length = maxreq; 1114 } 1115 1116 if (length) 1117 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1118 else 1119 packets = 1; /* send one packet if length is zero. */ 1120 1121 if (dir_in && index != 0) 1122 if (hs_ep->isochronous) 1123 epsize = DXEPTSIZ_MC(packets); 1124 else 1125 epsize = DXEPTSIZ_MC(1); 1126 else 1127 epsize = 0; 1128 1129 /* 1130 * zero length packet should be programmed on its own and should not 1131 * be counted in DIEPTSIZ.PktCnt with other packets. 1132 */ 1133 if (dir_in && ureq->zero && !continuing) { 1134 /* Test if zlp is actually required. */ 1135 if ((ureq->length >= hs_ep->ep.maxpacket) && 1136 !(ureq->length % hs_ep->ep.maxpacket)) 1137 hs_ep->send_zlp = 1; 1138 } 1139 1140 epsize |= DXEPTSIZ_PKTCNT(packets); 1141 epsize |= DXEPTSIZ_XFERSIZE(length); 1142 1143 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1144 __func__, packets, length, ureq->length, epsize, epsize_reg); 1145 1146 /* store the request as the current one we're doing */ 1147 hs_ep->req = hs_req; 1148 1149 if (using_desc_dma(hsotg)) { 1150 u32 offset = 0; 1151 u32 mps = hs_ep->ep.maxpacket; 1152 1153 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1154 if (!dir_in) { 1155 if (!index) 1156 length = mps; 1157 else if (length % mps) 1158 length += (mps - (length % mps)); 1159 } 1160 1161 if (continuing) 1162 offset = ureq->actual; 1163 1164 /* Fill DDMA chain entries */ 1165 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1166 length); 1167 1168 /* write descriptor chain address to control register */ 1169 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1170 1171 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1172 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1173 } else { 1174 /* write size / packets */ 1175 dwc2_writel(hsotg, epsize, epsize_reg); 1176 1177 if (using_dma(hsotg) && !continuing && (length != 0)) { 1178 /* 1179 * write DMA address to control register, buffer 1180 * already synced by dwc2_hsotg_ep_queue(). 1181 */ 1182 1183 dwc2_writel(hsotg, ureq->dma, dma_reg); 1184 1185 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1186 __func__, &ureq->dma, dma_reg); 1187 } 1188 } 1189 1190 if (hs_ep->isochronous) { 1191 if (!dwc2_gadget_target_frame_elapsed(hs_ep)) { 1192 if (hs_ep->interval == 1) { 1193 if (hs_ep->target_frame & 0x1) 1194 ctrl |= DXEPCTL_SETODDFR; 1195 else 1196 ctrl |= DXEPCTL_SETEVENFR; 1197 } 1198 ctrl |= DXEPCTL_CNAK; 1199 } else { 1200 hs_req->req.frame_number = hs_ep->target_frame; 1201 hs_req->req.actual = 0; 1202 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA); 1203 return; 1204 } 1205 } 1206 1207 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1208 1209 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1210 1211 /* For Setup request do not clear NAK */ 1212 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1213 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1214 1215 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1216 dwc2_writel(hsotg, ctrl, epctrl_reg); 1217 1218 /* 1219 * set these, it seems that DMA support increments past the end 1220 * of the packet buffer so we need to calculate the length from 1221 * this information. 1222 */ 1223 hs_ep->size_loaded = length; 1224 hs_ep->last_load = ureq->actual; 1225 1226 if (dir_in && !using_dma(hsotg)) { 1227 /* set these anyway, we may need them for non-periodic in */ 1228 hs_ep->fifo_load = 0; 1229 1230 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1231 } 1232 1233 /* 1234 * Note, trying to clear the NAK here causes problems with transmit 1235 * on the S3C6400 ending up with the TXFIFO becoming full. 1236 */ 1237 1238 /* check ep is enabled */ 1239 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1240 dev_dbg(hsotg->dev, 1241 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1242 index, dwc2_readl(hsotg, epctrl_reg)); 1243 1244 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1245 __func__, dwc2_readl(hsotg, epctrl_reg)); 1246 1247 /* enable ep interrupts */ 1248 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1249 } 1250 1251 /** 1252 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1253 * @hsotg: The device state. 1254 * @hs_ep: The endpoint the request is on. 1255 * @req: The request being processed. 1256 * 1257 * We've been asked to queue a request, so ensure that the memory buffer 1258 * is correctly setup for DMA. If we've been passed an extant DMA address 1259 * then ensure the buffer has been synced to memory. If our buffer has no 1260 * DMA memory, then we map the memory and mark our request to allow us to 1261 * cleanup on completion. 1262 */ 1263 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1264 struct dwc2_hsotg_ep *hs_ep, 1265 struct usb_request *req) 1266 { 1267 int ret; 1268 1269 hs_ep->map_dir = hs_ep->dir_in; 1270 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1271 if (ret) 1272 goto dma_error; 1273 1274 return 0; 1275 1276 dma_error: 1277 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1278 __func__, req->buf, req->length); 1279 1280 return -EIO; 1281 } 1282 1283 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1284 struct dwc2_hsotg_ep *hs_ep, 1285 struct dwc2_hsotg_req *hs_req) 1286 { 1287 void *req_buf = hs_req->req.buf; 1288 1289 /* If dma is not being used or buffer is aligned */ 1290 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1291 return 0; 1292 1293 WARN_ON(hs_req->saved_req_buf); 1294 1295 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1296 hs_ep->ep.name, req_buf, hs_req->req.length); 1297 1298 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1299 if (!hs_req->req.buf) { 1300 hs_req->req.buf = req_buf; 1301 dev_err(hsotg->dev, 1302 "%s: unable to allocate memory for bounce buffer\n", 1303 __func__); 1304 return -ENOMEM; 1305 } 1306 1307 /* Save actual buffer */ 1308 hs_req->saved_req_buf = req_buf; 1309 1310 if (hs_ep->dir_in) 1311 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1312 return 0; 1313 } 1314 1315 static void 1316 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1317 struct dwc2_hsotg_ep *hs_ep, 1318 struct dwc2_hsotg_req *hs_req) 1319 { 1320 /* If dma is not being used or buffer was aligned */ 1321 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1322 return; 1323 1324 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1325 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1326 1327 /* Copy data from bounce buffer on successful out transfer */ 1328 if (!hs_ep->dir_in && !hs_req->req.status) 1329 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1330 hs_req->req.actual); 1331 1332 /* Free bounce buffer */ 1333 kfree(hs_req->req.buf); 1334 1335 hs_req->req.buf = hs_req->saved_req_buf; 1336 hs_req->saved_req_buf = NULL; 1337 } 1338 1339 /** 1340 * dwc2_gadget_target_frame_elapsed - Checks target frame 1341 * @hs_ep: The driver endpoint to check 1342 * 1343 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1344 * corresponding transfer. 1345 */ 1346 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1347 { 1348 struct dwc2_hsotg *hsotg = hs_ep->parent; 1349 u32 target_frame = hs_ep->target_frame; 1350 u32 current_frame = hsotg->frame_number; 1351 bool frame_overrun = hs_ep->frame_overrun; 1352 u16 limit = DSTS_SOFFN_LIMIT; 1353 1354 if (hsotg->gadget.speed != USB_SPEED_HIGH) 1355 limit >>= 3; 1356 1357 if (!frame_overrun && current_frame >= target_frame) 1358 return true; 1359 1360 if (frame_overrun && current_frame >= target_frame && 1361 ((current_frame - target_frame) < limit / 2)) 1362 return true; 1363 1364 return false; 1365 } 1366 1367 /* 1368 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1369 * @hsotg: The driver state 1370 * @hs_ep: the ep descriptor chain is for 1371 * 1372 * Called to update EP0 structure's pointers depend on stage of 1373 * control transfer. 1374 */ 1375 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1376 struct dwc2_hsotg_ep *hs_ep) 1377 { 1378 switch (hsotg->ep0_state) { 1379 case DWC2_EP0_SETUP: 1380 case DWC2_EP0_STATUS_OUT: 1381 hs_ep->desc_list = hsotg->setup_desc[0]; 1382 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1383 break; 1384 case DWC2_EP0_DATA_IN: 1385 case DWC2_EP0_STATUS_IN: 1386 hs_ep->desc_list = hsotg->ctrl_in_desc; 1387 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1388 break; 1389 case DWC2_EP0_DATA_OUT: 1390 hs_ep->desc_list = hsotg->ctrl_out_desc; 1391 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1392 break; 1393 default: 1394 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1395 hsotg->ep0_state); 1396 return -EINVAL; 1397 } 1398 1399 return 0; 1400 } 1401 1402 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1403 gfp_t gfp_flags) 1404 { 1405 struct dwc2_hsotg_req *hs_req = our_req(req); 1406 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1407 struct dwc2_hsotg *hs = hs_ep->parent; 1408 bool first; 1409 int ret; 1410 u32 maxsize = 0; 1411 u32 mask = 0; 1412 1413 1414 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1415 ep->name, req, req->length, req->buf, req->no_interrupt, 1416 req->zero, req->short_not_ok); 1417 1418 /* Prevent new request submission when controller is suspended */ 1419 if (hs->lx_state != DWC2_L0) { 1420 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1421 __func__); 1422 return -EAGAIN; 1423 } 1424 1425 /* initialise status of the request */ 1426 INIT_LIST_HEAD(&hs_req->queue); 1427 req->actual = 0; 1428 req->status = -EINPROGRESS; 1429 1430 /* Don't queue ISOC request if length greater than mps*mc */ 1431 if (hs_ep->isochronous && 1432 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1433 dev_err(hs->dev, "req length > maxpacket*mc\n"); 1434 return -EINVAL; 1435 } 1436 1437 /* In DDMA mode for ISOC's don't queue request if length greater 1438 * than descriptor limits. 1439 */ 1440 if (using_desc_dma(hs) && hs_ep->isochronous) { 1441 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1442 if (hs_ep->dir_in && req->length > maxsize) { 1443 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1444 req->length, maxsize); 1445 return -EINVAL; 1446 } 1447 1448 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1449 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1450 req->length, hs_ep->ep.maxpacket); 1451 return -EINVAL; 1452 } 1453 } 1454 1455 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1456 if (ret) 1457 return ret; 1458 1459 /* if we're using DMA, sync the buffers as necessary */ 1460 if (using_dma(hs)) { 1461 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1462 if (ret) 1463 return ret; 1464 } 1465 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1466 if (using_desc_dma(hs) && !hs_ep->index) { 1467 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1468 if (ret) 1469 return ret; 1470 } 1471 1472 first = list_empty(&hs_ep->queue); 1473 list_add_tail(&hs_req->queue, &hs_ep->queue); 1474 1475 /* 1476 * Handle DDMA isochronous transfers separately - just add new entry 1477 * to the descriptor chain. 1478 * Transfer will be started once SW gets either one of NAK or 1479 * OutTknEpDis interrupts. 1480 */ 1481 if (using_desc_dma(hs) && hs_ep->isochronous) { 1482 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1483 dma_addr_t dma_addr = hs_req->req.dma; 1484 1485 if (hs_req->req.num_sgs) { 1486 WARN_ON(hs_req->req.num_sgs > 1); 1487 dma_addr = sg_dma_address(hs_req->req.sg); 1488 } 1489 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1490 hs_req->req.length); 1491 } 1492 return 0; 1493 } 1494 1495 /* Change EP direction if status phase request is after data out */ 1496 if (!hs_ep->index && !req->length && !hs_ep->dir_in && 1497 hs->ep0_state == DWC2_EP0_DATA_OUT) 1498 hs_ep->dir_in = 1; 1499 1500 if (first) { 1501 if (!hs_ep->isochronous) { 1502 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1503 return 0; 1504 } 1505 1506 /* Update current frame number value. */ 1507 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1508 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1509 dwc2_gadget_incr_frame_num(hs_ep); 1510 /* Update current frame number value once more as it 1511 * changes here. 1512 */ 1513 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1514 } 1515 1516 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1517 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1518 } 1519 return 0; 1520 } 1521 1522 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1523 gfp_t gfp_flags) 1524 { 1525 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1526 struct dwc2_hsotg *hs = hs_ep->parent; 1527 unsigned long flags; 1528 int ret; 1529 1530 spin_lock_irqsave(&hs->lock, flags); 1531 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1532 spin_unlock_irqrestore(&hs->lock, flags); 1533 1534 return ret; 1535 } 1536 1537 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1538 struct usb_request *req) 1539 { 1540 struct dwc2_hsotg_req *hs_req = our_req(req); 1541 1542 kfree(hs_req); 1543 } 1544 1545 /** 1546 * dwc2_hsotg_complete_oursetup - setup completion callback 1547 * @ep: The endpoint the request was on. 1548 * @req: The request completed. 1549 * 1550 * Called on completion of any requests the driver itself 1551 * submitted that need cleaning up. 1552 */ 1553 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1554 struct usb_request *req) 1555 { 1556 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1557 struct dwc2_hsotg *hsotg = hs_ep->parent; 1558 1559 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1560 1561 dwc2_hsotg_ep_free_request(ep, req); 1562 } 1563 1564 /** 1565 * ep_from_windex - convert control wIndex value to endpoint 1566 * @hsotg: The driver state. 1567 * @windex: The control request wIndex field (in host order). 1568 * 1569 * Convert the given wIndex into a pointer to an driver endpoint 1570 * structure, or return NULL if it is not a valid endpoint. 1571 */ 1572 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1573 u32 windex) 1574 { 1575 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1576 int idx = windex & 0x7F; 1577 1578 if (windex >= 0x100) 1579 return NULL; 1580 1581 if (idx > hsotg->num_of_eps) 1582 return NULL; 1583 1584 return index_to_ep(hsotg, idx, dir); 1585 } 1586 1587 /** 1588 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1589 * @hsotg: The driver state. 1590 * @testmode: requested usb test mode 1591 * Enable usb Test Mode requested by the Host. 1592 */ 1593 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1594 { 1595 int dctl = dwc2_readl(hsotg, DCTL); 1596 1597 dctl &= ~DCTL_TSTCTL_MASK; 1598 switch (testmode) { 1599 case USB_TEST_J: 1600 case USB_TEST_K: 1601 case USB_TEST_SE0_NAK: 1602 case USB_TEST_PACKET: 1603 case USB_TEST_FORCE_ENABLE: 1604 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1605 break; 1606 default: 1607 return -EINVAL; 1608 } 1609 dwc2_writel(hsotg, dctl, DCTL); 1610 return 0; 1611 } 1612 1613 /** 1614 * dwc2_hsotg_send_reply - send reply to control request 1615 * @hsotg: The device state 1616 * @ep: Endpoint 0 1617 * @buff: Buffer for request 1618 * @length: Length of reply. 1619 * 1620 * Create a request and queue it on the given endpoint. This is useful as 1621 * an internal method of sending replies to certain control requests, etc. 1622 */ 1623 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1624 struct dwc2_hsotg_ep *ep, 1625 void *buff, 1626 int length) 1627 { 1628 struct usb_request *req; 1629 int ret; 1630 1631 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1632 1633 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1634 hsotg->ep0_reply = req; 1635 if (!req) { 1636 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1637 return -ENOMEM; 1638 } 1639 1640 req->buf = hsotg->ep0_buff; 1641 req->length = length; 1642 /* 1643 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1644 * STATUS stage. 1645 */ 1646 req->zero = 0; 1647 req->complete = dwc2_hsotg_complete_oursetup; 1648 1649 if (length) 1650 memcpy(req->buf, buff, length); 1651 1652 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1653 if (ret) { 1654 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1655 return ret; 1656 } 1657 1658 return 0; 1659 } 1660 1661 /** 1662 * dwc2_hsotg_process_req_status - process request GET_STATUS 1663 * @hsotg: The device state 1664 * @ctrl: USB control request 1665 */ 1666 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1667 struct usb_ctrlrequest *ctrl) 1668 { 1669 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1670 struct dwc2_hsotg_ep *ep; 1671 __le16 reply; 1672 u16 status; 1673 int ret; 1674 1675 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1676 1677 if (!ep0->dir_in) { 1678 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1679 return -EINVAL; 1680 } 1681 1682 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1683 case USB_RECIP_DEVICE: 1684 status = hsotg->gadget.is_selfpowered << 1685 USB_DEVICE_SELF_POWERED; 1686 status |= hsotg->remote_wakeup_allowed << 1687 USB_DEVICE_REMOTE_WAKEUP; 1688 reply = cpu_to_le16(status); 1689 break; 1690 1691 case USB_RECIP_INTERFACE: 1692 /* currently, the data result should be zero */ 1693 reply = cpu_to_le16(0); 1694 break; 1695 1696 case USB_RECIP_ENDPOINT: 1697 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1698 if (!ep) 1699 return -ENOENT; 1700 1701 reply = cpu_to_le16(ep->halted ? 1 : 0); 1702 break; 1703 1704 default: 1705 return 0; 1706 } 1707 1708 if (le16_to_cpu(ctrl->wLength) != 2) 1709 return -EINVAL; 1710 1711 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1712 if (ret) { 1713 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1714 return ret; 1715 } 1716 1717 return 1; 1718 } 1719 1720 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1721 1722 /** 1723 * get_ep_head - return the first request on the endpoint 1724 * @hs_ep: The controller endpoint to get 1725 * 1726 * Get the first request on the endpoint. 1727 */ 1728 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1729 { 1730 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1731 queue); 1732 } 1733 1734 /** 1735 * dwc2_gadget_start_next_request - Starts next request from ep queue 1736 * @hs_ep: Endpoint structure 1737 * 1738 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1739 * in its handler. Hence we need to unmask it here to be able to do 1740 * resynchronization. 1741 */ 1742 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1743 { 1744 struct dwc2_hsotg *hsotg = hs_ep->parent; 1745 int dir_in = hs_ep->dir_in; 1746 struct dwc2_hsotg_req *hs_req; 1747 1748 if (!list_empty(&hs_ep->queue)) { 1749 hs_req = get_ep_head(hs_ep); 1750 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1751 return; 1752 } 1753 if (!hs_ep->isochronous) 1754 return; 1755 1756 if (dir_in) { 1757 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1758 __func__); 1759 } else { 1760 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1761 __func__); 1762 } 1763 } 1764 1765 /** 1766 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1767 * @hsotg: The device state 1768 * @ctrl: USB control request 1769 */ 1770 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1771 struct usb_ctrlrequest *ctrl) 1772 { 1773 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1774 struct dwc2_hsotg_req *hs_req; 1775 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1776 struct dwc2_hsotg_ep *ep; 1777 int ret; 1778 bool halted; 1779 u32 recip; 1780 u32 wValue; 1781 u32 wIndex; 1782 1783 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1784 __func__, set ? "SET" : "CLEAR"); 1785 1786 wValue = le16_to_cpu(ctrl->wValue); 1787 wIndex = le16_to_cpu(ctrl->wIndex); 1788 recip = ctrl->bRequestType & USB_RECIP_MASK; 1789 1790 switch (recip) { 1791 case USB_RECIP_DEVICE: 1792 switch (wValue) { 1793 case USB_DEVICE_REMOTE_WAKEUP: 1794 if (set) 1795 hsotg->remote_wakeup_allowed = 1; 1796 else 1797 hsotg->remote_wakeup_allowed = 0; 1798 break; 1799 1800 case USB_DEVICE_TEST_MODE: 1801 if ((wIndex & 0xff) != 0) 1802 return -EINVAL; 1803 if (!set) 1804 return -EINVAL; 1805 1806 hsotg->test_mode = wIndex >> 8; 1807 break; 1808 default: 1809 return -ENOENT; 1810 } 1811 1812 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1813 if (ret) { 1814 dev_err(hsotg->dev, 1815 "%s: failed to send reply\n", __func__); 1816 return ret; 1817 } 1818 break; 1819 1820 case USB_RECIP_ENDPOINT: 1821 ep = ep_from_windex(hsotg, wIndex); 1822 if (!ep) { 1823 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1824 __func__, wIndex); 1825 return -ENOENT; 1826 } 1827 1828 switch (wValue) { 1829 case USB_ENDPOINT_HALT: 1830 halted = ep->halted; 1831 1832 if (!ep->wedged) 1833 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1834 1835 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1836 if (ret) { 1837 dev_err(hsotg->dev, 1838 "%s: failed to send reply\n", __func__); 1839 return ret; 1840 } 1841 1842 /* 1843 * we have to complete all requests for ep if it was 1844 * halted, and the halt was cleared by CLEAR_FEATURE 1845 */ 1846 1847 if (!set && halted) { 1848 /* 1849 * If we have request in progress, 1850 * then complete it 1851 */ 1852 if (ep->req) { 1853 hs_req = ep->req; 1854 ep->req = NULL; 1855 list_del_init(&hs_req->queue); 1856 if (hs_req->req.complete) { 1857 spin_unlock(&hsotg->lock); 1858 usb_gadget_giveback_request( 1859 &ep->ep, &hs_req->req); 1860 spin_lock(&hsotg->lock); 1861 } 1862 } 1863 1864 /* If we have pending request, then start it */ 1865 if (!ep->req) 1866 dwc2_gadget_start_next_request(ep); 1867 } 1868 1869 break; 1870 1871 default: 1872 return -ENOENT; 1873 } 1874 break; 1875 default: 1876 return -ENOENT; 1877 } 1878 return 1; 1879 } 1880 1881 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1882 1883 /** 1884 * dwc2_hsotg_stall_ep0 - stall ep0 1885 * @hsotg: The device state 1886 * 1887 * Set stall for ep0 as response for setup request. 1888 */ 1889 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1890 { 1891 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1892 u32 reg; 1893 u32 ctrl; 1894 1895 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1896 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1897 1898 /* 1899 * DxEPCTL_Stall will be cleared by EP once it has 1900 * taken effect, so no need to clear later. 1901 */ 1902 1903 ctrl = dwc2_readl(hsotg, reg); 1904 ctrl |= DXEPCTL_STALL; 1905 ctrl |= DXEPCTL_CNAK; 1906 dwc2_writel(hsotg, ctrl, reg); 1907 1908 dev_dbg(hsotg->dev, 1909 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1910 ctrl, reg, dwc2_readl(hsotg, reg)); 1911 1912 /* 1913 * complete won't be called, so we enqueue 1914 * setup request here 1915 */ 1916 dwc2_hsotg_enqueue_setup(hsotg); 1917 } 1918 1919 /** 1920 * dwc2_hsotg_process_control - process a control request 1921 * @hsotg: The device state 1922 * @ctrl: The control request received 1923 * 1924 * The controller has received the SETUP phase of a control request, and 1925 * needs to work out what to do next (and whether to pass it on to the 1926 * gadget driver). 1927 */ 1928 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1929 struct usb_ctrlrequest *ctrl) 1930 { 1931 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1932 int ret = 0; 1933 u32 dcfg; 1934 1935 dev_dbg(hsotg->dev, 1936 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1937 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1938 ctrl->wIndex, ctrl->wLength); 1939 1940 if (ctrl->wLength == 0) { 1941 ep0->dir_in = 1; 1942 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1943 } else if (ctrl->bRequestType & USB_DIR_IN) { 1944 ep0->dir_in = 1; 1945 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1946 } else { 1947 ep0->dir_in = 0; 1948 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1949 } 1950 1951 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1952 switch (ctrl->bRequest) { 1953 case USB_REQ_SET_ADDRESS: 1954 hsotg->connected = 1; 1955 dcfg = dwc2_readl(hsotg, DCFG); 1956 dcfg &= ~DCFG_DEVADDR_MASK; 1957 dcfg |= (le16_to_cpu(ctrl->wValue) << 1958 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1959 dwc2_writel(hsotg, dcfg, DCFG); 1960 1961 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1962 1963 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1964 return; 1965 1966 case USB_REQ_GET_STATUS: 1967 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1968 break; 1969 1970 case USB_REQ_CLEAR_FEATURE: 1971 case USB_REQ_SET_FEATURE: 1972 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1973 break; 1974 } 1975 } 1976 1977 /* as a fallback, try delivering it to the driver to deal with */ 1978 1979 if (ret == 0 && hsotg->driver) { 1980 spin_unlock(&hsotg->lock); 1981 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1982 spin_lock(&hsotg->lock); 1983 if (ret < 0) 1984 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1985 } 1986 1987 hsotg->delayed_status = false; 1988 if (ret == USB_GADGET_DELAYED_STATUS) 1989 hsotg->delayed_status = true; 1990 1991 /* 1992 * the request is either unhandlable, or is not formatted correctly 1993 * so respond with a STALL for the status stage to indicate failure. 1994 */ 1995 1996 if (ret < 0) 1997 dwc2_hsotg_stall_ep0(hsotg); 1998 } 1999 2000 /** 2001 * dwc2_hsotg_complete_setup - completion of a setup transfer 2002 * @ep: The endpoint the request was on. 2003 * @req: The request completed. 2004 * 2005 * Called on completion of any requests the driver itself submitted for 2006 * EP0 setup packets 2007 */ 2008 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 2009 struct usb_request *req) 2010 { 2011 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 2012 struct dwc2_hsotg *hsotg = hs_ep->parent; 2013 2014 if (req->status < 0) { 2015 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 2016 return; 2017 } 2018 2019 spin_lock(&hsotg->lock); 2020 if (req->actual == 0) 2021 dwc2_hsotg_enqueue_setup(hsotg); 2022 else 2023 dwc2_hsotg_process_control(hsotg, req->buf); 2024 spin_unlock(&hsotg->lock); 2025 } 2026 2027 /** 2028 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 2029 * @hsotg: The device state. 2030 * 2031 * Enqueue a request on EP0 if necessary to received any SETUP packets 2032 * received from the host. 2033 */ 2034 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 2035 { 2036 struct usb_request *req = hsotg->ctrl_req; 2037 struct dwc2_hsotg_req *hs_req = our_req(req); 2038 int ret; 2039 2040 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 2041 2042 req->zero = 0; 2043 req->length = 8; 2044 req->buf = hsotg->ctrl_buff; 2045 req->complete = dwc2_hsotg_complete_setup; 2046 2047 if (!list_empty(&hs_req->queue)) { 2048 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 2049 return; 2050 } 2051 2052 hsotg->eps_out[0]->dir_in = 0; 2053 hsotg->eps_out[0]->send_zlp = 0; 2054 hsotg->ep0_state = DWC2_EP0_SETUP; 2055 2056 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 2057 if (ret < 0) { 2058 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 2059 /* 2060 * Don't think there's much we can do other than watch the 2061 * driver fail. 2062 */ 2063 } 2064 } 2065 2066 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 2067 struct dwc2_hsotg_ep *hs_ep) 2068 { 2069 u32 ctrl; 2070 u8 index = hs_ep->index; 2071 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2072 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 2073 2074 if (hs_ep->dir_in) 2075 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 2076 index); 2077 else 2078 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 2079 index); 2080 if (using_desc_dma(hsotg)) { 2081 /* Not specific buffer needed for ep0 ZLP */ 2082 dma_addr_t dma = hs_ep->desc_list_dma; 2083 2084 if (!index) 2085 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 2086 2087 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 2088 } else { 2089 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2090 DXEPTSIZ_XFERSIZE(0), 2091 epsiz_reg); 2092 } 2093 2094 ctrl = dwc2_readl(hsotg, epctl_reg); 2095 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2096 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2097 ctrl |= DXEPCTL_USBACTEP; 2098 dwc2_writel(hsotg, ctrl, epctl_reg); 2099 } 2100 2101 /** 2102 * dwc2_hsotg_complete_request - complete a request given to us 2103 * @hsotg: The device state. 2104 * @hs_ep: The endpoint the request was on. 2105 * @hs_req: The request to complete. 2106 * @result: The result code (0 => Ok, otherwise errno) 2107 * 2108 * The given request has finished, so call the necessary completion 2109 * if it has one and then look to see if we can start a new request 2110 * on the endpoint. 2111 * 2112 * Note, expects the ep to already be locked as appropriate. 2113 */ 2114 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2115 struct dwc2_hsotg_ep *hs_ep, 2116 struct dwc2_hsotg_req *hs_req, 2117 int result) 2118 { 2119 if (!hs_req) { 2120 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2121 return; 2122 } 2123 2124 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2125 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2126 2127 /* 2128 * only replace the status if we've not already set an error 2129 * from a previous transaction 2130 */ 2131 2132 if (hs_req->req.status == -EINPROGRESS) 2133 hs_req->req.status = result; 2134 2135 if (using_dma(hsotg)) 2136 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2137 2138 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2139 2140 hs_ep->req = NULL; 2141 list_del_init(&hs_req->queue); 2142 2143 /* 2144 * call the complete request with the locks off, just in case the 2145 * request tries to queue more work for this endpoint. 2146 */ 2147 2148 if (hs_req->req.complete) { 2149 spin_unlock(&hsotg->lock); 2150 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2151 spin_lock(&hsotg->lock); 2152 } 2153 2154 /* In DDMA don't need to proceed to starting of next ISOC request */ 2155 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2156 return; 2157 2158 /* 2159 * Look to see if there is anything else to do. Note, the completion 2160 * of the previous request may have caused a new request to be started 2161 * so be careful when doing this. 2162 */ 2163 2164 if (!hs_ep->req && result >= 0) 2165 dwc2_gadget_start_next_request(hs_ep); 2166 } 2167 2168 /* 2169 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2170 * @hs_ep: The endpoint the request was on. 2171 * 2172 * Get first request from the ep queue, determine descriptor on which complete 2173 * happened. SW discovers which descriptor currently in use by HW, adjusts 2174 * dma_address and calculates index of completed descriptor based on the value 2175 * of DEPDMA register. Update actual length of request, giveback to gadget. 2176 */ 2177 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2178 { 2179 struct dwc2_hsotg *hsotg = hs_ep->parent; 2180 struct dwc2_hsotg_req *hs_req; 2181 struct usb_request *ureq; 2182 u32 desc_sts; 2183 u32 mask; 2184 2185 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2186 2187 /* Process only descriptors with buffer status set to DMA done */ 2188 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2189 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2190 2191 hs_req = get_ep_head(hs_ep); 2192 if (!hs_req) { 2193 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2194 return; 2195 } 2196 ureq = &hs_req->req; 2197 2198 /* Check completion status */ 2199 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2200 DEV_DMA_STS_SUCC) { 2201 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2202 DEV_DMA_ISOC_RX_NBYTES_MASK; 2203 ureq->actual = ureq->length - ((desc_sts & mask) >> 2204 DEV_DMA_ISOC_NBYTES_SHIFT); 2205 2206 /* Adjust actual len for ISOC Out if len is 2207 * not align of 4 2208 */ 2209 if (!hs_ep->dir_in && ureq->length & 0x3) 2210 ureq->actual += 4 - (ureq->length & 0x3); 2211 2212 /* Set actual frame number for completed transfers */ 2213 ureq->frame_number = 2214 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> 2215 DEV_DMA_ISOC_FRNUM_SHIFT; 2216 } 2217 2218 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2219 2220 hs_ep->compl_desc++; 2221 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) 2222 hs_ep->compl_desc = 0; 2223 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2224 } 2225 } 2226 2227 /* 2228 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2229 * @hs_ep: The isochronous endpoint. 2230 * 2231 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2232 * interrupt. Reset target frame and next_desc to allow to start 2233 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2234 * interrupt for OUT direction. 2235 */ 2236 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2237 { 2238 struct dwc2_hsotg *hsotg = hs_ep->parent; 2239 2240 if (!hs_ep->dir_in) 2241 dwc2_flush_rx_fifo(hsotg); 2242 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2243 2244 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2245 hs_ep->next_desc = 0; 2246 hs_ep->compl_desc = 0; 2247 } 2248 2249 /** 2250 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2251 * @hsotg: The device state. 2252 * @ep_idx: The endpoint index for the data 2253 * @size: The size of data in the fifo, in bytes 2254 * 2255 * The FIFO status shows there is data to read from the FIFO for a given 2256 * endpoint, so sort out whether we need to read the data into a request 2257 * that has been made for that endpoint. 2258 */ 2259 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2260 { 2261 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2262 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2263 int to_read; 2264 int max_req; 2265 int read_ptr; 2266 2267 if (!hs_req) { 2268 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2269 int ptr; 2270 2271 dev_dbg(hsotg->dev, 2272 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2273 __func__, size, ep_idx, epctl); 2274 2275 /* dump the data from the FIFO, we've nothing we can do */ 2276 for (ptr = 0; ptr < size; ptr += 4) 2277 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2278 2279 return; 2280 } 2281 2282 to_read = size; 2283 read_ptr = hs_req->req.actual; 2284 max_req = hs_req->req.length - read_ptr; 2285 2286 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2287 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2288 2289 if (to_read > max_req) { 2290 /* 2291 * more data appeared than we where willing 2292 * to deal with in this request. 2293 */ 2294 2295 /* currently we don't deal this */ 2296 WARN_ON_ONCE(1); 2297 } 2298 2299 hs_ep->total_data += to_read; 2300 hs_req->req.actual += to_read; 2301 to_read = DIV_ROUND_UP(to_read, 4); 2302 2303 /* 2304 * note, we might over-write the buffer end by 3 bytes depending on 2305 * alignment of the data. 2306 */ 2307 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2308 hs_req->req.buf + read_ptr, to_read); 2309 } 2310 2311 /** 2312 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2313 * @hsotg: The device instance 2314 * @dir_in: If IN zlp 2315 * 2316 * Generate a zero-length IN packet request for terminating a SETUP 2317 * transaction. 2318 * 2319 * Note, since we don't write any data to the TxFIFO, then it is 2320 * currently believed that we do not need to wait for any space in 2321 * the TxFIFO. 2322 */ 2323 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2324 { 2325 /* eps_out[0] is used in both directions */ 2326 hsotg->eps_out[0]->dir_in = dir_in; 2327 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2328 2329 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2330 } 2331 2332 /* 2333 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2334 * @hs_ep - The endpoint on which transfer went 2335 * 2336 * Iterate over endpoints descriptor chain and get info on bytes remained 2337 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2338 */ 2339 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2340 { 2341 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 2342 struct dwc2_hsotg *hsotg = hs_ep->parent; 2343 unsigned int bytes_rem = 0; 2344 unsigned int bytes_rem_correction = 0; 2345 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2346 int i; 2347 u32 status; 2348 u32 mps = hs_ep->ep.maxpacket; 2349 int dir_in = hs_ep->dir_in; 2350 2351 if (!desc) 2352 return -EINVAL; 2353 2354 /* Interrupt OUT EP with mps not multiple of 4 */ 2355 if (hs_ep->index) 2356 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 2357 bytes_rem_correction = 4 - (mps % 4); 2358 2359 for (i = 0; i < hs_ep->desc_count; ++i) { 2360 status = desc->status; 2361 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2362 bytes_rem -= bytes_rem_correction; 2363 2364 if (status & DEV_DMA_STS_MASK) 2365 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2366 i, status & DEV_DMA_STS_MASK); 2367 2368 if (status & DEV_DMA_L) 2369 break; 2370 2371 desc++; 2372 } 2373 2374 return bytes_rem; 2375 } 2376 2377 /** 2378 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2379 * @hsotg: The device instance 2380 * @epnum: The endpoint received from 2381 * 2382 * The RXFIFO has delivered an OutDone event, which means that the data 2383 * transfer for an OUT endpoint has been completed, either by a short 2384 * packet or by the finish of a transfer. 2385 */ 2386 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2387 { 2388 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2389 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2390 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2391 struct usb_request *req = &hs_req->req; 2392 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2393 int result = 0; 2394 2395 if (!hs_req) { 2396 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2397 return; 2398 } 2399 2400 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2401 dev_dbg(hsotg->dev, "zlp packet received\n"); 2402 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2403 dwc2_hsotg_enqueue_setup(hsotg); 2404 return; 2405 } 2406 2407 if (using_desc_dma(hsotg)) 2408 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2409 2410 if (using_dma(hsotg)) { 2411 unsigned int size_done; 2412 2413 /* 2414 * Calculate the size of the transfer by checking how much 2415 * is left in the endpoint size register and then working it 2416 * out from the amount we loaded for the transfer. 2417 * 2418 * We need to do this as DMA pointers are always 32bit aligned 2419 * so may overshoot/undershoot the transfer. 2420 */ 2421 2422 size_done = hs_ep->size_loaded - size_left; 2423 size_done += hs_ep->last_load; 2424 2425 req->actual = size_done; 2426 } 2427 2428 /* if there is more request to do, schedule new transfer */ 2429 if (req->actual < req->length && size_left == 0) { 2430 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2431 return; 2432 } 2433 2434 if (req->actual < req->length && req->short_not_ok) { 2435 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2436 __func__, req->actual, req->length); 2437 2438 /* 2439 * todo - what should we return here? there's no one else 2440 * even bothering to check the status. 2441 */ 2442 } 2443 2444 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2445 if (!using_desc_dma(hsotg) && epnum == 0 && 2446 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2447 /* Move to STATUS IN */ 2448 if (!hsotg->delayed_status) 2449 dwc2_hsotg_ep0_zlp(hsotg, true); 2450 } 2451 2452 /* Set actual frame number for completed transfers */ 2453 if (!using_desc_dma(hsotg) && hs_ep->isochronous) { 2454 req->frame_number = hs_ep->target_frame; 2455 dwc2_gadget_incr_frame_num(hs_ep); 2456 } 2457 2458 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2459 } 2460 2461 /** 2462 * dwc2_hsotg_handle_rx - RX FIFO has data 2463 * @hsotg: The device instance 2464 * 2465 * The IRQ handler has detected that the RX FIFO has some data in it 2466 * that requires processing, so find out what is in there and do the 2467 * appropriate read. 2468 * 2469 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2470 * chunks, so if you have x packets received on an endpoint you'll get x 2471 * FIFO events delivered, each with a packet's worth of data in it. 2472 * 2473 * When using DMA, we should not be processing events from the RXFIFO 2474 * as the actual data should be sent to the memory directly and we turn 2475 * on the completion interrupts to get notifications of transfer completion. 2476 */ 2477 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2478 { 2479 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2480 u32 epnum, status, size; 2481 2482 WARN_ON(using_dma(hsotg)); 2483 2484 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2485 status = grxstsr & GRXSTS_PKTSTS_MASK; 2486 2487 size = grxstsr & GRXSTS_BYTECNT_MASK; 2488 size >>= GRXSTS_BYTECNT_SHIFT; 2489 2490 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2491 __func__, grxstsr, size, epnum); 2492 2493 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2494 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2495 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2496 break; 2497 2498 case GRXSTS_PKTSTS_OUTDONE: 2499 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2500 dwc2_hsotg_read_frameno(hsotg)); 2501 2502 if (!using_dma(hsotg)) 2503 dwc2_hsotg_handle_outdone(hsotg, epnum); 2504 break; 2505 2506 case GRXSTS_PKTSTS_SETUPDONE: 2507 dev_dbg(hsotg->dev, 2508 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2509 dwc2_hsotg_read_frameno(hsotg), 2510 dwc2_readl(hsotg, DOEPCTL(0))); 2511 /* 2512 * Call dwc2_hsotg_handle_outdone here if it was not called from 2513 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2514 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2515 */ 2516 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2517 dwc2_hsotg_handle_outdone(hsotg, epnum); 2518 break; 2519 2520 case GRXSTS_PKTSTS_OUTRX: 2521 dwc2_hsotg_rx_data(hsotg, epnum, size); 2522 break; 2523 2524 case GRXSTS_PKTSTS_SETUPRX: 2525 dev_dbg(hsotg->dev, 2526 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2527 dwc2_hsotg_read_frameno(hsotg), 2528 dwc2_readl(hsotg, DOEPCTL(0))); 2529 2530 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2531 2532 dwc2_hsotg_rx_data(hsotg, epnum, size); 2533 break; 2534 2535 default: 2536 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2537 __func__, grxstsr); 2538 2539 dwc2_hsotg_dump(hsotg); 2540 break; 2541 } 2542 } 2543 2544 /** 2545 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2546 * @mps: The maximum packet size in bytes. 2547 */ 2548 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2549 { 2550 switch (mps) { 2551 case 64: 2552 return D0EPCTL_MPS_64; 2553 case 32: 2554 return D0EPCTL_MPS_32; 2555 case 16: 2556 return D0EPCTL_MPS_16; 2557 case 8: 2558 return D0EPCTL_MPS_8; 2559 } 2560 2561 /* bad max packet size, warn and return invalid result */ 2562 WARN_ON(1); 2563 return (u32)-1; 2564 } 2565 2566 /** 2567 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2568 * @hsotg: The driver state. 2569 * @ep: The index number of the endpoint 2570 * @mps: The maximum packet size in bytes 2571 * @mc: The multicount value 2572 * @dir_in: True if direction is in. 2573 * 2574 * Configure the maximum packet size for the given endpoint, updating 2575 * the hardware control registers to reflect this. 2576 */ 2577 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2578 unsigned int ep, unsigned int mps, 2579 unsigned int mc, unsigned int dir_in) 2580 { 2581 struct dwc2_hsotg_ep *hs_ep; 2582 u32 reg; 2583 2584 hs_ep = index_to_ep(hsotg, ep, dir_in); 2585 if (!hs_ep) 2586 return; 2587 2588 if (ep == 0) { 2589 u32 mps_bytes = mps; 2590 2591 /* EP0 is a special case */ 2592 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2593 if (mps > 3) 2594 goto bad_mps; 2595 hs_ep->ep.maxpacket = mps_bytes; 2596 hs_ep->mc = 1; 2597 } else { 2598 if (mps > 1024) 2599 goto bad_mps; 2600 hs_ep->mc = mc; 2601 if (mc > 3) 2602 goto bad_mps; 2603 hs_ep->ep.maxpacket = mps; 2604 } 2605 2606 if (dir_in) { 2607 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2608 reg &= ~DXEPCTL_MPS_MASK; 2609 reg |= mps; 2610 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2611 } else { 2612 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2613 reg &= ~DXEPCTL_MPS_MASK; 2614 reg |= mps; 2615 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2616 } 2617 2618 return; 2619 2620 bad_mps: 2621 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2622 } 2623 2624 /** 2625 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2626 * @hsotg: The driver state 2627 * @idx: The index for the endpoint (0..15) 2628 */ 2629 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2630 { 2631 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2632 GRSTCTL); 2633 2634 /* wait until the fifo is flushed */ 2635 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2636 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2637 __func__); 2638 } 2639 2640 /** 2641 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2642 * @hsotg: The driver state 2643 * @hs_ep: The driver endpoint to check. 2644 * 2645 * Check to see if there is a request that has data to send, and if so 2646 * make an attempt to write data into the FIFO. 2647 */ 2648 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2649 struct dwc2_hsotg_ep *hs_ep) 2650 { 2651 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2652 2653 if (!hs_ep->dir_in || !hs_req) { 2654 /** 2655 * if request is not enqueued, we disable interrupts 2656 * for endpoints, excepting ep0 2657 */ 2658 if (hs_ep->index != 0) 2659 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2660 hs_ep->dir_in, 0); 2661 return 0; 2662 } 2663 2664 if (hs_req->req.actual < hs_req->req.length) { 2665 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2666 hs_ep->index); 2667 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2668 } 2669 2670 return 0; 2671 } 2672 2673 /** 2674 * dwc2_hsotg_complete_in - complete IN transfer 2675 * @hsotg: The device state. 2676 * @hs_ep: The endpoint that has just completed. 2677 * 2678 * An IN transfer has been completed, update the transfer's state and then 2679 * call the relevant completion routines. 2680 */ 2681 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2682 struct dwc2_hsotg_ep *hs_ep) 2683 { 2684 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2685 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2686 int size_left, size_done; 2687 2688 if (!hs_req) { 2689 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2690 return; 2691 } 2692 2693 /* Finish ZLP handling for IN EP0 transactions */ 2694 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2695 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2696 2697 /* 2698 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2699 * changed to IN. Change back to complete OUT transfer request 2700 */ 2701 hs_ep->dir_in = 0; 2702 2703 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2704 if (hsotg->test_mode) { 2705 int ret; 2706 2707 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2708 if (ret < 0) { 2709 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2710 hsotg->test_mode); 2711 dwc2_hsotg_stall_ep0(hsotg); 2712 return; 2713 } 2714 } 2715 dwc2_hsotg_enqueue_setup(hsotg); 2716 return; 2717 } 2718 2719 /* 2720 * Calculate the size of the transfer by checking how much is left 2721 * in the endpoint size register and then working it out from 2722 * the amount we loaded for the transfer. 2723 * 2724 * We do this even for DMA, as the transfer may have incremented 2725 * past the end of the buffer (DMA transfers are always 32bit 2726 * aligned). 2727 */ 2728 if (using_desc_dma(hsotg)) { 2729 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2730 if (size_left < 0) 2731 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2732 size_left); 2733 } else { 2734 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2735 } 2736 2737 size_done = hs_ep->size_loaded - size_left; 2738 size_done += hs_ep->last_load; 2739 2740 if (hs_req->req.actual != size_done) 2741 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2742 __func__, hs_req->req.actual, size_done); 2743 2744 hs_req->req.actual = size_done; 2745 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2746 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2747 2748 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2749 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2750 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2751 return; 2752 } 2753 2754 /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */ 2755 if (hs_ep->send_zlp) { 2756 hs_ep->send_zlp = 0; 2757 if (!using_desc_dma(hsotg)) { 2758 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2759 /* transfer will be completed on next complete interrupt */ 2760 return; 2761 } 2762 } 2763 2764 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2765 /* Move to STATUS OUT */ 2766 dwc2_hsotg_ep0_zlp(hsotg, false); 2767 return; 2768 } 2769 2770 /* Set actual frame number for completed transfers */ 2771 if (!using_desc_dma(hsotg) && hs_ep->isochronous) { 2772 hs_req->req.frame_number = hs_ep->target_frame; 2773 dwc2_gadget_incr_frame_num(hs_ep); 2774 } 2775 2776 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2777 } 2778 2779 /** 2780 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2781 * @hsotg: The device state. 2782 * @idx: Index of ep. 2783 * @dir_in: Endpoint direction 1-in 0-out. 2784 * 2785 * Reads for endpoint with given index and direction, by masking 2786 * epint_reg with coresponding mask. 2787 */ 2788 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2789 unsigned int idx, int dir_in) 2790 { 2791 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2792 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2793 u32 ints; 2794 u32 mask; 2795 u32 diepempmsk; 2796 2797 mask = dwc2_readl(hsotg, epmsk_reg); 2798 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2799 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2800 mask |= DXEPINT_SETUP_RCVD; 2801 2802 ints = dwc2_readl(hsotg, epint_reg); 2803 ints &= mask; 2804 return ints; 2805 } 2806 2807 /** 2808 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2809 * @hs_ep: The endpoint on which interrupt is asserted. 2810 * 2811 * This interrupt indicates that the endpoint has been disabled per the 2812 * application's request. 2813 * 2814 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2815 * in case of ISOC completes current request. 2816 * 2817 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2818 * request starts it. 2819 */ 2820 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2821 { 2822 struct dwc2_hsotg *hsotg = hs_ep->parent; 2823 struct dwc2_hsotg_req *hs_req; 2824 unsigned char idx = hs_ep->index; 2825 int dir_in = hs_ep->dir_in; 2826 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2827 int dctl = dwc2_readl(hsotg, DCTL); 2828 2829 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2830 2831 if (dir_in) { 2832 int epctl = dwc2_readl(hsotg, epctl_reg); 2833 2834 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2835 2836 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2837 int dctl = dwc2_readl(hsotg, DCTL); 2838 2839 dctl |= DCTL_CGNPINNAK; 2840 dwc2_writel(hsotg, dctl, DCTL); 2841 } 2842 } else { 2843 2844 if (dctl & DCTL_GOUTNAKSTS) { 2845 dctl |= DCTL_CGOUTNAK; 2846 dwc2_writel(hsotg, dctl, DCTL); 2847 } 2848 } 2849 2850 if (!hs_ep->isochronous) 2851 return; 2852 2853 if (list_empty(&hs_ep->queue)) { 2854 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2855 __func__, hs_ep); 2856 return; 2857 } 2858 2859 do { 2860 hs_req = get_ep_head(hs_ep); 2861 if (hs_req) { 2862 hs_req->req.frame_number = hs_ep->target_frame; 2863 hs_req->req.actual = 0; 2864 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2865 -ENODATA); 2866 } 2867 dwc2_gadget_incr_frame_num(hs_ep); 2868 /* Update current frame number value. */ 2869 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2870 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2871 } 2872 2873 /** 2874 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2875 * @ep: The endpoint on which interrupt is asserted. 2876 * 2877 * This is starting point for ISOC-OUT transfer, synchronization done with 2878 * first out token received from host while corresponding EP is disabled. 2879 * 2880 * Device does not know initial frame in which out token will come. For this 2881 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2882 * getting this interrupt SW starts calculation for next transfer frame. 2883 */ 2884 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2885 { 2886 struct dwc2_hsotg *hsotg = ep->parent; 2887 struct dwc2_hsotg_req *hs_req; 2888 int dir_in = ep->dir_in; 2889 2890 if (dir_in || !ep->isochronous) 2891 return; 2892 2893 if (using_desc_dma(hsotg)) { 2894 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2895 /* Start first ISO Out */ 2896 ep->target_frame = hsotg->frame_number; 2897 dwc2_gadget_start_isoc_ddma(ep); 2898 } 2899 return; 2900 } 2901 2902 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2903 u32 ctrl; 2904 2905 ep->target_frame = hsotg->frame_number; 2906 if (ep->interval > 1) { 2907 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2908 if (ep->target_frame & 0x1) 2909 ctrl |= DXEPCTL_SETODDFR; 2910 else 2911 ctrl |= DXEPCTL_SETEVENFR; 2912 2913 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2914 } 2915 } 2916 2917 while (dwc2_gadget_target_frame_elapsed(ep)) { 2918 hs_req = get_ep_head(ep); 2919 if (hs_req) { 2920 hs_req->req.frame_number = ep->target_frame; 2921 hs_req->req.actual = 0; 2922 dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA); 2923 } 2924 2925 dwc2_gadget_incr_frame_num(ep); 2926 /* Update current frame number value. */ 2927 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2928 } 2929 2930 if (!ep->req) 2931 dwc2_gadget_start_next_request(ep); 2932 2933 } 2934 2935 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 2936 struct dwc2_hsotg_ep *hs_ep); 2937 2938 /** 2939 * dwc2_gadget_handle_nak - handle NAK interrupt 2940 * @hs_ep: The endpoint on which interrupt is asserted. 2941 * 2942 * This is starting point for ISOC-IN transfer, synchronization done with 2943 * first IN token received from host while corresponding EP is disabled. 2944 * 2945 * Device does not know when first one token will arrive from host. On first 2946 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2947 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2948 * sent in response to that as there was no data in FIFO. SW is basing on this 2949 * interrupt to obtain frame in which token has come and then based on the 2950 * interval calculates next frame for transfer. 2951 */ 2952 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2953 { 2954 struct dwc2_hsotg *hsotg = hs_ep->parent; 2955 struct dwc2_hsotg_req *hs_req; 2956 int dir_in = hs_ep->dir_in; 2957 u32 ctrl; 2958 2959 if (!dir_in || !hs_ep->isochronous) 2960 return; 2961 2962 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2963 2964 if (using_desc_dma(hsotg)) { 2965 hs_ep->target_frame = hsotg->frame_number; 2966 dwc2_gadget_incr_frame_num(hs_ep); 2967 2968 /* In service interval mode target_frame must 2969 * be set to last (u)frame of the service interval. 2970 */ 2971 if (hsotg->params.service_interval) { 2972 /* Set target_frame to the first (u)frame of 2973 * the service interval 2974 */ 2975 hs_ep->target_frame &= ~hs_ep->interval + 1; 2976 2977 /* Set target_frame to the last (u)frame of 2978 * the service interval 2979 */ 2980 dwc2_gadget_incr_frame_num(hs_ep); 2981 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2982 } 2983 2984 dwc2_gadget_start_isoc_ddma(hs_ep); 2985 return; 2986 } 2987 2988 hs_ep->target_frame = hsotg->frame_number; 2989 if (hs_ep->interval > 1) { 2990 u32 ctrl = dwc2_readl(hsotg, 2991 DIEPCTL(hs_ep->index)); 2992 if (hs_ep->target_frame & 0x1) 2993 ctrl |= DXEPCTL_SETODDFR; 2994 else 2995 ctrl |= DXEPCTL_SETEVENFR; 2996 2997 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 2998 } 2999 } 3000 3001 if (using_desc_dma(hsotg)) 3002 return; 3003 3004 ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index)); 3005 if (ctrl & DXEPCTL_EPENA) 3006 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 3007 else 3008 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 3009 3010 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 3011 hs_req = get_ep_head(hs_ep); 3012 if (hs_req) { 3013 hs_req->req.frame_number = hs_ep->target_frame; 3014 hs_req->req.actual = 0; 3015 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA); 3016 } 3017 3018 dwc2_gadget_incr_frame_num(hs_ep); 3019 /* Update current frame number value. */ 3020 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 3021 } 3022 3023 if (!hs_ep->req) 3024 dwc2_gadget_start_next_request(hs_ep); 3025 } 3026 3027 /** 3028 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 3029 * @hsotg: The driver state 3030 * @idx: The index for the endpoint (0..15) 3031 * @dir_in: Set if this is an IN endpoint 3032 * 3033 * Process and clear any interrupt pending for an individual endpoint 3034 */ 3035 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 3036 int dir_in) 3037 { 3038 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 3039 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 3040 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 3041 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 3042 u32 ints; 3043 3044 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 3045 3046 /* Clear endpoint interrupts */ 3047 dwc2_writel(hsotg, ints, epint_reg); 3048 3049 if (!hs_ep) { 3050 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 3051 __func__, idx, dir_in ? "in" : "out"); 3052 return; 3053 } 3054 3055 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 3056 __func__, idx, dir_in ? "in" : "out", ints); 3057 3058 /* Don't process XferCompl interrupt if it is a setup packet */ 3059 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 3060 ints &= ~DXEPINT_XFERCOMPL; 3061 3062 /* 3063 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 3064 * stage and xfercomplete was generated without SETUP phase done 3065 * interrupt. SW should parse received setup packet only after host's 3066 * exit from setup phase of control transfer. 3067 */ 3068 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 3069 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 3070 ints &= ~DXEPINT_XFERCOMPL; 3071 3072 if (ints & DXEPINT_XFERCOMPL) { 3073 dev_dbg(hsotg->dev, 3074 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 3075 __func__, dwc2_readl(hsotg, epctl_reg), 3076 dwc2_readl(hsotg, epsiz_reg)); 3077 3078 /* In DDMA handle isochronous requests separately */ 3079 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 3080 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 3081 } else if (dir_in) { 3082 /* 3083 * We get OutDone from the FIFO, so we only 3084 * need to look at completing IN requests here 3085 * if operating slave mode 3086 */ 3087 if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT)) 3088 dwc2_hsotg_complete_in(hsotg, hs_ep); 3089 3090 if (idx == 0 && !hs_ep->req) 3091 dwc2_hsotg_enqueue_setup(hsotg); 3092 } else if (using_dma(hsotg)) { 3093 /* 3094 * We're using DMA, we need to fire an OutDone here 3095 * as we ignore the RXFIFO. 3096 */ 3097 if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS)) 3098 dwc2_hsotg_handle_outdone(hsotg, idx); 3099 } 3100 } 3101 3102 if (ints & DXEPINT_EPDISBLD) 3103 dwc2_gadget_handle_ep_disabled(hs_ep); 3104 3105 if (ints & DXEPINT_OUTTKNEPDIS) 3106 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 3107 3108 if (ints & DXEPINT_NAKINTRPT) 3109 dwc2_gadget_handle_nak(hs_ep); 3110 3111 if (ints & DXEPINT_AHBERR) 3112 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 3113 3114 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 3115 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3116 3117 if (using_dma(hsotg) && idx == 0) { 3118 /* 3119 * this is the notification we've received a 3120 * setup packet. In non-DMA mode we'd get this 3121 * from the RXFIFO, instead we need to process 3122 * the setup here. 3123 */ 3124 3125 if (dir_in) 3126 WARN_ON_ONCE(1); 3127 else 3128 dwc2_hsotg_handle_outdone(hsotg, 0); 3129 } 3130 } 3131 3132 if (ints & DXEPINT_STSPHSERCVD) { 3133 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3134 3135 /* Safety check EP0 state when STSPHSERCVD asserted */ 3136 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3137 /* Move to STATUS IN for DDMA */ 3138 if (using_desc_dma(hsotg)) { 3139 if (!hsotg->delayed_status) 3140 dwc2_hsotg_ep0_zlp(hsotg, true); 3141 else 3142 /* In case of 3 stage Control Write with delayed 3143 * status, when Status IN transfer started 3144 * before STSPHSERCVD asserted, NAKSTS bit not 3145 * cleared by CNAK in dwc2_hsotg_start_req() 3146 * function. Clear now NAKSTS to allow complete 3147 * transfer. 3148 */ 3149 dwc2_set_bit(hsotg, DIEPCTL(0), 3150 DXEPCTL_CNAK); 3151 } 3152 } 3153 3154 } 3155 3156 if (ints & DXEPINT_BACK2BACKSETUP) 3157 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3158 3159 if (ints & DXEPINT_BNAINTR) { 3160 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3161 if (hs_ep->isochronous) 3162 dwc2_gadget_handle_isoc_bna(hs_ep); 3163 } 3164 3165 if (dir_in && !hs_ep->isochronous) { 3166 /* not sure if this is important, but we'll clear it anyway */ 3167 if (ints & DXEPINT_INTKNTXFEMP) { 3168 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3169 __func__, idx); 3170 } 3171 3172 /* this probably means something bad is happening */ 3173 if (ints & DXEPINT_INTKNEPMIS) { 3174 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3175 __func__, idx); 3176 } 3177 3178 /* FIFO has space or is empty (see GAHBCFG) */ 3179 if (hsotg->dedicated_fifos && 3180 ints & DXEPINT_TXFEMP) { 3181 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3182 __func__, idx); 3183 if (!using_dma(hsotg)) 3184 dwc2_hsotg_trytx(hsotg, hs_ep); 3185 } 3186 } 3187 } 3188 3189 /** 3190 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3191 * @hsotg: The device state. 3192 * 3193 * Handle updating the device settings after the enumeration phase has 3194 * been completed. 3195 */ 3196 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3197 { 3198 u32 dsts = dwc2_readl(hsotg, DSTS); 3199 int ep0_mps = 0, ep_mps = 8; 3200 3201 /* 3202 * This should signal the finish of the enumeration phase 3203 * of the USB handshaking, so we should now know what rate 3204 * we connected at. 3205 */ 3206 3207 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3208 3209 /* 3210 * note, since we're limited by the size of transfer on EP0, and 3211 * it seems IN transfers must be a even number of packets we do 3212 * not advertise a 64byte MPS on EP0. 3213 */ 3214 3215 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3216 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3217 case DSTS_ENUMSPD_FS: 3218 case DSTS_ENUMSPD_FS48: 3219 hsotg->gadget.speed = USB_SPEED_FULL; 3220 ep0_mps = EP0_MPS_LIMIT; 3221 ep_mps = 1023; 3222 break; 3223 3224 case DSTS_ENUMSPD_HS: 3225 hsotg->gadget.speed = USB_SPEED_HIGH; 3226 ep0_mps = EP0_MPS_LIMIT; 3227 ep_mps = 1024; 3228 break; 3229 3230 case DSTS_ENUMSPD_LS: 3231 hsotg->gadget.speed = USB_SPEED_LOW; 3232 ep0_mps = 8; 3233 ep_mps = 8; 3234 /* 3235 * note, we don't actually support LS in this driver at the 3236 * moment, and the documentation seems to imply that it isn't 3237 * supported by the PHYs on some of the devices. 3238 */ 3239 break; 3240 } 3241 dev_info(hsotg->dev, "new device is %s\n", 3242 usb_speed_string(hsotg->gadget.speed)); 3243 3244 /* 3245 * we should now know the maximum packet size for an 3246 * endpoint, so set the endpoints to a default value. 3247 */ 3248 3249 if (ep0_mps) { 3250 int i; 3251 /* Initialize ep0 for both in and out directions */ 3252 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3253 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3254 for (i = 1; i < hsotg->num_of_eps; i++) { 3255 if (hsotg->eps_in[i]) 3256 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3257 0, 1); 3258 if (hsotg->eps_out[i]) 3259 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3260 0, 0); 3261 } 3262 } 3263 3264 /* ensure after enumeration our EP0 is active */ 3265 3266 dwc2_hsotg_enqueue_setup(hsotg); 3267 3268 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3269 dwc2_readl(hsotg, DIEPCTL0), 3270 dwc2_readl(hsotg, DOEPCTL0)); 3271 } 3272 3273 /** 3274 * kill_all_requests - remove all requests from the endpoint's queue 3275 * @hsotg: The device state. 3276 * @ep: The endpoint the requests may be on. 3277 * @result: The result code to use. 3278 * 3279 * Go through the requests on the given endpoint and mark them 3280 * completed with the given result code. 3281 */ 3282 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3283 struct dwc2_hsotg_ep *ep, 3284 int result) 3285 { 3286 unsigned int size; 3287 3288 ep->req = NULL; 3289 3290 while (!list_empty(&ep->queue)) { 3291 struct dwc2_hsotg_req *req = get_ep_head(ep); 3292 3293 dwc2_hsotg_complete_request(hsotg, ep, req, result); 3294 } 3295 3296 if (!hsotg->dedicated_fifos) 3297 return; 3298 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3299 if (size < ep->fifo_size) 3300 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3301 } 3302 3303 /** 3304 * dwc2_hsotg_disconnect - disconnect service 3305 * @hsotg: The device state. 3306 * 3307 * The device has been disconnected. Remove all current 3308 * transactions and signal the gadget driver that this 3309 * has happened. 3310 */ 3311 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3312 { 3313 unsigned int ep; 3314 3315 if (!hsotg->connected) 3316 return; 3317 3318 hsotg->connected = 0; 3319 hsotg->test_mode = 0; 3320 3321 /* all endpoints should be shutdown */ 3322 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3323 if (hsotg->eps_in[ep]) 3324 kill_all_requests(hsotg, hsotg->eps_in[ep], 3325 -ESHUTDOWN); 3326 if (hsotg->eps_out[ep]) 3327 kill_all_requests(hsotg, hsotg->eps_out[ep], 3328 -ESHUTDOWN); 3329 } 3330 3331 call_gadget(hsotg, disconnect); 3332 hsotg->lx_state = DWC2_L3; 3333 3334 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3335 } 3336 3337 /** 3338 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3339 * @hsotg: The device state: 3340 * @periodic: True if this is a periodic FIFO interrupt 3341 */ 3342 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3343 { 3344 struct dwc2_hsotg_ep *ep; 3345 int epno, ret; 3346 3347 /* look through for any more data to transmit */ 3348 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3349 ep = index_to_ep(hsotg, epno, 1); 3350 3351 if (!ep) 3352 continue; 3353 3354 if (!ep->dir_in) 3355 continue; 3356 3357 if ((periodic && !ep->periodic) || 3358 (!periodic && ep->periodic)) 3359 continue; 3360 3361 ret = dwc2_hsotg_trytx(hsotg, ep); 3362 if (ret < 0) 3363 break; 3364 } 3365 } 3366 3367 /* IRQ flags which will trigger a retry around the IRQ loop */ 3368 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3369 GINTSTS_PTXFEMP | \ 3370 GINTSTS_RXFLVL) 3371 3372 static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3373 /** 3374 * dwc2_hsotg_core_init_disconnected - issue softreset to the core 3375 * @hsotg: The device state 3376 * @is_usb_reset: Usb resetting flag 3377 * 3378 * Issue a soft reset to the core, and await the core finishing it. 3379 */ 3380 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3381 bool is_usb_reset) 3382 { 3383 u32 intmsk; 3384 u32 val; 3385 u32 usbcfg; 3386 u32 dcfg = 0; 3387 int ep; 3388 3389 /* Kill any ep0 requests as controller will be reinitialized */ 3390 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3391 3392 if (!is_usb_reset) { 3393 if (dwc2_core_reset(hsotg, true)) 3394 return; 3395 } else { 3396 /* all endpoints should be shutdown */ 3397 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3398 if (hsotg->eps_in[ep]) 3399 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3400 if (hsotg->eps_out[ep]) 3401 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3402 } 3403 } 3404 3405 /* 3406 * we must now enable ep0 ready for host detection and then 3407 * set configuration. 3408 */ 3409 3410 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3411 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3412 usbcfg &= ~GUSBCFG_TOUTCAL_MASK; 3413 usbcfg |= GUSBCFG_TOUTCAL(7); 3414 3415 /* remove the HNP/SRP and set the PHY */ 3416 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); 3417 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3418 3419 dwc2_phy_init(hsotg, true); 3420 3421 dwc2_hsotg_init_fifo(hsotg); 3422 3423 if (!is_usb_reset) 3424 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3425 3426 dcfg |= DCFG_EPMISCNT(1); 3427 3428 switch (hsotg->params.speed) { 3429 case DWC2_SPEED_PARAM_LOW: 3430 dcfg |= DCFG_DEVSPD_LS; 3431 break; 3432 case DWC2_SPEED_PARAM_FULL: 3433 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3434 dcfg |= DCFG_DEVSPD_FS48; 3435 else 3436 dcfg |= DCFG_DEVSPD_FS; 3437 break; 3438 default: 3439 dcfg |= DCFG_DEVSPD_HS; 3440 } 3441 3442 if (hsotg->params.ipg_isoc_en) 3443 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3444 3445 dwc2_writel(hsotg, dcfg, DCFG); 3446 3447 /* Clear any pending OTG interrupts */ 3448 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3449 3450 /* Clear any pending interrupts */ 3451 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3452 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3453 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3454 GINTSTS_USBRST | GINTSTS_RESETDET | 3455 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3456 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3457 GINTSTS_LPMTRANRCVD; 3458 3459 if (!using_desc_dma(hsotg)) 3460 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3461 3462 if (!hsotg->params.external_id_pin_ctl) 3463 intmsk |= GINTSTS_CONIDSTSCHNG; 3464 3465 dwc2_writel(hsotg, intmsk, GINTMSK); 3466 3467 if (using_dma(hsotg)) { 3468 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3469 hsotg->params.ahbcfg, 3470 GAHBCFG); 3471 3472 /* Set DDMA mode support in the core if needed */ 3473 if (using_desc_dma(hsotg)) 3474 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3475 3476 } else { 3477 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3478 (GAHBCFG_NP_TXF_EMP_LVL | 3479 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3480 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3481 } 3482 3483 /* 3484 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3485 * when we have no data to transfer. Otherwise we get being flooded by 3486 * interrupts. 3487 */ 3488 3489 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3490 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3491 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3492 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3493 DIEPMSK); 3494 3495 /* 3496 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3497 * DMA mode we may need this and StsPhseRcvd. 3498 */ 3499 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3500 DOEPMSK_STSPHSERCVDMSK) : 0) | 3501 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3502 DOEPMSK_SETUPMSK, 3503 DOEPMSK); 3504 3505 /* Enable BNA interrupt for DDMA */ 3506 if (using_desc_dma(hsotg)) { 3507 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3508 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3509 } 3510 3511 /* Enable Service Interval mode if supported */ 3512 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3513 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3514 3515 dwc2_writel(hsotg, 0, DAINTMSK); 3516 3517 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3518 dwc2_readl(hsotg, DIEPCTL0), 3519 dwc2_readl(hsotg, DOEPCTL0)); 3520 3521 /* enable in and out endpoint interrupts */ 3522 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3523 3524 /* 3525 * Enable the RXFIFO when in slave mode, as this is how we collect 3526 * the data. In DMA mode, we get events from the FIFO but also 3527 * things we cannot process, so do not use it. 3528 */ 3529 if (!using_dma(hsotg)) 3530 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3531 3532 /* Enable interrupts for EP0 in and out */ 3533 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3534 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3535 3536 if (!is_usb_reset) { 3537 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3538 udelay(10); /* see openiboot */ 3539 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3540 } 3541 3542 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3543 3544 /* 3545 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3546 * writing to the EPCTL register.. 3547 */ 3548 3549 /* set to read 1 8byte packet */ 3550 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3551 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3552 3553 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3554 DXEPCTL_CNAK | DXEPCTL_EPENA | 3555 DXEPCTL_USBACTEP, 3556 DOEPCTL0); 3557 3558 /* enable, but don't activate EP0in */ 3559 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3560 DXEPCTL_USBACTEP, DIEPCTL0); 3561 3562 /* clear global NAKs */ 3563 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3564 if (!is_usb_reset) 3565 val |= DCTL_SFTDISCON; 3566 dwc2_set_bit(hsotg, DCTL, val); 3567 3568 /* configure the core to support LPM */ 3569 dwc2_gadget_init_lpm(hsotg); 3570 3571 /* program GREFCLK register if needed */ 3572 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3573 dwc2_gadget_program_ref_clk(hsotg); 3574 3575 /* must be at-least 3ms to allow bus to see disconnect */ 3576 mdelay(3); 3577 3578 hsotg->lx_state = DWC2_L0; 3579 3580 dwc2_hsotg_enqueue_setup(hsotg); 3581 3582 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3583 dwc2_readl(hsotg, DIEPCTL0), 3584 dwc2_readl(hsotg, DOEPCTL0)); 3585 } 3586 3587 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3588 { 3589 /* set the soft-disconnect bit */ 3590 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3591 } 3592 3593 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3594 { 3595 /* remove the soft-disconnect and let's go */ 3596 if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD)) 3597 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3598 } 3599 3600 /** 3601 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3602 * @hsotg: The device state: 3603 * 3604 * This interrupt indicates one of the following conditions occurred while 3605 * transmitting an ISOC transaction. 3606 * - Corrupted IN Token for ISOC EP. 3607 * - Packet not complete in FIFO. 3608 * 3609 * The following actions will be taken: 3610 * - Determine the EP 3611 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3612 */ 3613 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3614 { 3615 struct dwc2_hsotg_ep *hs_ep; 3616 u32 epctrl; 3617 u32 daintmsk; 3618 u32 idx; 3619 3620 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3621 3622 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3623 3624 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3625 hs_ep = hsotg->eps_in[idx]; 3626 /* Proceed only unmasked ISOC EPs */ 3627 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3628 continue; 3629 3630 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3631 if ((epctrl & DXEPCTL_EPENA) && 3632 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3633 epctrl |= DXEPCTL_SNAK; 3634 epctrl |= DXEPCTL_EPDIS; 3635 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3636 } 3637 } 3638 3639 /* Clear interrupt */ 3640 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3641 } 3642 3643 /** 3644 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3645 * @hsotg: The device state: 3646 * 3647 * This interrupt indicates one of the following conditions occurred while 3648 * transmitting an ISOC transaction. 3649 * - Corrupted OUT Token for ISOC EP. 3650 * - Packet not complete in FIFO. 3651 * 3652 * The following actions will be taken: 3653 * - Determine the EP 3654 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3655 */ 3656 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3657 { 3658 u32 gintsts; 3659 u32 gintmsk; 3660 u32 daintmsk; 3661 u32 epctrl; 3662 struct dwc2_hsotg_ep *hs_ep; 3663 int idx; 3664 3665 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3666 3667 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3668 daintmsk >>= DAINT_OUTEP_SHIFT; 3669 3670 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3671 hs_ep = hsotg->eps_out[idx]; 3672 /* Proceed only unmasked ISOC EPs */ 3673 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3674 continue; 3675 3676 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3677 if ((epctrl & DXEPCTL_EPENA) && 3678 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3679 /* Unmask GOUTNAKEFF interrupt */ 3680 gintmsk = dwc2_readl(hsotg, GINTMSK); 3681 gintmsk |= GINTSTS_GOUTNAKEFF; 3682 dwc2_writel(hsotg, gintmsk, GINTMSK); 3683 3684 gintsts = dwc2_readl(hsotg, GINTSTS); 3685 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3686 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3687 break; 3688 } 3689 } 3690 } 3691 3692 /* Clear interrupt */ 3693 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3694 } 3695 3696 /** 3697 * dwc2_hsotg_irq - handle device interrupt 3698 * @irq: The IRQ number triggered 3699 * @pw: The pw value when registered the handler. 3700 */ 3701 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3702 { 3703 struct dwc2_hsotg *hsotg = pw; 3704 int retry_count = 8; 3705 u32 gintsts; 3706 u32 gintmsk; 3707 3708 if (!dwc2_is_device_mode(hsotg)) 3709 return IRQ_NONE; 3710 3711 spin_lock(&hsotg->lock); 3712 irq_retry: 3713 gintsts = dwc2_readl(hsotg, GINTSTS); 3714 gintmsk = dwc2_readl(hsotg, GINTMSK); 3715 3716 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3717 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3718 3719 gintsts &= gintmsk; 3720 3721 if (gintsts & GINTSTS_RESETDET) { 3722 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3723 3724 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3725 3726 /* This event must be used only if controller is suspended */ 3727 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2) 3728 dwc2_exit_partial_power_down(hsotg, 0, true); 3729 3730 hsotg->lx_state = DWC2_L0; 3731 } 3732 3733 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3734 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3735 u32 connected = hsotg->connected; 3736 3737 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3738 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3739 dwc2_readl(hsotg, GNPTXSTS)); 3740 3741 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3742 3743 /* Report disconnection if it is not already done. */ 3744 dwc2_hsotg_disconnect(hsotg); 3745 3746 /* Reset device address to zero */ 3747 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3748 3749 if (usb_status & GOTGCTL_BSESVLD && connected) 3750 dwc2_hsotg_core_init_disconnected(hsotg, true); 3751 } 3752 3753 if (gintsts & GINTSTS_ENUMDONE) { 3754 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3755 3756 dwc2_hsotg_irq_enumdone(hsotg); 3757 } 3758 3759 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3760 u32 daint = dwc2_readl(hsotg, DAINT); 3761 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3762 u32 daint_out, daint_in; 3763 int ep; 3764 3765 daint &= daintmsk; 3766 daint_out = daint >> DAINT_OUTEP_SHIFT; 3767 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3768 3769 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3770 3771 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3772 ep++, daint_out >>= 1) { 3773 if (daint_out & 1) 3774 dwc2_hsotg_epint(hsotg, ep, 0); 3775 } 3776 3777 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3778 ep++, daint_in >>= 1) { 3779 if (daint_in & 1) 3780 dwc2_hsotg_epint(hsotg, ep, 1); 3781 } 3782 } 3783 3784 /* check both FIFOs */ 3785 3786 if (gintsts & GINTSTS_NPTXFEMP) { 3787 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3788 3789 /* 3790 * Disable the interrupt to stop it happening again 3791 * unless one of these endpoint routines decides that 3792 * it needs re-enabling 3793 */ 3794 3795 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3796 dwc2_hsotg_irq_fifoempty(hsotg, false); 3797 } 3798 3799 if (gintsts & GINTSTS_PTXFEMP) { 3800 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3801 3802 /* See note in GINTSTS_NPTxFEmp */ 3803 3804 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3805 dwc2_hsotg_irq_fifoempty(hsotg, true); 3806 } 3807 3808 if (gintsts & GINTSTS_RXFLVL) { 3809 /* 3810 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3811 * we need to retry dwc2_hsotg_handle_rx if this is still 3812 * set. 3813 */ 3814 3815 dwc2_hsotg_handle_rx(hsotg); 3816 } 3817 3818 if (gintsts & GINTSTS_ERLYSUSP) { 3819 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3820 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3821 } 3822 3823 /* 3824 * these next two seem to crop-up occasionally causing the core 3825 * to shutdown the USB transfer, so try clearing them and logging 3826 * the occurrence. 3827 */ 3828 3829 if (gintsts & GINTSTS_GOUTNAKEFF) { 3830 u8 idx; 3831 u32 epctrl; 3832 u32 gintmsk; 3833 u32 daintmsk; 3834 struct dwc2_hsotg_ep *hs_ep; 3835 3836 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3837 daintmsk >>= DAINT_OUTEP_SHIFT; 3838 /* Mask this interrupt */ 3839 gintmsk = dwc2_readl(hsotg, GINTMSK); 3840 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3841 dwc2_writel(hsotg, gintmsk, GINTMSK); 3842 3843 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3844 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3845 hs_ep = hsotg->eps_out[idx]; 3846 /* Proceed only unmasked ISOC EPs */ 3847 if (BIT(idx) & ~daintmsk) 3848 continue; 3849 3850 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3851 3852 //ISOC Ep's only 3853 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3854 epctrl |= DXEPCTL_SNAK; 3855 epctrl |= DXEPCTL_EPDIS; 3856 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3857 continue; 3858 } 3859 3860 //Non-ISOC EP's 3861 if (hs_ep->halted) { 3862 if (!(epctrl & DXEPCTL_EPENA)) 3863 epctrl |= DXEPCTL_EPENA; 3864 epctrl |= DXEPCTL_EPDIS; 3865 epctrl |= DXEPCTL_STALL; 3866 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3867 } 3868 } 3869 3870 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3871 } 3872 3873 if (gintsts & GINTSTS_GINNAKEFF) { 3874 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3875 3876 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3877 3878 dwc2_hsotg_dump(hsotg); 3879 } 3880 3881 if (gintsts & GINTSTS_INCOMPL_SOIN) 3882 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3883 3884 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3885 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3886 3887 /* 3888 * if we've had fifo events, we should try and go around the 3889 * loop again to see if there's any point in returning yet. 3890 */ 3891 3892 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3893 goto irq_retry; 3894 3895 /* Check WKUP_ALERT interrupt*/ 3896 if (hsotg->params.service_interval) 3897 dwc2_gadget_wkup_alert_handler(hsotg); 3898 3899 spin_unlock(&hsotg->lock); 3900 3901 return IRQ_HANDLED; 3902 } 3903 3904 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3905 struct dwc2_hsotg_ep *hs_ep) 3906 { 3907 u32 epctrl_reg; 3908 u32 epint_reg; 3909 3910 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3911 DOEPCTL(hs_ep->index); 3912 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3913 DOEPINT(hs_ep->index); 3914 3915 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3916 hs_ep->name); 3917 3918 if (hs_ep->dir_in) { 3919 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3920 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3921 /* Wait for Nak effect */ 3922 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3923 DXEPINT_INEPNAKEFF, 100)) 3924 dev_warn(hsotg->dev, 3925 "%s: timeout DIEPINT.NAKEFF\n", 3926 __func__); 3927 } else { 3928 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3929 /* Wait for Nak effect */ 3930 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3931 GINTSTS_GINNAKEFF, 100)) 3932 dev_warn(hsotg->dev, 3933 "%s: timeout GINTSTS.GINNAKEFF\n", 3934 __func__); 3935 } 3936 } else { 3937 /* Mask GINTSTS_GOUTNAKEFF interrupt */ 3938 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF); 3939 3940 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3941 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3942 3943 if (!using_dma(hsotg)) { 3944 /* Wait for GINTSTS_RXFLVL interrupt */ 3945 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3946 GINTSTS_RXFLVL, 100)) { 3947 dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n", 3948 __func__); 3949 } else { 3950 /* 3951 * Pop GLOBAL OUT NAK status packet from RxFIFO 3952 * to assert GOUTNAKEFF interrupt 3953 */ 3954 dwc2_readl(hsotg, GRXSTSP); 3955 } 3956 } 3957 3958 /* Wait for global nak to take effect */ 3959 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3960 GINTSTS_GOUTNAKEFF, 100)) 3961 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3962 __func__); 3963 } 3964 3965 /* Disable ep */ 3966 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3967 3968 /* Wait for ep to be disabled */ 3969 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3970 dev_warn(hsotg->dev, 3971 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3972 3973 /* Clear EPDISBLD interrupt */ 3974 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3975 3976 if (hs_ep->dir_in) { 3977 unsigned short fifo_index; 3978 3979 if (hsotg->dedicated_fifos || hs_ep->periodic) 3980 fifo_index = hs_ep->fifo_index; 3981 else 3982 fifo_index = 0; 3983 3984 /* Flush TX FIFO */ 3985 dwc2_flush_tx_fifo(hsotg, fifo_index); 3986 3987 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3988 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3989 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3990 3991 } else { 3992 /* Remove global NAKs */ 3993 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 3994 } 3995 } 3996 3997 /** 3998 * dwc2_hsotg_ep_enable - enable the given endpoint 3999 * @ep: The USB endpint to configure 4000 * @desc: The USB endpoint descriptor to configure with. 4001 * 4002 * This is called from the USB gadget code's usb_ep_enable(). 4003 */ 4004 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 4005 const struct usb_endpoint_descriptor *desc) 4006 { 4007 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4008 struct dwc2_hsotg *hsotg = hs_ep->parent; 4009 unsigned long flags; 4010 unsigned int index = hs_ep->index; 4011 u32 epctrl_reg; 4012 u32 epctrl; 4013 u32 mps; 4014 u32 mc; 4015 u32 mask; 4016 unsigned int dir_in; 4017 unsigned int i, val, size; 4018 int ret = 0; 4019 unsigned char ep_type; 4020 int desc_num; 4021 4022 dev_dbg(hsotg->dev, 4023 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 4024 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 4025 desc->wMaxPacketSize, desc->bInterval); 4026 4027 /* not to be called for EP0 */ 4028 if (index == 0) { 4029 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 4030 return -EINVAL; 4031 } 4032 4033 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 4034 if (dir_in != hs_ep->dir_in) { 4035 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 4036 return -EINVAL; 4037 } 4038 4039 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 4040 mps = usb_endpoint_maxp(desc); 4041 mc = usb_endpoint_maxp_mult(desc); 4042 4043 /* ISOC IN in DDMA supported bInterval up to 10 */ 4044 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4045 dir_in && desc->bInterval > 10) { 4046 dev_err(hsotg->dev, 4047 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 4048 return -EINVAL; 4049 } 4050 4051 /* High bandwidth ISOC OUT in DDMA not supported */ 4052 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4053 !dir_in && mc > 1) { 4054 dev_err(hsotg->dev, 4055 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 4056 return -EINVAL; 4057 } 4058 4059 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 4060 4061 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4062 epctrl = dwc2_readl(hsotg, epctrl_reg); 4063 4064 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 4065 __func__, epctrl, epctrl_reg); 4066 4067 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) 4068 desc_num = MAX_DMA_DESC_NUM_HS_ISOC; 4069 else 4070 desc_num = MAX_DMA_DESC_NUM_GENERIC; 4071 4072 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 4073 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 4074 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 4075 desc_num * sizeof(struct dwc2_dma_desc), 4076 &hs_ep->desc_list_dma, GFP_ATOMIC); 4077 if (!hs_ep->desc_list) { 4078 ret = -ENOMEM; 4079 goto error2; 4080 } 4081 } 4082 4083 spin_lock_irqsave(&hsotg->lock, flags); 4084 4085 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 4086 epctrl |= DXEPCTL_MPS(mps); 4087 4088 /* 4089 * mark the endpoint as active, otherwise the core may ignore 4090 * transactions entirely for this endpoint 4091 */ 4092 epctrl |= DXEPCTL_USBACTEP; 4093 4094 /* update the endpoint state */ 4095 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 4096 4097 /* default, set to non-periodic */ 4098 hs_ep->isochronous = 0; 4099 hs_ep->periodic = 0; 4100 hs_ep->halted = 0; 4101 hs_ep->wedged = 0; 4102 hs_ep->interval = desc->bInterval; 4103 4104 switch (ep_type) { 4105 case USB_ENDPOINT_XFER_ISOC: 4106 epctrl |= DXEPCTL_EPTYPE_ISO; 4107 epctrl |= DXEPCTL_SETEVENFR; 4108 hs_ep->isochronous = 1; 4109 hs_ep->interval = 1 << (desc->bInterval - 1); 4110 hs_ep->target_frame = TARGET_FRAME_INITIAL; 4111 hs_ep->next_desc = 0; 4112 hs_ep->compl_desc = 0; 4113 if (dir_in) { 4114 hs_ep->periodic = 1; 4115 mask = dwc2_readl(hsotg, DIEPMSK); 4116 mask |= DIEPMSK_NAKMSK; 4117 dwc2_writel(hsotg, mask, DIEPMSK); 4118 } else { 4119 epctrl |= DXEPCTL_SNAK; 4120 mask = dwc2_readl(hsotg, DOEPMSK); 4121 mask |= DOEPMSK_OUTTKNEPDISMSK; 4122 dwc2_writel(hsotg, mask, DOEPMSK); 4123 } 4124 break; 4125 4126 case USB_ENDPOINT_XFER_BULK: 4127 epctrl |= DXEPCTL_EPTYPE_BULK; 4128 break; 4129 4130 case USB_ENDPOINT_XFER_INT: 4131 if (dir_in) 4132 hs_ep->periodic = 1; 4133 4134 if (hsotg->gadget.speed == USB_SPEED_HIGH) 4135 hs_ep->interval = 1 << (desc->bInterval - 1); 4136 4137 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 4138 break; 4139 4140 case USB_ENDPOINT_XFER_CONTROL: 4141 epctrl |= DXEPCTL_EPTYPE_CONTROL; 4142 break; 4143 } 4144 4145 /* 4146 * if the hardware has dedicated fifos, we must give each IN EP 4147 * a unique tx-fifo even if it is non-periodic. 4148 */ 4149 if (dir_in && hsotg->dedicated_fifos) { 4150 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 4151 u32 fifo_index = 0; 4152 u32 fifo_size = UINT_MAX; 4153 4154 size = hs_ep->ep.maxpacket * hs_ep->mc; 4155 for (i = 1; i <= fifo_count; ++i) { 4156 if (hsotg->fifo_map & (1 << i)) 4157 continue; 4158 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 4159 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 4160 if (val < size) 4161 continue; 4162 /* Search for smallest acceptable fifo */ 4163 if (val < fifo_size) { 4164 fifo_size = val; 4165 fifo_index = i; 4166 } 4167 } 4168 if (!fifo_index) { 4169 dev_err(hsotg->dev, 4170 "%s: No suitable fifo found\n", __func__); 4171 ret = -ENOMEM; 4172 goto error1; 4173 } 4174 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); 4175 hsotg->fifo_map |= 1 << fifo_index; 4176 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4177 hs_ep->fifo_index = fifo_index; 4178 hs_ep->fifo_size = fifo_size; 4179 } 4180 4181 /* for non control endpoints, set PID to D0 */ 4182 if (index && !hs_ep->isochronous) 4183 epctrl |= DXEPCTL_SETD0PID; 4184 4185 /* WA for Full speed ISOC IN in DDMA mode. 4186 * By Clear NAK status of EP, core will send ZLP 4187 * to IN token and assert NAK interrupt relying 4188 * on TxFIFO status only 4189 */ 4190 4191 if (hsotg->gadget.speed == USB_SPEED_FULL && 4192 hs_ep->isochronous && dir_in) { 4193 /* The WA applies only to core versions from 2.72a 4194 * to 4.00a (including both). Also for FS_IOT_1.00a 4195 * and HS_IOT_1.00a. 4196 */ 4197 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4198 4199 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4200 gsnpsid <= DWC2_CORE_REV_4_00a) || 4201 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4202 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4203 epctrl |= DXEPCTL_CNAK; 4204 } 4205 4206 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4207 __func__, epctrl); 4208 4209 dwc2_writel(hsotg, epctrl, epctrl_reg); 4210 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4211 __func__, dwc2_readl(hsotg, epctrl_reg)); 4212 4213 /* enable the endpoint interrupt */ 4214 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4215 4216 error1: 4217 spin_unlock_irqrestore(&hsotg->lock, flags); 4218 4219 error2: 4220 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4221 dmam_free_coherent(hsotg->dev, desc_num * 4222 sizeof(struct dwc2_dma_desc), 4223 hs_ep->desc_list, hs_ep->desc_list_dma); 4224 hs_ep->desc_list = NULL; 4225 } 4226 4227 return ret; 4228 } 4229 4230 /** 4231 * dwc2_hsotg_ep_disable - disable given endpoint 4232 * @ep: The endpoint to disable. 4233 */ 4234 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4235 { 4236 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4237 struct dwc2_hsotg *hsotg = hs_ep->parent; 4238 int dir_in = hs_ep->dir_in; 4239 int index = hs_ep->index; 4240 u32 epctrl_reg; 4241 u32 ctrl; 4242 4243 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4244 4245 if (ep == &hsotg->eps_out[0]->ep) { 4246 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4247 return -EINVAL; 4248 } 4249 4250 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4251 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4252 return -EINVAL; 4253 } 4254 4255 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4256 4257 ctrl = dwc2_readl(hsotg, epctrl_reg); 4258 4259 if (ctrl & DXEPCTL_EPENA) 4260 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4261 4262 ctrl &= ~DXEPCTL_EPENA; 4263 ctrl &= ~DXEPCTL_USBACTEP; 4264 ctrl |= DXEPCTL_SNAK; 4265 4266 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4267 dwc2_writel(hsotg, ctrl, epctrl_reg); 4268 4269 /* disable endpoint interrupts */ 4270 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4271 4272 /* terminate all requests with shutdown */ 4273 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4274 4275 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4276 hs_ep->fifo_index = 0; 4277 hs_ep->fifo_size = 0; 4278 4279 return 0; 4280 } 4281 4282 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4283 { 4284 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4285 struct dwc2_hsotg *hsotg = hs_ep->parent; 4286 unsigned long flags; 4287 int ret; 4288 4289 spin_lock_irqsave(&hsotg->lock, flags); 4290 ret = dwc2_hsotg_ep_disable(ep); 4291 spin_unlock_irqrestore(&hsotg->lock, flags); 4292 return ret; 4293 } 4294 4295 /** 4296 * on_list - check request is on the given endpoint 4297 * @ep: The endpoint to check. 4298 * @test: The request to test if it is on the endpoint. 4299 */ 4300 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4301 { 4302 struct dwc2_hsotg_req *req, *treq; 4303 4304 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4305 if (req == test) 4306 return true; 4307 } 4308 4309 return false; 4310 } 4311 4312 /** 4313 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4314 * @ep: The endpoint to dequeue. 4315 * @req: The request to be removed from a queue. 4316 */ 4317 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4318 { 4319 struct dwc2_hsotg_req *hs_req = our_req(req); 4320 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4321 struct dwc2_hsotg *hs = hs_ep->parent; 4322 unsigned long flags; 4323 4324 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4325 4326 spin_lock_irqsave(&hs->lock, flags); 4327 4328 if (!on_list(hs_ep, hs_req)) { 4329 spin_unlock_irqrestore(&hs->lock, flags); 4330 return -EINVAL; 4331 } 4332 4333 /* Dequeue already started request */ 4334 if (req == &hs_ep->req->req) 4335 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4336 4337 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4338 spin_unlock_irqrestore(&hs->lock, flags); 4339 4340 return 0; 4341 } 4342 4343 /** 4344 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint 4345 * @ep: The endpoint to be wedged. 4346 * 4347 */ 4348 static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep) 4349 { 4350 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4351 struct dwc2_hsotg *hs = hs_ep->parent; 4352 4353 unsigned long flags; 4354 int ret; 4355 4356 spin_lock_irqsave(&hs->lock, flags); 4357 hs_ep->wedged = 1; 4358 ret = dwc2_hsotg_ep_sethalt(ep, 1, false); 4359 spin_unlock_irqrestore(&hs->lock, flags); 4360 4361 return ret; 4362 } 4363 4364 /** 4365 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4366 * @ep: The endpoint to set halt. 4367 * @value: Set or unset the halt. 4368 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4369 * the endpoint is busy processing requests. 4370 * 4371 * We need to stall the endpoint immediately if request comes from set_feature 4372 * protocol command handler. 4373 */ 4374 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4375 { 4376 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4377 struct dwc2_hsotg *hs = hs_ep->parent; 4378 int index = hs_ep->index; 4379 u32 epreg; 4380 u32 epctl; 4381 u32 xfertype; 4382 4383 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4384 4385 if (index == 0) { 4386 if (value) 4387 dwc2_hsotg_stall_ep0(hs); 4388 else 4389 dev_warn(hs->dev, 4390 "%s: can't clear halt on ep0\n", __func__); 4391 return 0; 4392 } 4393 4394 if (hs_ep->isochronous) { 4395 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4396 return -EINVAL; 4397 } 4398 4399 if (!now && value && !list_empty(&hs_ep->queue)) { 4400 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4401 ep->name); 4402 return -EAGAIN; 4403 } 4404 4405 if (hs_ep->dir_in) { 4406 epreg = DIEPCTL(index); 4407 epctl = dwc2_readl(hs, epreg); 4408 4409 if (value) { 4410 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4411 if (epctl & DXEPCTL_EPENA) 4412 epctl |= DXEPCTL_EPDIS; 4413 } else { 4414 epctl &= ~DXEPCTL_STALL; 4415 hs_ep->wedged = 0; 4416 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4417 if (xfertype == DXEPCTL_EPTYPE_BULK || 4418 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4419 epctl |= DXEPCTL_SETD0PID; 4420 } 4421 dwc2_writel(hs, epctl, epreg); 4422 } else { 4423 epreg = DOEPCTL(index); 4424 epctl = dwc2_readl(hs, epreg); 4425 4426 if (value) { 4427 /* Unmask GOUTNAKEFF interrupt */ 4428 dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF); 4429 4430 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF)) 4431 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK); 4432 // STALL bit will be set in GOUTNAKEFF interrupt handler 4433 } else { 4434 epctl &= ~DXEPCTL_STALL; 4435 hs_ep->wedged = 0; 4436 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4437 if (xfertype == DXEPCTL_EPTYPE_BULK || 4438 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4439 epctl |= DXEPCTL_SETD0PID; 4440 dwc2_writel(hs, epctl, epreg); 4441 } 4442 } 4443 4444 hs_ep->halted = value; 4445 return 0; 4446 } 4447 4448 /** 4449 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4450 * @ep: The endpoint to set halt. 4451 * @value: Set or unset the halt. 4452 */ 4453 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4454 { 4455 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4456 struct dwc2_hsotg *hs = hs_ep->parent; 4457 unsigned long flags; 4458 int ret; 4459 4460 spin_lock_irqsave(&hs->lock, flags); 4461 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4462 spin_unlock_irqrestore(&hs->lock, flags); 4463 4464 return ret; 4465 } 4466 4467 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4468 .enable = dwc2_hsotg_ep_enable, 4469 .disable = dwc2_hsotg_ep_disable_lock, 4470 .alloc_request = dwc2_hsotg_ep_alloc_request, 4471 .free_request = dwc2_hsotg_ep_free_request, 4472 .queue = dwc2_hsotg_ep_queue_lock, 4473 .dequeue = dwc2_hsotg_ep_dequeue, 4474 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4475 .set_wedge = dwc2_gadget_ep_set_wedge, 4476 /* note, don't believe we have any call for the fifo routines */ 4477 }; 4478 4479 /** 4480 * dwc2_hsotg_init - initialize the usb core 4481 * @hsotg: The driver state 4482 */ 4483 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4484 { 4485 /* unmask subset of endpoint interrupts */ 4486 4487 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4488 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4489 DIEPMSK); 4490 4491 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4492 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4493 DOEPMSK); 4494 4495 dwc2_writel(hsotg, 0, DAINTMSK); 4496 4497 /* Be in disconnected state until gadget is registered */ 4498 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4499 4500 /* setup fifos */ 4501 4502 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4503 dwc2_readl(hsotg, GRXFSIZ), 4504 dwc2_readl(hsotg, GNPTXFSIZ)); 4505 4506 dwc2_hsotg_init_fifo(hsotg); 4507 4508 if (using_dma(hsotg)) 4509 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4510 } 4511 4512 /** 4513 * dwc2_hsotg_udc_start - prepare the udc for work 4514 * @gadget: The usb gadget state 4515 * @driver: The usb gadget driver 4516 * 4517 * Perform initialization to prepare udc device and driver 4518 * to work. 4519 */ 4520 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4521 struct usb_gadget_driver *driver) 4522 { 4523 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4524 unsigned long flags; 4525 int ret; 4526 4527 if (!hsotg) { 4528 pr_err("%s: called with no device\n", __func__); 4529 return -ENODEV; 4530 } 4531 4532 if (!driver) { 4533 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4534 return -EINVAL; 4535 } 4536 4537 if (driver->max_speed < USB_SPEED_FULL) 4538 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4539 4540 if (!driver->setup) { 4541 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4542 return -EINVAL; 4543 } 4544 4545 WARN_ON(hsotg->driver); 4546 4547 hsotg->driver = driver; 4548 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4549 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4550 4551 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4552 ret = dwc2_lowlevel_hw_enable(hsotg); 4553 if (ret) 4554 goto err; 4555 } 4556 4557 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4558 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4559 4560 spin_lock_irqsave(&hsotg->lock, flags); 4561 if (dwc2_hw_is_device(hsotg)) { 4562 dwc2_hsotg_init(hsotg); 4563 dwc2_hsotg_core_init_disconnected(hsotg, false); 4564 } 4565 4566 hsotg->enabled = 0; 4567 spin_unlock_irqrestore(&hsotg->lock, flags); 4568 4569 gadget->sg_supported = using_desc_dma(hsotg); 4570 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4571 4572 return 0; 4573 4574 err: 4575 hsotg->driver = NULL; 4576 return ret; 4577 } 4578 4579 /** 4580 * dwc2_hsotg_udc_stop - stop the udc 4581 * @gadget: The usb gadget state 4582 * 4583 * Stop udc hw block and stay tunned for future transmissions 4584 */ 4585 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4586 { 4587 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4588 unsigned long flags; 4589 int ep; 4590 4591 if (!hsotg) 4592 return -ENODEV; 4593 4594 /* all endpoints should be shutdown */ 4595 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4596 if (hsotg->eps_in[ep]) 4597 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4598 if (hsotg->eps_out[ep]) 4599 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4600 } 4601 4602 spin_lock_irqsave(&hsotg->lock, flags); 4603 4604 hsotg->driver = NULL; 4605 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4606 hsotg->enabled = 0; 4607 4608 spin_unlock_irqrestore(&hsotg->lock, flags); 4609 4610 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4611 otg_set_peripheral(hsotg->uphy->otg, NULL); 4612 4613 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4614 dwc2_lowlevel_hw_disable(hsotg); 4615 4616 return 0; 4617 } 4618 4619 /** 4620 * dwc2_hsotg_gadget_getframe - read the frame number 4621 * @gadget: The usb gadget state 4622 * 4623 * Read the {micro} frame number 4624 */ 4625 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4626 { 4627 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4628 } 4629 4630 /** 4631 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered 4632 * @gadget: The usb gadget state 4633 * @is_selfpowered: Whether the device is self-powered 4634 * 4635 * Set if the device is self or bus powered. 4636 */ 4637 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget, 4638 int is_selfpowered) 4639 { 4640 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4641 unsigned long flags; 4642 4643 spin_lock_irqsave(&hsotg->lock, flags); 4644 gadget->is_selfpowered = !!is_selfpowered; 4645 spin_unlock_irqrestore(&hsotg->lock, flags); 4646 4647 return 0; 4648 } 4649 4650 /** 4651 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4652 * @gadget: The usb gadget state 4653 * @is_on: Current state of the USB PHY 4654 * 4655 * Connect/Disconnect the USB PHY pullup 4656 */ 4657 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4658 { 4659 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4660 unsigned long flags; 4661 4662 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4663 hsotg->op_state); 4664 4665 /* Don't modify pullup state while in host mode */ 4666 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4667 hsotg->enabled = is_on; 4668 return 0; 4669 } 4670 4671 spin_lock_irqsave(&hsotg->lock, flags); 4672 if (is_on) { 4673 hsotg->enabled = 1; 4674 dwc2_hsotg_core_init_disconnected(hsotg, false); 4675 /* Enable ACG feature in device mode,if supported */ 4676 dwc2_enable_acg(hsotg); 4677 dwc2_hsotg_core_connect(hsotg); 4678 } else { 4679 dwc2_hsotg_core_disconnect(hsotg); 4680 dwc2_hsotg_disconnect(hsotg); 4681 hsotg->enabled = 0; 4682 } 4683 4684 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4685 spin_unlock_irqrestore(&hsotg->lock, flags); 4686 4687 return 0; 4688 } 4689 4690 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4691 { 4692 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4693 unsigned long flags; 4694 4695 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4696 spin_lock_irqsave(&hsotg->lock, flags); 4697 4698 /* 4699 * If controller is in partial power down state, it must exit from 4700 * that state before being initialized / de-initialized 4701 */ 4702 if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd) 4703 /* 4704 * No need to check the return value as 4705 * registers are not being restored. 4706 */ 4707 dwc2_exit_partial_power_down(hsotg, 0, false); 4708 4709 if (is_active) { 4710 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4711 4712 dwc2_hsotg_core_init_disconnected(hsotg, false); 4713 if (hsotg->enabled) { 4714 /* Enable ACG feature in device mode,if supported */ 4715 dwc2_enable_acg(hsotg); 4716 dwc2_hsotg_core_connect(hsotg); 4717 } 4718 } else { 4719 dwc2_hsotg_core_disconnect(hsotg); 4720 dwc2_hsotg_disconnect(hsotg); 4721 } 4722 4723 spin_unlock_irqrestore(&hsotg->lock, flags); 4724 return 0; 4725 } 4726 4727 /** 4728 * dwc2_hsotg_vbus_draw - report bMaxPower field 4729 * @gadget: The usb gadget state 4730 * @mA: Amount of current 4731 * 4732 * Report how much power the device may consume to the phy. 4733 */ 4734 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4735 { 4736 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4737 4738 if (IS_ERR_OR_NULL(hsotg->uphy)) 4739 return -ENOTSUPP; 4740 return usb_phy_set_power(hsotg->uphy, mA); 4741 } 4742 4743 static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed) 4744 { 4745 struct dwc2_hsotg *hsotg = to_hsotg(g); 4746 unsigned long flags; 4747 4748 spin_lock_irqsave(&hsotg->lock, flags); 4749 switch (speed) { 4750 case USB_SPEED_HIGH: 4751 hsotg->params.speed = DWC2_SPEED_PARAM_HIGH; 4752 break; 4753 case USB_SPEED_FULL: 4754 hsotg->params.speed = DWC2_SPEED_PARAM_FULL; 4755 break; 4756 case USB_SPEED_LOW: 4757 hsotg->params.speed = DWC2_SPEED_PARAM_LOW; 4758 break; 4759 default: 4760 dev_err(hsotg->dev, "invalid speed (%d)\n", speed); 4761 } 4762 spin_unlock_irqrestore(&hsotg->lock, flags); 4763 } 4764 4765 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4766 .get_frame = dwc2_hsotg_gadget_getframe, 4767 .set_selfpowered = dwc2_hsotg_set_selfpowered, 4768 .udc_start = dwc2_hsotg_udc_start, 4769 .udc_stop = dwc2_hsotg_udc_stop, 4770 .pullup = dwc2_hsotg_pullup, 4771 .udc_set_speed = dwc2_gadget_set_speed, 4772 .vbus_session = dwc2_hsotg_vbus_session, 4773 .vbus_draw = dwc2_hsotg_vbus_draw, 4774 }; 4775 4776 /** 4777 * dwc2_hsotg_initep - initialise a single endpoint 4778 * @hsotg: The device state. 4779 * @hs_ep: The endpoint to be initialised. 4780 * @epnum: The endpoint number 4781 * @dir_in: True if direction is in. 4782 * 4783 * Initialise the given endpoint (as part of the probe and device state 4784 * creation) to give to the gadget driver. Setup the endpoint name, any 4785 * direction information and other state that may be required. 4786 */ 4787 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4788 struct dwc2_hsotg_ep *hs_ep, 4789 int epnum, 4790 bool dir_in) 4791 { 4792 char *dir; 4793 4794 if (epnum == 0) 4795 dir = ""; 4796 else if (dir_in) 4797 dir = "in"; 4798 else 4799 dir = "out"; 4800 4801 hs_ep->dir_in = dir_in; 4802 hs_ep->index = epnum; 4803 4804 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4805 4806 INIT_LIST_HEAD(&hs_ep->queue); 4807 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4808 4809 /* add to the list of endpoints known by the gadget driver */ 4810 if (epnum) 4811 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4812 4813 hs_ep->parent = hsotg; 4814 hs_ep->ep.name = hs_ep->name; 4815 4816 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4817 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4818 else 4819 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4820 epnum ? 1024 : EP0_MPS_LIMIT); 4821 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4822 4823 if (epnum == 0) { 4824 hs_ep->ep.caps.type_control = true; 4825 } else { 4826 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4827 hs_ep->ep.caps.type_iso = true; 4828 hs_ep->ep.caps.type_bulk = true; 4829 } 4830 hs_ep->ep.caps.type_int = true; 4831 } 4832 4833 if (dir_in) 4834 hs_ep->ep.caps.dir_in = true; 4835 else 4836 hs_ep->ep.caps.dir_out = true; 4837 4838 /* 4839 * if we're using dma, we need to set the next-endpoint pointer 4840 * to be something valid. 4841 */ 4842 4843 if (using_dma(hsotg)) { 4844 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4845 4846 if (dir_in) 4847 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4848 else 4849 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4850 } 4851 } 4852 4853 /** 4854 * dwc2_hsotg_hw_cfg - read HW configuration registers 4855 * @hsotg: Programming view of the DWC_otg controller 4856 * 4857 * Read the USB core HW configuration registers 4858 */ 4859 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4860 { 4861 u32 cfg; 4862 u32 ep_type; 4863 u32 i; 4864 4865 /* check hardware configuration */ 4866 4867 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4868 4869 /* Add ep0 */ 4870 hsotg->num_of_eps++; 4871 4872 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4873 sizeof(struct dwc2_hsotg_ep), 4874 GFP_KERNEL); 4875 if (!hsotg->eps_in[0]) 4876 return -ENOMEM; 4877 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4878 hsotg->eps_out[0] = hsotg->eps_in[0]; 4879 4880 cfg = hsotg->hw_params.dev_ep_dirs; 4881 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4882 ep_type = cfg & 3; 4883 /* Direction in or both */ 4884 if (!(ep_type & 2)) { 4885 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4886 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4887 if (!hsotg->eps_in[i]) 4888 return -ENOMEM; 4889 } 4890 /* Direction out or both */ 4891 if (!(ep_type & 1)) { 4892 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4893 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4894 if (!hsotg->eps_out[i]) 4895 return -ENOMEM; 4896 } 4897 } 4898 4899 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4900 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4901 4902 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4903 hsotg->num_of_eps, 4904 hsotg->dedicated_fifos ? "dedicated" : "shared", 4905 hsotg->fifo_mem); 4906 return 0; 4907 } 4908 4909 /** 4910 * dwc2_hsotg_dump - dump state of the udc 4911 * @hsotg: Programming view of the DWC_otg controller 4912 * 4913 */ 4914 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4915 { 4916 #ifdef DEBUG 4917 struct device *dev = hsotg->dev; 4918 u32 val; 4919 int idx; 4920 4921 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4922 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4923 dwc2_readl(hsotg, DIEPMSK)); 4924 4925 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4926 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4927 4928 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4929 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4930 4931 /* show periodic fifo settings */ 4932 4933 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4934 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4935 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4936 val >> FIFOSIZE_DEPTH_SHIFT, 4937 val & FIFOSIZE_STARTADDR_MASK); 4938 } 4939 4940 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4941 dev_info(dev, 4942 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4943 dwc2_readl(hsotg, DIEPCTL(idx)), 4944 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4945 dwc2_readl(hsotg, DIEPDMA(idx))); 4946 4947 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4948 dev_info(dev, 4949 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4950 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4951 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4952 dwc2_readl(hsotg, DOEPDMA(idx))); 4953 } 4954 4955 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4956 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4957 #endif 4958 } 4959 4960 /** 4961 * dwc2_gadget_init - init function for gadget 4962 * @hsotg: Programming view of the DWC_otg controller 4963 * 4964 */ 4965 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4966 { 4967 struct device *dev = hsotg->dev; 4968 int epnum; 4969 int ret; 4970 4971 /* Dump fifo information */ 4972 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4973 hsotg->params.g_np_tx_fifo_size); 4974 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4975 4976 switch (hsotg->params.speed) { 4977 case DWC2_SPEED_PARAM_LOW: 4978 hsotg->gadget.max_speed = USB_SPEED_LOW; 4979 break; 4980 case DWC2_SPEED_PARAM_FULL: 4981 hsotg->gadget.max_speed = USB_SPEED_FULL; 4982 break; 4983 default: 4984 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4985 break; 4986 } 4987 4988 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4989 hsotg->gadget.name = dev_name(dev); 4990 hsotg->gadget.otg_caps = &hsotg->params.otg_caps; 4991 hsotg->remote_wakeup_allowed = 0; 4992 4993 if (hsotg->params.lpm) 4994 hsotg->gadget.lpm_capable = true; 4995 4996 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4997 hsotg->gadget.is_otg = 1; 4998 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4999 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 5000 5001 ret = dwc2_hsotg_hw_cfg(hsotg); 5002 if (ret) { 5003 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 5004 return ret; 5005 } 5006 5007 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 5008 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 5009 if (!hsotg->ctrl_buff) 5010 return -ENOMEM; 5011 5012 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 5013 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 5014 if (!hsotg->ep0_buff) 5015 return -ENOMEM; 5016 5017 if (using_desc_dma(hsotg)) { 5018 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 5019 if (ret < 0) 5020 return ret; 5021 } 5022 5023 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 5024 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 5025 if (ret < 0) { 5026 dev_err(dev, "cannot claim IRQ for gadget\n"); 5027 return ret; 5028 } 5029 5030 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 5031 5032 if (hsotg->num_of_eps == 0) { 5033 dev_err(dev, "wrong number of EPs (zero)\n"); 5034 return -EINVAL; 5035 } 5036 5037 /* setup endpoint information */ 5038 5039 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 5040 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 5041 5042 /* allocate EP0 request */ 5043 5044 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 5045 GFP_KERNEL); 5046 if (!hsotg->ctrl_req) { 5047 dev_err(dev, "failed to allocate ctrl req\n"); 5048 return -ENOMEM; 5049 } 5050 5051 /* initialise the endpoints now the core has been initialised */ 5052 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 5053 if (hsotg->eps_in[epnum]) 5054 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 5055 epnum, 1); 5056 if (hsotg->eps_out[epnum]) 5057 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 5058 epnum, 0); 5059 } 5060 5061 dwc2_hsotg_dump(hsotg); 5062 5063 return 0; 5064 } 5065 5066 /** 5067 * dwc2_hsotg_remove - remove function for hsotg driver 5068 * @hsotg: Programming view of the DWC_otg controller 5069 * 5070 */ 5071 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 5072 { 5073 usb_del_gadget_udc(&hsotg->gadget); 5074 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 5075 5076 return 0; 5077 } 5078 5079 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 5080 { 5081 unsigned long flags; 5082 5083 if (hsotg->lx_state != DWC2_L0) 5084 return 0; 5085 5086 if (hsotg->driver) { 5087 int ep; 5088 5089 dev_info(hsotg->dev, "suspending usb gadget %s\n", 5090 hsotg->driver->driver.name); 5091 5092 spin_lock_irqsave(&hsotg->lock, flags); 5093 if (hsotg->enabled) 5094 dwc2_hsotg_core_disconnect(hsotg); 5095 dwc2_hsotg_disconnect(hsotg); 5096 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 5097 spin_unlock_irqrestore(&hsotg->lock, flags); 5098 5099 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 5100 if (hsotg->eps_in[ep]) 5101 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 5102 if (hsotg->eps_out[ep]) 5103 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 5104 } 5105 } 5106 5107 return 0; 5108 } 5109 5110 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 5111 { 5112 unsigned long flags; 5113 5114 if (hsotg->lx_state == DWC2_L2) 5115 return 0; 5116 5117 if (hsotg->driver) { 5118 dev_info(hsotg->dev, "resuming usb gadget %s\n", 5119 hsotg->driver->driver.name); 5120 5121 spin_lock_irqsave(&hsotg->lock, flags); 5122 dwc2_hsotg_core_init_disconnected(hsotg, false); 5123 if (hsotg->enabled) { 5124 /* Enable ACG feature in device mode,if supported */ 5125 dwc2_enable_acg(hsotg); 5126 dwc2_hsotg_core_connect(hsotg); 5127 } 5128 spin_unlock_irqrestore(&hsotg->lock, flags); 5129 } 5130 5131 return 0; 5132 } 5133 5134 /** 5135 * dwc2_backup_device_registers() - Backup controller device registers. 5136 * When suspending usb bus, registers needs to be backuped 5137 * if controller power is disabled once suspended. 5138 * 5139 * @hsotg: Programming view of the DWC_otg controller 5140 */ 5141 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 5142 { 5143 struct dwc2_dregs_backup *dr; 5144 int i; 5145 5146 dev_dbg(hsotg->dev, "%s\n", __func__); 5147 5148 /* Backup dev regs */ 5149 dr = &hsotg->dr_backup; 5150 5151 dr->dcfg = dwc2_readl(hsotg, DCFG); 5152 dr->dctl = dwc2_readl(hsotg, DCTL); 5153 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 5154 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 5155 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 5156 5157 for (i = 0; i < hsotg->num_of_eps; i++) { 5158 /* Backup IN EPs */ 5159 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 5160 5161 /* Ensure DATA PID is correctly configured */ 5162 if (dr->diepctl[i] & DXEPCTL_DPID) 5163 dr->diepctl[i] |= DXEPCTL_SETD1PID; 5164 else 5165 dr->diepctl[i] |= DXEPCTL_SETD0PID; 5166 5167 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 5168 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 5169 5170 /* Backup OUT EPs */ 5171 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 5172 5173 /* Ensure DATA PID is correctly configured */ 5174 if (dr->doepctl[i] & DXEPCTL_DPID) 5175 dr->doepctl[i] |= DXEPCTL_SETD1PID; 5176 else 5177 dr->doepctl[i] |= DXEPCTL_SETD0PID; 5178 5179 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 5180 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 5181 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 5182 } 5183 dr->valid = true; 5184 return 0; 5185 } 5186 5187 /** 5188 * dwc2_restore_device_registers() - Restore controller device registers. 5189 * When resuming usb bus, device registers needs to be restored 5190 * if controller power were disabled. 5191 * 5192 * @hsotg: Programming view of the DWC_otg controller 5193 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 5194 * 5195 * Return: 0 if successful, negative error code otherwise 5196 */ 5197 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 5198 { 5199 struct dwc2_dregs_backup *dr; 5200 int i; 5201 5202 dev_dbg(hsotg->dev, "%s\n", __func__); 5203 5204 /* Restore dev regs */ 5205 dr = &hsotg->dr_backup; 5206 if (!dr->valid) { 5207 dev_err(hsotg->dev, "%s: no device registers to restore\n", 5208 __func__); 5209 return -EINVAL; 5210 } 5211 dr->valid = false; 5212 5213 if (!remote_wakeup) 5214 dwc2_writel(hsotg, dr->dctl, DCTL); 5215 5216 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 5217 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 5218 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 5219 5220 for (i = 0; i < hsotg->num_of_eps; i++) { 5221 /* Restore IN EPs */ 5222 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 5223 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 5224 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5225 /** WA for enabled EPx's IN in DDMA mode. On entering to 5226 * hibernation wrong value read and saved from DIEPDMAx, 5227 * as result BNA interrupt asserted on hibernation exit 5228 * by restoring from saved area. 5229 */ 5230 if (using_desc_dma(hsotg) && 5231 (dr->diepctl[i] & DXEPCTL_EPENA)) 5232 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 5233 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 5234 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 5235 /* Restore OUT EPs */ 5236 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5237 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5238 * hibernation wrong value read and saved from DOEPDMAx, 5239 * as result BNA interrupt asserted on hibernation exit 5240 * by restoring from saved area. 5241 */ 5242 if (using_desc_dma(hsotg) && 5243 (dr->doepctl[i] & DXEPCTL_EPENA)) 5244 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5245 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5246 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5247 } 5248 5249 return 0; 5250 } 5251 5252 /** 5253 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5254 * 5255 * @hsotg: Programming view of DWC_otg controller 5256 * 5257 */ 5258 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5259 { 5260 u32 val; 5261 5262 if (!hsotg->params.lpm) 5263 return; 5264 5265 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5266 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5267 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5268 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5269 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5270 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; 5271 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5272 dwc2_writel(hsotg, val, GLPMCFG); 5273 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5274 5275 /* Unmask WKUP_ALERT Interrupt */ 5276 if (hsotg->params.service_interval) 5277 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5278 } 5279 5280 /** 5281 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5282 * 5283 * @hsotg: Programming view of DWC_otg controller 5284 * 5285 */ 5286 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5287 { 5288 u32 val = 0; 5289 5290 val |= GREFCLK_REF_CLK_MODE; 5291 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5292 val |= hsotg->params.sof_cnt_wkup_alert << 5293 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5294 5295 dwc2_writel(hsotg, val, GREFCLK); 5296 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5297 } 5298 5299 /** 5300 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5301 * 5302 * @hsotg: Programming view of the DWC_otg controller 5303 * 5304 * Return non-zero if failed to enter to hibernation. 5305 */ 5306 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5307 { 5308 u32 gpwrdn; 5309 int ret = 0; 5310 5311 /* Change to L2(suspend) state */ 5312 hsotg->lx_state = DWC2_L2; 5313 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5314 ret = dwc2_backup_global_registers(hsotg); 5315 if (ret) { 5316 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5317 __func__); 5318 return ret; 5319 } 5320 ret = dwc2_backup_device_registers(hsotg); 5321 if (ret) { 5322 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5323 __func__); 5324 return ret; 5325 } 5326 5327 gpwrdn = GPWRDN_PWRDNRSTN; 5328 gpwrdn |= GPWRDN_PMUACTV; 5329 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5330 udelay(10); 5331 5332 /* Set flag to indicate that we are in hibernation */ 5333 hsotg->hibernated = 1; 5334 5335 /* Enable interrupts from wake up logic */ 5336 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5337 gpwrdn |= GPWRDN_PMUINTSEL; 5338 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5339 udelay(10); 5340 5341 /* Unmask device mode interrupts in GPWRDN */ 5342 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5343 gpwrdn |= GPWRDN_RST_DET_MSK; 5344 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5345 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5346 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5347 udelay(10); 5348 5349 /* Enable Power Down Clamp */ 5350 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5351 gpwrdn |= GPWRDN_PWRDNCLMP; 5352 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5353 udelay(10); 5354 5355 /* Switch off VDD */ 5356 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5357 gpwrdn |= GPWRDN_PWRDNSWTCH; 5358 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5359 udelay(10); 5360 5361 /* Save gpwrdn register for further usage if stschng interrupt */ 5362 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5363 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5364 5365 return ret; 5366 } 5367 5368 /** 5369 * dwc2_gadget_exit_hibernation() 5370 * This function is for exiting from Device mode hibernation by host initiated 5371 * resume/reset and device initiated remote-wakeup. 5372 * 5373 * @hsotg: Programming view of the DWC_otg controller 5374 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5375 * @reset: indicates whether resume is initiated by Reset. 5376 * 5377 * Return non-zero if failed to exit from hibernation. 5378 */ 5379 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5380 int rem_wakeup, int reset) 5381 { 5382 u32 pcgcctl; 5383 u32 gpwrdn; 5384 u32 dctl; 5385 int ret = 0; 5386 struct dwc2_gregs_backup *gr; 5387 struct dwc2_dregs_backup *dr; 5388 5389 gr = &hsotg->gr_backup; 5390 dr = &hsotg->dr_backup; 5391 5392 if (!hsotg->hibernated) { 5393 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5394 return 1; 5395 } 5396 dev_dbg(hsotg->dev, 5397 "%s: called with rem_wakeup = %d reset = %d\n", 5398 __func__, rem_wakeup, reset); 5399 5400 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5401 5402 if (!reset) { 5403 /* Clear all pending interupts */ 5404 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5405 } 5406 5407 /* De-assert Restore */ 5408 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5409 gpwrdn &= ~GPWRDN_RESTORE; 5410 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5411 udelay(10); 5412 5413 if (!rem_wakeup) { 5414 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5415 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5416 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5417 } 5418 5419 /* Restore GUSBCFG, DCFG and DCTL */ 5420 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5421 dwc2_writel(hsotg, dr->dcfg, DCFG); 5422 dwc2_writel(hsotg, dr->dctl, DCTL); 5423 5424 /* On USB Reset, reset device address to zero */ 5425 if (reset) 5426 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 5427 5428 /* De-assert Wakeup Logic */ 5429 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5430 gpwrdn &= ~GPWRDN_PMUACTV; 5431 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5432 5433 if (rem_wakeup) { 5434 udelay(10); 5435 /* Start Remote Wakeup Signaling */ 5436 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5437 } else { 5438 udelay(50); 5439 /* Set Device programming done bit */ 5440 dctl = dwc2_readl(hsotg, DCTL); 5441 dctl |= DCTL_PWRONPRGDONE; 5442 dwc2_writel(hsotg, dctl, DCTL); 5443 } 5444 /* Wait for interrupts which must be cleared */ 5445 mdelay(2); 5446 /* Clear all pending interupts */ 5447 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5448 5449 /* Restore global registers */ 5450 ret = dwc2_restore_global_registers(hsotg); 5451 if (ret) { 5452 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5453 __func__); 5454 return ret; 5455 } 5456 5457 /* Restore device registers */ 5458 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5459 if (ret) { 5460 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5461 __func__); 5462 return ret; 5463 } 5464 5465 if (rem_wakeup) { 5466 mdelay(10); 5467 dctl = dwc2_readl(hsotg, DCTL); 5468 dctl &= ~DCTL_RMTWKUPSIG; 5469 dwc2_writel(hsotg, dctl, DCTL); 5470 } 5471 5472 hsotg->hibernated = 0; 5473 hsotg->lx_state = DWC2_L0; 5474 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5475 5476 return ret; 5477 } 5478 5479 /** 5480 * dwc2_gadget_enter_partial_power_down() - Put controller in partial 5481 * power down. 5482 * 5483 * @hsotg: Programming view of the DWC_otg controller 5484 * 5485 * Return: non-zero if failed to enter device partial power down. 5486 * 5487 * This function is for entering device mode partial power down. 5488 */ 5489 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg) 5490 { 5491 u32 pcgcctl; 5492 int ret = 0; 5493 5494 dev_dbg(hsotg->dev, "Entering device partial power down started.\n"); 5495 5496 /* Backup all registers */ 5497 ret = dwc2_backup_global_registers(hsotg); 5498 if (ret) { 5499 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5500 __func__); 5501 return ret; 5502 } 5503 5504 ret = dwc2_backup_device_registers(hsotg); 5505 if (ret) { 5506 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5507 __func__); 5508 return ret; 5509 } 5510 5511 /* 5512 * Clear any pending interrupts since dwc2 will not be able to 5513 * clear them after entering partial_power_down. 5514 */ 5515 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5516 5517 /* Put the controller in low power state */ 5518 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5519 5520 pcgcctl |= PCGCTL_PWRCLMP; 5521 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5522 udelay(5); 5523 5524 pcgcctl |= PCGCTL_RSTPDWNMODULE; 5525 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5526 udelay(5); 5527 5528 pcgcctl |= PCGCTL_STOPPCLK; 5529 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5530 5531 /* Set in_ppd flag to 1 as here core enters suspend. */ 5532 hsotg->in_ppd = 1; 5533 hsotg->lx_state = DWC2_L2; 5534 5535 dev_dbg(hsotg->dev, "Entering device partial power down completed.\n"); 5536 5537 return ret; 5538 } 5539 5540 /* 5541 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial 5542 * power down. 5543 * 5544 * @hsotg: Programming view of the DWC_otg controller 5545 * @restore: indicates whether need to restore the registers or not. 5546 * 5547 * Return: non-zero if failed to exit device partial power down. 5548 * 5549 * This function is for exiting from device mode partial power down. 5550 */ 5551 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, 5552 bool restore) 5553 { 5554 u32 pcgcctl; 5555 u32 dctl; 5556 struct dwc2_dregs_backup *dr; 5557 int ret = 0; 5558 5559 dr = &hsotg->dr_backup; 5560 5561 dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n"); 5562 5563 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5564 pcgcctl &= ~PCGCTL_STOPPCLK; 5565 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5566 5567 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5568 pcgcctl &= ~PCGCTL_PWRCLMP; 5569 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5570 5571 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5572 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5573 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5574 5575 udelay(100); 5576 if (restore) { 5577 ret = dwc2_restore_global_registers(hsotg); 5578 if (ret) { 5579 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5580 __func__); 5581 return ret; 5582 } 5583 /* Restore DCFG */ 5584 dwc2_writel(hsotg, dr->dcfg, DCFG); 5585 5586 ret = dwc2_restore_device_registers(hsotg, 0); 5587 if (ret) { 5588 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5589 __func__); 5590 return ret; 5591 } 5592 } 5593 5594 /* Set the Power-On Programming done bit */ 5595 dctl = dwc2_readl(hsotg, DCTL); 5596 dctl |= DCTL_PWRONPRGDONE; 5597 dwc2_writel(hsotg, dctl, DCTL); 5598 5599 /* Set in_ppd flag to 0 as here core exits from suspend. */ 5600 hsotg->in_ppd = 0; 5601 hsotg->lx_state = DWC2_L0; 5602 5603 dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n"); 5604 return ret; 5605 } 5606 5607 /** 5608 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating. 5609 * 5610 * @hsotg: Programming view of the DWC_otg controller 5611 * 5612 * Return: non-zero if failed to enter device partial power down. 5613 * 5614 * This function is for entering device mode clock gating. 5615 */ 5616 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) 5617 { 5618 u32 pcgctl; 5619 5620 dev_dbg(hsotg->dev, "Entering device clock gating.\n"); 5621 5622 /* Set the Phy Clock bit as suspend is received. */ 5623 pcgctl = dwc2_readl(hsotg, PCGCTL); 5624 pcgctl |= PCGCTL_STOPPCLK; 5625 dwc2_writel(hsotg, pcgctl, PCGCTL); 5626 udelay(5); 5627 5628 /* Set the Gate hclk as suspend is received. */ 5629 pcgctl = dwc2_readl(hsotg, PCGCTL); 5630 pcgctl |= PCGCTL_GATEHCLK; 5631 dwc2_writel(hsotg, pcgctl, PCGCTL); 5632 udelay(5); 5633 5634 hsotg->lx_state = DWC2_L2; 5635 hsotg->bus_suspended = true; 5636 } 5637 5638 /* 5639 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating. 5640 * 5641 * @hsotg: Programming view of the DWC_otg controller 5642 * @rem_wakeup: indicates whether remote wake up is enabled. 5643 * 5644 * This function is for exiting from device mode clock gating. 5645 */ 5646 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup) 5647 { 5648 u32 pcgctl; 5649 u32 dctl; 5650 5651 dev_dbg(hsotg->dev, "Exiting device clock gating.\n"); 5652 5653 /* Clear the Gate hclk. */ 5654 pcgctl = dwc2_readl(hsotg, PCGCTL); 5655 pcgctl &= ~PCGCTL_GATEHCLK; 5656 dwc2_writel(hsotg, pcgctl, PCGCTL); 5657 udelay(5); 5658 5659 /* Phy Clock bit. */ 5660 pcgctl = dwc2_readl(hsotg, PCGCTL); 5661 pcgctl &= ~PCGCTL_STOPPCLK; 5662 dwc2_writel(hsotg, pcgctl, PCGCTL); 5663 udelay(5); 5664 5665 if (rem_wakeup) { 5666 /* Set Remote Wakeup Signaling */ 5667 dctl = dwc2_readl(hsotg, DCTL); 5668 dctl |= DCTL_RMTWKUPSIG; 5669 dwc2_writel(hsotg, dctl, DCTL); 5670 } 5671 5672 /* Change to L0 state */ 5673 call_gadget(hsotg, resume); 5674 hsotg->lx_state = DWC2_L0; 5675 hsotg->bus_suspended = false; 5676 } 5677