1 // SPDX-License-Identifier: GPL-2.0 2 /** 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/spinlock.h> 21 #include <linux/interrupt.h> 22 #include <linux/platform_device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <linux/seq_file.h> 26 #include <linux/delay.h> 27 #include <linux/io.h> 28 #include <linux/slab.h> 29 #include <linux/of_platform.h> 30 31 #include <linux/usb/ch9.h> 32 #include <linux/usb/gadget.h> 33 #include <linux/usb/phy.h> 34 35 #include "core.h" 36 #include "hw.h" 37 38 /* conversion functions */ 39 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 40 { 41 return container_of(req, struct dwc2_hsotg_req, req); 42 } 43 44 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 45 { 46 return container_of(ep, struct dwc2_hsotg_ep, ep); 47 } 48 49 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 50 { 51 return container_of(gadget, struct dwc2_hsotg, gadget); 52 } 53 54 static inline void __orr32(void __iomem *ptr, u32 val) 55 { 56 dwc2_writel(dwc2_readl(ptr) | val, ptr); 57 } 58 59 static inline void __bic32(void __iomem *ptr, u32 val) 60 { 61 dwc2_writel(dwc2_readl(ptr) & ~val, ptr); 62 } 63 64 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 65 u32 ep_index, u32 dir_in) 66 { 67 if (dir_in) 68 return hsotg->eps_in[ep_index]; 69 else 70 return hsotg->eps_out[ep_index]; 71 } 72 73 /* forward declaration of functions */ 74 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 75 76 /** 77 * using_dma - return the DMA status of the driver. 78 * @hsotg: The driver state. 79 * 80 * Return true if we're using DMA. 81 * 82 * Currently, we have the DMA support code worked into everywhere 83 * that needs it, but the AMBA DMA implementation in the hardware can 84 * only DMA from 32bit aligned addresses. This means that gadgets such 85 * as the CDC Ethernet cannot work as they often pass packets which are 86 * not 32bit aligned. 87 * 88 * Unfortunately the choice to use DMA or not is global to the controller 89 * and seems to be only settable when the controller is being put through 90 * a core reset. This means we either need to fix the gadgets to take 91 * account of DMA alignment, or add bounce buffers (yuerk). 92 * 93 * g_using_dma is set depending on dts flag. 94 */ 95 static inline bool using_dma(struct dwc2_hsotg *hsotg) 96 { 97 return hsotg->params.g_dma; 98 } 99 100 /* 101 * using_desc_dma - return the descriptor DMA status of the driver. 102 * @hsotg: The driver state. 103 * 104 * Return true if we're using descriptor DMA. 105 */ 106 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 107 { 108 return hsotg->params.g_dma_desc; 109 } 110 111 /** 112 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 113 * @hs_ep: The endpoint 114 * @increment: The value to increment by 115 * 116 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 117 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 118 */ 119 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 120 { 121 hs_ep->target_frame += hs_ep->interval; 122 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 123 hs_ep->frame_overrun = 1; 124 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 125 } else { 126 hs_ep->frame_overrun = 0; 127 } 128 } 129 130 /** 131 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 132 * @hsotg: The device state 133 * @ints: A bitmask of the interrupts to enable 134 */ 135 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 136 { 137 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK); 138 u32 new_gsintmsk; 139 140 new_gsintmsk = gsintmsk | ints; 141 142 if (new_gsintmsk != gsintmsk) { 143 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 144 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK); 145 } 146 } 147 148 /** 149 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 150 * @hsotg: The device state 151 * @ints: A bitmask of the interrupts to enable 152 */ 153 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 154 { 155 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK); 156 u32 new_gsintmsk; 157 158 new_gsintmsk = gsintmsk & ~ints; 159 160 if (new_gsintmsk != gsintmsk) 161 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK); 162 } 163 164 /** 165 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 166 * @hsotg: The device state 167 * @ep: The endpoint index 168 * @dir_in: True if direction is in. 169 * @en: The enable value, true to enable 170 * 171 * Set or clear the mask for an individual endpoint's interrupt 172 * request. 173 */ 174 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 175 unsigned int ep, unsigned int dir_in, 176 unsigned int en) 177 { 178 unsigned long flags; 179 u32 bit = 1 << ep; 180 u32 daint; 181 182 if (!dir_in) 183 bit <<= 16; 184 185 local_irq_save(flags); 186 daint = dwc2_readl(hsotg->regs + DAINTMSK); 187 if (en) 188 daint |= bit; 189 else 190 daint &= ~bit; 191 dwc2_writel(daint, hsotg->regs + DAINTMSK); 192 local_irq_restore(flags); 193 } 194 195 /** 196 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 197 */ 198 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 199 { 200 if (hsotg->hw_params.en_multiple_tx_fifo) 201 /* In dedicated FIFO mode we need count of IN EPs */ 202 return (dwc2_readl(hsotg->regs + GHWCFG4) & 203 GHWCFG4_NUM_IN_EPS_MASK) >> GHWCFG4_NUM_IN_EPS_SHIFT; 204 else 205 /* In shared FIFO mode we need count of Periodic IN EPs */ 206 return hsotg->hw_params.num_dev_perio_in_ep; 207 } 208 209 /** 210 * dwc2_hsotg_ep_info_size - return Endpoint Info Control block size in DWORDs 211 */ 212 static int dwc2_hsotg_ep_info_size(struct dwc2_hsotg *hsotg) 213 { 214 int val = 0; 215 int i; 216 u32 ep_dirs; 217 218 /* 219 * Don't need additional space for ep info control registers in 220 * slave mode. 221 */ 222 if (!using_dma(hsotg)) { 223 dev_dbg(hsotg->dev, "Buffer DMA ep info size 0\n"); 224 return 0; 225 } 226 227 /* 228 * Buffer DMA mode - 1 location per endpoit 229 * Descriptor DMA mode - 4 locations per endpoint 230 */ 231 ep_dirs = hsotg->hw_params.dev_ep_dirs; 232 233 for (i = 0; i <= hsotg->hw_params.num_dev_ep; i++) { 234 val += ep_dirs & 3 ? 1 : 2; 235 ep_dirs >>= 2; 236 } 237 238 if (using_desc_dma(hsotg)) 239 val = val * 4; 240 241 return val; 242 } 243 244 /** 245 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 246 * device mode TX FIFOs 247 */ 248 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 249 { 250 int ep_info_size; 251 int addr; 252 int tx_addr_max; 253 u32 np_tx_fifo_size; 254 255 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 256 hsotg->params.g_np_tx_fifo_size); 257 258 /* Get Endpoint Info Control block size in DWORDs. */ 259 ep_info_size = dwc2_hsotg_ep_info_size(hsotg); 260 tx_addr_max = hsotg->hw_params.total_fifo_size - ep_info_size; 261 262 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 263 if (tx_addr_max <= addr) 264 return 0; 265 266 return tx_addr_max - addr; 267 } 268 269 /** 270 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 271 * TX FIFOs 272 */ 273 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 274 { 275 int tx_fifo_count; 276 int tx_fifo_depth; 277 278 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 279 280 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 281 282 if (!tx_fifo_count) 283 return tx_fifo_depth; 284 else 285 return tx_fifo_depth / tx_fifo_count; 286 } 287 288 /** 289 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 290 * @hsotg: The device instance. 291 */ 292 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 293 { 294 unsigned int ep; 295 unsigned int addr; 296 int timeout; 297 u32 val; 298 u32 *txfsz = hsotg->params.g_tx_fifo_size; 299 300 /* Reset fifo map if not correctly cleared during previous session */ 301 WARN_ON(hsotg->fifo_map); 302 hsotg->fifo_map = 0; 303 304 /* set RX/NPTX FIFO sizes */ 305 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ); 306 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) | 307 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 308 hsotg->regs + GNPTXFSIZ); 309 310 /* 311 * arange all the rest of the TX FIFOs, as some versions of this 312 * block have overlapping default addresses. This also ensures 313 * that if the settings have been changed, then they are set to 314 * known values. 315 */ 316 317 /* start at the end of the GNPTXFSIZ, rounded up */ 318 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 319 320 /* 321 * Configure fifos sizes from provided configuration and assign 322 * them to endpoints dynamically according to maxpacket size value of 323 * given endpoint. 324 */ 325 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 326 if (!txfsz[ep]) 327 continue; 328 val = addr; 329 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 330 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 331 "insufficient fifo memory"); 332 addr += txfsz[ep]; 333 334 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep)); 335 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep)); 336 } 337 338 dwc2_writel(hsotg->hw_params.total_fifo_size | 339 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 340 hsotg->regs + GDFIFOCFG); 341 /* 342 * according to p428 of the design guide, we need to ensure that 343 * all fifos are flushed before continuing 344 */ 345 346 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 347 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL); 348 349 /* wait until the fifos are both flushed */ 350 timeout = 100; 351 while (1) { 352 val = dwc2_readl(hsotg->regs + GRSTCTL); 353 354 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 355 break; 356 357 if (--timeout == 0) { 358 dev_err(hsotg->dev, 359 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 360 __func__, val); 361 break; 362 } 363 364 udelay(1); 365 } 366 367 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 368 } 369 370 /** 371 * @ep: USB endpoint to allocate request for. 372 * @flags: Allocation flags 373 * 374 * Allocate a new USB request structure appropriate for the specified endpoint 375 */ 376 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 377 gfp_t flags) 378 { 379 struct dwc2_hsotg_req *req; 380 381 req = kzalloc(sizeof(*req), flags); 382 if (!req) 383 return NULL; 384 385 INIT_LIST_HEAD(&req->queue); 386 387 return &req->req; 388 } 389 390 /** 391 * is_ep_periodic - return true if the endpoint is in periodic mode. 392 * @hs_ep: The endpoint to query. 393 * 394 * Returns true if the endpoint is in periodic mode, meaning it is being 395 * used for an Interrupt or ISO transfer. 396 */ 397 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 398 { 399 return hs_ep->periodic; 400 } 401 402 /** 403 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 404 * @hsotg: The device state. 405 * @hs_ep: The endpoint for the request 406 * @hs_req: The request being processed. 407 * 408 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 409 * of a request to ensure the buffer is ready for access by the caller. 410 */ 411 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 412 struct dwc2_hsotg_ep *hs_ep, 413 struct dwc2_hsotg_req *hs_req) 414 { 415 struct usb_request *req = &hs_req->req; 416 417 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 418 } 419 420 /* 421 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 422 * for Control endpoint 423 * @hsotg: The device state. 424 * 425 * This function will allocate 4 descriptor chains for EP 0: 2 for 426 * Setup stage, per one for IN and OUT data/status transactions. 427 */ 428 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 429 { 430 hsotg->setup_desc[0] = 431 dmam_alloc_coherent(hsotg->dev, 432 sizeof(struct dwc2_dma_desc), 433 &hsotg->setup_desc_dma[0], 434 GFP_KERNEL); 435 if (!hsotg->setup_desc[0]) 436 goto fail; 437 438 hsotg->setup_desc[1] = 439 dmam_alloc_coherent(hsotg->dev, 440 sizeof(struct dwc2_dma_desc), 441 &hsotg->setup_desc_dma[1], 442 GFP_KERNEL); 443 if (!hsotg->setup_desc[1]) 444 goto fail; 445 446 hsotg->ctrl_in_desc = 447 dmam_alloc_coherent(hsotg->dev, 448 sizeof(struct dwc2_dma_desc), 449 &hsotg->ctrl_in_desc_dma, 450 GFP_KERNEL); 451 if (!hsotg->ctrl_in_desc) 452 goto fail; 453 454 hsotg->ctrl_out_desc = 455 dmam_alloc_coherent(hsotg->dev, 456 sizeof(struct dwc2_dma_desc), 457 &hsotg->ctrl_out_desc_dma, 458 GFP_KERNEL); 459 if (!hsotg->ctrl_out_desc) 460 goto fail; 461 462 return 0; 463 464 fail: 465 return -ENOMEM; 466 } 467 468 /** 469 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 470 * @hsotg: The controller state. 471 * @hs_ep: The endpoint we're going to write for. 472 * @hs_req: The request to write data for. 473 * 474 * This is called when the TxFIFO has some space in it to hold a new 475 * transmission and we have something to give it. The actual setup of 476 * the data size is done elsewhere, so all we have to do is to actually 477 * write the data. 478 * 479 * The return value is zero if there is more space (or nothing was done) 480 * otherwise -ENOSPC is returned if the FIFO space was used up. 481 * 482 * This routine is only needed for PIO 483 */ 484 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 485 struct dwc2_hsotg_ep *hs_ep, 486 struct dwc2_hsotg_req *hs_req) 487 { 488 bool periodic = is_ep_periodic(hs_ep); 489 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS); 490 int buf_pos = hs_req->req.actual; 491 int to_write = hs_ep->size_loaded; 492 void *data; 493 int can_write; 494 int pkt_round; 495 int max_transfer; 496 497 to_write -= (buf_pos - hs_ep->last_load); 498 499 /* if there's nothing to write, get out early */ 500 if (to_write == 0) 501 return 0; 502 503 if (periodic && !hsotg->dedicated_fifos) { 504 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 505 int size_left; 506 int size_done; 507 508 /* 509 * work out how much data was loaded so we can calculate 510 * how much data is left in the fifo. 511 */ 512 513 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 514 515 /* 516 * if shared fifo, we cannot write anything until the 517 * previous data has been completely sent. 518 */ 519 if (hs_ep->fifo_load != 0) { 520 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 521 return -ENOSPC; 522 } 523 524 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 525 __func__, size_left, 526 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 527 528 /* how much of the data has moved */ 529 size_done = hs_ep->size_loaded - size_left; 530 531 /* how much data is left in the fifo */ 532 can_write = hs_ep->fifo_load - size_done; 533 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 534 __func__, can_write); 535 536 can_write = hs_ep->fifo_size - can_write; 537 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 538 __func__, can_write); 539 540 if (can_write <= 0) { 541 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 542 return -ENOSPC; 543 } 544 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 545 can_write = dwc2_readl(hsotg->regs + 546 DTXFSTS(hs_ep->fifo_index)); 547 548 can_write &= 0xffff; 549 can_write *= 4; 550 } else { 551 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 552 dev_dbg(hsotg->dev, 553 "%s: no queue slots available (0x%08x)\n", 554 __func__, gnptxsts); 555 556 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 557 return -ENOSPC; 558 } 559 560 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 561 can_write *= 4; /* fifo size is in 32bit quantities. */ 562 } 563 564 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 565 566 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 567 __func__, gnptxsts, can_write, to_write, max_transfer); 568 569 /* 570 * limit to 512 bytes of data, it seems at least on the non-periodic 571 * FIFO, requests of >512 cause the endpoint to get stuck with a 572 * fragment of the end of the transfer in it. 573 */ 574 if (can_write > 512 && !periodic) 575 can_write = 512; 576 577 /* 578 * limit the write to one max-packet size worth of data, but allow 579 * the transfer to return that it did not run out of fifo space 580 * doing it. 581 */ 582 if (to_write > max_transfer) { 583 to_write = max_transfer; 584 585 /* it's needed only when we do not use dedicated fifos */ 586 if (!hsotg->dedicated_fifos) 587 dwc2_hsotg_en_gsint(hsotg, 588 periodic ? GINTSTS_PTXFEMP : 589 GINTSTS_NPTXFEMP); 590 } 591 592 /* see if we can write data */ 593 594 if (to_write > can_write) { 595 to_write = can_write; 596 pkt_round = to_write % max_transfer; 597 598 /* 599 * Round the write down to an 600 * exact number of packets. 601 * 602 * Note, we do not currently check to see if we can ever 603 * write a full packet or not to the FIFO. 604 */ 605 606 if (pkt_round) 607 to_write -= pkt_round; 608 609 /* 610 * enable correct FIFO interrupt to alert us when there 611 * is more room left. 612 */ 613 614 /* it's needed only when we do not use dedicated fifos */ 615 if (!hsotg->dedicated_fifos) 616 dwc2_hsotg_en_gsint(hsotg, 617 periodic ? GINTSTS_PTXFEMP : 618 GINTSTS_NPTXFEMP); 619 } 620 621 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 622 to_write, hs_req->req.length, can_write, buf_pos); 623 624 if (to_write <= 0) 625 return -ENOSPC; 626 627 hs_req->req.actual = buf_pos + to_write; 628 hs_ep->total_data += to_write; 629 630 if (periodic) 631 hs_ep->fifo_load += to_write; 632 633 to_write = DIV_ROUND_UP(to_write, 4); 634 data = hs_req->req.buf + buf_pos; 635 636 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write); 637 638 return (to_write >= can_write) ? -ENOSPC : 0; 639 } 640 641 /** 642 * get_ep_limit - get the maximum data legnth for this endpoint 643 * @hs_ep: The endpoint 644 * 645 * Return the maximum data that can be queued in one go on a given endpoint 646 * so that transfers that are too long can be split. 647 */ 648 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 649 { 650 int index = hs_ep->index; 651 unsigned int maxsize; 652 unsigned int maxpkt; 653 654 if (index != 0) { 655 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 656 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 657 } else { 658 maxsize = 64 + 64; 659 if (hs_ep->dir_in) 660 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 661 else 662 maxpkt = 2; 663 } 664 665 /* we made the constant loading easier above by using +1 */ 666 maxpkt--; 667 maxsize--; 668 669 /* 670 * constrain by packet count if maxpkts*pktsize is greater 671 * than the length register size. 672 */ 673 674 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 675 maxsize = maxpkt * hs_ep->ep.maxpacket; 676 677 return maxsize; 678 } 679 680 /** 681 * dwc2_hsotg_read_frameno - read current frame number 682 * @hsotg: The device instance 683 * 684 * Return the current frame number 685 */ 686 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 687 { 688 u32 dsts; 689 690 dsts = dwc2_readl(hsotg->regs + DSTS); 691 dsts &= DSTS_SOFFN_MASK; 692 dsts >>= DSTS_SOFFN_SHIFT; 693 694 return dsts; 695 } 696 697 /** 698 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 699 * DMA descriptor chain prepared for specific endpoint 700 * @hs_ep: The endpoint 701 * 702 * Return the maximum data that can be queued in one go on a given endpoint 703 * depending on its descriptor chain capacity so that transfers that 704 * are too long can be split. 705 */ 706 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 707 { 708 int is_isoc = hs_ep->isochronous; 709 unsigned int maxsize; 710 711 if (is_isoc) 712 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 713 DEV_DMA_ISOC_RX_NBYTES_LIMIT; 714 else 715 maxsize = DEV_DMA_NBYTES_LIMIT; 716 717 /* Above size of one descriptor was chosen, multiple it */ 718 maxsize *= MAX_DMA_DESC_NUM_GENERIC; 719 720 return maxsize; 721 } 722 723 /* 724 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 725 * @hs_ep: The endpoint 726 * @mask: RX/TX bytes mask to be defined 727 * 728 * Returns maximum data payload for one descriptor after analyzing endpoint 729 * characteristics. 730 * DMA descriptor transfer bytes limit depends on EP type: 731 * Control out - MPS, 732 * Isochronous - descriptor rx/tx bytes bitfield limit, 733 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 734 * have concatenations from various descriptors within one packet. 735 * 736 * Selects corresponding mask for RX/TX bytes as well. 737 */ 738 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 739 { 740 u32 mps = hs_ep->ep.maxpacket; 741 int dir_in = hs_ep->dir_in; 742 u32 desc_size = 0; 743 744 if (!hs_ep->index && !dir_in) { 745 desc_size = mps; 746 *mask = DEV_DMA_NBYTES_MASK; 747 } else if (hs_ep->isochronous) { 748 if (dir_in) { 749 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 750 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 751 } else { 752 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 753 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 754 } 755 } else { 756 desc_size = DEV_DMA_NBYTES_LIMIT; 757 *mask = DEV_DMA_NBYTES_MASK; 758 759 /* Round down desc_size to be mps multiple */ 760 desc_size -= desc_size % mps; 761 } 762 763 return desc_size; 764 } 765 766 /* 767 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 768 * @hs_ep: The endpoint 769 * @dma_buff: DMA address to use 770 * @len: Length of the transfer 771 * 772 * This function will iterate over descriptor chain and fill its entries 773 * with corresponding information based on transfer data. 774 */ 775 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 776 dma_addr_t dma_buff, 777 unsigned int len) 778 { 779 struct dwc2_hsotg *hsotg = hs_ep->parent; 780 int dir_in = hs_ep->dir_in; 781 struct dwc2_dma_desc *desc = hs_ep->desc_list; 782 u32 mps = hs_ep->ep.maxpacket; 783 u32 maxsize = 0; 784 u32 offset = 0; 785 u32 mask = 0; 786 int i; 787 788 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 789 790 hs_ep->desc_count = (len / maxsize) + 791 ((len % maxsize) ? 1 : 0); 792 if (len == 0) 793 hs_ep->desc_count = 1; 794 795 for (i = 0; i < hs_ep->desc_count; ++i) { 796 desc->status = 0; 797 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 798 << DEV_DMA_BUFF_STS_SHIFT); 799 800 if (len > maxsize) { 801 if (!hs_ep->index && !dir_in) 802 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 803 804 desc->status |= (maxsize << 805 DEV_DMA_NBYTES_SHIFT & mask); 806 desc->buf = dma_buff + offset; 807 808 len -= maxsize; 809 offset += maxsize; 810 } else { 811 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 812 813 if (dir_in) 814 desc->status |= (len % mps) ? DEV_DMA_SHORT : 815 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0); 816 if (len > maxsize) 817 dev_err(hsotg->dev, "wrong len %d\n", len); 818 819 desc->status |= 820 len << DEV_DMA_NBYTES_SHIFT & mask; 821 desc->buf = dma_buff + offset; 822 } 823 824 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 825 desc->status |= (DEV_DMA_BUFF_STS_HREADY 826 << DEV_DMA_BUFF_STS_SHIFT); 827 desc++; 828 } 829 } 830 831 /* 832 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 833 * @hs_ep: The isochronous endpoint. 834 * @dma_buff: usb requests dma buffer. 835 * @len: usb request transfer length. 836 * 837 * Finds out index of first free entry either in the bottom or up half of 838 * descriptor chain depend on which is under SW control and not processed 839 * by HW. Then fills that descriptor with the data of the arrived usb request, 840 * frame info, sets Last and IOC bits increments next_desc. If filled 841 * descriptor is not the first one, removes L bit from the previous descriptor 842 * status. 843 */ 844 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 845 dma_addr_t dma_buff, unsigned int len) 846 { 847 struct dwc2_dma_desc *desc; 848 struct dwc2_hsotg *hsotg = hs_ep->parent; 849 u32 index; 850 u32 maxsize = 0; 851 u32 mask = 0; 852 853 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 854 if (len > maxsize) { 855 dev_err(hsotg->dev, "wrong len %d\n", len); 856 return -EINVAL; 857 } 858 859 /* 860 * If SW has already filled half of chain, then return and wait for 861 * the other chain to be processed by HW. 862 */ 863 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2) 864 return -EBUSY; 865 866 /* Increment frame number by interval for IN */ 867 if (hs_ep->dir_in) 868 dwc2_gadget_incr_frame_num(hs_ep); 869 870 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num + 871 hs_ep->next_desc; 872 873 /* Sanity check of calculated index */ 874 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) || 875 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) { 876 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index); 877 return -EINVAL; 878 } 879 880 desc = &hs_ep->desc_list[index]; 881 882 /* Clear L bit of previous desc if more than one entries in the chain */ 883 if (hs_ep->next_desc) 884 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 885 886 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 887 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 888 889 desc->status = 0; 890 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 891 892 desc->buf = dma_buff; 893 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 894 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 895 896 if (hs_ep->dir_in) { 897 desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) & 898 DEV_DMA_ISOC_PID_MASK) | 899 ((len % hs_ep->ep.maxpacket) ? 900 DEV_DMA_SHORT : 0) | 901 ((hs_ep->target_frame << 902 DEV_DMA_ISOC_FRNUM_SHIFT) & 903 DEV_DMA_ISOC_FRNUM_MASK); 904 } 905 906 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 907 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 908 909 /* Update index of last configured entry in the chain */ 910 hs_ep->next_desc++; 911 912 return 0; 913 } 914 915 /* 916 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 917 * @hs_ep: The isochronous endpoint. 918 * 919 * Prepare first descriptor chain for isochronous endpoints. Afterwards 920 * write DMA address to HW and enable the endpoint. 921 * 922 * Switch between descriptor chains via isoc_chain_num to give SW opportunity 923 * to prepare second descriptor chain while first one is being processed by HW. 924 */ 925 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 926 { 927 struct dwc2_hsotg *hsotg = hs_ep->parent; 928 struct dwc2_hsotg_req *hs_req, *treq; 929 int index = hs_ep->index; 930 int ret; 931 u32 dma_reg; 932 u32 depctl; 933 u32 ctrl; 934 935 if (list_empty(&hs_ep->queue)) { 936 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 937 return; 938 } 939 940 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 941 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 942 hs_req->req.length); 943 if (ret) { 944 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 945 break; 946 } 947 } 948 949 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 950 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 951 952 /* write descriptor chain address to control register */ 953 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg); 954 955 ctrl = dwc2_readl(hsotg->regs + depctl); 956 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 957 dwc2_writel(ctrl, hsotg->regs + depctl); 958 959 /* Switch ISOC descriptor chain number being processed by SW*/ 960 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1; 961 hs_ep->next_desc = 0; 962 } 963 964 /** 965 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 966 * @hsotg: The controller state. 967 * @hs_ep: The endpoint to process a request for 968 * @hs_req: The request to start. 969 * @continuing: True if we are doing more for the current request. 970 * 971 * Start the given request running by setting the endpoint registers 972 * appropriately, and writing any data to the FIFOs. 973 */ 974 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 975 struct dwc2_hsotg_ep *hs_ep, 976 struct dwc2_hsotg_req *hs_req, 977 bool continuing) 978 { 979 struct usb_request *ureq = &hs_req->req; 980 int index = hs_ep->index; 981 int dir_in = hs_ep->dir_in; 982 u32 epctrl_reg; 983 u32 epsize_reg; 984 u32 epsize; 985 u32 ctrl; 986 unsigned int length; 987 unsigned int packets; 988 unsigned int maxreq; 989 unsigned int dma_reg; 990 991 if (index != 0) { 992 if (hs_ep->req && !continuing) { 993 dev_err(hsotg->dev, "%s: active request\n", __func__); 994 WARN_ON(1); 995 return; 996 } else if (hs_ep->req != hs_req && continuing) { 997 dev_err(hsotg->dev, 998 "%s: continue different req\n", __func__); 999 WARN_ON(1); 1000 return; 1001 } 1002 } 1003 1004 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1005 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1006 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1007 1008 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1009 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index, 1010 hs_ep->dir_in ? "in" : "out"); 1011 1012 /* If endpoint is stalled, we will restart request later */ 1013 ctrl = dwc2_readl(hsotg->regs + epctrl_reg); 1014 1015 if (index && ctrl & DXEPCTL_STALL) { 1016 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1017 return; 1018 } 1019 1020 length = ureq->length - ureq->actual; 1021 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1022 ureq->length, ureq->actual); 1023 1024 if (!using_desc_dma(hsotg)) 1025 maxreq = get_ep_limit(hs_ep); 1026 else 1027 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1028 1029 if (length > maxreq) { 1030 int round = maxreq % hs_ep->ep.maxpacket; 1031 1032 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1033 __func__, length, maxreq, round); 1034 1035 /* round down to multiple of packets */ 1036 if (round) 1037 maxreq -= round; 1038 1039 length = maxreq; 1040 } 1041 1042 if (length) 1043 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1044 else 1045 packets = 1; /* send one packet if length is zero. */ 1046 1047 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1048 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 1049 return; 1050 } 1051 1052 if (dir_in && index != 0) 1053 if (hs_ep->isochronous) 1054 epsize = DXEPTSIZ_MC(packets); 1055 else 1056 epsize = DXEPTSIZ_MC(1); 1057 else 1058 epsize = 0; 1059 1060 /* 1061 * zero length packet should be programmed on its own and should not 1062 * be counted in DIEPTSIZ.PktCnt with other packets. 1063 */ 1064 if (dir_in && ureq->zero && !continuing) { 1065 /* Test if zlp is actually required. */ 1066 if ((ureq->length >= hs_ep->ep.maxpacket) && 1067 !(ureq->length % hs_ep->ep.maxpacket)) 1068 hs_ep->send_zlp = 1; 1069 } 1070 1071 epsize |= DXEPTSIZ_PKTCNT(packets); 1072 epsize |= DXEPTSIZ_XFERSIZE(length); 1073 1074 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1075 __func__, packets, length, ureq->length, epsize, epsize_reg); 1076 1077 /* store the request as the current one we're doing */ 1078 hs_ep->req = hs_req; 1079 1080 if (using_desc_dma(hsotg)) { 1081 u32 offset = 0; 1082 u32 mps = hs_ep->ep.maxpacket; 1083 1084 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1085 if (!dir_in) { 1086 if (!index) 1087 length = mps; 1088 else if (length % mps) 1089 length += (mps - (length % mps)); 1090 } 1091 1092 /* 1093 * If more data to send, adjust DMA for EP0 out data stage. 1094 * ureq->dma stays unchanged, hence increment it by already 1095 * passed passed data count before starting new transaction. 1096 */ 1097 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT && 1098 continuing) 1099 offset = ureq->actual; 1100 1101 /* Fill DDMA chain entries */ 1102 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1103 length); 1104 1105 /* write descriptor chain address to control register */ 1106 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg); 1107 1108 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1109 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1110 } else { 1111 /* write size / packets */ 1112 dwc2_writel(epsize, hsotg->regs + epsize_reg); 1113 1114 if (using_dma(hsotg) && !continuing && (length != 0)) { 1115 /* 1116 * write DMA address to control register, buffer 1117 * already synced by dwc2_hsotg_ep_queue(). 1118 */ 1119 1120 dwc2_writel(ureq->dma, hsotg->regs + dma_reg); 1121 1122 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1123 __func__, &ureq->dma, dma_reg); 1124 } 1125 } 1126 1127 if (hs_ep->isochronous && hs_ep->interval == 1) { 1128 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1129 dwc2_gadget_incr_frame_num(hs_ep); 1130 1131 if (hs_ep->target_frame & 0x1) 1132 ctrl |= DXEPCTL_SETODDFR; 1133 else 1134 ctrl |= DXEPCTL_SETEVENFR; 1135 } 1136 1137 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1138 1139 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1140 1141 /* For Setup request do not clear NAK */ 1142 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1143 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1144 1145 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1146 dwc2_writel(ctrl, hsotg->regs + epctrl_reg); 1147 1148 /* 1149 * set these, it seems that DMA support increments past the end 1150 * of the packet buffer so we need to calculate the length from 1151 * this information. 1152 */ 1153 hs_ep->size_loaded = length; 1154 hs_ep->last_load = ureq->actual; 1155 1156 if (dir_in && !using_dma(hsotg)) { 1157 /* set these anyway, we may need them for non-periodic in */ 1158 hs_ep->fifo_load = 0; 1159 1160 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1161 } 1162 1163 /* 1164 * Note, trying to clear the NAK here causes problems with transmit 1165 * on the S3C6400 ending up with the TXFIFO becoming full. 1166 */ 1167 1168 /* check ep is enabled */ 1169 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA)) 1170 dev_dbg(hsotg->dev, 1171 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1172 index, dwc2_readl(hsotg->regs + epctrl_reg)); 1173 1174 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1175 __func__, dwc2_readl(hsotg->regs + epctrl_reg)); 1176 1177 /* enable ep interrupts */ 1178 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1179 } 1180 1181 /** 1182 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1183 * @hsotg: The device state. 1184 * @hs_ep: The endpoint the request is on. 1185 * @req: The request being processed. 1186 * 1187 * We've been asked to queue a request, so ensure that the memory buffer 1188 * is correctly setup for DMA. If we've been passed an extant DMA address 1189 * then ensure the buffer has been synced to memory. If our buffer has no 1190 * DMA memory, then we map the memory and mark our request to allow us to 1191 * cleanup on completion. 1192 */ 1193 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1194 struct dwc2_hsotg_ep *hs_ep, 1195 struct usb_request *req) 1196 { 1197 int ret; 1198 1199 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1200 if (ret) 1201 goto dma_error; 1202 1203 return 0; 1204 1205 dma_error: 1206 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1207 __func__, req->buf, req->length); 1208 1209 return -EIO; 1210 } 1211 1212 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1213 struct dwc2_hsotg_ep *hs_ep, 1214 struct dwc2_hsotg_req *hs_req) 1215 { 1216 void *req_buf = hs_req->req.buf; 1217 1218 /* If dma is not being used or buffer is aligned */ 1219 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1220 return 0; 1221 1222 WARN_ON(hs_req->saved_req_buf); 1223 1224 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1225 hs_ep->ep.name, req_buf, hs_req->req.length); 1226 1227 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1228 if (!hs_req->req.buf) { 1229 hs_req->req.buf = req_buf; 1230 dev_err(hsotg->dev, 1231 "%s: unable to allocate memory for bounce buffer\n", 1232 __func__); 1233 return -ENOMEM; 1234 } 1235 1236 /* Save actual buffer */ 1237 hs_req->saved_req_buf = req_buf; 1238 1239 if (hs_ep->dir_in) 1240 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1241 return 0; 1242 } 1243 1244 static void 1245 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1246 struct dwc2_hsotg_ep *hs_ep, 1247 struct dwc2_hsotg_req *hs_req) 1248 { 1249 /* If dma is not being used or buffer was aligned */ 1250 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1251 return; 1252 1253 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1254 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1255 1256 /* Copy data from bounce buffer on successful out transfer */ 1257 if (!hs_ep->dir_in && !hs_req->req.status) 1258 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1259 hs_req->req.actual); 1260 1261 /* Free bounce buffer */ 1262 kfree(hs_req->req.buf); 1263 1264 hs_req->req.buf = hs_req->saved_req_buf; 1265 hs_req->saved_req_buf = NULL; 1266 } 1267 1268 /** 1269 * dwc2_gadget_target_frame_elapsed - Checks target frame 1270 * @hs_ep: The driver endpoint to check 1271 * 1272 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1273 * corresponding transfer. 1274 */ 1275 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1276 { 1277 struct dwc2_hsotg *hsotg = hs_ep->parent; 1278 u32 target_frame = hs_ep->target_frame; 1279 u32 current_frame = dwc2_hsotg_read_frameno(hsotg); 1280 bool frame_overrun = hs_ep->frame_overrun; 1281 1282 if (!frame_overrun && current_frame >= target_frame) 1283 return true; 1284 1285 if (frame_overrun && current_frame >= target_frame && 1286 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1287 return true; 1288 1289 return false; 1290 } 1291 1292 /* 1293 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1294 * @hsotg: The driver state 1295 * @hs_ep: the ep descriptor chain is for 1296 * 1297 * Called to update EP0 structure's pointers depend on stage of 1298 * control transfer. 1299 */ 1300 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1301 struct dwc2_hsotg_ep *hs_ep) 1302 { 1303 switch (hsotg->ep0_state) { 1304 case DWC2_EP0_SETUP: 1305 case DWC2_EP0_STATUS_OUT: 1306 hs_ep->desc_list = hsotg->setup_desc[0]; 1307 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1308 break; 1309 case DWC2_EP0_DATA_IN: 1310 case DWC2_EP0_STATUS_IN: 1311 hs_ep->desc_list = hsotg->ctrl_in_desc; 1312 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1313 break; 1314 case DWC2_EP0_DATA_OUT: 1315 hs_ep->desc_list = hsotg->ctrl_out_desc; 1316 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1317 break; 1318 default: 1319 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1320 hsotg->ep0_state); 1321 return -EINVAL; 1322 } 1323 1324 return 0; 1325 } 1326 1327 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1328 gfp_t gfp_flags) 1329 { 1330 struct dwc2_hsotg_req *hs_req = our_req(req); 1331 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1332 struct dwc2_hsotg *hs = hs_ep->parent; 1333 bool first; 1334 int ret; 1335 1336 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1337 ep->name, req, req->length, req->buf, req->no_interrupt, 1338 req->zero, req->short_not_ok); 1339 1340 /* Prevent new request submission when controller is suspended */ 1341 if (hs->lx_state == DWC2_L2) { 1342 dev_dbg(hs->dev, "%s: don't submit request while suspended\n", 1343 __func__); 1344 return -EAGAIN; 1345 } 1346 1347 /* initialise status of the request */ 1348 INIT_LIST_HEAD(&hs_req->queue); 1349 req->actual = 0; 1350 req->status = -EINPROGRESS; 1351 1352 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1353 if (ret) 1354 return ret; 1355 1356 /* if we're using DMA, sync the buffers as necessary */ 1357 if (using_dma(hs)) { 1358 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1359 if (ret) 1360 return ret; 1361 } 1362 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1363 if (using_desc_dma(hs) && !hs_ep->index) { 1364 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1365 if (ret) 1366 return ret; 1367 } 1368 1369 first = list_empty(&hs_ep->queue); 1370 list_add_tail(&hs_req->queue, &hs_ep->queue); 1371 1372 /* 1373 * Handle DDMA isochronous transfers separately - just add new entry 1374 * to the half of descriptor chain that is not processed by HW. 1375 * Transfer will be started once SW gets either one of NAK or 1376 * OutTknEpDis interrupts. 1377 */ 1378 if (using_desc_dma(hs) && hs_ep->isochronous && 1379 hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1380 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 1381 hs_req->req.length); 1382 if (ret) 1383 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__); 1384 1385 return 0; 1386 } 1387 1388 if (first) { 1389 if (!hs_ep->isochronous) { 1390 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1391 return 0; 1392 } 1393 1394 while (dwc2_gadget_target_frame_elapsed(hs_ep)) 1395 dwc2_gadget_incr_frame_num(hs_ep); 1396 1397 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1398 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1399 } 1400 return 0; 1401 } 1402 1403 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1404 gfp_t gfp_flags) 1405 { 1406 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1407 struct dwc2_hsotg *hs = hs_ep->parent; 1408 unsigned long flags = 0; 1409 int ret = 0; 1410 1411 spin_lock_irqsave(&hs->lock, flags); 1412 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1413 spin_unlock_irqrestore(&hs->lock, flags); 1414 1415 return ret; 1416 } 1417 1418 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1419 struct usb_request *req) 1420 { 1421 struct dwc2_hsotg_req *hs_req = our_req(req); 1422 1423 kfree(hs_req); 1424 } 1425 1426 /** 1427 * dwc2_hsotg_complete_oursetup - setup completion callback 1428 * @ep: The endpoint the request was on. 1429 * @req: The request completed. 1430 * 1431 * Called on completion of any requests the driver itself 1432 * submitted that need cleaning up. 1433 */ 1434 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1435 struct usb_request *req) 1436 { 1437 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1438 struct dwc2_hsotg *hsotg = hs_ep->parent; 1439 1440 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1441 1442 dwc2_hsotg_ep_free_request(ep, req); 1443 } 1444 1445 /** 1446 * ep_from_windex - convert control wIndex value to endpoint 1447 * @hsotg: The driver state. 1448 * @windex: The control request wIndex field (in host order). 1449 * 1450 * Convert the given wIndex into a pointer to an driver endpoint 1451 * structure, or return NULL if it is not a valid endpoint. 1452 */ 1453 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1454 u32 windex) 1455 { 1456 struct dwc2_hsotg_ep *ep; 1457 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1458 int idx = windex & 0x7F; 1459 1460 if (windex >= 0x100) 1461 return NULL; 1462 1463 if (idx > hsotg->num_of_eps) 1464 return NULL; 1465 1466 ep = index_to_ep(hsotg, idx, dir); 1467 1468 if (idx && ep->dir_in != dir) 1469 return NULL; 1470 1471 return ep; 1472 } 1473 1474 /** 1475 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1476 * @hsotg: The driver state. 1477 * @testmode: requested usb test mode 1478 * Enable usb Test Mode requested by the Host. 1479 */ 1480 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1481 { 1482 int dctl = dwc2_readl(hsotg->regs + DCTL); 1483 1484 dctl &= ~DCTL_TSTCTL_MASK; 1485 switch (testmode) { 1486 case TEST_J: 1487 case TEST_K: 1488 case TEST_SE0_NAK: 1489 case TEST_PACKET: 1490 case TEST_FORCE_EN: 1491 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1492 break; 1493 default: 1494 return -EINVAL; 1495 } 1496 dwc2_writel(dctl, hsotg->regs + DCTL); 1497 return 0; 1498 } 1499 1500 /** 1501 * dwc2_hsotg_send_reply - send reply to control request 1502 * @hsotg: The device state 1503 * @ep: Endpoint 0 1504 * @buff: Buffer for request 1505 * @length: Length of reply. 1506 * 1507 * Create a request and queue it on the given endpoint. This is useful as 1508 * an internal method of sending replies to certain control requests, etc. 1509 */ 1510 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1511 struct dwc2_hsotg_ep *ep, 1512 void *buff, 1513 int length) 1514 { 1515 struct usb_request *req; 1516 int ret; 1517 1518 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1519 1520 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1521 hsotg->ep0_reply = req; 1522 if (!req) { 1523 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1524 return -ENOMEM; 1525 } 1526 1527 req->buf = hsotg->ep0_buff; 1528 req->length = length; 1529 /* 1530 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1531 * STATUS stage. 1532 */ 1533 req->zero = 0; 1534 req->complete = dwc2_hsotg_complete_oursetup; 1535 1536 if (length) 1537 memcpy(req->buf, buff, length); 1538 1539 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1540 if (ret) { 1541 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1542 return ret; 1543 } 1544 1545 return 0; 1546 } 1547 1548 /** 1549 * dwc2_hsotg_process_req_status - process request GET_STATUS 1550 * @hsotg: The device state 1551 * @ctrl: USB control request 1552 */ 1553 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1554 struct usb_ctrlrequest *ctrl) 1555 { 1556 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1557 struct dwc2_hsotg_ep *ep; 1558 __le16 reply; 1559 int ret; 1560 1561 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1562 1563 if (!ep0->dir_in) { 1564 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1565 return -EINVAL; 1566 } 1567 1568 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1569 case USB_RECIP_DEVICE: 1570 /* 1571 * bit 0 => self powered 1572 * bit 1 => remote wakeup 1573 */ 1574 reply = cpu_to_le16(0); 1575 break; 1576 1577 case USB_RECIP_INTERFACE: 1578 /* currently, the data result should be zero */ 1579 reply = cpu_to_le16(0); 1580 break; 1581 1582 case USB_RECIP_ENDPOINT: 1583 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1584 if (!ep) 1585 return -ENOENT; 1586 1587 reply = cpu_to_le16(ep->halted ? 1 : 0); 1588 break; 1589 1590 default: 1591 return 0; 1592 } 1593 1594 if (le16_to_cpu(ctrl->wLength) != 2) 1595 return -EINVAL; 1596 1597 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1598 if (ret) { 1599 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1600 return ret; 1601 } 1602 1603 return 1; 1604 } 1605 1606 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1607 1608 /** 1609 * get_ep_head - return the first request on the endpoint 1610 * @hs_ep: The controller endpoint to get 1611 * 1612 * Get the first request on the endpoint. 1613 */ 1614 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1615 { 1616 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1617 queue); 1618 } 1619 1620 /** 1621 * dwc2_gadget_start_next_request - Starts next request from ep queue 1622 * @hs_ep: Endpoint structure 1623 * 1624 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1625 * in its handler. Hence we need to unmask it here to be able to do 1626 * resynchronization. 1627 */ 1628 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1629 { 1630 u32 mask; 1631 struct dwc2_hsotg *hsotg = hs_ep->parent; 1632 int dir_in = hs_ep->dir_in; 1633 struct dwc2_hsotg_req *hs_req; 1634 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1635 1636 if (!list_empty(&hs_ep->queue)) { 1637 hs_req = get_ep_head(hs_ep); 1638 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1639 return; 1640 } 1641 if (!hs_ep->isochronous) 1642 return; 1643 1644 if (dir_in) { 1645 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1646 __func__); 1647 } else { 1648 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1649 __func__); 1650 mask = dwc2_readl(hsotg->regs + epmsk_reg); 1651 mask |= DOEPMSK_OUTTKNEPDISMSK; 1652 dwc2_writel(mask, hsotg->regs + epmsk_reg); 1653 } 1654 } 1655 1656 /** 1657 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1658 * @hsotg: The device state 1659 * @ctrl: USB control request 1660 */ 1661 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1662 struct usb_ctrlrequest *ctrl) 1663 { 1664 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1665 struct dwc2_hsotg_req *hs_req; 1666 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1667 struct dwc2_hsotg_ep *ep; 1668 int ret; 1669 bool halted; 1670 u32 recip; 1671 u32 wValue; 1672 u32 wIndex; 1673 1674 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1675 __func__, set ? "SET" : "CLEAR"); 1676 1677 wValue = le16_to_cpu(ctrl->wValue); 1678 wIndex = le16_to_cpu(ctrl->wIndex); 1679 recip = ctrl->bRequestType & USB_RECIP_MASK; 1680 1681 switch (recip) { 1682 case USB_RECIP_DEVICE: 1683 switch (wValue) { 1684 case USB_DEVICE_TEST_MODE: 1685 if ((wIndex & 0xff) != 0) 1686 return -EINVAL; 1687 if (!set) 1688 return -EINVAL; 1689 1690 hsotg->test_mode = wIndex >> 8; 1691 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1692 if (ret) { 1693 dev_err(hsotg->dev, 1694 "%s: failed to send reply\n", __func__); 1695 return ret; 1696 } 1697 break; 1698 default: 1699 return -ENOENT; 1700 } 1701 break; 1702 1703 case USB_RECIP_ENDPOINT: 1704 ep = ep_from_windex(hsotg, wIndex); 1705 if (!ep) { 1706 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1707 __func__, wIndex); 1708 return -ENOENT; 1709 } 1710 1711 switch (wValue) { 1712 case USB_ENDPOINT_HALT: 1713 halted = ep->halted; 1714 1715 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1716 1717 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1718 if (ret) { 1719 dev_err(hsotg->dev, 1720 "%s: failed to send reply\n", __func__); 1721 return ret; 1722 } 1723 1724 /* 1725 * we have to complete all requests for ep if it was 1726 * halted, and the halt was cleared by CLEAR_FEATURE 1727 */ 1728 1729 if (!set && halted) { 1730 /* 1731 * If we have request in progress, 1732 * then complete it 1733 */ 1734 if (ep->req) { 1735 hs_req = ep->req; 1736 ep->req = NULL; 1737 list_del_init(&hs_req->queue); 1738 if (hs_req->req.complete) { 1739 spin_unlock(&hsotg->lock); 1740 usb_gadget_giveback_request( 1741 &ep->ep, &hs_req->req); 1742 spin_lock(&hsotg->lock); 1743 } 1744 } 1745 1746 /* If we have pending request, then start it */ 1747 if (!ep->req) 1748 dwc2_gadget_start_next_request(ep); 1749 } 1750 1751 break; 1752 1753 default: 1754 return -ENOENT; 1755 } 1756 break; 1757 default: 1758 return -ENOENT; 1759 } 1760 return 1; 1761 } 1762 1763 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1764 1765 /** 1766 * dwc2_hsotg_stall_ep0 - stall ep0 1767 * @hsotg: The device state 1768 * 1769 * Set stall for ep0 as response for setup request. 1770 */ 1771 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1772 { 1773 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1774 u32 reg; 1775 u32 ctrl; 1776 1777 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1778 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1779 1780 /* 1781 * DxEPCTL_Stall will be cleared by EP once it has 1782 * taken effect, so no need to clear later. 1783 */ 1784 1785 ctrl = dwc2_readl(hsotg->regs + reg); 1786 ctrl |= DXEPCTL_STALL; 1787 ctrl |= DXEPCTL_CNAK; 1788 dwc2_writel(ctrl, hsotg->regs + reg); 1789 1790 dev_dbg(hsotg->dev, 1791 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1792 ctrl, reg, dwc2_readl(hsotg->regs + reg)); 1793 1794 /* 1795 * complete won't be called, so we enqueue 1796 * setup request here 1797 */ 1798 dwc2_hsotg_enqueue_setup(hsotg); 1799 } 1800 1801 /** 1802 * dwc2_hsotg_process_control - process a control request 1803 * @hsotg: The device state 1804 * @ctrl: The control request received 1805 * 1806 * The controller has received the SETUP phase of a control request, and 1807 * needs to work out what to do next (and whether to pass it on to the 1808 * gadget driver). 1809 */ 1810 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1811 struct usb_ctrlrequest *ctrl) 1812 { 1813 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1814 int ret = 0; 1815 u32 dcfg; 1816 1817 dev_dbg(hsotg->dev, 1818 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1819 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1820 ctrl->wIndex, ctrl->wLength); 1821 1822 if (ctrl->wLength == 0) { 1823 ep0->dir_in = 1; 1824 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1825 } else if (ctrl->bRequestType & USB_DIR_IN) { 1826 ep0->dir_in = 1; 1827 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1828 } else { 1829 ep0->dir_in = 0; 1830 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1831 } 1832 1833 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1834 switch (ctrl->bRequest) { 1835 case USB_REQ_SET_ADDRESS: 1836 hsotg->connected = 1; 1837 dcfg = dwc2_readl(hsotg->regs + DCFG); 1838 dcfg &= ~DCFG_DEVADDR_MASK; 1839 dcfg |= (le16_to_cpu(ctrl->wValue) << 1840 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1841 dwc2_writel(dcfg, hsotg->regs + DCFG); 1842 1843 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1844 1845 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1846 return; 1847 1848 case USB_REQ_GET_STATUS: 1849 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1850 break; 1851 1852 case USB_REQ_CLEAR_FEATURE: 1853 case USB_REQ_SET_FEATURE: 1854 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1855 break; 1856 } 1857 } 1858 1859 /* as a fallback, try delivering it to the driver to deal with */ 1860 1861 if (ret == 0 && hsotg->driver) { 1862 spin_unlock(&hsotg->lock); 1863 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1864 spin_lock(&hsotg->lock); 1865 if (ret < 0) 1866 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1867 } 1868 1869 /* 1870 * the request is either unhandlable, or is not formatted correctly 1871 * so respond with a STALL for the status stage to indicate failure. 1872 */ 1873 1874 if (ret < 0) 1875 dwc2_hsotg_stall_ep0(hsotg); 1876 } 1877 1878 /** 1879 * dwc2_hsotg_complete_setup - completion of a setup transfer 1880 * @ep: The endpoint the request was on. 1881 * @req: The request completed. 1882 * 1883 * Called on completion of any requests the driver itself submitted for 1884 * EP0 setup packets 1885 */ 1886 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1887 struct usb_request *req) 1888 { 1889 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1890 struct dwc2_hsotg *hsotg = hs_ep->parent; 1891 1892 if (req->status < 0) { 1893 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1894 return; 1895 } 1896 1897 spin_lock(&hsotg->lock); 1898 if (req->actual == 0) 1899 dwc2_hsotg_enqueue_setup(hsotg); 1900 else 1901 dwc2_hsotg_process_control(hsotg, req->buf); 1902 spin_unlock(&hsotg->lock); 1903 } 1904 1905 /** 1906 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 1907 * @hsotg: The device state. 1908 * 1909 * Enqueue a request on EP0 if necessary to received any SETUP packets 1910 * received from the host. 1911 */ 1912 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 1913 { 1914 struct usb_request *req = hsotg->ctrl_req; 1915 struct dwc2_hsotg_req *hs_req = our_req(req); 1916 int ret; 1917 1918 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 1919 1920 req->zero = 0; 1921 req->length = 8; 1922 req->buf = hsotg->ctrl_buff; 1923 req->complete = dwc2_hsotg_complete_setup; 1924 1925 if (!list_empty(&hs_req->queue)) { 1926 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 1927 return; 1928 } 1929 1930 hsotg->eps_out[0]->dir_in = 0; 1931 hsotg->eps_out[0]->send_zlp = 0; 1932 hsotg->ep0_state = DWC2_EP0_SETUP; 1933 1934 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 1935 if (ret < 0) { 1936 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 1937 /* 1938 * Don't think there's much we can do other than watch the 1939 * driver fail. 1940 */ 1941 } 1942 } 1943 1944 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 1945 struct dwc2_hsotg_ep *hs_ep) 1946 { 1947 u32 ctrl; 1948 u8 index = hs_ep->index; 1949 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1950 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1951 1952 if (hs_ep->dir_in) 1953 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 1954 index); 1955 else 1956 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 1957 index); 1958 if (using_desc_dma(hsotg)) { 1959 /* Not specific buffer needed for ep0 ZLP */ 1960 dma_addr_t dma = hs_ep->desc_list_dma; 1961 1962 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 1963 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 1964 } else { 1965 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 1966 DXEPTSIZ_XFERSIZE(0), hsotg->regs + 1967 epsiz_reg); 1968 } 1969 1970 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 1971 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1972 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1973 ctrl |= DXEPCTL_USBACTEP; 1974 dwc2_writel(ctrl, hsotg->regs + epctl_reg); 1975 } 1976 1977 /** 1978 * dwc2_hsotg_complete_request - complete a request given to us 1979 * @hsotg: The device state. 1980 * @hs_ep: The endpoint the request was on. 1981 * @hs_req: The request to complete. 1982 * @result: The result code (0 => Ok, otherwise errno) 1983 * 1984 * The given request has finished, so call the necessary completion 1985 * if it has one and then look to see if we can start a new request 1986 * on the endpoint. 1987 * 1988 * Note, expects the ep to already be locked as appropriate. 1989 */ 1990 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 1991 struct dwc2_hsotg_ep *hs_ep, 1992 struct dwc2_hsotg_req *hs_req, 1993 int result) 1994 { 1995 if (!hs_req) { 1996 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 1997 return; 1998 } 1999 2000 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2001 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2002 2003 /* 2004 * only replace the status if we've not already set an error 2005 * from a previous transaction 2006 */ 2007 2008 if (hs_req->req.status == -EINPROGRESS) 2009 hs_req->req.status = result; 2010 2011 if (using_dma(hsotg)) 2012 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2013 2014 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2015 2016 hs_ep->req = NULL; 2017 list_del_init(&hs_req->queue); 2018 2019 /* 2020 * call the complete request with the locks off, just in case the 2021 * request tries to queue more work for this endpoint. 2022 */ 2023 2024 if (hs_req->req.complete) { 2025 spin_unlock(&hsotg->lock); 2026 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2027 spin_lock(&hsotg->lock); 2028 } 2029 2030 /* In DDMA don't need to proceed to starting of next ISOC request */ 2031 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2032 return; 2033 2034 /* 2035 * Look to see if there is anything else to do. Note, the completion 2036 * of the previous request may have caused a new request to be started 2037 * so be careful when doing this. 2038 */ 2039 2040 if (!hs_ep->req && result >= 0) 2041 dwc2_gadget_start_next_request(hs_ep); 2042 } 2043 2044 /* 2045 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2046 * @hs_ep: The endpoint the request was on. 2047 * 2048 * Get first request from the ep queue, determine descriptor on which complete 2049 * happened. SW based on isoc_chain_num discovers which half of the descriptor 2050 * chain is currently in use by HW, adjusts dma_address and calculates index 2051 * of completed descriptor based on the value of DEPDMA register. Update actual 2052 * length of request, giveback to gadget. 2053 */ 2054 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2055 { 2056 struct dwc2_hsotg *hsotg = hs_ep->parent; 2057 struct dwc2_hsotg_req *hs_req; 2058 struct usb_request *ureq; 2059 int index; 2060 dma_addr_t dma_addr; 2061 u32 dma_reg; 2062 u32 depdma; 2063 u32 desc_sts; 2064 u32 mask; 2065 2066 hs_req = get_ep_head(hs_ep); 2067 if (!hs_req) { 2068 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2069 return; 2070 } 2071 ureq = &hs_req->req; 2072 2073 dma_addr = hs_ep->desc_list_dma; 2074 2075 /* 2076 * If lower half of descriptor chain is currently use by SW, 2077 * that means higher half is being processed by HW, so shift 2078 * DMA address to higher half of descriptor chain. 2079 */ 2080 if (!hs_ep->isoc_chain_num) 2081 dma_addr += sizeof(struct dwc2_dma_desc) * 2082 (MAX_DMA_DESC_NUM_GENERIC / 2); 2083 2084 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index); 2085 depdma = dwc2_readl(hsotg->regs + dma_reg); 2086 2087 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1; 2088 desc_sts = hs_ep->desc_list[index].status; 2089 2090 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2091 DEV_DMA_ISOC_RX_NBYTES_MASK; 2092 ureq->actual = ureq->length - 2093 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT); 2094 2095 /* Adjust actual length for ISOC Out if length is not align of 4 */ 2096 if (!hs_ep->dir_in && ureq->length & 0x3) 2097 ureq->actual += 4 - (ureq->length & 0x3); 2098 2099 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2100 } 2101 2102 /* 2103 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any. 2104 * @hs_ep: The isochronous endpoint to be re-enabled. 2105 * 2106 * If ep has been disabled due to last descriptor servicing (IN endpoint) or 2107 * BNA (OUT endpoint) check the status of other half of descriptor chain that 2108 * was under SW control till HW was busy and restart the endpoint if needed. 2109 */ 2110 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 2111 { 2112 struct dwc2_hsotg *hsotg = hs_ep->parent; 2113 u32 depctl; 2114 u32 dma_reg; 2115 u32 ctrl; 2116 u32 dma_addr = hs_ep->desc_list_dma; 2117 unsigned char index = hs_ep->index; 2118 2119 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 2120 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2121 2122 ctrl = dwc2_readl(hsotg->regs + depctl); 2123 2124 /* 2125 * EP was disabled if HW has processed last descriptor or BNA was set. 2126 * So restart ep if SW has prepared new descriptor chain in ep_queue 2127 * routine while HW was busy. 2128 */ 2129 if (!(ctrl & DXEPCTL_EPENA)) { 2130 if (!hs_ep->next_desc) { 2131 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n", 2132 __func__); 2133 return; 2134 } 2135 2136 dma_addr += sizeof(struct dwc2_dma_desc) * 2137 (MAX_DMA_DESC_NUM_GENERIC / 2) * 2138 hs_ep->isoc_chain_num; 2139 dwc2_writel(dma_addr, hsotg->regs + dma_reg); 2140 2141 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 2142 dwc2_writel(ctrl, hsotg->regs + depctl); 2143 2144 /* Switch ISOC descriptor chain number being processed by SW*/ 2145 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1; 2146 hs_ep->next_desc = 0; 2147 2148 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n", 2149 __func__); 2150 } 2151 } 2152 2153 /** 2154 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2155 * @hsotg: The device state. 2156 * @ep_idx: The endpoint index for the data 2157 * @size: The size of data in the fifo, in bytes 2158 * 2159 * The FIFO status shows there is data to read from the FIFO for a given 2160 * endpoint, so sort out whether we need to read the data into a request 2161 * that has been made for that endpoint. 2162 */ 2163 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2164 { 2165 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2166 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2167 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx); 2168 int to_read; 2169 int max_req; 2170 int read_ptr; 2171 2172 if (!hs_req) { 2173 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx)); 2174 int ptr; 2175 2176 dev_dbg(hsotg->dev, 2177 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2178 __func__, size, ep_idx, epctl); 2179 2180 /* dump the data from the FIFO, we've nothing we can do */ 2181 for (ptr = 0; ptr < size; ptr += 4) 2182 (void)dwc2_readl(fifo); 2183 2184 return; 2185 } 2186 2187 to_read = size; 2188 read_ptr = hs_req->req.actual; 2189 max_req = hs_req->req.length - read_ptr; 2190 2191 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2192 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2193 2194 if (to_read > max_req) { 2195 /* 2196 * more data appeared than we where willing 2197 * to deal with in this request. 2198 */ 2199 2200 /* currently we don't deal this */ 2201 WARN_ON_ONCE(1); 2202 } 2203 2204 hs_ep->total_data += to_read; 2205 hs_req->req.actual += to_read; 2206 to_read = DIV_ROUND_UP(to_read, 4); 2207 2208 /* 2209 * note, we might over-write the buffer end by 3 bytes depending on 2210 * alignment of the data. 2211 */ 2212 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read); 2213 } 2214 2215 /** 2216 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2217 * @hsotg: The device instance 2218 * @dir_in: If IN zlp 2219 * 2220 * Generate a zero-length IN packet request for terminating a SETUP 2221 * transaction. 2222 * 2223 * Note, since we don't write any data to the TxFIFO, then it is 2224 * currently believed that we do not need to wait for any space in 2225 * the TxFIFO. 2226 */ 2227 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2228 { 2229 /* eps_out[0] is used in both directions */ 2230 hsotg->eps_out[0]->dir_in = dir_in; 2231 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2232 2233 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2234 } 2235 2236 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2237 u32 epctl_reg) 2238 { 2239 u32 ctrl; 2240 2241 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 2242 if (ctrl & DXEPCTL_EOFRNUM) 2243 ctrl |= DXEPCTL_SETEVENFR; 2244 else 2245 ctrl |= DXEPCTL_SETODDFR; 2246 dwc2_writel(ctrl, hsotg->regs + epctl_reg); 2247 } 2248 2249 /* 2250 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2251 * @hs_ep - The endpoint on which transfer went 2252 * 2253 * Iterate over endpoints descriptor chain and get info on bytes remained 2254 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2255 */ 2256 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2257 { 2258 struct dwc2_hsotg *hsotg = hs_ep->parent; 2259 unsigned int bytes_rem = 0; 2260 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2261 int i; 2262 u32 status; 2263 2264 if (!desc) 2265 return -EINVAL; 2266 2267 for (i = 0; i < hs_ep->desc_count; ++i) { 2268 status = desc->status; 2269 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2270 2271 if (status & DEV_DMA_STS_MASK) 2272 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2273 i, status & DEV_DMA_STS_MASK); 2274 } 2275 2276 return bytes_rem; 2277 } 2278 2279 /** 2280 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2281 * @hsotg: The device instance 2282 * @epnum: The endpoint received from 2283 * 2284 * The RXFIFO has delivered an OutDone event, which means that the data 2285 * transfer for an OUT endpoint has been completed, either by a short 2286 * packet or by the finish of a transfer. 2287 */ 2288 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2289 { 2290 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum)); 2291 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2292 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2293 struct usb_request *req = &hs_req->req; 2294 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2295 int result = 0; 2296 2297 if (!hs_req) { 2298 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2299 return; 2300 } 2301 2302 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2303 dev_dbg(hsotg->dev, "zlp packet received\n"); 2304 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2305 dwc2_hsotg_enqueue_setup(hsotg); 2306 return; 2307 } 2308 2309 if (using_desc_dma(hsotg)) 2310 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2311 2312 if (using_dma(hsotg)) { 2313 unsigned int size_done; 2314 2315 /* 2316 * Calculate the size of the transfer by checking how much 2317 * is left in the endpoint size register and then working it 2318 * out from the amount we loaded for the transfer. 2319 * 2320 * We need to do this as DMA pointers are always 32bit aligned 2321 * so may overshoot/undershoot the transfer. 2322 */ 2323 2324 size_done = hs_ep->size_loaded - size_left; 2325 size_done += hs_ep->last_load; 2326 2327 req->actual = size_done; 2328 } 2329 2330 /* if there is more request to do, schedule new transfer */ 2331 if (req->actual < req->length && size_left == 0) { 2332 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2333 return; 2334 } 2335 2336 if (req->actual < req->length && req->short_not_ok) { 2337 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2338 __func__, req->actual, req->length); 2339 2340 /* 2341 * todo - what should we return here? there's no one else 2342 * even bothering to check the status. 2343 */ 2344 } 2345 2346 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2347 if (!using_desc_dma(hsotg) && epnum == 0 && 2348 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2349 /* Move to STATUS IN */ 2350 dwc2_hsotg_ep0_zlp(hsotg, true); 2351 return; 2352 } 2353 2354 /* 2355 * Slave mode OUT transfers do not go through XferComplete so 2356 * adjust the ISOC parity here. 2357 */ 2358 if (!using_dma(hsotg)) { 2359 if (hs_ep->isochronous && hs_ep->interval == 1) 2360 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2361 else if (hs_ep->isochronous && hs_ep->interval > 1) 2362 dwc2_gadget_incr_frame_num(hs_ep); 2363 } 2364 2365 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2366 } 2367 2368 /** 2369 * dwc2_hsotg_handle_rx - RX FIFO has data 2370 * @hsotg: The device instance 2371 * 2372 * The IRQ handler has detected that the RX FIFO has some data in it 2373 * that requires processing, so find out what is in there and do the 2374 * appropriate read. 2375 * 2376 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2377 * chunks, so if you have x packets received on an endpoint you'll get x 2378 * FIFO events delivered, each with a packet's worth of data in it. 2379 * 2380 * When using DMA, we should not be processing events from the RXFIFO 2381 * as the actual data should be sent to the memory directly and we turn 2382 * on the completion interrupts to get notifications of transfer completion. 2383 */ 2384 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2385 { 2386 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP); 2387 u32 epnum, status, size; 2388 2389 WARN_ON(using_dma(hsotg)); 2390 2391 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2392 status = grxstsr & GRXSTS_PKTSTS_MASK; 2393 2394 size = grxstsr & GRXSTS_BYTECNT_MASK; 2395 size >>= GRXSTS_BYTECNT_SHIFT; 2396 2397 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2398 __func__, grxstsr, size, epnum); 2399 2400 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2401 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2402 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2403 break; 2404 2405 case GRXSTS_PKTSTS_OUTDONE: 2406 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2407 dwc2_hsotg_read_frameno(hsotg)); 2408 2409 if (!using_dma(hsotg)) 2410 dwc2_hsotg_handle_outdone(hsotg, epnum); 2411 break; 2412 2413 case GRXSTS_PKTSTS_SETUPDONE: 2414 dev_dbg(hsotg->dev, 2415 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2416 dwc2_hsotg_read_frameno(hsotg), 2417 dwc2_readl(hsotg->regs + DOEPCTL(0))); 2418 /* 2419 * Call dwc2_hsotg_handle_outdone here if it was not called from 2420 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2421 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2422 */ 2423 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2424 dwc2_hsotg_handle_outdone(hsotg, epnum); 2425 break; 2426 2427 case GRXSTS_PKTSTS_OUTRX: 2428 dwc2_hsotg_rx_data(hsotg, epnum, size); 2429 break; 2430 2431 case GRXSTS_PKTSTS_SETUPRX: 2432 dev_dbg(hsotg->dev, 2433 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2434 dwc2_hsotg_read_frameno(hsotg), 2435 dwc2_readl(hsotg->regs + DOEPCTL(0))); 2436 2437 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2438 2439 dwc2_hsotg_rx_data(hsotg, epnum, size); 2440 break; 2441 2442 default: 2443 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2444 __func__, grxstsr); 2445 2446 dwc2_hsotg_dump(hsotg); 2447 break; 2448 } 2449 } 2450 2451 /** 2452 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2453 * @mps: The maximum packet size in bytes. 2454 */ 2455 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2456 { 2457 switch (mps) { 2458 case 64: 2459 return D0EPCTL_MPS_64; 2460 case 32: 2461 return D0EPCTL_MPS_32; 2462 case 16: 2463 return D0EPCTL_MPS_16; 2464 case 8: 2465 return D0EPCTL_MPS_8; 2466 } 2467 2468 /* bad max packet size, warn and return invalid result */ 2469 WARN_ON(1); 2470 return (u32)-1; 2471 } 2472 2473 /** 2474 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2475 * @hsotg: The driver state. 2476 * @ep: The index number of the endpoint 2477 * @mps: The maximum packet size in bytes 2478 * @mc: The multicount value 2479 * 2480 * Configure the maximum packet size for the given endpoint, updating 2481 * the hardware control registers to reflect this. 2482 */ 2483 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2484 unsigned int ep, unsigned int mps, 2485 unsigned int mc, unsigned int dir_in) 2486 { 2487 struct dwc2_hsotg_ep *hs_ep; 2488 void __iomem *regs = hsotg->regs; 2489 u32 reg; 2490 2491 hs_ep = index_to_ep(hsotg, ep, dir_in); 2492 if (!hs_ep) 2493 return; 2494 2495 if (ep == 0) { 2496 u32 mps_bytes = mps; 2497 2498 /* EP0 is a special case */ 2499 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2500 if (mps > 3) 2501 goto bad_mps; 2502 hs_ep->ep.maxpacket = mps_bytes; 2503 hs_ep->mc = 1; 2504 } else { 2505 if (mps > 1024) 2506 goto bad_mps; 2507 hs_ep->mc = mc; 2508 if (mc > 3) 2509 goto bad_mps; 2510 hs_ep->ep.maxpacket = mps; 2511 } 2512 2513 if (dir_in) { 2514 reg = dwc2_readl(regs + DIEPCTL(ep)); 2515 reg &= ~DXEPCTL_MPS_MASK; 2516 reg |= mps; 2517 dwc2_writel(reg, regs + DIEPCTL(ep)); 2518 } else { 2519 reg = dwc2_readl(regs + DOEPCTL(ep)); 2520 reg &= ~DXEPCTL_MPS_MASK; 2521 reg |= mps; 2522 dwc2_writel(reg, regs + DOEPCTL(ep)); 2523 } 2524 2525 return; 2526 2527 bad_mps: 2528 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2529 } 2530 2531 /** 2532 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2533 * @hsotg: The driver state 2534 * @idx: The index for the endpoint (0..15) 2535 */ 2536 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2537 { 2538 int timeout; 2539 int val; 2540 2541 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2542 hsotg->regs + GRSTCTL); 2543 2544 /* wait until the fifo is flushed */ 2545 timeout = 100; 2546 2547 while (1) { 2548 val = dwc2_readl(hsotg->regs + GRSTCTL); 2549 2550 if ((val & (GRSTCTL_TXFFLSH)) == 0) 2551 break; 2552 2553 if (--timeout == 0) { 2554 dev_err(hsotg->dev, 2555 "%s: timeout flushing fifo (GRSTCTL=%08x)\n", 2556 __func__, val); 2557 break; 2558 } 2559 2560 udelay(1); 2561 } 2562 } 2563 2564 /** 2565 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2566 * @hsotg: The driver state 2567 * @hs_ep: The driver endpoint to check. 2568 * 2569 * Check to see if there is a request that has data to send, and if so 2570 * make an attempt to write data into the FIFO. 2571 */ 2572 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2573 struct dwc2_hsotg_ep *hs_ep) 2574 { 2575 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2576 2577 if (!hs_ep->dir_in || !hs_req) { 2578 /** 2579 * if request is not enqueued, we disable interrupts 2580 * for endpoints, excepting ep0 2581 */ 2582 if (hs_ep->index != 0) 2583 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2584 hs_ep->dir_in, 0); 2585 return 0; 2586 } 2587 2588 if (hs_req->req.actual < hs_req->req.length) { 2589 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2590 hs_ep->index); 2591 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2592 } 2593 2594 return 0; 2595 } 2596 2597 /** 2598 * dwc2_hsotg_complete_in - complete IN transfer 2599 * @hsotg: The device state. 2600 * @hs_ep: The endpoint that has just completed. 2601 * 2602 * An IN transfer has been completed, update the transfer's state and then 2603 * call the relevant completion routines. 2604 */ 2605 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2606 struct dwc2_hsotg_ep *hs_ep) 2607 { 2608 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2609 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 2610 int size_left, size_done; 2611 2612 if (!hs_req) { 2613 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2614 return; 2615 } 2616 2617 /* Finish ZLP handling for IN EP0 transactions */ 2618 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2619 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2620 2621 /* 2622 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2623 * changed to IN. Change back to complete OUT transfer request 2624 */ 2625 hs_ep->dir_in = 0; 2626 2627 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2628 if (hsotg->test_mode) { 2629 int ret; 2630 2631 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2632 if (ret < 0) { 2633 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2634 hsotg->test_mode); 2635 dwc2_hsotg_stall_ep0(hsotg); 2636 return; 2637 } 2638 } 2639 dwc2_hsotg_enqueue_setup(hsotg); 2640 return; 2641 } 2642 2643 /* 2644 * Calculate the size of the transfer by checking how much is left 2645 * in the endpoint size register and then working it out from 2646 * the amount we loaded for the transfer. 2647 * 2648 * We do this even for DMA, as the transfer may have incremented 2649 * past the end of the buffer (DMA transfers are always 32bit 2650 * aligned). 2651 */ 2652 if (using_desc_dma(hsotg)) { 2653 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2654 if (size_left < 0) 2655 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2656 size_left); 2657 } else { 2658 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2659 } 2660 2661 size_done = hs_ep->size_loaded - size_left; 2662 size_done += hs_ep->last_load; 2663 2664 if (hs_req->req.actual != size_done) 2665 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2666 __func__, hs_req->req.actual, size_done); 2667 2668 hs_req->req.actual = size_done; 2669 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2670 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2671 2672 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2673 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2674 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2675 return; 2676 } 2677 2678 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2679 if (hs_ep->send_zlp) { 2680 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2681 hs_ep->send_zlp = 0; 2682 /* transfer will be completed on next complete interrupt */ 2683 return; 2684 } 2685 2686 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2687 /* Move to STATUS OUT */ 2688 dwc2_hsotg_ep0_zlp(hsotg, false); 2689 return; 2690 } 2691 2692 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2693 } 2694 2695 /** 2696 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2697 * @hsotg: The device state. 2698 * @idx: Index of ep. 2699 * @dir_in: Endpoint direction 1-in 0-out. 2700 * 2701 * Reads for endpoint with given index and direction, by masking 2702 * epint_reg with coresponding mask. 2703 */ 2704 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2705 unsigned int idx, int dir_in) 2706 { 2707 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2708 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2709 u32 ints; 2710 u32 mask; 2711 u32 diepempmsk; 2712 2713 mask = dwc2_readl(hsotg->regs + epmsk_reg); 2714 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK); 2715 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2716 mask |= DXEPINT_SETUP_RCVD; 2717 2718 ints = dwc2_readl(hsotg->regs + epint_reg); 2719 ints &= mask; 2720 return ints; 2721 } 2722 2723 /** 2724 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2725 * @hs_ep: The endpoint on which interrupt is asserted. 2726 * 2727 * This interrupt indicates that the endpoint has been disabled per the 2728 * application's request. 2729 * 2730 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2731 * in case of ISOC completes current request. 2732 * 2733 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2734 * request starts it. 2735 */ 2736 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2737 { 2738 struct dwc2_hsotg *hsotg = hs_ep->parent; 2739 struct dwc2_hsotg_req *hs_req; 2740 unsigned char idx = hs_ep->index; 2741 int dir_in = hs_ep->dir_in; 2742 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2743 int dctl = dwc2_readl(hsotg->regs + DCTL); 2744 2745 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2746 2747 if (dir_in) { 2748 int epctl = dwc2_readl(hsotg->regs + epctl_reg); 2749 2750 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2751 2752 if (hs_ep->isochronous) { 2753 dwc2_hsotg_complete_in(hsotg, hs_ep); 2754 return; 2755 } 2756 2757 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2758 int dctl = dwc2_readl(hsotg->regs + DCTL); 2759 2760 dctl |= DCTL_CGNPINNAK; 2761 dwc2_writel(dctl, hsotg->regs + DCTL); 2762 } 2763 return; 2764 } 2765 2766 if (dctl & DCTL_GOUTNAKSTS) { 2767 dctl |= DCTL_CGOUTNAK; 2768 dwc2_writel(dctl, hsotg->regs + DCTL); 2769 } 2770 2771 if (!hs_ep->isochronous) 2772 return; 2773 2774 if (list_empty(&hs_ep->queue)) { 2775 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2776 __func__, hs_ep); 2777 return; 2778 } 2779 2780 do { 2781 hs_req = get_ep_head(hs_ep); 2782 if (hs_req) 2783 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2784 -ENODATA); 2785 dwc2_gadget_incr_frame_num(hs_ep); 2786 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2787 2788 dwc2_gadget_start_next_request(hs_ep); 2789 } 2790 2791 /** 2792 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2793 * @hs_ep: The endpoint on which interrupt is asserted. 2794 * 2795 * This is starting point for ISOC-OUT transfer, synchronization done with 2796 * first out token received from host while corresponding EP is disabled. 2797 * 2798 * Device does not know initial frame in which out token will come. For this 2799 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2800 * getting this interrupt SW starts calculation for next transfer frame. 2801 */ 2802 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2803 { 2804 struct dwc2_hsotg *hsotg = ep->parent; 2805 int dir_in = ep->dir_in; 2806 u32 doepmsk; 2807 u32 tmp; 2808 2809 if (dir_in || !ep->isochronous) 2810 return; 2811 2812 /* 2813 * Store frame in which irq was asserted here, as 2814 * it can change while completing request below. 2815 */ 2816 tmp = dwc2_hsotg_read_frameno(hsotg); 2817 2818 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA); 2819 2820 if (using_desc_dma(hsotg)) { 2821 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2822 /* Start first ISO Out */ 2823 ep->target_frame = tmp; 2824 dwc2_gadget_start_isoc_ddma(ep); 2825 } 2826 return; 2827 } 2828 2829 if (ep->interval > 1 && 2830 ep->target_frame == TARGET_FRAME_INITIAL) { 2831 u32 dsts; 2832 u32 ctrl; 2833 2834 dsts = dwc2_readl(hsotg->regs + DSTS); 2835 ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 2836 dwc2_gadget_incr_frame_num(ep); 2837 2838 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index)); 2839 if (ep->target_frame & 0x1) 2840 ctrl |= DXEPCTL_SETODDFR; 2841 else 2842 ctrl |= DXEPCTL_SETEVENFR; 2843 2844 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index)); 2845 } 2846 2847 dwc2_gadget_start_next_request(ep); 2848 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK); 2849 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2850 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK); 2851 } 2852 2853 /** 2854 * dwc2_gadget_handle_nak - handle NAK interrupt 2855 * @hs_ep: The endpoint on which interrupt is asserted. 2856 * 2857 * This is starting point for ISOC-IN transfer, synchronization done with 2858 * first IN token received from host while corresponding EP is disabled. 2859 * 2860 * Device does not know when first one token will arrive from host. On first 2861 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2862 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2863 * sent in response to that as there was no data in FIFO. SW is basing on this 2864 * interrupt to obtain frame in which token has come and then based on the 2865 * interval calculates next frame for transfer. 2866 */ 2867 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2868 { 2869 struct dwc2_hsotg *hsotg = hs_ep->parent; 2870 int dir_in = hs_ep->dir_in; 2871 2872 if (!dir_in || !hs_ep->isochronous) 2873 return; 2874 2875 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2876 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 2877 2878 if (using_desc_dma(hsotg)) { 2879 dwc2_gadget_start_isoc_ddma(hs_ep); 2880 return; 2881 } 2882 2883 if (hs_ep->interval > 1) { 2884 u32 ctrl = dwc2_readl(hsotg->regs + 2885 DIEPCTL(hs_ep->index)); 2886 if (hs_ep->target_frame & 0x1) 2887 ctrl |= DXEPCTL_SETODDFR; 2888 else 2889 ctrl |= DXEPCTL_SETEVENFR; 2890 2891 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index)); 2892 } 2893 2894 dwc2_hsotg_complete_request(hsotg, hs_ep, 2895 get_ep_head(hs_ep), 0); 2896 } 2897 2898 dwc2_gadget_incr_frame_num(hs_ep); 2899 } 2900 2901 /** 2902 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2903 * @hsotg: The driver state 2904 * @idx: The index for the endpoint (0..15) 2905 * @dir_in: Set if this is an IN endpoint 2906 * 2907 * Process and clear any interrupt pending for an individual endpoint 2908 */ 2909 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2910 int dir_in) 2911 { 2912 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 2913 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2914 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2915 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 2916 u32 ints; 2917 u32 ctrl; 2918 2919 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 2920 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 2921 2922 /* Clear endpoint interrupts */ 2923 dwc2_writel(ints, hsotg->regs + epint_reg); 2924 2925 if (!hs_ep) { 2926 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 2927 __func__, idx, dir_in ? "in" : "out"); 2928 return; 2929 } 2930 2931 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 2932 __func__, idx, dir_in ? "in" : "out", ints); 2933 2934 /* Don't process XferCompl interrupt if it is a setup packet */ 2935 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 2936 ints &= ~DXEPINT_XFERCOMPL; 2937 2938 /* 2939 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 2940 * stage and xfercomplete was generated without SETUP phase done 2941 * interrupt. SW should parse received setup packet only after host's 2942 * exit from setup phase of control transfer. 2943 */ 2944 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 2945 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 2946 ints &= ~DXEPINT_XFERCOMPL; 2947 2948 if (ints & DXEPINT_XFERCOMPL) { 2949 dev_dbg(hsotg->dev, 2950 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 2951 __func__, dwc2_readl(hsotg->regs + epctl_reg), 2952 dwc2_readl(hsotg->regs + epsiz_reg)); 2953 2954 /* In DDMA handle isochronous requests separately */ 2955 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 2956 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 2957 /* Try to start next isoc request */ 2958 dwc2_gadget_start_next_isoc_ddma(hs_ep); 2959 } else if (dir_in) { 2960 /* 2961 * We get OutDone from the FIFO, so we only 2962 * need to look at completing IN requests here 2963 * if operating slave mode 2964 */ 2965 if (hs_ep->isochronous && hs_ep->interval > 1) 2966 dwc2_gadget_incr_frame_num(hs_ep); 2967 2968 dwc2_hsotg_complete_in(hsotg, hs_ep); 2969 if (ints & DXEPINT_NAKINTRPT) 2970 ints &= ~DXEPINT_NAKINTRPT; 2971 2972 if (idx == 0 && !hs_ep->req) 2973 dwc2_hsotg_enqueue_setup(hsotg); 2974 } else if (using_dma(hsotg)) { 2975 /* 2976 * We're using DMA, we need to fire an OutDone here 2977 * as we ignore the RXFIFO. 2978 */ 2979 if (hs_ep->isochronous && hs_ep->interval > 1) 2980 dwc2_gadget_incr_frame_num(hs_ep); 2981 2982 dwc2_hsotg_handle_outdone(hsotg, idx); 2983 } 2984 } 2985 2986 if (ints & DXEPINT_EPDISBLD) 2987 dwc2_gadget_handle_ep_disabled(hs_ep); 2988 2989 if (ints & DXEPINT_OUTTKNEPDIS) 2990 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 2991 2992 if (ints & DXEPINT_NAKINTRPT) 2993 dwc2_gadget_handle_nak(hs_ep); 2994 2995 if (ints & DXEPINT_AHBERR) 2996 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 2997 2998 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 2999 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3000 3001 if (using_dma(hsotg) && idx == 0) { 3002 /* 3003 * this is the notification we've received a 3004 * setup packet. In non-DMA mode we'd get this 3005 * from the RXFIFO, instead we need to process 3006 * the setup here. 3007 */ 3008 3009 if (dir_in) 3010 WARN_ON_ONCE(1); 3011 else 3012 dwc2_hsotg_handle_outdone(hsotg, 0); 3013 } 3014 } 3015 3016 if (ints & DXEPINT_STSPHSERCVD) { 3017 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3018 3019 /* Move to STATUS IN for DDMA */ 3020 if (using_desc_dma(hsotg)) 3021 dwc2_hsotg_ep0_zlp(hsotg, true); 3022 } 3023 3024 if (ints & DXEPINT_BACK2BACKSETUP) 3025 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3026 3027 if (ints & DXEPINT_BNAINTR) { 3028 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3029 3030 /* 3031 * Try to start next isoc request, if any. 3032 * Sometimes the endpoint remains enabled after BNA interrupt 3033 * assertion, which is not expected, hence we can enter here 3034 * couple of times. 3035 */ 3036 if (hs_ep->isochronous) 3037 dwc2_gadget_start_next_isoc_ddma(hs_ep); 3038 } 3039 3040 if (dir_in && !hs_ep->isochronous) { 3041 /* not sure if this is important, but we'll clear it anyway */ 3042 if (ints & DXEPINT_INTKNTXFEMP) { 3043 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3044 __func__, idx); 3045 } 3046 3047 /* this probably means something bad is happening */ 3048 if (ints & DXEPINT_INTKNEPMIS) { 3049 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3050 __func__, idx); 3051 } 3052 3053 /* FIFO has space or is empty (see GAHBCFG) */ 3054 if (hsotg->dedicated_fifos && 3055 ints & DXEPINT_TXFEMP) { 3056 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3057 __func__, idx); 3058 if (!using_dma(hsotg)) 3059 dwc2_hsotg_trytx(hsotg, hs_ep); 3060 } 3061 } 3062 } 3063 3064 /** 3065 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3066 * @hsotg: The device state. 3067 * 3068 * Handle updating the device settings after the enumeration phase has 3069 * been completed. 3070 */ 3071 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3072 { 3073 u32 dsts = dwc2_readl(hsotg->regs + DSTS); 3074 int ep0_mps = 0, ep_mps = 8; 3075 3076 /* 3077 * This should signal the finish of the enumeration phase 3078 * of the USB handshaking, so we should now know what rate 3079 * we connected at. 3080 */ 3081 3082 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3083 3084 /* 3085 * note, since we're limited by the size of transfer on EP0, and 3086 * it seems IN transfers must be a even number of packets we do 3087 * not advertise a 64byte MPS on EP0. 3088 */ 3089 3090 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3091 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3092 case DSTS_ENUMSPD_FS: 3093 case DSTS_ENUMSPD_FS48: 3094 hsotg->gadget.speed = USB_SPEED_FULL; 3095 ep0_mps = EP0_MPS_LIMIT; 3096 ep_mps = 1023; 3097 break; 3098 3099 case DSTS_ENUMSPD_HS: 3100 hsotg->gadget.speed = USB_SPEED_HIGH; 3101 ep0_mps = EP0_MPS_LIMIT; 3102 ep_mps = 1024; 3103 break; 3104 3105 case DSTS_ENUMSPD_LS: 3106 hsotg->gadget.speed = USB_SPEED_LOW; 3107 ep0_mps = 8; 3108 ep_mps = 8; 3109 /* 3110 * note, we don't actually support LS in this driver at the 3111 * moment, and the documentation seems to imply that it isn't 3112 * supported by the PHYs on some of the devices. 3113 */ 3114 break; 3115 } 3116 dev_info(hsotg->dev, "new device is %s\n", 3117 usb_speed_string(hsotg->gadget.speed)); 3118 3119 /* 3120 * we should now know the maximum packet size for an 3121 * endpoint, so set the endpoints to a default value. 3122 */ 3123 3124 if (ep0_mps) { 3125 int i; 3126 /* Initialize ep0 for both in and out directions */ 3127 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3128 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3129 for (i = 1; i < hsotg->num_of_eps; i++) { 3130 if (hsotg->eps_in[i]) 3131 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3132 0, 1); 3133 if (hsotg->eps_out[i]) 3134 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3135 0, 0); 3136 } 3137 } 3138 3139 /* ensure after enumeration our EP0 is active */ 3140 3141 dwc2_hsotg_enqueue_setup(hsotg); 3142 3143 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3144 dwc2_readl(hsotg->regs + DIEPCTL0), 3145 dwc2_readl(hsotg->regs + DOEPCTL0)); 3146 } 3147 3148 /** 3149 * kill_all_requests - remove all requests from the endpoint's queue 3150 * @hsotg: The device state. 3151 * @ep: The endpoint the requests may be on. 3152 * @result: The result code to use. 3153 * 3154 * Go through the requests on the given endpoint and mark them 3155 * completed with the given result code. 3156 */ 3157 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3158 struct dwc2_hsotg_ep *ep, 3159 int result) 3160 { 3161 struct dwc2_hsotg_req *req, *treq; 3162 unsigned int size; 3163 3164 ep->req = NULL; 3165 3166 list_for_each_entry_safe(req, treq, &ep->queue, queue) 3167 dwc2_hsotg_complete_request(hsotg, ep, req, 3168 result); 3169 3170 if (!hsotg->dedicated_fifos) 3171 return; 3172 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3173 if (size < ep->fifo_size) 3174 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3175 } 3176 3177 /** 3178 * dwc2_hsotg_disconnect - disconnect service 3179 * @hsotg: The device state. 3180 * 3181 * The device has been disconnected. Remove all current 3182 * transactions and signal the gadget driver that this 3183 * has happened. 3184 */ 3185 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3186 { 3187 unsigned int ep; 3188 3189 if (!hsotg->connected) 3190 return; 3191 3192 hsotg->connected = 0; 3193 hsotg->test_mode = 0; 3194 3195 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3196 if (hsotg->eps_in[ep]) 3197 kill_all_requests(hsotg, hsotg->eps_in[ep], 3198 -ESHUTDOWN); 3199 if (hsotg->eps_out[ep]) 3200 kill_all_requests(hsotg, hsotg->eps_out[ep], 3201 -ESHUTDOWN); 3202 } 3203 3204 call_gadget(hsotg, disconnect); 3205 hsotg->lx_state = DWC2_L3; 3206 3207 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3208 } 3209 3210 /** 3211 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3212 * @hsotg: The device state: 3213 * @periodic: True if this is a periodic FIFO interrupt 3214 */ 3215 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3216 { 3217 struct dwc2_hsotg_ep *ep; 3218 int epno, ret; 3219 3220 /* look through for any more data to transmit */ 3221 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3222 ep = index_to_ep(hsotg, epno, 1); 3223 3224 if (!ep) 3225 continue; 3226 3227 if (!ep->dir_in) 3228 continue; 3229 3230 if ((periodic && !ep->periodic) || 3231 (!periodic && ep->periodic)) 3232 continue; 3233 3234 ret = dwc2_hsotg_trytx(hsotg, ep); 3235 if (ret < 0) 3236 break; 3237 } 3238 } 3239 3240 /* IRQ flags which will trigger a retry around the IRQ loop */ 3241 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3242 GINTSTS_PTXFEMP | \ 3243 GINTSTS_RXFLVL) 3244 3245 /** 3246 * dwc2_hsotg_core_init - issue softreset to the core 3247 * @hsotg: The device state 3248 * 3249 * Issue a soft reset to the core, and await the core finishing it. 3250 */ 3251 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3252 bool is_usb_reset) 3253 { 3254 u32 intmsk; 3255 u32 val; 3256 u32 usbcfg; 3257 u32 dcfg = 0; 3258 3259 /* Kill any ep0 requests as controller will be reinitialized */ 3260 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3261 3262 if (!is_usb_reset) 3263 if (dwc2_core_reset(hsotg, true)) 3264 return; 3265 3266 /* 3267 * we must now enable ep0 ready for host detection and then 3268 * set configuration. 3269 */ 3270 3271 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3272 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 3273 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 3274 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 3275 3276 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS && 3277 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 3278 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) { 3279 /* FS/LS Dedicated Transceiver Interface */ 3280 usbcfg |= GUSBCFG_PHYSEL; 3281 } else { 3282 /* set the PLL on, remove the HNP/SRP and set the PHY */ 3283 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 3284 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 3285 (val << GUSBCFG_USBTRDTIM_SHIFT); 3286 } 3287 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 3288 3289 dwc2_hsotg_init_fifo(hsotg); 3290 3291 if (!is_usb_reset) 3292 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 3293 3294 dcfg |= DCFG_EPMISCNT(1); 3295 3296 switch (hsotg->params.speed) { 3297 case DWC2_SPEED_PARAM_LOW: 3298 dcfg |= DCFG_DEVSPD_LS; 3299 break; 3300 case DWC2_SPEED_PARAM_FULL: 3301 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3302 dcfg |= DCFG_DEVSPD_FS48; 3303 else 3304 dcfg |= DCFG_DEVSPD_FS; 3305 break; 3306 default: 3307 dcfg |= DCFG_DEVSPD_HS; 3308 } 3309 3310 dwc2_writel(dcfg, hsotg->regs + DCFG); 3311 3312 /* Clear any pending OTG interrupts */ 3313 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT); 3314 3315 /* Clear any pending interrupts */ 3316 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 3317 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3318 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3319 GINTSTS_USBRST | GINTSTS_RESETDET | 3320 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3321 GINTSTS_USBSUSP | GINTSTS_WKUPINT; 3322 3323 if (!using_desc_dma(hsotg)) 3324 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3325 3326 if (!hsotg->params.external_id_pin_ctl) 3327 intmsk |= GINTSTS_CONIDSTSCHNG; 3328 3329 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 3330 3331 if (using_dma(hsotg)) { 3332 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3333 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT), 3334 hsotg->regs + GAHBCFG); 3335 3336 /* Set DDMA mode support in the core if needed */ 3337 if (using_desc_dma(hsotg)) 3338 __orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN); 3339 3340 } else { 3341 dwc2_writel(((hsotg->dedicated_fifos) ? 3342 (GAHBCFG_NP_TXF_EMP_LVL | 3343 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3344 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG); 3345 } 3346 3347 /* 3348 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3349 * when we have no data to transfer. Otherwise we get being flooded by 3350 * interrupts. 3351 */ 3352 3353 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3354 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3355 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3356 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3357 hsotg->regs + DIEPMSK); 3358 3359 /* 3360 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3361 * DMA mode we may need this and StsPhseRcvd. 3362 */ 3363 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3364 DOEPMSK_STSPHSERCVDMSK) : 0) | 3365 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3366 DOEPMSK_SETUPMSK, 3367 hsotg->regs + DOEPMSK); 3368 3369 /* Enable BNA interrupt for DDMA */ 3370 if (using_desc_dma(hsotg)) 3371 __orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK); 3372 3373 dwc2_writel(0, hsotg->regs + DAINTMSK); 3374 3375 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3376 dwc2_readl(hsotg->regs + DIEPCTL0), 3377 dwc2_readl(hsotg->regs + DOEPCTL0)); 3378 3379 /* enable in and out endpoint interrupts */ 3380 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3381 3382 /* 3383 * Enable the RXFIFO when in slave mode, as this is how we collect 3384 * the data. In DMA mode, we get events from the FIFO but also 3385 * things we cannot process, so do not use it. 3386 */ 3387 if (!using_dma(hsotg)) 3388 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3389 3390 /* Enable interrupts for EP0 in and out */ 3391 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3392 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3393 3394 if (!is_usb_reset) { 3395 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 3396 udelay(10); /* see openiboot */ 3397 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 3398 } 3399 3400 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL)); 3401 3402 /* 3403 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3404 * writing to the EPCTL register.. 3405 */ 3406 3407 /* set to read 1 8byte packet */ 3408 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3409 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0); 3410 3411 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3412 DXEPCTL_CNAK | DXEPCTL_EPENA | 3413 DXEPCTL_USBACTEP, 3414 hsotg->regs + DOEPCTL0); 3415 3416 /* enable, but don't activate EP0in */ 3417 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3418 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0); 3419 3420 dwc2_hsotg_enqueue_setup(hsotg); 3421 3422 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3423 dwc2_readl(hsotg->regs + DIEPCTL0), 3424 dwc2_readl(hsotg->regs + DOEPCTL0)); 3425 3426 /* clear global NAKs */ 3427 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3428 if (!is_usb_reset) 3429 val |= DCTL_SFTDISCON; 3430 __orr32(hsotg->regs + DCTL, val); 3431 3432 /* must be at-least 3ms to allow bus to see disconnect */ 3433 mdelay(3); 3434 3435 hsotg->lx_state = DWC2_L0; 3436 } 3437 3438 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3439 { 3440 /* set the soft-disconnect bit */ 3441 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 3442 } 3443 3444 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3445 { 3446 /* remove the soft-disconnect and let's go */ 3447 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON); 3448 } 3449 3450 /** 3451 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3452 * @hsotg: The device state: 3453 * 3454 * This interrupt indicates one of the following conditions occurred while 3455 * transmitting an ISOC transaction. 3456 * - Corrupted IN Token for ISOC EP. 3457 * - Packet not complete in FIFO. 3458 * 3459 * The following actions will be taken: 3460 * - Determine the EP 3461 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3462 */ 3463 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3464 { 3465 struct dwc2_hsotg_ep *hs_ep; 3466 u32 epctrl; 3467 u32 idx; 3468 3469 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3470 3471 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3472 hs_ep = hsotg->eps_in[idx]; 3473 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx)); 3474 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous && 3475 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3476 epctrl |= DXEPCTL_SNAK; 3477 epctrl |= DXEPCTL_EPDIS; 3478 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx)); 3479 } 3480 } 3481 3482 /* Clear interrupt */ 3483 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS); 3484 } 3485 3486 /** 3487 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3488 * @hsotg: The device state: 3489 * 3490 * This interrupt indicates one of the following conditions occurred while 3491 * transmitting an ISOC transaction. 3492 * - Corrupted OUT Token for ISOC EP. 3493 * - Packet not complete in FIFO. 3494 * 3495 * The following actions will be taken: 3496 * - Determine the EP 3497 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3498 */ 3499 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3500 { 3501 u32 gintsts; 3502 u32 gintmsk; 3503 u32 epctrl; 3504 struct dwc2_hsotg_ep *hs_ep; 3505 int idx; 3506 3507 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3508 3509 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3510 hs_ep = hsotg->eps_out[idx]; 3511 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx)); 3512 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous && 3513 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3514 /* Unmask GOUTNAKEFF interrupt */ 3515 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3516 gintmsk |= GINTSTS_GOUTNAKEFF; 3517 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3518 3519 gintsts = dwc2_readl(hsotg->regs + GINTSTS); 3520 if (!(gintsts & GINTSTS_GOUTNAKEFF)) 3521 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK); 3522 } 3523 } 3524 3525 /* Clear interrupt */ 3526 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS); 3527 } 3528 3529 /** 3530 * dwc2_hsotg_irq - handle device interrupt 3531 * @irq: The IRQ number triggered 3532 * @pw: The pw value when registered the handler. 3533 */ 3534 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3535 { 3536 struct dwc2_hsotg *hsotg = pw; 3537 int retry_count = 8; 3538 u32 gintsts; 3539 u32 gintmsk; 3540 3541 if (!dwc2_is_device_mode(hsotg)) 3542 return IRQ_NONE; 3543 3544 spin_lock(&hsotg->lock); 3545 irq_retry: 3546 gintsts = dwc2_readl(hsotg->regs + GINTSTS); 3547 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3548 3549 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3550 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3551 3552 gintsts &= gintmsk; 3553 3554 if (gintsts & GINTSTS_RESETDET) { 3555 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3556 3557 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS); 3558 3559 /* This event must be used only if controller is suspended */ 3560 if (hsotg->lx_state == DWC2_L2) { 3561 dwc2_exit_hibernation(hsotg, true); 3562 hsotg->lx_state = DWC2_L0; 3563 } 3564 } 3565 3566 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3567 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL); 3568 u32 connected = hsotg->connected; 3569 3570 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3571 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3572 dwc2_readl(hsotg->regs + GNPTXSTS)); 3573 3574 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS); 3575 3576 /* Report disconnection if it is not already done. */ 3577 dwc2_hsotg_disconnect(hsotg); 3578 3579 /* Reset device address to zero */ 3580 __bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK); 3581 3582 if (usb_status & GOTGCTL_BSESVLD && connected) 3583 dwc2_hsotg_core_init_disconnected(hsotg, true); 3584 } 3585 3586 if (gintsts & GINTSTS_ENUMDONE) { 3587 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS); 3588 3589 dwc2_hsotg_irq_enumdone(hsotg); 3590 } 3591 3592 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3593 u32 daint = dwc2_readl(hsotg->regs + DAINT); 3594 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3595 u32 daint_out, daint_in; 3596 int ep; 3597 3598 daint &= daintmsk; 3599 daint_out = daint >> DAINT_OUTEP_SHIFT; 3600 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3601 3602 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3603 3604 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3605 ep++, daint_out >>= 1) { 3606 if (daint_out & 1) 3607 dwc2_hsotg_epint(hsotg, ep, 0); 3608 } 3609 3610 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3611 ep++, daint_in >>= 1) { 3612 if (daint_in & 1) 3613 dwc2_hsotg_epint(hsotg, ep, 1); 3614 } 3615 } 3616 3617 /* check both FIFOs */ 3618 3619 if (gintsts & GINTSTS_NPTXFEMP) { 3620 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3621 3622 /* 3623 * Disable the interrupt to stop it happening again 3624 * unless one of these endpoint routines decides that 3625 * it needs re-enabling 3626 */ 3627 3628 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3629 dwc2_hsotg_irq_fifoempty(hsotg, false); 3630 } 3631 3632 if (gintsts & GINTSTS_PTXFEMP) { 3633 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3634 3635 /* See note in GINTSTS_NPTxFEmp */ 3636 3637 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3638 dwc2_hsotg_irq_fifoempty(hsotg, true); 3639 } 3640 3641 if (gintsts & GINTSTS_RXFLVL) { 3642 /* 3643 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3644 * we need to retry dwc2_hsotg_handle_rx if this is still 3645 * set. 3646 */ 3647 3648 dwc2_hsotg_handle_rx(hsotg); 3649 } 3650 3651 if (gintsts & GINTSTS_ERLYSUSP) { 3652 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3653 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS); 3654 } 3655 3656 /* 3657 * these next two seem to crop-up occasionally causing the core 3658 * to shutdown the USB transfer, so try clearing them and logging 3659 * the occurrence. 3660 */ 3661 3662 if (gintsts & GINTSTS_GOUTNAKEFF) { 3663 u8 idx; 3664 u32 epctrl; 3665 u32 gintmsk; 3666 struct dwc2_hsotg_ep *hs_ep; 3667 3668 /* Mask this interrupt */ 3669 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3670 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3671 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3672 3673 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3674 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3675 hs_ep = hsotg->eps_out[idx]; 3676 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx)); 3677 3678 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3679 epctrl |= DXEPCTL_SNAK; 3680 epctrl |= DXEPCTL_EPDIS; 3681 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx)); 3682 } 3683 } 3684 3685 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3686 } 3687 3688 if (gintsts & GINTSTS_GINNAKEFF) { 3689 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3690 3691 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK); 3692 3693 dwc2_hsotg_dump(hsotg); 3694 } 3695 3696 if (gintsts & GINTSTS_INCOMPL_SOIN) 3697 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3698 3699 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3700 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3701 3702 /* 3703 * if we've had fifo events, we should try and go around the 3704 * loop again to see if there's any point in returning yet. 3705 */ 3706 3707 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3708 goto irq_retry; 3709 3710 spin_unlock(&hsotg->lock); 3711 3712 return IRQ_HANDLED; 3713 } 3714 3715 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, 3716 u32 bit, u32 timeout) 3717 { 3718 u32 i; 3719 3720 for (i = 0; i < timeout; i++) { 3721 if (dwc2_readl(hs_otg->regs + reg) & bit) 3722 return 0; 3723 udelay(1); 3724 } 3725 3726 return -ETIMEDOUT; 3727 } 3728 3729 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3730 struct dwc2_hsotg_ep *hs_ep) 3731 { 3732 u32 epctrl_reg; 3733 u32 epint_reg; 3734 3735 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3736 DOEPCTL(hs_ep->index); 3737 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3738 DOEPINT(hs_ep->index); 3739 3740 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3741 hs_ep->name); 3742 3743 if (hs_ep->dir_in) { 3744 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3745 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK); 3746 /* Wait for Nak effect */ 3747 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3748 DXEPINT_INEPNAKEFF, 100)) 3749 dev_warn(hsotg->dev, 3750 "%s: timeout DIEPINT.NAKEFF\n", 3751 __func__); 3752 } else { 3753 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK); 3754 /* Wait for Nak effect */ 3755 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3756 GINTSTS_GINNAKEFF, 100)) 3757 dev_warn(hsotg->dev, 3758 "%s: timeout GINTSTS.GINNAKEFF\n", 3759 __func__); 3760 } 3761 } else { 3762 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF)) 3763 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK); 3764 3765 /* Wait for global nak to take effect */ 3766 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3767 GINTSTS_GOUTNAKEFF, 100)) 3768 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3769 __func__); 3770 } 3771 3772 /* Disable ep */ 3773 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3774 3775 /* Wait for ep to be disabled */ 3776 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3777 dev_warn(hsotg->dev, 3778 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3779 3780 /* Clear EPDISBLD interrupt */ 3781 __orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD); 3782 3783 if (hs_ep->dir_in) { 3784 unsigned short fifo_index; 3785 3786 if (hsotg->dedicated_fifos || hs_ep->periodic) 3787 fifo_index = hs_ep->fifo_index; 3788 else 3789 fifo_index = 0; 3790 3791 /* Flush TX FIFO */ 3792 dwc2_flush_tx_fifo(hsotg, fifo_index); 3793 3794 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3795 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3796 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK); 3797 3798 } else { 3799 /* Remove global NAKs */ 3800 __orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK); 3801 } 3802 } 3803 3804 /** 3805 * dwc2_hsotg_ep_enable - enable the given endpoint 3806 * @ep: The USB endpint to configure 3807 * @desc: The USB endpoint descriptor to configure with. 3808 * 3809 * This is called from the USB gadget code's usb_ep_enable(). 3810 */ 3811 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3812 const struct usb_endpoint_descriptor *desc) 3813 { 3814 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3815 struct dwc2_hsotg *hsotg = hs_ep->parent; 3816 unsigned long flags; 3817 unsigned int index = hs_ep->index; 3818 u32 epctrl_reg; 3819 u32 epctrl; 3820 u32 mps; 3821 u32 mc; 3822 u32 mask; 3823 unsigned int dir_in; 3824 unsigned int i, val, size; 3825 int ret = 0; 3826 3827 dev_dbg(hsotg->dev, 3828 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3829 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3830 desc->wMaxPacketSize, desc->bInterval); 3831 3832 /* not to be called for EP0 */ 3833 if (index == 0) { 3834 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3835 return -EINVAL; 3836 } 3837 3838 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3839 if (dir_in != hs_ep->dir_in) { 3840 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3841 return -EINVAL; 3842 } 3843 3844 mps = usb_endpoint_maxp(desc); 3845 mc = usb_endpoint_maxp_mult(desc); 3846 3847 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 3848 3849 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3850 epctrl = dwc2_readl(hsotg->regs + epctrl_reg); 3851 3852 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 3853 __func__, epctrl, epctrl_reg); 3854 3855 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 3856 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 3857 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 3858 MAX_DMA_DESC_NUM_GENERIC * 3859 sizeof(struct dwc2_dma_desc), 3860 &hs_ep->desc_list_dma, GFP_ATOMIC); 3861 if (!hs_ep->desc_list) { 3862 ret = -ENOMEM; 3863 goto error2; 3864 } 3865 } 3866 3867 spin_lock_irqsave(&hsotg->lock, flags); 3868 3869 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 3870 epctrl |= DXEPCTL_MPS(mps); 3871 3872 /* 3873 * mark the endpoint as active, otherwise the core may ignore 3874 * transactions entirely for this endpoint 3875 */ 3876 epctrl |= DXEPCTL_USBACTEP; 3877 3878 /* update the endpoint state */ 3879 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 3880 3881 /* default, set to non-periodic */ 3882 hs_ep->isochronous = 0; 3883 hs_ep->periodic = 0; 3884 hs_ep->halted = 0; 3885 hs_ep->interval = desc->bInterval; 3886 3887 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) { 3888 case USB_ENDPOINT_XFER_ISOC: 3889 epctrl |= DXEPCTL_EPTYPE_ISO; 3890 epctrl |= DXEPCTL_SETEVENFR; 3891 hs_ep->isochronous = 1; 3892 hs_ep->interval = 1 << (desc->bInterval - 1); 3893 hs_ep->target_frame = TARGET_FRAME_INITIAL; 3894 hs_ep->isoc_chain_num = 0; 3895 hs_ep->next_desc = 0; 3896 if (dir_in) { 3897 hs_ep->periodic = 1; 3898 mask = dwc2_readl(hsotg->regs + DIEPMSK); 3899 mask |= DIEPMSK_NAKMSK; 3900 dwc2_writel(mask, hsotg->regs + DIEPMSK); 3901 } else { 3902 mask = dwc2_readl(hsotg->regs + DOEPMSK); 3903 mask |= DOEPMSK_OUTTKNEPDISMSK; 3904 dwc2_writel(mask, hsotg->regs + DOEPMSK); 3905 } 3906 break; 3907 3908 case USB_ENDPOINT_XFER_BULK: 3909 epctrl |= DXEPCTL_EPTYPE_BULK; 3910 break; 3911 3912 case USB_ENDPOINT_XFER_INT: 3913 if (dir_in) 3914 hs_ep->periodic = 1; 3915 3916 if (hsotg->gadget.speed == USB_SPEED_HIGH) 3917 hs_ep->interval = 1 << (desc->bInterval - 1); 3918 3919 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 3920 break; 3921 3922 case USB_ENDPOINT_XFER_CONTROL: 3923 epctrl |= DXEPCTL_EPTYPE_CONTROL; 3924 break; 3925 } 3926 3927 /* 3928 * if the hardware has dedicated fifos, we must give each IN EP 3929 * a unique tx-fifo even if it is non-periodic. 3930 */ 3931 if (dir_in && hsotg->dedicated_fifos) { 3932 u32 fifo_index = 0; 3933 u32 fifo_size = UINT_MAX; 3934 3935 size = hs_ep->ep.maxpacket * hs_ep->mc; 3936 for (i = 1; i < hsotg->num_of_eps; ++i) { 3937 if (hsotg->fifo_map & (1 << i)) 3938 continue; 3939 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i)); 3940 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 3941 if (val < size) 3942 continue; 3943 /* Search for smallest acceptable fifo */ 3944 if (val < fifo_size) { 3945 fifo_size = val; 3946 fifo_index = i; 3947 } 3948 } 3949 if (!fifo_index) { 3950 dev_err(hsotg->dev, 3951 "%s: No suitable fifo found\n", __func__); 3952 ret = -ENOMEM; 3953 goto error1; 3954 } 3955 hsotg->fifo_map |= 1 << fifo_index; 3956 epctrl |= DXEPCTL_TXFNUM(fifo_index); 3957 hs_ep->fifo_index = fifo_index; 3958 hs_ep->fifo_size = fifo_size; 3959 } 3960 3961 /* for non control endpoints, set PID to D0 */ 3962 if (index && !hs_ep->isochronous) 3963 epctrl |= DXEPCTL_SETD0PID; 3964 3965 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 3966 __func__, epctrl); 3967 3968 dwc2_writel(epctrl, hsotg->regs + epctrl_reg); 3969 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 3970 __func__, dwc2_readl(hsotg->regs + epctrl_reg)); 3971 3972 /* enable the endpoint interrupt */ 3973 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 3974 3975 error1: 3976 spin_unlock_irqrestore(&hsotg->lock, flags); 3977 3978 error2: 3979 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 3980 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC * 3981 sizeof(struct dwc2_dma_desc), 3982 hs_ep->desc_list, hs_ep->desc_list_dma); 3983 hs_ep->desc_list = NULL; 3984 } 3985 3986 return ret; 3987 } 3988 3989 /** 3990 * dwc2_hsotg_ep_disable - disable given endpoint 3991 * @ep: The endpoint to disable. 3992 */ 3993 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 3994 { 3995 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3996 struct dwc2_hsotg *hsotg = hs_ep->parent; 3997 int dir_in = hs_ep->dir_in; 3998 int index = hs_ep->index; 3999 unsigned long flags; 4000 u32 epctrl_reg; 4001 u32 ctrl; 4002 4003 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4004 4005 if (ep == &hsotg->eps_out[0]->ep) { 4006 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4007 return -EINVAL; 4008 } 4009 4010 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4011 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4012 return -EINVAL; 4013 } 4014 4015 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4016 4017 spin_lock_irqsave(&hsotg->lock, flags); 4018 4019 ctrl = dwc2_readl(hsotg->regs + epctrl_reg); 4020 4021 if (ctrl & DXEPCTL_EPENA) 4022 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4023 4024 ctrl &= ~DXEPCTL_EPENA; 4025 ctrl &= ~DXEPCTL_USBACTEP; 4026 ctrl |= DXEPCTL_SNAK; 4027 4028 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4029 dwc2_writel(ctrl, hsotg->regs + epctrl_reg); 4030 4031 /* disable endpoint interrupts */ 4032 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4033 4034 /* terminate all requests with shutdown */ 4035 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4036 4037 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4038 hs_ep->fifo_index = 0; 4039 hs_ep->fifo_size = 0; 4040 4041 spin_unlock_irqrestore(&hsotg->lock, flags); 4042 return 0; 4043 } 4044 4045 /** 4046 * on_list - check request is on the given endpoint 4047 * @ep: The endpoint to check. 4048 * @test: The request to test if it is on the endpoint. 4049 */ 4050 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4051 { 4052 struct dwc2_hsotg_req *req, *treq; 4053 4054 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4055 if (req == test) 4056 return true; 4057 } 4058 4059 return false; 4060 } 4061 4062 /** 4063 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4064 * @ep: The endpoint to dequeue. 4065 * @req: The request to be removed from a queue. 4066 */ 4067 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4068 { 4069 struct dwc2_hsotg_req *hs_req = our_req(req); 4070 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4071 struct dwc2_hsotg *hs = hs_ep->parent; 4072 unsigned long flags; 4073 4074 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4075 4076 spin_lock_irqsave(&hs->lock, flags); 4077 4078 if (!on_list(hs_ep, hs_req)) { 4079 spin_unlock_irqrestore(&hs->lock, flags); 4080 return -EINVAL; 4081 } 4082 4083 /* Dequeue already started request */ 4084 if (req == &hs_ep->req->req) 4085 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4086 4087 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4088 spin_unlock_irqrestore(&hs->lock, flags); 4089 4090 return 0; 4091 } 4092 4093 /** 4094 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4095 * @ep: The endpoint to set halt. 4096 * @value: Set or unset the halt. 4097 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4098 * the endpoint is busy processing requests. 4099 * 4100 * We need to stall the endpoint immediately if request comes from set_feature 4101 * protocol command handler. 4102 */ 4103 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4104 { 4105 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4106 struct dwc2_hsotg *hs = hs_ep->parent; 4107 int index = hs_ep->index; 4108 u32 epreg; 4109 u32 epctl; 4110 u32 xfertype; 4111 4112 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4113 4114 if (index == 0) { 4115 if (value) 4116 dwc2_hsotg_stall_ep0(hs); 4117 else 4118 dev_warn(hs->dev, 4119 "%s: can't clear halt on ep0\n", __func__); 4120 return 0; 4121 } 4122 4123 if (hs_ep->isochronous) { 4124 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4125 return -EINVAL; 4126 } 4127 4128 if (!now && value && !list_empty(&hs_ep->queue)) { 4129 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4130 ep->name); 4131 return -EAGAIN; 4132 } 4133 4134 if (hs_ep->dir_in) { 4135 epreg = DIEPCTL(index); 4136 epctl = dwc2_readl(hs->regs + epreg); 4137 4138 if (value) { 4139 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4140 if (epctl & DXEPCTL_EPENA) 4141 epctl |= DXEPCTL_EPDIS; 4142 } else { 4143 epctl &= ~DXEPCTL_STALL; 4144 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4145 if (xfertype == DXEPCTL_EPTYPE_BULK || 4146 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4147 epctl |= DXEPCTL_SETD0PID; 4148 } 4149 dwc2_writel(epctl, hs->regs + epreg); 4150 } else { 4151 epreg = DOEPCTL(index); 4152 epctl = dwc2_readl(hs->regs + epreg); 4153 4154 if (value) { 4155 epctl |= DXEPCTL_STALL; 4156 } else { 4157 epctl &= ~DXEPCTL_STALL; 4158 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4159 if (xfertype == DXEPCTL_EPTYPE_BULK || 4160 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4161 epctl |= DXEPCTL_SETD0PID; 4162 } 4163 dwc2_writel(epctl, hs->regs + epreg); 4164 } 4165 4166 hs_ep->halted = value; 4167 4168 return 0; 4169 } 4170 4171 /** 4172 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4173 * @ep: The endpoint to set halt. 4174 * @value: Set or unset the halt. 4175 */ 4176 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4177 { 4178 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4179 struct dwc2_hsotg *hs = hs_ep->parent; 4180 unsigned long flags = 0; 4181 int ret = 0; 4182 4183 spin_lock_irqsave(&hs->lock, flags); 4184 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4185 spin_unlock_irqrestore(&hs->lock, flags); 4186 4187 return ret; 4188 } 4189 4190 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4191 .enable = dwc2_hsotg_ep_enable, 4192 .disable = dwc2_hsotg_ep_disable, 4193 .alloc_request = dwc2_hsotg_ep_alloc_request, 4194 .free_request = dwc2_hsotg_ep_free_request, 4195 .queue = dwc2_hsotg_ep_queue_lock, 4196 .dequeue = dwc2_hsotg_ep_dequeue, 4197 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4198 /* note, don't believe we have any call for the fifo routines */ 4199 }; 4200 4201 /** 4202 * dwc2_hsotg_init - initialize the usb core 4203 * @hsotg: The driver state 4204 */ 4205 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4206 { 4207 u32 trdtim; 4208 u32 usbcfg; 4209 /* unmask subset of endpoint interrupts */ 4210 4211 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4212 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4213 hsotg->regs + DIEPMSK); 4214 4215 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4216 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4217 hsotg->regs + DOEPMSK); 4218 4219 dwc2_writel(0, hsotg->regs + DAINTMSK); 4220 4221 /* Be in disconnected state until gadget is registered */ 4222 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON); 4223 4224 /* setup fifos */ 4225 4226 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4227 dwc2_readl(hsotg->regs + GRXFSIZ), 4228 dwc2_readl(hsotg->regs + GNPTXFSIZ)); 4229 4230 dwc2_hsotg_init_fifo(hsotg); 4231 4232 /* keep other bits untouched (so e.g. forced modes are not lost) */ 4233 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 4234 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 4235 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 4236 4237 /* set the PLL on, remove the HNP/SRP and set the PHY */ 4238 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 4239 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 4240 (trdtim << GUSBCFG_USBTRDTIM_SHIFT); 4241 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 4242 4243 if (using_dma(hsotg)) 4244 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN); 4245 } 4246 4247 /** 4248 * dwc2_hsotg_udc_start - prepare the udc for work 4249 * @gadget: The usb gadget state 4250 * @driver: The usb gadget driver 4251 * 4252 * Perform initialization to prepare udc device and driver 4253 * to work. 4254 */ 4255 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4256 struct usb_gadget_driver *driver) 4257 { 4258 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4259 unsigned long flags; 4260 int ret; 4261 4262 if (!hsotg) { 4263 pr_err("%s: called with no device\n", __func__); 4264 return -ENODEV; 4265 } 4266 4267 if (!driver) { 4268 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4269 return -EINVAL; 4270 } 4271 4272 if (driver->max_speed < USB_SPEED_FULL) 4273 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4274 4275 if (!driver->setup) { 4276 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4277 return -EINVAL; 4278 } 4279 4280 WARN_ON(hsotg->driver); 4281 4282 driver->driver.bus = NULL; 4283 hsotg->driver = driver; 4284 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4285 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4286 4287 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4288 ret = dwc2_lowlevel_hw_enable(hsotg); 4289 if (ret) 4290 goto err; 4291 } 4292 4293 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4294 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4295 4296 spin_lock_irqsave(&hsotg->lock, flags); 4297 if (dwc2_hw_is_device(hsotg)) { 4298 dwc2_hsotg_init(hsotg); 4299 dwc2_hsotg_core_init_disconnected(hsotg, false); 4300 } 4301 4302 hsotg->enabled = 0; 4303 spin_unlock_irqrestore(&hsotg->lock, flags); 4304 4305 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4306 4307 return 0; 4308 4309 err: 4310 hsotg->driver = NULL; 4311 return ret; 4312 } 4313 4314 /** 4315 * dwc2_hsotg_udc_stop - stop the udc 4316 * @gadget: The usb gadget state 4317 * @driver: The usb gadget driver 4318 * 4319 * Stop udc hw block and stay tunned for future transmissions 4320 */ 4321 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4322 { 4323 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4324 unsigned long flags = 0; 4325 int ep; 4326 4327 if (!hsotg) 4328 return -ENODEV; 4329 4330 /* all endpoints should be shutdown */ 4331 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4332 if (hsotg->eps_in[ep]) 4333 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4334 if (hsotg->eps_out[ep]) 4335 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4336 } 4337 4338 spin_lock_irqsave(&hsotg->lock, flags); 4339 4340 hsotg->driver = NULL; 4341 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4342 hsotg->enabled = 0; 4343 4344 spin_unlock_irqrestore(&hsotg->lock, flags); 4345 4346 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4347 otg_set_peripheral(hsotg->uphy->otg, NULL); 4348 4349 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4350 dwc2_lowlevel_hw_disable(hsotg); 4351 4352 return 0; 4353 } 4354 4355 /** 4356 * dwc2_hsotg_gadget_getframe - read the frame number 4357 * @gadget: The usb gadget state 4358 * 4359 * Read the {micro} frame number 4360 */ 4361 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4362 { 4363 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4364 } 4365 4366 /** 4367 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4368 * @gadget: The usb gadget state 4369 * @is_on: Current state of the USB PHY 4370 * 4371 * Connect/Disconnect the USB PHY pullup 4372 */ 4373 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4374 { 4375 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4376 unsigned long flags = 0; 4377 4378 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4379 hsotg->op_state); 4380 4381 /* Don't modify pullup state while in host mode */ 4382 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4383 hsotg->enabled = is_on; 4384 return 0; 4385 } 4386 4387 spin_lock_irqsave(&hsotg->lock, flags); 4388 if (is_on) { 4389 hsotg->enabled = 1; 4390 dwc2_hsotg_core_init_disconnected(hsotg, false); 4391 dwc2_hsotg_core_connect(hsotg); 4392 } else { 4393 dwc2_hsotg_core_disconnect(hsotg); 4394 dwc2_hsotg_disconnect(hsotg); 4395 hsotg->enabled = 0; 4396 } 4397 4398 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4399 spin_unlock_irqrestore(&hsotg->lock, flags); 4400 4401 return 0; 4402 } 4403 4404 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4405 { 4406 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4407 unsigned long flags; 4408 4409 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4410 spin_lock_irqsave(&hsotg->lock, flags); 4411 4412 /* 4413 * If controller is hibernated, it must exit from hibernation 4414 * before being initialized / de-initialized 4415 */ 4416 if (hsotg->lx_state == DWC2_L2) 4417 dwc2_exit_hibernation(hsotg, false); 4418 4419 if (is_active) { 4420 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4421 4422 dwc2_hsotg_core_init_disconnected(hsotg, false); 4423 if (hsotg->enabled) 4424 dwc2_hsotg_core_connect(hsotg); 4425 } else { 4426 dwc2_hsotg_core_disconnect(hsotg); 4427 dwc2_hsotg_disconnect(hsotg); 4428 } 4429 4430 spin_unlock_irqrestore(&hsotg->lock, flags); 4431 return 0; 4432 } 4433 4434 /** 4435 * dwc2_hsotg_vbus_draw - report bMaxPower field 4436 * @gadget: The usb gadget state 4437 * @mA: Amount of current 4438 * 4439 * Report how much power the device may consume to the phy. 4440 */ 4441 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4442 { 4443 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4444 4445 if (IS_ERR_OR_NULL(hsotg->uphy)) 4446 return -ENOTSUPP; 4447 return usb_phy_set_power(hsotg->uphy, mA); 4448 } 4449 4450 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4451 .get_frame = dwc2_hsotg_gadget_getframe, 4452 .udc_start = dwc2_hsotg_udc_start, 4453 .udc_stop = dwc2_hsotg_udc_stop, 4454 .pullup = dwc2_hsotg_pullup, 4455 .vbus_session = dwc2_hsotg_vbus_session, 4456 .vbus_draw = dwc2_hsotg_vbus_draw, 4457 }; 4458 4459 /** 4460 * dwc2_hsotg_initep - initialise a single endpoint 4461 * @hsotg: The device state. 4462 * @hs_ep: The endpoint to be initialised. 4463 * @epnum: The endpoint number 4464 * 4465 * Initialise the given endpoint (as part of the probe and device state 4466 * creation) to give to the gadget driver. Setup the endpoint name, any 4467 * direction information and other state that may be required. 4468 */ 4469 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4470 struct dwc2_hsotg_ep *hs_ep, 4471 int epnum, 4472 bool dir_in) 4473 { 4474 char *dir; 4475 4476 if (epnum == 0) 4477 dir = ""; 4478 else if (dir_in) 4479 dir = "in"; 4480 else 4481 dir = "out"; 4482 4483 hs_ep->dir_in = dir_in; 4484 hs_ep->index = epnum; 4485 4486 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4487 4488 INIT_LIST_HEAD(&hs_ep->queue); 4489 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4490 4491 /* add to the list of endpoints known by the gadget driver */ 4492 if (epnum) 4493 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4494 4495 hs_ep->parent = hsotg; 4496 hs_ep->ep.name = hs_ep->name; 4497 4498 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4499 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4500 else 4501 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4502 epnum ? 1024 : EP0_MPS_LIMIT); 4503 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4504 4505 if (epnum == 0) { 4506 hs_ep->ep.caps.type_control = true; 4507 } else { 4508 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4509 hs_ep->ep.caps.type_iso = true; 4510 hs_ep->ep.caps.type_bulk = true; 4511 } 4512 hs_ep->ep.caps.type_int = true; 4513 } 4514 4515 if (dir_in) 4516 hs_ep->ep.caps.dir_in = true; 4517 else 4518 hs_ep->ep.caps.dir_out = true; 4519 4520 /* 4521 * if we're using dma, we need to set the next-endpoint pointer 4522 * to be something valid. 4523 */ 4524 4525 if (using_dma(hsotg)) { 4526 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4527 4528 if (dir_in) 4529 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum)); 4530 else 4531 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum)); 4532 } 4533 } 4534 4535 /** 4536 * dwc2_hsotg_hw_cfg - read HW configuration registers 4537 * @param: The device state 4538 * 4539 * Read the USB core HW configuration registers 4540 */ 4541 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4542 { 4543 u32 cfg; 4544 u32 ep_type; 4545 u32 i; 4546 4547 /* check hardware configuration */ 4548 4549 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4550 4551 /* Add ep0 */ 4552 hsotg->num_of_eps++; 4553 4554 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4555 sizeof(struct dwc2_hsotg_ep), 4556 GFP_KERNEL); 4557 if (!hsotg->eps_in[0]) 4558 return -ENOMEM; 4559 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4560 hsotg->eps_out[0] = hsotg->eps_in[0]; 4561 4562 cfg = hsotg->hw_params.dev_ep_dirs; 4563 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4564 ep_type = cfg & 3; 4565 /* Direction in or both */ 4566 if (!(ep_type & 2)) { 4567 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4568 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4569 if (!hsotg->eps_in[i]) 4570 return -ENOMEM; 4571 } 4572 /* Direction out or both */ 4573 if (!(ep_type & 1)) { 4574 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4575 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4576 if (!hsotg->eps_out[i]) 4577 return -ENOMEM; 4578 } 4579 } 4580 4581 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4582 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4583 4584 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4585 hsotg->num_of_eps, 4586 hsotg->dedicated_fifos ? "dedicated" : "shared", 4587 hsotg->fifo_mem); 4588 return 0; 4589 } 4590 4591 /** 4592 * dwc2_hsotg_dump - dump state of the udc 4593 * @param: The device state 4594 */ 4595 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4596 { 4597 #ifdef DEBUG 4598 struct device *dev = hsotg->dev; 4599 void __iomem *regs = hsotg->regs; 4600 u32 val; 4601 int idx; 4602 4603 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4604 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL), 4605 dwc2_readl(regs + DIEPMSK)); 4606 4607 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4608 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1)); 4609 4610 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4611 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ)); 4612 4613 /* show periodic fifo settings */ 4614 4615 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4616 val = dwc2_readl(regs + DPTXFSIZN(idx)); 4617 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4618 val >> FIFOSIZE_DEPTH_SHIFT, 4619 val & FIFOSIZE_STARTADDR_MASK); 4620 } 4621 4622 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4623 dev_info(dev, 4624 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4625 dwc2_readl(regs + DIEPCTL(idx)), 4626 dwc2_readl(regs + DIEPTSIZ(idx)), 4627 dwc2_readl(regs + DIEPDMA(idx))); 4628 4629 val = dwc2_readl(regs + DOEPCTL(idx)); 4630 dev_info(dev, 4631 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4632 idx, dwc2_readl(regs + DOEPCTL(idx)), 4633 dwc2_readl(regs + DOEPTSIZ(idx)), 4634 dwc2_readl(regs + DOEPDMA(idx))); 4635 } 4636 4637 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4638 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE)); 4639 #endif 4640 } 4641 4642 /** 4643 * dwc2_gadget_init - init function for gadget 4644 * @dwc2: The data structure for the DWC2 driver. 4645 * @irq: The IRQ number for the controller. 4646 */ 4647 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq) 4648 { 4649 struct device *dev = hsotg->dev; 4650 int epnum; 4651 int ret; 4652 4653 /* Dump fifo information */ 4654 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4655 hsotg->params.g_np_tx_fifo_size); 4656 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4657 4658 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4659 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4660 hsotg->gadget.name = dev_name(dev); 4661 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4662 hsotg->gadget.is_otg = 1; 4663 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4664 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4665 4666 ret = dwc2_hsotg_hw_cfg(hsotg); 4667 if (ret) { 4668 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4669 return ret; 4670 } 4671 4672 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4673 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4674 if (!hsotg->ctrl_buff) 4675 return -ENOMEM; 4676 4677 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4678 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4679 if (!hsotg->ep0_buff) 4680 return -ENOMEM; 4681 4682 if (using_desc_dma(hsotg)) { 4683 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4684 if (ret < 0) 4685 return ret; 4686 } 4687 4688 ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED, 4689 dev_name(hsotg->dev), hsotg); 4690 if (ret < 0) { 4691 dev_err(dev, "cannot claim IRQ for gadget\n"); 4692 return ret; 4693 } 4694 4695 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4696 4697 if (hsotg->num_of_eps == 0) { 4698 dev_err(dev, "wrong number of EPs (zero)\n"); 4699 return -EINVAL; 4700 } 4701 4702 /* setup endpoint information */ 4703 4704 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4705 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4706 4707 /* allocate EP0 request */ 4708 4709 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4710 GFP_KERNEL); 4711 if (!hsotg->ctrl_req) { 4712 dev_err(dev, "failed to allocate ctrl req\n"); 4713 return -ENOMEM; 4714 } 4715 4716 /* initialise the endpoints now the core has been initialised */ 4717 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4718 if (hsotg->eps_in[epnum]) 4719 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4720 epnum, 1); 4721 if (hsotg->eps_out[epnum]) 4722 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4723 epnum, 0); 4724 } 4725 4726 ret = usb_add_gadget_udc(dev, &hsotg->gadget); 4727 if (ret) 4728 return ret; 4729 4730 dwc2_hsotg_dump(hsotg); 4731 4732 return 0; 4733 } 4734 4735 /** 4736 * dwc2_hsotg_remove - remove function for hsotg driver 4737 * @pdev: The platform information for the driver 4738 */ 4739 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4740 { 4741 usb_del_gadget_udc(&hsotg->gadget); 4742 4743 return 0; 4744 } 4745 4746 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4747 { 4748 unsigned long flags; 4749 4750 if (hsotg->lx_state != DWC2_L0) 4751 return 0; 4752 4753 if (hsotg->driver) { 4754 int ep; 4755 4756 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4757 hsotg->driver->driver.name); 4758 4759 spin_lock_irqsave(&hsotg->lock, flags); 4760 if (hsotg->enabled) 4761 dwc2_hsotg_core_disconnect(hsotg); 4762 dwc2_hsotg_disconnect(hsotg); 4763 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4764 spin_unlock_irqrestore(&hsotg->lock, flags); 4765 4766 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4767 if (hsotg->eps_in[ep]) 4768 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4769 if (hsotg->eps_out[ep]) 4770 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4771 } 4772 } 4773 4774 return 0; 4775 } 4776 4777 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4778 { 4779 unsigned long flags; 4780 4781 if (hsotg->lx_state == DWC2_L2) 4782 return 0; 4783 4784 if (hsotg->driver) { 4785 dev_info(hsotg->dev, "resuming usb gadget %s\n", 4786 hsotg->driver->driver.name); 4787 4788 spin_lock_irqsave(&hsotg->lock, flags); 4789 dwc2_hsotg_core_init_disconnected(hsotg, false); 4790 if (hsotg->enabled) 4791 dwc2_hsotg_core_connect(hsotg); 4792 spin_unlock_irqrestore(&hsotg->lock, flags); 4793 } 4794 4795 return 0; 4796 } 4797 4798 /** 4799 * dwc2_backup_device_registers() - Backup controller device registers. 4800 * When suspending usb bus, registers needs to be backuped 4801 * if controller power is disabled once suspended. 4802 * 4803 * @hsotg: Programming view of the DWC_otg controller 4804 */ 4805 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 4806 { 4807 struct dwc2_dregs_backup *dr; 4808 int i; 4809 4810 dev_dbg(hsotg->dev, "%s\n", __func__); 4811 4812 /* Backup dev regs */ 4813 dr = &hsotg->dr_backup; 4814 4815 dr->dcfg = dwc2_readl(hsotg->regs + DCFG); 4816 dr->dctl = dwc2_readl(hsotg->regs + DCTL); 4817 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 4818 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK); 4819 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK); 4820 4821 for (i = 0; i < hsotg->num_of_eps; i++) { 4822 /* Backup IN EPs */ 4823 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i)); 4824 4825 /* Ensure DATA PID is correctly configured */ 4826 if (dr->diepctl[i] & DXEPCTL_DPID) 4827 dr->diepctl[i] |= DXEPCTL_SETD1PID; 4828 else 4829 dr->diepctl[i] |= DXEPCTL_SETD0PID; 4830 4831 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i)); 4832 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i)); 4833 4834 /* Backup OUT EPs */ 4835 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i)); 4836 4837 /* Ensure DATA PID is correctly configured */ 4838 if (dr->doepctl[i] & DXEPCTL_DPID) 4839 dr->doepctl[i] |= DXEPCTL_SETD1PID; 4840 else 4841 dr->doepctl[i] |= DXEPCTL_SETD0PID; 4842 4843 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i)); 4844 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i)); 4845 } 4846 dr->valid = true; 4847 return 0; 4848 } 4849 4850 /** 4851 * dwc2_restore_device_registers() - Restore controller device registers. 4852 * When resuming usb bus, device registers needs to be restored 4853 * if controller power were disabled. 4854 * 4855 * @hsotg: Programming view of the DWC_otg controller 4856 */ 4857 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg) 4858 { 4859 struct dwc2_dregs_backup *dr; 4860 u32 dctl; 4861 int i; 4862 4863 dev_dbg(hsotg->dev, "%s\n", __func__); 4864 4865 /* Restore dev regs */ 4866 dr = &hsotg->dr_backup; 4867 if (!dr->valid) { 4868 dev_err(hsotg->dev, "%s: no device registers to restore\n", 4869 __func__); 4870 return -EINVAL; 4871 } 4872 dr->valid = false; 4873 4874 dwc2_writel(dr->dcfg, hsotg->regs + DCFG); 4875 dwc2_writel(dr->dctl, hsotg->regs + DCTL); 4876 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK); 4877 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK); 4878 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK); 4879 4880 for (i = 0; i < hsotg->num_of_eps; i++) { 4881 /* Restore IN EPs */ 4882 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i)); 4883 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i)); 4884 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i)); 4885 4886 /* Restore OUT EPs */ 4887 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i)); 4888 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i)); 4889 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i)); 4890 } 4891 4892 /* Set the Power-On Programming done bit */ 4893 dctl = dwc2_readl(hsotg->regs + DCTL); 4894 dctl |= DCTL_PWRONPRGDONE; 4895 dwc2_writel(dctl, hsotg->regs + DCTL); 4896 4897 return 0; 4898 } 4899