xref: /linux/drivers/usb/dwc2/gadget.c (revision 5e3992fe72748ed3892be876f09d4d990548b7af)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
31 
32 
33 #include "core.h"
34 #include "hw.h"
35 
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38 {
39 	return container_of(req, struct dwc2_hsotg_req, req);
40 }
41 
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43 {
44 	return container_of(ep, struct dwc2_hsotg_ep, ep);
45 }
46 
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48 {
49 	return container_of(gadget, struct dwc2_hsotg, gadget);
50 }
51 
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53 {
54 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 }
56 
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58 {
59 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 }
61 
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 						u32 ep_index, u32 dir_in)
64 {
65 	if (dir_in)
66 		return hsotg->eps_in[ep_index];
67 	else
68 		return hsotg->eps_out[ep_index];
69 }
70 
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73 
74 /**
75  * using_dma - return the DMA status of the driver.
76  * @hsotg: The driver state.
77  *
78  * Return true if we're using DMA.
79  *
80  * Currently, we have the DMA support code worked into everywhere
81  * that needs it, but the AMBA DMA implementation in the hardware can
82  * only DMA from 32bit aligned addresses. This means that gadgets such
83  * as the CDC Ethernet cannot work as they often pass packets which are
84  * not 32bit aligned.
85  *
86  * Unfortunately the choice to use DMA or not is global to the controller
87  * and seems to be only settable when the controller is being put through
88  * a core reset. This means we either need to fix the gadgets to take
89  * account of DMA alignment, or add bounce buffers (yuerk).
90  *
91  * g_using_dma is set depending on dts flag.
92  */
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
94 {
95 	return hsotg->params.g_dma;
96 }
97 
98 /*
99  * using_desc_dma - return the descriptor DMA status of the driver.
100  * @hsotg: The driver state.
101  *
102  * Return true if we're using descriptor DMA.
103  */
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105 {
106 	return hsotg->params.g_dma_desc;
107 }
108 
109 /**
110  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111  * @hs_ep: The endpoint
112  *
113  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115  */
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 {
118 	struct dwc2_hsotg *hsotg = hs_ep->parent;
119 	u16 limit = DSTS_SOFFN_LIMIT;
120 
121 	if (hsotg->gadget.speed != USB_SPEED_HIGH)
122 		limit >>= 3;
123 
124 	hs_ep->target_frame += hs_ep->interval;
125 	if (hs_ep->target_frame > limit) {
126 		hs_ep->frame_overrun = true;
127 		hs_ep->target_frame &= limit;
128 	} else {
129 		hs_ep->frame_overrun = false;
130 	}
131 }
132 
133 /**
134  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
135  *                                    by one.
136  * @hs_ep: The endpoint.
137  *
138  * This function used in service interval based scheduling flow to calculate
139  * descriptor frame number filed value. For service interval mode frame
140  * number in descriptor should point to last (u)frame in the interval.
141  *
142  */
143 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
144 {
145 	struct dwc2_hsotg *hsotg = hs_ep->parent;
146 	u16 limit = DSTS_SOFFN_LIMIT;
147 
148 	if (hsotg->gadget.speed != USB_SPEED_HIGH)
149 		limit >>= 3;
150 
151 	if (hs_ep->target_frame)
152 		hs_ep->target_frame -= 1;
153 	else
154 		hs_ep->target_frame = limit;
155 }
156 
157 /**
158  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
159  * @hsotg: The device state
160  * @ints: A bitmask of the interrupts to enable
161  */
162 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
163 {
164 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
165 	u32 new_gsintmsk;
166 
167 	new_gsintmsk = gsintmsk | ints;
168 
169 	if (new_gsintmsk != gsintmsk) {
170 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
171 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
172 	}
173 }
174 
175 /**
176  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
177  * @hsotg: The device state
178  * @ints: A bitmask of the interrupts to enable
179  */
180 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
181 {
182 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
183 	u32 new_gsintmsk;
184 
185 	new_gsintmsk = gsintmsk & ~ints;
186 
187 	if (new_gsintmsk != gsintmsk)
188 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
189 }
190 
191 /**
192  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
193  * @hsotg: The device state
194  * @ep: The endpoint index
195  * @dir_in: True if direction is in.
196  * @en: The enable value, true to enable
197  *
198  * Set or clear the mask for an individual endpoint's interrupt
199  * request.
200  */
201 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
202 				  unsigned int ep, unsigned int dir_in,
203 				 unsigned int en)
204 {
205 	unsigned long flags;
206 	u32 bit = 1 << ep;
207 	u32 daint;
208 
209 	if (!dir_in)
210 		bit <<= 16;
211 
212 	local_irq_save(flags);
213 	daint = dwc2_readl(hsotg, DAINTMSK);
214 	if (en)
215 		daint |= bit;
216 	else
217 		daint &= ~bit;
218 	dwc2_writel(hsotg, daint, DAINTMSK);
219 	local_irq_restore(flags);
220 }
221 
222 /**
223  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
224  *
225  * @hsotg: Programming view of the DWC_otg controller
226  */
227 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
228 {
229 	if (hsotg->hw_params.en_multiple_tx_fifo)
230 		/* In dedicated FIFO mode we need count of IN EPs */
231 		return hsotg->hw_params.num_dev_in_eps;
232 	else
233 		/* In shared FIFO mode we need count of Periodic IN EPs */
234 		return hsotg->hw_params.num_dev_perio_in_ep;
235 }
236 
237 /**
238  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
239  * device mode TX FIFOs
240  *
241  * @hsotg: Programming view of the DWC_otg controller
242  */
243 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
244 {
245 	int addr;
246 	int tx_addr_max;
247 	u32 np_tx_fifo_size;
248 
249 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
250 				hsotg->params.g_np_tx_fifo_size);
251 
252 	/* Get Endpoint Info Control block size in DWORDs. */
253 	tx_addr_max = hsotg->hw_params.total_fifo_size;
254 
255 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
256 	if (tx_addr_max <= addr)
257 		return 0;
258 
259 	return tx_addr_max - addr;
260 }
261 
262 /**
263  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
264  *
265  * @hsotg: Programming view of the DWC_otg controller
266  *
267  */
268 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
269 {
270 	u32 gintsts2;
271 	u32 gintmsk2;
272 
273 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
274 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
275 	gintsts2 &= gintmsk2;
276 
277 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
278 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
279 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
280 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
281 	}
282 }
283 
284 /**
285  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
286  * TX FIFOs
287  *
288  * @hsotg: Programming view of the DWC_otg controller
289  */
290 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
291 {
292 	int tx_fifo_count;
293 	int tx_fifo_depth;
294 
295 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
296 
297 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
298 
299 	if (!tx_fifo_count)
300 		return tx_fifo_depth;
301 	else
302 		return tx_fifo_depth / tx_fifo_count;
303 }
304 
305 /**
306  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
307  * @hsotg: The device instance.
308  */
309 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
310 {
311 	unsigned int ep;
312 	unsigned int addr;
313 	int timeout;
314 
315 	u32 val;
316 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
317 
318 	/* Reset fifo map if not correctly cleared during previous session */
319 	WARN_ON(hsotg->fifo_map);
320 	hsotg->fifo_map = 0;
321 
322 	/* set RX/NPTX FIFO sizes */
323 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
324 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
325 		    FIFOSIZE_STARTADDR_SHIFT) |
326 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
327 		    GNPTXFSIZ);
328 
329 	/*
330 	 * arange all the rest of the TX FIFOs, as some versions of this
331 	 * block have overlapping default addresses. This also ensures
332 	 * that if the settings have been changed, then they are set to
333 	 * known values.
334 	 */
335 
336 	/* start at the end of the GNPTXFSIZ, rounded up */
337 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
338 
339 	/*
340 	 * Configure fifos sizes from provided configuration and assign
341 	 * them to endpoints dynamically according to maxpacket size value of
342 	 * given endpoint.
343 	 */
344 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
345 		if (!txfsz[ep])
346 			continue;
347 		val = addr;
348 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
349 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
350 			  "insufficient fifo memory");
351 		addr += txfsz[ep];
352 
353 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
354 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
355 	}
356 
357 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
358 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
359 		    GDFIFOCFG);
360 	/*
361 	 * according to p428 of the design guide, we need to ensure that
362 	 * all fifos are flushed before continuing
363 	 */
364 
365 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
366 	       GRSTCTL_RXFFLSH, GRSTCTL);
367 
368 	/* wait until the fifos are both flushed */
369 	timeout = 100;
370 	while (1) {
371 		val = dwc2_readl(hsotg, GRSTCTL);
372 
373 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
374 			break;
375 
376 		if (--timeout == 0) {
377 			dev_err(hsotg->dev,
378 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
379 				__func__, val);
380 			break;
381 		}
382 
383 		udelay(1);
384 	}
385 
386 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
387 }
388 
389 /**
390  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
391  * @ep: USB endpoint to allocate request for.
392  * @flags: Allocation flags
393  *
394  * Allocate a new USB request structure appropriate for the specified endpoint
395  */
396 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
397 						       gfp_t flags)
398 {
399 	struct dwc2_hsotg_req *req;
400 
401 	req = kzalloc(sizeof(*req), flags);
402 	if (!req)
403 		return NULL;
404 
405 	INIT_LIST_HEAD(&req->queue);
406 
407 	return &req->req;
408 }
409 
410 /**
411  * is_ep_periodic - return true if the endpoint is in periodic mode.
412  * @hs_ep: The endpoint to query.
413  *
414  * Returns true if the endpoint is in periodic mode, meaning it is being
415  * used for an Interrupt or ISO transfer.
416  */
417 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
418 {
419 	return hs_ep->periodic;
420 }
421 
422 /**
423  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
424  * @hsotg: The device state.
425  * @hs_ep: The endpoint for the request
426  * @hs_req: The request being processed.
427  *
428  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
429  * of a request to ensure the buffer is ready for access by the caller.
430  */
431 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
432 				 struct dwc2_hsotg_ep *hs_ep,
433 				struct dwc2_hsotg_req *hs_req)
434 {
435 	struct usb_request *req = &hs_req->req;
436 
437 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
438 }
439 
440 /*
441  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
442  * for Control endpoint
443  * @hsotg: The device state.
444  *
445  * This function will allocate 4 descriptor chains for EP 0: 2 for
446  * Setup stage, per one for IN and OUT data/status transactions.
447  */
448 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
449 {
450 	hsotg->setup_desc[0] =
451 		dmam_alloc_coherent(hsotg->dev,
452 				    sizeof(struct dwc2_dma_desc),
453 				    &hsotg->setup_desc_dma[0],
454 				    GFP_KERNEL);
455 	if (!hsotg->setup_desc[0])
456 		goto fail;
457 
458 	hsotg->setup_desc[1] =
459 		dmam_alloc_coherent(hsotg->dev,
460 				    sizeof(struct dwc2_dma_desc),
461 				    &hsotg->setup_desc_dma[1],
462 				    GFP_KERNEL);
463 	if (!hsotg->setup_desc[1])
464 		goto fail;
465 
466 	hsotg->ctrl_in_desc =
467 		dmam_alloc_coherent(hsotg->dev,
468 				    sizeof(struct dwc2_dma_desc),
469 				    &hsotg->ctrl_in_desc_dma,
470 				    GFP_KERNEL);
471 	if (!hsotg->ctrl_in_desc)
472 		goto fail;
473 
474 	hsotg->ctrl_out_desc =
475 		dmam_alloc_coherent(hsotg->dev,
476 				    sizeof(struct dwc2_dma_desc),
477 				    &hsotg->ctrl_out_desc_dma,
478 				    GFP_KERNEL);
479 	if (!hsotg->ctrl_out_desc)
480 		goto fail;
481 
482 	return 0;
483 
484 fail:
485 	return -ENOMEM;
486 }
487 
488 /**
489  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
490  * @hsotg: The controller state.
491  * @hs_ep: The endpoint we're going to write for.
492  * @hs_req: The request to write data for.
493  *
494  * This is called when the TxFIFO has some space in it to hold a new
495  * transmission and we have something to give it. The actual setup of
496  * the data size is done elsewhere, so all we have to do is to actually
497  * write the data.
498  *
499  * The return value is zero if there is more space (or nothing was done)
500  * otherwise -ENOSPC is returned if the FIFO space was used up.
501  *
502  * This routine is only needed for PIO
503  */
504 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
505 				 struct dwc2_hsotg_ep *hs_ep,
506 				struct dwc2_hsotg_req *hs_req)
507 {
508 	bool periodic = is_ep_periodic(hs_ep);
509 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
510 	int buf_pos = hs_req->req.actual;
511 	int to_write = hs_ep->size_loaded;
512 	void *data;
513 	int can_write;
514 	int pkt_round;
515 	int max_transfer;
516 
517 	to_write -= (buf_pos - hs_ep->last_load);
518 
519 	/* if there's nothing to write, get out early */
520 	if (to_write == 0)
521 		return 0;
522 
523 	if (periodic && !hsotg->dedicated_fifos) {
524 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
525 		int size_left;
526 		int size_done;
527 
528 		/*
529 		 * work out how much data was loaded so we can calculate
530 		 * how much data is left in the fifo.
531 		 */
532 
533 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
534 
535 		/*
536 		 * if shared fifo, we cannot write anything until the
537 		 * previous data has been completely sent.
538 		 */
539 		if (hs_ep->fifo_load != 0) {
540 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
541 			return -ENOSPC;
542 		}
543 
544 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
545 			__func__, size_left,
546 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
547 
548 		/* how much of the data has moved */
549 		size_done = hs_ep->size_loaded - size_left;
550 
551 		/* how much data is left in the fifo */
552 		can_write = hs_ep->fifo_load - size_done;
553 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
554 			__func__, can_write);
555 
556 		can_write = hs_ep->fifo_size - can_write;
557 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
558 			__func__, can_write);
559 
560 		if (can_write <= 0) {
561 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
562 			return -ENOSPC;
563 		}
564 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
565 		can_write = dwc2_readl(hsotg,
566 				       DTXFSTS(hs_ep->fifo_index));
567 
568 		can_write &= 0xffff;
569 		can_write *= 4;
570 	} else {
571 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
572 			dev_dbg(hsotg->dev,
573 				"%s: no queue slots available (0x%08x)\n",
574 				__func__, gnptxsts);
575 
576 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
577 			return -ENOSPC;
578 		}
579 
580 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
581 		can_write *= 4;	/* fifo size is in 32bit quantities. */
582 	}
583 
584 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
585 
586 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
587 		__func__, gnptxsts, can_write, to_write, max_transfer);
588 
589 	/*
590 	 * limit to 512 bytes of data, it seems at least on the non-periodic
591 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
592 	 * fragment of the end of the transfer in it.
593 	 */
594 	if (can_write > 512 && !periodic)
595 		can_write = 512;
596 
597 	/*
598 	 * limit the write to one max-packet size worth of data, but allow
599 	 * the transfer to return that it did not run out of fifo space
600 	 * doing it.
601 	 */
602 	if (to_write > max_transfer) {
603 		to_write = max_transfer;
604 
605 		/* it's needed only when we do not use dedicated fifos */
606 		if (!hsotg->dedicated_fifos)
607 			dwc2_hsotg_en_gsint(hsotg,
608 					    periodic ? GINTSTS_PTXFEMP :
609 					   GINTSTS_NPTXFEMP);
610 	}
611 
612 	/* see if we can write data */
613 
614 	if (to_write > can_write) {
615 		to_write = can_write;
616 		pkt_round = to_write % max_transfer;
617 
618 		/*
619 		 * Round the write down to an
620 		 * exact number of packets.
621 		 *
622 		 * Note, we do not currently check to see if we can ever
623 		 * write a full packet or not to the FIFO.
624 		 */
625 
626 		if (pkt_round)
627 			to_write -= pkt_round;
628 
629 		/*
630 		 * enable correct FIFO interrupt to alert us when there
631 		 * is more room left.
632 		 */
633 
634 		/* it's needed only when we do not use dedicated fifos */
635 		if (!hsotg->dedicated_fifos)
636 			dwc2_hsotg_en_gsint(hsotg,
637 					    periodic ? GINTSTS_PTXFEMP :
638 					   GINTSTS_NPTXFEMP);
639 	}
640 
641 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
642 		to_write, hs_req->req.length, can_write, buf_pos);
643 
644 	if (to_write <= 0)
645 		return -ENOSPC;
646 
647 	hs_req->req.actual = buf_pos + to_write;
648 	hs_ep->total_data += to_write;
649 
650 	if (periodic)
651 		hs_ep->fifo_load += to_write;
652 
653 	to_write = DIV_ROUND_UP(to_write, 4);
654 	data = hs_req->req.buf + buf_pos;
655 
656 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
657 
658 	return (to_write >= can_write) ? -ENOSPC : 0;
659 }
660 
661 /**
662  * get_ep_limit - get the maximum data legnth for this endpoint
663  * @hs_ep: The endpoint
664  *
665  * Return the maximum data that can be queued in one go on a given endpoint
666  * so that transfers that are too long can be split.
667  */
668 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
669 {
670 	int index = hs_ep->index;
671 	unsigned int maxsize;
672 	unsigned int maxpkt;
673 
674 	if (index != 0) {
675 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
676 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
677 	} else {
678 		maxsize = 64 + 64;
679 		if (hs_ep->dir_in)
680 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
681 		else
682 			maxpkt = 2;
683 	}
684 
685 	/* we made the constant loading easier above by using +1 */
686 	maxpkt--;
687 	maxsize--;
688 
689 	/*
690 	 * constrain by packet count if maxpkts*pktsize is greater
691 	 * than the length register size.
692 	 */
693 
694 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
695 		maxsize = maxpkt * hs_ep->ep.maxpacket;
696 
697 	return maxsize;
698 }
699 
700 /**
701  * dwc2_hsotg_read_frameno - read current frame number
702  * @hsotg: The device instance
703  *
704  * Return the current frame number
705  */
706 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
707 {
708 	u32 dsts;
709 
710 	dsts = dwc2_readl(hsotg, DSTS);
711 	dsts &= DSTS_SOFFN_MASK;
712 	dsts >>= DSTS_SOFFN_SHIFT;
713 
714 	return dsts;
715 }
716 
717 /**
718  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
719  * DMA descriptor chain prepared for specific endpoint
720  * @hs_ep: The endpoint
721  *
722  * Return the maximum data that can be queued in one go on a given endpoint
723  * depending on its descriptor chain capacity so that transfers that
724  * are too long can be split.
725  */
726 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
727 {
728 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
729 	int is_isoc = hs_ep->isochronous;
730 	unsigned int maxsize;
731 	u32 mps = hs_ep->ep.maxpacket;
732 	int dir_in = hs_ep->dir_in;
733 
734 	if (is_isoc)
735 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
736 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
737 					   MAX_DMA_DESC_NUM_HS_ISOC;
738 	else
739 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
740 
741 	/* Interrupt OUT EP with mps not multiple of 4 */
742 	if (hs_ep->index)
743 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
744 			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
745 
746 	return maxsize;
747 }
748 
749 /*
750  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
751  * @hs_ep: The endpoint
752  * @mask: RX/TX bytes mask to be defined
753  *
754  * Returns maximum data payload for one descriptor after analyzing endpoint
755  * characteristics.
756  * DMA descriptor transfer bytes limit depends on EP type:
757  * Control out - MPS,
758  * Isochronous - descriptor rx/tx bytes bitfield limit,
759  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
760  * have concatenations from various descriptors within one packet.
761  * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
762  * to a single descriptor.
763  *
764  * Selects corresponding mask for RX/TX bytes as well.
765  */
766 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
767 {
768 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
769 	u32 mps = hs_ep->ep.maxpacket;
770 	int dir_in = hs_ep->dir_in;
771 	u32 desc_size = 0;
772 
773 	if (!hs_ep->index && !dir_in) {
774 		desc_size = mps;
775 		*mask = DEV_DMA_NBYTES_MASK;
776 	} else if (hs_ep->isochronous) {
777 		if (dir_in) {
778 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
779 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
780 		} else {
781 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
782 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
783 		}
784 	} else {
785 		desc_size = DEV_DMA_NBYTES_LIMIT;
786 		*mask = DEV_DMA_NBYTES_MASK;
787 
788 		/* Round down desc_size to be mps multiple */
789 		desc_size -= desc_size % mps;
790 	}
791 
792 	/* Interrupt OUT EP with mps not multiple of 4 */
793 	if (hs_ep->index)
794 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
795 			desc_size = mps;
796 			*mask = DEV_DMA_NBYTES_MASK;
797 		}
798 
799 	return desc_size;
800 }
801 
802 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
803 						 struct dwc2_dma_desc **desc,
804 						 dma_addr_t dma_buff,
805 						 unsigned int len,
806 						 bool true_last)
807 {
808 	int dir_in = hs_ep->dir_in;
809 	u32 mps = hs_ep->ep.maxpacket;
810 	u32 maxsize = 0;
811 	u32 offset = 0;
812 	u32 mask = 0;
813 	int i;
814 
815 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
816 
817 	hs_ep->desc_count = (len / maxsize) +
818 				((len % maxsize) ? 1 : 0);
819 	if (len == 0)
820 		hs_ep->desc_count = 1;
821 
822 	for (i = 0; i < hs_ep->desc_count; ++i) {
823 		(*desc)->status = 0;
824 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
825 				 << DEV_DMA_BUFF_STS_SHIFT);
826 
827 		if (len > maxsize) {
828 			if (!hs_ep->index && !dir_in)
829 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
830 
831 			(*desc)->status |=
832 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
833 			(*desc)->buf = dma_buff + offset;
834 
835 			len -= maxsize;
836 			offset += maxsize;
837 		} else {
838 			if (true_last)
839 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
840 
841 			if (dir_in)
842 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
843 					((hs_ep->send_zlp && true_last) ?
844 					DEV_DMA_SHORT : 0);
845 
846 			(*desc)->status |=
847 				len << DEV_DMA_NBYTES_SHIFT & mask;
848 			(*desc)->buf = dma_buff + offset;
849 		}
850 
851 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
852 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
853 				 << DEV_DMA_BUFF_STS_SHIFT);
854 		(*desc)++;
855 	}
856 }
857 
858 /*
859  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
860  * @hs_ep: The endpoint
861  * @ureq: Request to transfer
862  * @offset: offset in bytes
863  * @len: Length of the transfer
864  *
865  * This function will iterate over descriptor chain and fill its entries
866  * with corresponding information based on transfer data.
867  */
868 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
869 						 dma_addr_t dma_buff,
870 						 unsigned int len)
871 {
872 	struct usb_request *ureq = NULL;
873 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
874 	struct scatterlist *sg;
875 	int i;
876 	u8 desc_count = 0;
877 
878 	if (hs_ep->req)
879 		ureq = &hs_ep->req->req;
880 
881 	/* non-DMA sg buffer */
882 	if (!ureq || !ureq->num_sgs) {
883 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
884 			dma_buff, len, true);
885 		return;
886 	}
887 
888 	/* DMA sg buffer */
889 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
890 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
891 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
892 			sg_is_last(sg));
893 		desc_count += hs_ep->desc_count;
894 	}
895 
896 	hs_ep->desc_count = desc_count;
897 }
898 
899 /*
900  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
901  * @hs_ep: The isochronous endpoint.
902  * @dma_buff: usb requests dma buffer.
903  * @len: usb request transfer length.
904  *
905  * Fills next free descriptor with the data of the arrived usb request,
906  * frame info, sets Last and IOC bits increments next_desc. If filled
907  * descriptor is not the first one, removes L bit from the previous descriptor
908  * status.
909  */
910 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
911 				      dma_addr_t dma_buff, unsigned int len)
912 {
913 	struct dwc2_dma_desc *desc;
914 	struct dwc2_hsotg *hsotg = hs_ep->parent;
915 	u32 index;
916 	u32 mask = 0;
917 	u8 pid = 0;
918 
919 	dwc2_gadget_get_desc_params(hs_ep, &mask);
920 
921 	index = hs_ep->next_desc;
922 	desc = &hs_ep->desc_list[index];
923 
924 	/* Check if descriptor chain full */
925 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
926 	    DEV_DMA_BUFF_STS_HREADY) {
927 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
928 		return 1;
929 	}
930 
931 	/* Clear L bit of previous desc if more than one entries in the chain */
932 	if (hs_ep->next_desc)
933 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
934 
935 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
936 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
937 
938 	desc->status = 0;
939 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
940 
941 	desc->buf = dma_buff;
942 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
943 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
944 
945 	if (hs_ep->dir_in) {
946 		if (len)
947 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
948 		else
949 			pid = 1;
950 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
951 				 DEV_DMA_ISOC_PID_MASK) |
952 				((len % hs_ep->ep.maxpacket) ?
953 				 DEV_DMA_SHORT : 0) |
954 				((hs_ep->target_frame <<
955 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
956 				 DEV_DMA_ISOC_FRNUM_MASK);
957 	}
958 
959 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
960 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
961 
962 	/* Increment frame number by interval for IN */
963 	if (hs_ep->dir_in)
964 		dwc2_gadget_incr_frame_num(hs_ep);
965 
966 	/* Update index of last configured entry in the chain */
967 	hs_ep->next_desc++;
968 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
969 		hs_ep->next_desc = 0;
970 
971 	return 0;
972 }
973 
974 /*
975  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
976  * @hs_ep: The isochronous endpoint.
977  *
978  * Prepare descriptor chain for isochronous endpoints. Afterwards
979  * write DMA address to HW and enable the endpoint.
980  */
981 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
982 {
983 	struct dwc2_hsotg *hsotg = hs_ep->parent;
984 	struct dwc2_hsotg_req *hs_req, *treq;
985 	int index = hs_ep->index;
986 	int ret;
987 	int i;
988 	u32 dma_reg;
989 	u32 depctl;
990 	u32 ctrl;
991 	struct dwc2_dma_desc *desc;
992 
993 	if (list_empty(&hs_ep->queue)) {
994 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
995 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
996 		return;
997 	}
998 
999 	/* Initialize descriptor chain by Host Busy status */
1000 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1001 		desc = &hs_ep->desc_list[i];
1002 		desc->status = 0;
1003 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1004 				    << DEV_DMA_BUFF_STS_SHIFT);
1005 	}
1006 
1007 	hs_ep->next_desc = 0;
1008 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1009 		dma_addr_t dma_addr = hs_req->req.dma;
1010 
1011 		if (hs_req->req.num_sgs) {
1012 			WARN_ON(hs_req->req.num_sgs > 1);
1013 			dma_addr = sg_dma_address(hs_req->req.sg);
1014 		}
1015 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1016 						 hs_req->req.length);
1017 		if (ret)
1018 			break;
1019 	}
1020 
1021 	hs_ep->compl_desc = 0;
1022 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1023 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1024 
1025 	/* write descriptor chain address to control register */
1026 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1027 
1028 	ctrl = dwc2_readl(hsotg, depctl);
1029 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1030 	dwc2_writel(hsotg, ctrl, depctl);
1031 }
1032 
1033 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1034 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1035 					struct dwc2_hsotg_ep *hs_ep,
1036 				       struct dwc2_hsotg_req *hs_req,
1037 				       int result);
1038 
1039 /**
1040  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1041  * @hsotg: The controller state.
1042  * @hs_ep: The endpoint to process a request for
1043  * @hs_req: The request to start.
1044  * @continuing: True if we are doing more for the current request.
1045  *
1046  * Start the given request running by setting the endpoint registers
1047  * appropriately, and writing any data to the FIFOs.
1048  */
1049 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1050 				 struct dwc2_hsotg_ep *hs_ep,
1051 				struct dwc2_hsotg_req *hs_req,
1052 				bool continuing)
1053 {
1054 	struct usb_request *ureq = &hs_req->req;
1055 	int index = hs_ep->index;
1056 	int dir_in = hs_ep->dir_in;
1057 	u32 epctrl_reg;
1058 	u32 epsize_reg;
1059 	u32 epsize;
1060 	u32 ctrl;
1061 	unsigned int length;
1062 	unsigned int packets;
1063 	unsigned int maxreq;
1064 	unsigned int dma_reg;
1065 
1066 	if (index != 0) {
1067 		if (hs_ep->req && !continuing) {
1068 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1069 			WARN_ON(1);
1070 			return;
1071 		} else if (hs_ep->req != hs_req && continuing) {
1072 			dev_err(hsotg->dev,
1073 				"%s: continue different req\n", __func__);
1074 			WARN_ON(1);
1075 			return;
1076 		}
1077 	}
1078 
1079 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1080 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1081 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1082 
1083 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1084 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1085 		hs_ep->dir_in ? "in" : "out");
1086 
1087 	/* If endpoint is stalled, we will restart request later */
1088 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1089 
1090 	if (index && ctrl & DXEPCTL_STALL) {
1091 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1092 		return;
1093 	}
1094 
1095 	length = ureq->length - ureq->actual;
1096 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1097 		ureq->length, ureq->actual);
1098 
1099 	if (!using_desc_dma(hsotg))
1100 		maxreq = get_ep_limit(hs_ep);
1101 	else
1102 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1103 
1104 	if (length > maxreq) {
1105 		int round = maxreq % hs_ep->ep.maxpacket;
1106 
1107 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1108 			__func__, length, maxreq, round);
1109 
1110 		/* round down to multiple of packets */
1111 		if (round)
1112 			maxreq -= round;
1113 
1114 		length = maxreq;
1115 	}
1116 
1117 	if (length)
1118 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1119 	else
1120 		packets = 1;	/* send one packet if length is zero. */
1121 
1122 	if (dir_in && index != 0)
1123 		if (hs_ep->isochronous)
1124 			epsize = DXEPTSIZ_MC(packets);
1125 		else
1126 			epsize = DXEPTSIZ_MC(1);
1127 	else
1128 		epsize = 0;
1129 
1130 	/*
1131 	 * zero length packet should be programmed on its own and should not
1132 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1133 	 */
1134 	if (dir_in && ureq->zero && !continuing) {
1135 		/* Test if zlp is actually required. */
1136 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1137 		    !(ureq->length % hs_ep->ep.maxpacket))
1138 			hs_ep->send_zlp = 1;
1139 	}
1140 
1141 	epsize |= DXEPTSIZ_PKTCNT(packets);
1142 	epsize |= DXEPTSIZ_XFERSIZE(length);
1143 
1144 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1145 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1146 
1147 	/* store the request as the current one we're doing */
1148 	hs_ep->req = hs_req;
1149 
1150 	if (using_desc_dma(hsotg)) {
1151 		u32 offset = 0;
1152 		u32 mps = hs_ep->ep.maxpacket;
1153 
1154 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1155 		if (!dir_in) {
1156 			if (!index)
1157 				length = mps;
1158 			else if (length % mps)
1159 				length += (mps - (length % mps));
1160 		}
1161 
1162 		if (continuing)
1163 			offset = ureq->actual;
1164 
1165 		/* Fill DDMA chain entries */
1166 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1167 						     length);
1168 
1169 		/* write descriptor chain address to control register */
1170 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1171 
1172 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1173 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1174 	} else {
1175 		/* write size / packets */
1176 		dwc2_writel(hsotg, epsize, epsize_reg);
1177 
1178 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1179 			/*
1180 			 * write DMA address to control register, buffer
1181 			 * already synced by dwc2_hsotg_ep_queue().
1182 			 */
1183 
1184 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1185 
1186 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1187 				__func__, &ureq->dma, dma_reg);
1188 		}
1189 	}
1190 
1191 	if (hs_ep->isochronous) {
1192 		if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1193 			if (hs_ep->interval == 1) {
1194 				if (hs_ep->target_frame & 0x1)
1195 					ctrl |= DXEPCTL_SETODDFR;
1196 				else
1197 					ctrl |= DXEPCTL_SETEVENFR;
1198 			}
1199 			ctrl |= DXEPCTL_CNAK;
1200 		} else {
1201 			hs_req->req.frame_number = hs_ep->target_frame;
1202 			hs_req->req.actual = 0;
1203 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1204 			return;
1205 		}
1206 	}
1207 
1208 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1209 
1210 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1211 
1212 	/* For Setup request do not clear NAK */
1213 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1214 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1215 
1216 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1217 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1218 
1219 	/*
1220 	 * set these, it seems that DMA support increments past the end
1221 	 * of the packet buffer so we need to calculate the length from
1222 	 * this information.
1223 	 */
1224 	hs_ep->size_loaded = length;
1225 	hs_ep->last_load = ureq->actual;
1226 
1227 	if (dir_in && !using_dma(hsotg)) {
1228 		/* set these anyway, we may need them for non-periodic in */
1229 		hs_ep->fifo_load = 0;
1230 
1231 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1232 	}
1233 
1234 	/*
1235 	 * Note, trying to clear the NAK here causes problems with transmit
1236 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1237 	 */
1238 
1239 	/* check ep is enabled */
1240 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1241 		dev_dbg(hsotg->dev,
1242 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1243 			 index, dwc2_readl(hsotg, epctrl_reg));
1244 
1245 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1246 		__func__, dwc2_readl(hsotg, epctrl_reg));
1247 
1248 	/* enable ep interrupts */
1249 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1250 }
1251 
1252 /**
1253  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1254  * @hsotg: The device state.
1255  * @hs_ep: The endpoint the request is on.
1256  * @req: The request being processed.
1257  *
1258  * We've been asked to queue a request, so ensure that the memory buffer
1259  * is correctly setup for DMA. If we've been passed an extant DMA address
1260  * then ensure the buffer has been synced to memory. If our buffer has no
1261  * DMA memory, then we map the memory and mark our request to allow us to
1262  * cleanup on completion.
1263  */
1264 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1265 			      struct dwc2_hsotg_ep *hs_ep,
1266 			     struct usb_request *req)
1267 {
1268 	int ret;
1269 
1270 	hs_ep->map_dir = hs_ep->dir_in;
1271 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1272 	if (ret)
1273 		goto dma_error;
1274 
1275 	return 0;
1276 
1277 dma_error:
1278 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1279 		__func__, req->buf, req->length);
1280 
1281 	return -EIO;
1282 }
1283 
1284 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1285 						 struct dwc2_hsotg_ep *hs_ep,
1286 						 struct dwc2_hsotg_req *hs_req)
1287 {
1288 	void *req_buf = hs_req->req.buf;
1289 
1290 	/* If dma is not being used or buffer is aligned */
1291 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1292 		return 0;
1293 
1294 	WARN_ON(hs_req->saved_req_buf);
1295 
1296 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1297 		hs_ep->ep.name, req_buf, hs_req->req.length);
1298 
1299 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1300 	if (!hs_req->req.buf) {
1301 		hs_req->req.buf = req_buf;
1302 		dev_err(hsotg->dev,
1303 			"%s: unable to allocate memory for bounce buffer\n",
1304 			__func__);
1305 		return -ENOMEM;
1306 	}
1307 
1308 	/* Save actual buffer */
1309 	hs_req->saved_req_buf = req_buf;
1310 
1311 	if (hs_ep->dir_in)
1312 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1313 	return 0;
1314 }
1315 
1316 static void
1317 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1318 					 struct dwc2_hsotg_ep *hs_ep,
1319 					 struct dwc2_hsotg_req *hs_req)
1320 {
1321 	/* If dma is not being used or buffer was aligned */
1322 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1323 		return;
1324 
1325 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1326 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1327 
1328 	/* Copy data from bounce buffer on successful out transfer */
1329 	if (!hs_ep->dir_in && !hs_req->req.status)
1330 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1331 		       hs_req->req.actual);
1332 
1333 	/* Free bounce buffer */
1334 	kfree(hs_req->req.buf);
1335 
1336 	hs_req->req.buf = hs_req->saved_req_buf;
1337 	hs_req->saved_req_buf = NULL;
1338 }
1339 
1340 /**
1341  * dwc2_gadget_target_frame_elapsed - Checks target frame
1342  * @hs_ep: The driver endpoint to check
1343  *
1344  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1345  * corresponding transfer.
1346  */
1347 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1348 {
1349 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1350 	u32 target_frame = hs_ep->target_frame;
1351 	u32 current_frame = hsotg->frame_number;
1352 	bool frame_overrun = hs_ep->frame_overrun;
1353 	u16 limit = DSTS_SOFFN_LIMIT;
1354 
1355 	if (hsotg->gadget.speed != USB_SPEED_HIGH)
1356 		limit >>= 3;
1357 
1358 	if (!frame_overrun && current_frame >= target_frame)
1359 		return true;
1360 
1361 	if (frame_overrun && current_frame >= target_frame &&
1362 	    ((current_frame - target_frame) < limit / 2))
1363 		return true;
1364 
1365 	return false;
1366 }
1367 
1368 /*
1369  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1370  * @hsotg: The driver state
1371  * @hs_ep: the ep descriptor chain is for
1372  *
1373  * Called to update EP0 structure's pointers depend on stage of
1374  * control transfer.
1375  */
1376 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1377 					  struct dwc2_hsotg_ep *hs_ep)
1378 {
1379 	switch (hsotg->ep0_state) {
1380 	case DWC2_EP0_SETUP:
1381 	case DWC2_EP0_STATUS_OUT:
1382 		hs_ep->desc_list = hsotg->setup_desc[0];
1383 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1384 		break;
1385 	case DWC2_EP0_DATA_IN:
1386 	case DWC2_EP0_STATUS_IN:
1387 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1388 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1389 		break;
1390 	case DWC2_EP0_DATA_OUT:
1391 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1392 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1393 		break;
1394 	default:
1395 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1396 			hsotg->ep0_state);
1397 		return -EINVAL;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1404 			       gfp_t gfp_flags)
1405 {
1406 	struct dwc2_hsotg_req *hs_req = our_req(req);
1407 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1408 	struct dwc2_hsotg *hs = hs_ep->parent;
1409 	bool first;
1410 	int ret;
1411 	u32 maxsize = 0;
1412 	u32 mask = 0;
1413 
1414 
1415 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1416 		ep->name, req, req->length, req->buf, req->no_interrupt,
1417 		req->zero, req->short_not_ok);
1418 
1419 	/* Prevent new request submission when controller is suspended */
1420 	if (hs->lx_state != DWC2_L0) {
1421 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1422 			__func__);
1423 		return -EAGAIN;
1424 	}
1425 
1426 	/* initialise status of the request */
1427 	INIT_LIST_HEAD(&hs_req->queue);
1428 	req->actual = 0;
1429 	req->status = -EINPROGRESS;
1430 
1431 	/* Don't queue ISOC request if length greater than mps*mc */
1432 	if (hs_ep->isochronous &&
1433 	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1434 		dev_err(hs->dev, "req length > maxpacket*mc\n");
1435 		return -EINVAL;
1436 	}
1437 
1438 	/* In DDMA mode for ISOC's don't queue request if length greater
1439 	 * than descriptor limits.
1440 	 */
1441 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1442 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1443 		if (hs_ep->dir_in && req->length > maxsize) {
1444 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1445 				req->length, maxsize);
1446 			return -EINVAL;
1447 		}
1448 
1449 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1450 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1451 				req->length, hs_ep->ep.maxpacket);
1452 			return -EINVAL;
1453 		}
1454 	}
1455 
1456 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1457 	if (ret)
1458 		return ret;
1459 
1460 	/* if we're using DMA, sync the buffers as necessary */
1461 	if (using_dma(hs)) {
1462 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1463 		if (ret)
1464 			return ret;
1465 	}
1466 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1467 	if (using_desc_dma(hs) && !hs_ep->index) {
1468 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1469 		if (ret)
1470 			return ret;
1471 	}
1472 
1473 	first = list_empty(&hs_ep->queue);
1474 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1475 
1476 	/*
1477 	 * Handle DDMA isochronous transfers separately - just add new entry
1478 	 * to the descriptor chain.
1479 	 * Transfer will be started once SW gets either one of NAK or
1480 	 * OutTknEpDis interrupts.
1481 	 */
1482 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1483 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1484 			dma_addr_t dma_addr = hs_req->req.dma;
1485 
1486 			if (hs_req->req.num_sgs) {
1487 				WARN_ON(hs_req->req.num_sgs > 1);
1488 				dma_addr = sg_dma_address(hs_req->req.sg);
1489 			}
1490 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1491 						   hs_req->req.length);
1492 		}
1493 		return 0;
1494 	}
1495 
1496 	/* Change EP direction if status phase request is after data out */
1497 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1498 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1499 		hs_ep->dir_in = 1;
1500 
1501 	if (first) {
1502 		if (!hs_ep->isochronous) {
1503 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1504 			return 0;
1505 		}
1506 
1507 		/* Update current frame number value. */
1508 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1509 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1510 			dwc2_gadget_incr_frame_num(hs_ep);
1511 			/* Update current frame number value once more as it
1512 			 * changes here.
1513 			 */
1514 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1515 		}
1516 
1517 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1518 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1519 	}
1520 	return 0;
1521 }
1522 
1523 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1524 				    gfp_t gfp_flags)
1525 {
1526 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1527 	struct dwc2_hsotg *hs = hs_ep->parent;
1528 	unsigned long flags;
1529 	int ret;
1530 
1531 	spin_lock_irqsave(&hs->lock, flags);
1532 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1533 	spin_unlock_irqrestore(&hs->lock, flags);
1534 
1535 	return ret;
1536 }
1537 
1538 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1539 				       struct usb_request *req)
1540 {
1541 	struct dwc2_hsotg_req *hs_req = our_req(req);
1542 
1543 	kfree(hs_req);
1544 }
1545 
1546 /**
1547  * dwc2_hsotg_complete_oursetup - setup completion callback
1548  * @ep: The endpoint the request was on.
1549  * @req: The request completed.
1550  *
1551  * Called on completion of any requests the driver itself
1552  * submitted that need cleaning up.
1553  */
1554 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1555 					 struct usb_request *req)
1556 {
1557 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1558 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1559 
1560 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1561 
1562 	dwc2_hsotg_ep_free_request(ep, req);
1563 }
1564 
1565 /**
1566  * ep_from_windex - convert control wIndex value to endpoint
1567  * @hsotg: The driver state.
1568  * @windex: The control request wIndex field (in host order).
1569  *
1570  * Convert the given wIndex into a pointer to an driver endpoint
1571  * structure, or return NULL if it is not a valid endpoint.
1572  */
1573 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1574 					    u32 windex)
1575 {
1576 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1577 	int idx = windex & 0x7F;
1578 
1579 	if (windex >= 0x100)
1580 		return NULL;
1581 
1582 	if (idx > hsotg->num_of_eps)
1583 		return NULL;
1584 
1585 	return index_to_ep(hsotg, idx, dir);
1586 }
1587 
1588 /**
1589  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1590  * @hsotg: The driver state.
1591  * @testmode: requested usb test mode
1592  * Enable usb Test Mode requested by the Host.
1593  */
1594 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1595 {
1596 	int dctl = dwc2_readl(hsotg, DCTL);
1597 
1598 	dctl &= ~DCTL_TSTCTL_MASK;
1599 	switch (testmode) {
1600 	case USB_TEST_J:
1601 	case USB_TEST_K:
1602 	case USB_TEST_SE0_NAK:
1603 	case USB_TEST_PACKET:
1604 	case USB_TEST_FORCE_ENABLE:
1605 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1606 		break;
1607 	default:
1608 		return -EINVAL;
1609 	}
1610 	dwc2_writel(hsotg, dctl, DCTL);
1611 	return 0;
1612 }
1613 
1614 /**
1615  * dwc2_hsotg_send_reply - send reply to control request
1616  * @hsotg: The device state
1617  * @ep: Endpoint 0
1618  * @buff: Buffer for request
1619  * @length: Length of reply.
1620  *
1621  * Create a request and queue it on the given endpoint. This is useful as
1622  * an internal method of sending replies to certain control requests, etc.
1623  */
1624 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1625 				 struct dwc2_hsotg_ep *ep,
1626 				void *buff,
1627 				int length)
1628 {
1629 	struct usb_request *req;
1630 	int ret;
1631 
1632 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1633 
1634 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1635 	hsotg->ep0_reply = req;
1636 	if (!req) {
1637 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1638 		return -ENOMEM;
1639 	}
1640 
1641 	req->buf = hsotg->ep0_buff;
1642 	req->length = length;
1643 	/*
1644 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1645 	 * STATUS stage.
1646 	 */
1647 	req->zero = 0;
1648 	req->complete = dwc2_hsotg_complete_oursetup;
1649 
1650 	if (length)
1651 		memcpy(req->buf, buff, length);
1652 
1653 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1654 	if (ret) {
1655 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1656 		return ret;
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 /**
1663  * dwc2_hsotg_process_req_status - process request GET_STATUS
1664  * @hsotg: The device state
1665  * @ctrl: USB control request
1666  */
1667 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1668 					 struct usb_ctrlrequest *ctrl)
1669 {
1670 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1671 	struct dwc2_hsotg_ep *ep;
1672 	__le16 reply;
1673 	u16 status;
1674 	int ret;
1675 
1676 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1677 
1678 	if (!ep0->dir_in) {
1679 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1680 		return -EINVAL;
1681 	}
1682 
1683 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1684 	case USB_RECIP_DEVICE:
1685 		status = hsotg->gadget.is_selfpowered <<
1686 			 USB_DEVICE_SELF_POWERED;
1687 		status |= hsotg->remote_wakeup_allowed <<
1688 			  USB_DEVICE_REMOTE_WAKEUP;
1689 		reply = cpu_to_le16(status);
1690 		break;
1691 
1692 	case USB_RECIP_INTERFACE:
1693 		/* currently, the data result should be zero */
1694 		reply = cpu_to_le16(0);
1695 		break;
1696 
1697 	case USB_RECIP_ENDPOINT:
1698 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1699 		if (!ep)
1700 			return -ENOENT;
1701 
1702 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1703 		break;
1704 
1705 	default:
1706 		return 0;
1707 	}
1708 
1709 	if (le16_to_cpu(ctrl->wLength) != 2)
1710 		return -EINVAL;
1711 
1712 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1713 	if (ret) {
1714 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1715 		return ret;
1716 	}
1717 
1718 	return 1;
1719 }
1720 
1721 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1722 
1723 /**
1724  * get_ep_head - return the first request on the endpoint
1725  * @hs_ep: The controller endpoint to get
1726  *
1727  * Get the first request on the endpoint.
1728  */
1729 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1730 {
1731 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1732 					queue);
1733 }
1734 
1735 /**
1736  * dwc2_gadget_start_next_request - Starts next request from ep queue
1737  * @hs_ep: Endpoint structure
1738  *
1739  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1740  * in its handler. Hence we need to unmask it here to be able to do
1741  * resynchronization.
1742  */
1743 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1744 {
1745 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1746 	int dir_in = hs_ep->dir_in;
1747 	struct dwc2_hsotg_req *hs_req;
1748 
1749 	if (!list_empty(&hs_ep->queue)) {
1750 		hs_req = get_ep_head(hs_ep);
1751 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1752 		return;
1753 	}
1754 	if (!hs_ep->isochronous)
1755 		return;
1756 
1757 	if (dir_in) {
1758 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1759 			__func__);
1760 	} else {
1761 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1762 			__func__);
1763 	}
1764 }
1765 
1766 /**
1767  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1768  * @hsotg: The device state
1769  * @ctrl: USB control request
1770  */
1771 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1772 					  struct usb_ctrlrequest *ctrl)
1773 {
1774 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1775 	struct dwc2_hsotg_req *hs_req;
1776 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1777 	struct dwc2_hsotg_ep *ep;
1778 	int ret;
1779 	bool halted;
1780 	u32 recip;
1781 	u32 wValue;
1782 	u32 wIndex;
1783 
1784 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1785 		__func__, set ? "SET" : "CLEAR");
1786 
1787 	wValue = le16_to_cpu(ctrl->wValue);
1788 	wIndex = le16_to_cpu(ctrl->wIndex);
1789 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1790 
1791 	switch (recip) {
1792 	case USB_RECIP_DEVICE:
1793 		switch (wValue) {
1794 		case USB_DEVICE_REMOTE_WAKEUP:
1795 			if (set)
1796 				hsotg->remote_wakeup_allowed = 1;
1797 			else
1798 				hsotg->remote_wakeup_allowed = 0;
1799 			break;
1800 
1801 		case USB_DEVICE_TEST_MODE:
1802 			if ((wIndex & 0xff) != 0)
1803 				return -EINVAL;
1804 			if (!set)
1805 				return -EINVAL;
1806 
1807 			hsotg->test_mode = wIndex >> 8;
1808 			break;
1809 		default:
1810 			return -ENOENT;
1811 		}
1812 
1813 		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1814 		if (ret) {
1815 			dev_err(hsotg->dev,
1816 				"%s: failed to send reply\n", __func__);
1817 			return ret;
1818 		}
1819 		break;
1820 
1821 	case USB_RECIP_ENDPOINT:
1822 		ep = ep_from_windex(hsotg, wIndex);
1823 		if (!ep) {
1824 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1825 				__func__, wIndex);
1826 			return -ENOENT;
1827 		}
1828 
1829 		switch (wValue) {
1830 		case USB_ENDPOINT_HALT:
1831 			halted = ep->halted;
1832 
1833 			if (!ep->wedged)
1834 				dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1835 
1836 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1837 			if (ret) {
1838 				dev_err(hsotg->dev,
1839 					"%s: failed to send reply\n", __func__);
1840 				return ret;
1841 			}
1842 
1843 			/*
1844 			 * we have to complete all requests for ep if it was
1845 			 * halted, and the halt was cleared by CLEAR_FEATURE
1846 			 */
1847 
1848 			if (!set && halted) {
1849 				/*
1850 				 * If we have request in progress,
1851 				 * then complete it
1852 				 */
1853 				if (ep->req) {
1854 					hs_req = ep->req;
1855 					ep->req = NULL;
1856 					list_del_init(&hs_req->queue);
1857 					if (hs_req->req.complete) {
1858 						spin_unlock(&hsotg->lock);
1859 						usb_gadget_giveback_request(
1860 							&ep->ep, &hs_req->req);
1861 						spin_lock(&hsotg->lock);
1862 					}
1863 				}
1864 
1865 				/* If we have pending request, then start it */
1866 				if (!ep->req)
1867 					dwc2_gadget_start_next_request(ep);
1868 			}
1869 
1870 			break;
1871 
1872 		default:
1873 			return -ENOENT;
1874 		}
1875 		break;
1876 	default:
1877 		return -ENOENT;
1878 	}
1879 	return 1;
1880 }
1881 
1882 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1883 
1884 /**
1885  * dwc2_hsotg_stall_ep0 - stall ep0
1886  * @hsotg: The device state
1887  *
1888  * Set stall for ep0 as response for setup request.
1889  */
1890 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1891 {
1892 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1893 	u32 reg;
1894 	u32 ctrl;
1895 
1896 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1897 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1898 
1899 	/*
1900 	 * DxEPCTL_Stall will be cleared by EP once it has
1901 	 * taken effect, so no need to clear later.
1902 	 */
1903 
1904 	ctrl = dwc2_readl(hsotg, reg);
1905 	ctrl |= DXEPCTL_STALL;
1906 	ctrl |= DXEPCTL_CNAK;
1907 	dwc2_writel(hsotg, ctrl, reg);
1908 
1909 	dev_dbg(hsotg->dev,
1910 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1911 		ctrl, reg, dwc2_readl(hsotg, reg));
1912 
1913 	 /*
1914 	  * complete won't be called, so we enqueue
1915 	  * setup request here
1916 	  */
1917 	 dwc2_hsotg_enqueue_setup(hsotg);
1918 }
1919 
1920 /**
1921  * dwc2_hsotg_process_control - process a control request
1922  * @hsotg: The device state
1923  * @ctrl: The control request received
1924  *
1925  * The controller has received the SETUP phase of a control request, and
1926  * needs to work out what to do next (and whether to pass it on to the
1927  * gadget driver).
1928  */
1929 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1930 				       struct usb_ctrlrequest *ctrl)
1931 {
1932 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1933 	int ret = 0;
1934 	u32 dcfg;
1935 
1936 	dev_dbg(hsotg->dev,
1937 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1938 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1939 		ctrl->wIndex, ctrl->wLength);
1940 
1941 	if (ctrl->wLength == 0) {
1942 		ep0->dir_in = 1;
1943 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1944 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1945 		ep0->dir_in = 1;
1946 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1947 	} else {
1948 		ep0->dir_in = 0;
1949 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1950 	}
1951 
1952 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1953 		switch (ctrl->bRequest) {
1954 		case USB_REQ_SET_ADDRESS:
1955 			hsotg->connected = 1;
1956 			dcfg = dwc2_readl(hsotg, DCFG);
1957 			dcfg &= ~DCFG_DEVADDR_MASK;
1958 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1959 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1960 			dwc2_writel(hsotg, dcfg, DCFG);
1961 
1962 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1963 
1964 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1965 			return;
1966 
1967 		case USB_REQ_GET_STATUS:
1968 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1969 			break;
1970 
1971 		case USB_REQ_CLEAR_FEATURE:
1972 		case USB_REQ_SET_FEATURE:
1973 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1974 			break;
1975 		}
1976 	}
1977 
1978 	/* as a fallback, try delivering it to the driver to deal with */
1979 
1980 	if (ret == 0 && hsotg->driver) {
1981 		spin_unlock(&hsotg->lock);
1982 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1983 		spin_lock(&hsotg->lock);
1984 		if (ret < 0)
1985 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1986 	}
1987 
1988 	hsotg->delayed_status = false;
1989 	if (ret == USB_GADGET_DELAYED_STATUS)
1990 		hsotg->delayed_status = true;
1991 
1992 	/*
1993 	 * the request is either unhandlable, or is not formatted correctly
1994 	 * so respond with a STALL for the status stage to indicate failure.
1995 	 */
1996 
1997 	if (ret < 0)
1998 		dwc2_hsotg_stall_ep0(hsotg);
1999 }
2000 
2001 /**
2002  * dwc2_hsotg_complete_setup - completion of a setup transfer
2003  * @ep: The endpoint the request was on.
2004  * @req: The request completed.
2005  *
2006  * Called on completion of any requests the driver itself submitted for
2007  * EP0 setup packets
2008  */
2009 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2010 				      struct usb_request *req)
2011 {
2012 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2013 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2014 
2015 	if (req->status < 0) {
2016 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2017 		return;
2018 	}
2019 
2020 	spin_lock(&hsotg->lock);
2021 	if (req->actual == 0)
2022 		dwc2_hsotg_enqueue_setup(hsotg);
2023 	else
2024 		dwc2_hsotg_process_control(hsotg, req->buf);
2025 	spin_unlock(&hsotg->lock);
2026 }
2027 
2028 /**
2029  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2030  * @hsotg: The device state.
2031  *
2032  * Enqueue a request on EP0 if necessary to received any SETUP packets
2033  * received from the host.
2034  */
2035 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2036 {
2037 	struct usb_request *req = hsotg->ctrl_req;
2038 	struct dwc2_hsotg_req *hs_req = our_req(req);
2039 	int ret;
2040 
2041 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2042 
2043 	req->zero = 0;
2044 	req->length = 8;
2045 	req->buf = hsotg->ctrl_buff;
2046 	req->complete = dwc2_hsotg_complete_setup;
2047 
2048 	if (!list_empty(&hs_req->queue)) {
2049 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2050 		return;
2051 	}
2052 
2053 	hsotg->eps_out[0]->dir_in = 0;
2054 	hsotg->eps_out[0]->send_zlp = 0;
2055 	hsotg->ep0_state = DWC2_EP0_SETUP;
2056 
2057 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2058 	if (ret < 0) {
2059 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2060 		/*
2061 		 * Don't think there's much we can do other than watch the
2062 		 * driver fail.
2063 		 */
2064 	}
2065 }
2066 
2067 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2068 				   struct dwc2_hsotg_ep *hs_ep)
2069 {
2070 	u32 ctrl;
2071 	u8 index = hs_ep->index;
2072 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2073 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2074 
2075 	if (hs_ep->dir_in)
2076 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2077 			index);
2078 	else
2079 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2080 			index);
2081 	if (using_desc_dma(hsotg)) {
2082 		/* Not specific buffer needed for ep0 ZLP */
2083 		dma_addr_t dma = hs_ep->desc_list_dma;
2084 
2085 		if (!index)
2086 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2087 
2088 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2089 	} else {
2090 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2091 			    DXEPTSIZ_XFERSIZE(0),
2092 			    epsiz_reg);
2093 	}
2094 
2095 	ctrl = dwc2_readl(hsotg, epctl_reg);
2096 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2097 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2098 	ctrl |= DXEPCTL_USBACTEP;
2099 	dwc2_writel(hsotg, ctrl, epctl_reg);
2100 }
2101 
2102 /**
2103  * dwc2_hsotg_complete_request - complete a request given to us
2104  * @hsotg: The device state.
2105  * @hs_ep: The endpoint the request was on.
2106  * @hs_req: The request to complete.
2107  * @result: The result code (0 => Ok, otherwise errno)
2108  *
2109  * The given request has finished, so call the necessary completion
2110  * if it has one and then look to see if we can start a new request
2111  * on the endpoint.
2112  *
2113  * Note, expects the ep to already be locked as appropriate.
2114  */
2115 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2116 					struct dwc2_hsotg_ep *hs_ep,
2117 				       struct dwc2_hsotg_req *hs_req,
2118 				       int result)
2119 {
2120 	if (!hs_req) {
2121 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2122 		return;
2123 	}
2124 
2125 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2126 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2127 
2128 	/*
2129 	 * only replace the status if we've not already set an error
2130 	 * from a previous transaction
2131 	 */
2132 
2133 	if (hs_req->req.status == -EINPROGRESS)
2134 		hs_req->req.status = result;
2135 
2136 	if (using_dma(hsotg))
2137 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2138 
2139 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2140 
2141 	hs_ep->req = NULL;
2142 	list_del_init(&hs_req->queue);
2143 
2144 	/*
2145 	 * call the complete request with the locks off, just in case the
2146 	 * request tries to queue more work for this endpoint.
2147 	 */
2148 
2149 	if (hs_req->req.complete) {
2150 		spin_unlock(&hsotg->lock);
2151 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2152 		spin_lock(&hsotg->lock);
2153 	}
2154 
2155 	/* In DDMA don't need to proceed to starting of next ISOC request */
2156 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2157 		return;
2158 
2159 	/*
2160 	 * Look to see if there is anything else to do. Note, the completion
2161 	 * of the previous request may have caused a new request to be started
2162 	 * so be careful when doing this.
2163 	 */
2164 
2165 	if (!hs_ep->req && result >= 0)
2166 		dwc2_gadget_start_next_request(hs_ep);
2167 }
2168 
2169 /*
2170  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2171  * @hs_ep: The endpoint the request was on.
2172  *
2173  * Get first request from the ep queue, determine descriptor on which complete
2174  * happened. SW discovers which descriptor currently in use by HW, adjusts
2175  * dma_address and calculates index of completed descriptor based on the value
2176  * of DEPDMA register. Update actual length of request, giveback to gadget.
2177  */
2178 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2179 {
2180 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2181 	struct dwc2_hsotg_req *hs_req;
2182 	struct usb_request *ureq;
2183 	u32 desc_sts;
2184 	u32 mask;
2185 
2186 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2187 
2188 	/* Process only descriptors with buffer status set to DMA done */
2189 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2190 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2191 
2192 		hs_req = get_ep_head(hs_ep);
2193 		if (!hs_req) {
2194 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2195 			return;
2196 		}
2197 		ureq = &hs_req->req;
2198 
2199 		/* Check completion status */
2200 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2201 			DEV_DMA_STS_SUCC) {
2202 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2203 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2204 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2205 				DEV_DMA_ISOC_NBYTES_SHIFT);
2206 
2207 			/* Adjust actual len for ISOC Out if len is
2208 			 * not align of 4
2209 			 */
2210 			if (!hs_ep->dir_in && ureq->length & 0x3)
2211 				ureq->actual += 4 - (ureq->length & 0x3);
2212 
2213 			/* Set actual frame number for completed transfers */
2214 			ureq->frame_number =
2215 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2216 				DEV_DMA_ISOC_FRNUM_SHIFT;
2217 		}
2218 
2219 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2220 
2221 		hs_ep->compl_desc++;
2222 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2223 			hs_ep->compl_desc = 0;
2224 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2225 	}
2226 }
2227 
2228 /*
2229  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2230  * @hs_ep: The isochronous endpoint.
2231  *
2232  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2233  * interrupt. Reset target frame and next_desc to allow to start
2234  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2235  * interrupt for OUT direction.
2236  */
2237 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2238 {
2239 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2240 
2241 	if (!hs_ep->dir_in)
2242 		dwc2_flush_rx_fifo(hsotg);
2243 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2244 
2245 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2246 	hs_ep->next_desc = 0;
2247 	hs_ep->compl_desc = 0;
2248 }
2249 
2250 /**
2251  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2252  * @hsotg: The device state.
2253  * @ep_idx: The endpoint index for the data
2254  * @size: The size of data in the fifo, in bytes
2255  *
2256  * The FIFO status shows there is data to read from the FIFO for a given
2257  * endpoint, so sort out whether we need to read the data into a request
2258  * that has been made for that endpoint.
2259  */
2260 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2261 {
2262 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2263 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2264 	int to_read;
2265 	int max_req;
2266 	int read_ptr;
2267 
2268 	if (!hs_req) {
2269 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2270 		int ptr;
2271 
2272 		dev_dbg(hsotg->dev,
2273 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2274 			 __func__, size, ep_idx, epctl);
2275 
2276 		/* dump the data from the FIFO, we've nothing we can do */
2277 		for (ptr = 0; ptr < size; ptr += 4)
2278 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2279 
2280 		return;
2281 	}
2282 
2283 	to_read = size;
2284 	read_ptr = hs_req->req.actual;
2285 	max_req = hs_req->req.length - read_ptr;
2286 
2287 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2288 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2289 
2290 	if (to_read > max_req) {
2291 		/*
2292 		 * more data appeared than we where willing
2293 		 * to deal with in this request.
2294 		 */
2295 
2296 		/* currently we don't deal this */
2297 		WARN_ON_ONCE(1);
2298 	}
2299 
2300 	hs_ep->total_data += to_read;
2301 	hs_req->req.actual += to_read;
2302 	to_read = DIV_ROUND_UP(to_read, 4);
2303 
2304 	/*
2305 	 * note, we might over-write the buffer end by 3 bytes depending on
2306 	 * alignment of the data.
2307 	 */
2308 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2309 		       hs_req->req.buf + read_ptr, to_read);
2310 }
2311 
2312 /**
2313  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2314  * @hsotg: The device instance
2315  * @dir_in: If IN zlp
2316  *
2317  * Generate a zero-length IN packet request for terminating a SETUP
2318  * transaction.
2319  *
2320  * Note, since we don't write any data to the TxFIFO, then it is
2321  * currently believed that we do not need to wait for any space in
2322  * the TxFIFO.
2323  */
2324 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2325 {
2326 	/* eps_out[0] is used in both directions */
2327 	hsotg->eps_out[0]->dir_in = dir_in;
2328 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2329 
2330 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2331 }
2332 
2333 /*
2334  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2335  * @hs_ep - The endpoint on which transfer went
2336  *
2337  * Iterate over endpoints descriptor chain and get info on bytes remained
2338  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2339  */
2340 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2341 {
2342 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2343 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2344 	unsigned int bytes_rem = 0;
2345 	unsigned int bytes_rem_correction = 0;
2346 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2347 	int i;
2348 	u32 status;
2349 	u32 mps = hs_ep->ep.maxpacket;
2350 	int dir_in = hs_ep->dir_in;
2351 
2352 	if (!desc)
2353 		return -EINVAL;
2354 
2355 	/* Interrupt OUT EP with mps not multiple of 4 */
2356 	if (hs_ep->index)
2357 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2358 			bytes_rem_correction = 4 - (mps % 4);
2359 
2360 	for (i = 0; i < hs_ep->desc_count; ++i) {
2361 		status = desc->status;
2362 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2363 		bytes_rem -= bytes_rem_correction;
2364 
2365 		if (status & DEV_DMA_STS_MASK)
2366 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2367 				i, status & DEV_DMA_STS_MASK);
2368 
2369 		if (status & DEV_DMA_L)
2370 			break;
2371 
2372 		desc++;
2373 	}
2374 
2375 	return bytes_rem;
2376 }
2377 
2378 /**
2379  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2380  * @hsotg: The device instance
2381  * @epnum: The endpoint received from
2382  *
2383  * The RXFIFO has delivered an OutDone event, which means that the data
2384  * transfer for an OUT endpoint has been completed, either by a short
2385  * packet or by the finish of a transfer.
2386  */
2387 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2388 {
2389 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2390 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2391 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2392 	struct usb_request *req = &hs_req->req;
2393 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2394 	int result = 0;
2395 
2396 	if (!hs_req) {
2397 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2398 		return;
2399 	}
2400 
2401 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2402 		dev_dbg(hsotg->dev, "zlp packet received\n");
2403 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2404 		dwc2_hsotg_enqueue_setup(hsotg);
2405 		return;
2406 	}
2407 
2408 	if (using_desc_dma(hsotg))
2409 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2410 
2411 	if (using_dma(hsotg)) {
2412 		unsigned int size_done;
2413 
2414 		/*
2415 		 * Calculate the size of the transfer by checking how much
2416 		 * is left in the endpoint size register and then working it
2417 		 * out from the amount we loaded for the transfer.
2418 		 *
2419 		 * We need to do this as DMA pointers are always 32bit aligned
2420 		 * so may overshoot/undershoot the transfer.
2421 		 */
2422 
2423 		size_done = hs_ep->size_loaded - size_left;
2424 		size_done += hs_ep->last_load;
2425 
2426 		req->actual = size_done;
2427 	}
2428 
2429 	/* if there is more request to do, schedule new transfer */
2430 	if (req->actual < req->length && size_left == 0) {
2431 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2432 		return;
2433 	}
2434 
2435 	if (req->actual < req->length && req->short_not_ok) {
2436 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2437 			__func__, req->actual, req->length);
2438 
2439 		/*
2440 		 * todo - what should we return here? there's no one else
2441 		 * even bothering to check the status.
2442 		 */
2443 	}
2444 
2445 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2446 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2447 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2448 		/* Move to STATUS IN */
2449 		if (!hsotg->delayed_status)
2450 			dwc2_hsotg_ep0_zlp(hsotg, true);
2451 	}
2452 
2453 	/* Set actual frame number for completed transfers */
2454 	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2455 		req->frame_number = hs_ep->target_frame;
2456 		dwc2_gadget_incr_frame_num(hs_ep);
2457 	}
2458 
2459 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2460 }
2461 
2462 /**
2463  * dwc2_hsotg_handle_rx - RX FIFO has data
2464  * @hsotg: The device instance
2465  *
2466  * The IRQ handler has detected that the RX FIFO has some data in it
2467  * that requires processing, so find out what is in there and do the
2468  * appropriate read.
2469  *
2470  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2471  * chunks, so if you have x packets received on an endpoint you'll get x
2472  * FIFO events delivered, each with a packet's worth of data in it.
2473  *
2474  * When using DMA, we should not be processing events from the RXFIFO
2475  * as the actual data should be sent to the memory directly and we turn
2476  * on the completion interrupts to get notifications of transfer completion.
2477  */
2478 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2479 {
2480 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2481 	u32 epnum, status, size;
2482 
2483 	WARN_ON(using_dma(hsotg));
2484 
2485 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2486 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2487 
2488 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2489 	size >>= GRXSTS_BYTECNT_SHIFT;
2490 
2491 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2492 		__func__, grxstsr, size, epnum);
2493 
2494 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2495 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2496 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2497 		break;
2498 
2499 	case GRXSTS_PKTSTS_OUTDONE:
2500 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2501 			dwc2_hsotg_read_frameno(hsotg));
2502 
2503 		if (!using_dma(hsotg))
2504 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2505 		break;
2506 
2507 	case GRXSTS_PKTSTS_SETUPDONE:
2508 		dev_dbg(hsotg->dev,
2509 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2510 			dwc2_hsotg_read_frameno(hsotg),
2511 			dwc2_readl(hsotg, DOEPCTL(0)));
2512 		/*
2513 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2514 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2515 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2516 		 */
2517 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2518 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2519 		break;
2520 
2521 	case GRXSTS_PKTSTS_OUTRX:
2522 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2523 		break;
2524 
2525 	case GRXSTS_PKTSTS_SETUPRX:
2526 		dev_dbg(hsotg->dev,
2527 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2528 			dwc2_hsotg_read_frameno(hsotg),
2529 			dwc2_readl(hsotg, DOEPCTL(0)));
2530 
2531 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2532 
2533 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2534 		break;
2535 
2536 	default:
2537 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2538 			 __func__, grxstsr);
2539 
2540 		dwc2_hsotg_dump(hsotg);
2541 		break;
2542 	}
2543 }
2544 
2545 /**
2546  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2547  * @mps: The maximum packet size in bytes.
2548  */
2549 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2550 {
2551 	switch (mps) {
2552 	case 64:
2553 		return D0EPCTL_MPS_64;
2554 	case 32:
2555 		return D0EPCTL_MPS_32;
2556 	case 16:
2557 		return D0EPCTL_MPS_16;
2558 	case 8:
2559 		return D0EPCTL_MPS_8;
2560 	}
2561 
2562 	/* bad max packet size, warn and return invalid result */
2563 	WARN_ON(1);
2564 	return (u32)-1;
2565 }
2566 
2567 /**
2568  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2569  * @hsotg: The driver state.
2570  * @ep: The index number of the endpoint
2571  * @mps: The maximum packet size in bytes
2572  * @mc: The multicount value
2573  * @dir_in: True if direction is in.
2574  *
2575  * Configure the maximum packet size for the given endpoint, updating
2576  * the hardware control registers to reflect this.
2577  */
2578 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2579 					unsigned int ep, unsigned int mps,
2580 					unsigned int mc, unsigned int dir_in)
2581 {
2582 	struct dwc2_hsotg_ep *hs_ep;
2583 	u32 reg;
2584 
2585 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2586 	if (!hs_ep)
2587 		return;
2588 
2589 	if (ep == 0) {
2590 		u32 mps_bytes = mps;
2591 
2592 		/* EP0 is a special case */
2593 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2594 		if (mps > 3)
2595 			goto bad_mps;
2596 		hs_ep->ep.maxpacket = mps_bytes;
2597 		hs_ep->mc = 1;
2598 	} else {
2599 		if (mps > 1024)
2600 			goto bad_mps;
2601 		hs_ep->mc = mc;
2602 		if (mc > 3)
2603 			goto bad_mps;
2604 		hs_ep->ep.maxpacket = mps;
2605 	}
2606 
2607 	if (dir_in) {
2608 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2609 		reg &= ~DXEPCTL_MPS_MASK;
2610 		reg |= mps;
2611 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2612 	} else {
2613 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2614 		reg &= ~DXEPCTL_MPS_MASK;
2615 		reg |= mps;
2616 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2617 	}
2618 
2619 	return;
2620 
2621 bad_mps:
2622 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2623 }
2624 
2625 /**
2626  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2627  * @hsotg: The driver state
2628  * @idx: The index for the endpoint (0..15)
2629  */
2630 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2631 {
2632 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2633 		    GRSTCTL);
2634 
2635 	/* wait until the fifo is flushed */
2636 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2637 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2638 			 __func__);
2639 }
2640 
2641 /**
2642  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2643  * @hsotg: The driver state
2644  * @hs_ep: The driver endpoint to check.
2645  *
2646  * Check to see if there is a request that has data to send, and if so
2647  * make an attempt to write data into the FIFO.
2648  */
2649 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2650 			    struct dwc2_hsotg_ep *hs_ep)
2651 {
2652 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2653 
2654 	if (!hs_ep->dir_in || !hs_req) {
2655 		/**
2656 		 * if request is not enqueued, we disable interrupts
2657 		 * for endpoints, excepting ep0
2658 		 */
2659 		if (hs_ep->index != 0)
2660 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2661 					      hs_ep->dir_in, 0);
2662 		return 0;
2663 	}
2664 
2665 	if (hs_req->req.actual < hs_req->req.length) {
2666 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2667 			hs_ep->index);
2668 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2669 	}
2670 
2671 	return 0;
2672 }
2673 
2674 /**
2675  * dwc2_hsotg_complete_in - complete IN transfer
2676  * @hsotg: The device state.
2677  * @hs_ep: The endpoint that has just completed.
2678  *
2679  * An IN transfer has been completed, update the transfer's state and then
2680  * call the relevant completion routines.
2681  */
2682 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2683 				   struct dwc2_hsotg_ep *hs_ep)
2684 {
2685 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2686 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2687 	int size_left, size_done;
2688 
2689 	if (!hs_req) {
2690 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2691 		return;
2692 	}
2693 
2694 	/* Finish ZLP handling for IN EP0 transactions */
2695 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2696 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2697 
2698 		/*
2699 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2700 		 * changed to IN. Change back to complete OUT transfer request
2701 		 */
2702 		hs_ep->dir_in = 0;
2703 
2704 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2705 		if (hsotg->test_mode) {
2706 			int ret;
2707 
2708 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2709 			if (ret < 0) {
2710 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2711 					hsotg->test_mode);
2712 				dwc2_hsotg_stall_ep0(hsotg);
2713 				return;
2714 			}
2715 		}
2716 		dwc2_hsotg_enqueue_setup(hsotg);
2717 		return;
2718 	}
2719 
2720 	/*
2721 	 * Calculate the size of the transfer by checking how much is left
2722 	 * in the endpoint size register and then working it out from
2723 	 * the amount we loaded for the transfer.
2724 	 *
2725 	 * We do this even for DMA, as the transfer may have incremented
2726 	 * past the end of the buffer (DMA transfers are always 32bit
2727 	 * aligned).
2728 	 */
2729 	if (using_desc_dma(hsotg)) {
2730 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2731 		if (size_left < 0)
2732 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2733 				size_left);
2734 	} else {
2735 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2736 	}
2737 
2738 	size_done = hs_ep->size_loaded - size_left;
2739 	size_done += hs_ep->last_load;
2740 
2741 	if (hs_req->req.actual != size_done)
2742 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2743 			__func__, hs_req->req.actual, size_done);
2744 
2745 	hs_req->req.actual = size_done;
2746 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2747 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2748 
2749 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2750 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2751 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2752 		return;
2753 	}
2754 
2755 	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2756 	if (hs_ep->send_zlp) {
2757 		hs_ep->send_zlp = 0;
2758 		if (!using_desc_dma(hsotg)) {
2759 			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2760 			/* transfer will be completed on next complete interrupt */
2761 			return;
2762 		}
2763 	}
2764 
2765 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2766 		/* Move to STATUS OUT */
2767 		dwc2_hsotg_ep0_zlp(hsotg, false);
2768 		return;
2769 	}
2770 
2771 	/* Set actual frame number for completed transfers */
2772 	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2773 		hs_req->req.frame_number = hs_ep->target_frame;
2774 		dwc2_gadget_incr_frame_num(hs_ep);
2775 	}
2776 
2777 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2778 }
2779 
2780 /**
2781  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2782  * @hsotg: The device state.
2783  * @idx: Index of ep.
2784  * @dir_in: Endpoint direction 1-in 0-out.
2785  *
2786  * Reads for endpoint with given index and direction, by masking
2787  * epint_reg with coresponding mask.
2788  */
2789 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2790 					  unsigned int idx, int dir_in)
2791 {
2792 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2793 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2794 	u32 ints;
2795 	u32 mask;
2796 	u32 diepempmsk;
2797 
2798 	mask = dwc2_readl(hsotg, epmsk_reg);
2799 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2800 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2801 	mask |= DXEPINT_SETUP_RCVD;
2802 
2803 	ints = dwc2_readl(hsotg, epint_reg);
2804 	ints &= mask;
2805 	return ints;
2806 }
2807 
2808 /**
2809  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2810  * @hs_ep: The endpoint on which interrupt is asserted.
2811  *
2812  * This interrupt indicates that the endpoint has been disabled per the
2813  * application's request.
2814  *
2815  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2816  * in case of ISOC completes current request.
2817  *
2818  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2819  * request starts it.
2820  */
2821 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2822 {
2823 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2824 	struct dwc2_hsotg_req *hs_req;
2825 	unsigned char idx = hs_ep->index;
2826 	int dir_in = hs_ep->dir_in;
2827 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2828 	int dctl = dwc2_readl(hsotg, DCTL);
2829 
2830 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2831 
2832 	if (dir_in) {
2833 		int epctl = dwc2_readl(hsotg, epctl_reg);
2834 
2835 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2836 
2837 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2838 			int dctl = dwc2_readl(hsotg, DCTL);
2839 
2840 			dctl |= DCTL_CGNPINNAK;
2841 			dwc2_writel(hsotg, dctl, DCTL);
2842 		}
2843 	} else {
2844 
2845 		if (dctl & DCTL_GOUTNAKSTS) {
2846 			dctl |= DCTL_CGOUTNAK;
2847 			dwc2_writel(hsotg, dctl, DCTL);
2848 		}
2849 	}
2850 
2851 	if (!hs_ep->isochronous)
2852 		return;
2853 
2854 	if (list_empty(&hs_ep->queue)) {
2855 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2856 			__func__, hs_ep);
2857 		return;
2858 	}
2859 
2860 	do {
2861 		hs_req = get_ep_head(hs_ep);
2862 		if (hs_req) {
2863 			hs_req->req.frame_number = hs_ep->target_frame;
2864 			hs_req->req.actual = 0;
2865 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2866 						    -ENODATA);
2867 		}
2868 		dwc2_gadget_incr_frame_num(hs_ep);
2869 		/* Update current frame number value. */
2870 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2871 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2872 }
2873 
2874 /**
2875  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2876  * @ep: The endpoint on which interrupt is asserted.
2877  *
2878  * This is starting point for ISOC-OUT transfer, synchronization done with
2879  * first out token received from host while corresponding EP is disabled.
2880  *
2881  * Device does not know initial frame in which out token will come. For this
2882  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2883  * getting this interrupt SW starts calculation for next transfer frame.
2884  */
2885 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2886 {
2887 	struct dwc2_hsotg *hsotg = ep->parent;
2888 	struct dwc2_hsotg_req *hs_req;
2889 	int dir_in = ep->dir_in;
2890 
2891 	if (dir_in || !ep->isochronous)
2892 		return;
2893 
2894 	if (using_desc_dma(hsotg)) {
2895 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2896 			/* Start first ISO Out */
2897 			ep->target_frame = hsotg->frame_number;
2898 			dwc2_gadget_start_isoc_ddma(ep);
2899 		}
2900 		return;
2901 	}
2902 
2903 	if (ep->target_frame == TARGET_FRAME_INITIAL) {
2904 		u32 ctrl;
2905 
2906 		ep->target_frame = hsotg->frame_number;
2907 		if (ep->interval > 1) {
2908 			ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2909 			if (ep->target_frame & 0x1)
2910 				ctrl |= DXEPCTL_SETODDFR;
2911 			else
2912 				ctrl |= DXEPCTL_SETEVENFR;
2913 
2914 			dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2915 		}
2916 	}
2917 
2918 	while (dwc2_gadget_target_frame_elapsed(ep)) {
2919 		hs_req = get_ep_head(ep);
2920 		if (hs_req) {
2921 			hs_req->req.frame_number = ep->target_frame;
2922 			hs_req->req.actual = 0;
2923 			dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2924 		}
2925 
2926 		dwc2_gadget_incr_frame_num(ep);
2927 		/* Update current frame number value. */
2928 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2929 	}
2930 
2931 	if (!ep->req)
2932 		dwc2_gadget_start_next_request(ep);
2933 
2934 }
2935 
2936 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2937 				   struct dwc2_hsotg_ep *hs_ep);
2938 
2939 /**
2940  * dwc2_gadget_handle_nak - handle NAK interrupt
2941  * @hs_ep: The endpoint on which interrupt is asserted.
2942  *
2943  * This is starting point for ISOC-IN transfer, synchronization done with
2944  * first IN token received from host while corresponding EP is disabled.
2945  *
2946  * Device does not know when first one token will arrive from host. On first
2947  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2948  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2949  * sent in response to that as there was no data in FIFO. SW is basing on this
2950  * interrupt to obtain frame in which token has come and then based on the
2951  * interval calculates next frame for transfer.
2952  */
2953 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2954 {
2955 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2956 	struct dwc2_hsotg_req *hs_req;
2957 	int dir_in = hs_ep->dir_in;
2958 	u32 ctrl;
2959 
2960 	if (!dir_in || !hs_ep->isochronous)
2961 		return;
2962 
2963 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2964 
2965 		if (using_desc_dma(hsotg)) {
2966 			hs_ep->target_frame = hsotg->frame_number;
2967 			dwc2_gadget_incr_frame_num(hs_ep);
2968 
2969 			/* In service interval mode target_frame must
2970 			 * be set to last (u)frame of the service interval.
2971 			 */
2972 			if (hsotg->params.service_interval) {
2973 				/* Set target_frame to the first (u)frame of
2974 				 * the service interval
2975 				 */
2976 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2977 
2978 				/* Set target_frame to the last (u)frame of
2979 				 * the service interval
2980 				 */
2981 				dwc2_gadget_incr_frame_num(hs_ep);
2982 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2983 			}
2984 
2985 			dwc2_gadget_start_isoc_ddma(hs_ep);
2986 			return;
2987 		}
2988 
2989 		hs_ep->target_frame = hsotg->frame_number;
2990 		if (hs_ep->interval > 1) {
2991 			u32 ctrl = dwc2_readl(hsotg,
2992 					      DIEPCTL(hs_ep->index));
2993 			if (hs_ep->target_frame & 0x1)
2994 				ctrl |= DXEPCTL_SETODDFR;
2995 			else
2996 				ctrl |= DXEPCTL_SETEVENFR;
2997 
2998 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2999 		}
3000 	}
3001 
3002 	if (using_desc_dma(hsotg))
3003 		return;
3004 
3005 	ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3006 	if (ctrl & DXEPCTL_EPENA)
3007 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3008 	else
3009 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3010 
3011 	while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3012 		hs_req = get_ep_head(hs_ep);
3013 		if (hs_req) {
3014 			hs_req->req.frame_number = hs_ep->target_frame;
3015 			hs_req->req.actual = 0;
3016 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3017 		}
3018 
3019 		dwc2_gadget_incr_frame_num(hs_ep);
3020 		/* Update current frame number value. */
3021 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3022 	}
3023 
3024 	if (!hs_ep->req)
3025 		dwc2_gadget_start_next_request(hs_ep);
3026 }
3027 
3028 /**
3029  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3030  * @hsotg: The driver state
3031  * @idx: The index for the endpoint (0..15)
3032  * @dir_in: Set if this is an IN endpoint
3033  *
3034  * Process and clear any interrupt pending for an individual endpoint
3035  */
3036 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3037 			     int dir_in)
3038 {
3039 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3040 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3041 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3042 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3043 	u32 ints;
3044 
3045 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3046 
3047 	/* Clear endpoint interrupts */
3048 	dwc2_writel(hsotg, ints, epint_reg);
3049 
3050 	if (!hs_ep) {
3051 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3052 			__func__, idx, dir_in ? "in" : "out");
3053 		return;
3054 	}
3055 
3056 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3057 		__func__, idx, dir_in ? "in" : "out", ints);
3058 
3059 	/* Don't process XferCompl interrupt if it is a setup packet */
3060 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3061 		ints &= ~DXEPINT_XFERCOMPL;
3062 
3063 	/*
3064 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3065 	 * stage and xfercomplete was generated without SETUP phase done
3066 	 * interrupt. SW should parse received setup packet only after host's
3067 	 * exit from setup phase of control transfer.
3068 	 */
3069 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3070 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3071 		ints &= ~DXEPINT_XFERCOMPL;
3072 
3073 	if (ints & DXEPINT_XFERCOMPL) {
3074 		dev_dbg(hsotg->dev,
3075 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3076 			__func__, dwc2_readl(hsotg, epctl_reg),
3077 			dwc2_readl(hsotg, epsiz_reg));
3078 
3079 		/* In DDMA handle isochronous requests separately */
3080 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3081 			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3082 		} else if (dir_in) {
3083 			/*
3084 			 * We get OutDone from the FIFO, so we only
3085 			 * need to look at completing IN requests here
3086 			 * if operating slave mode
3087 			 */
3088 			if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3089 				dwc2_hsotg_complete_in(hsotg, hs_ep);
3090 
3091 			if (idx == 0 && !hs_ep->req)
3092 				dwc2_hsotg_enqueue_setup(hsotg);
3093 		} else if (using_dma(hsotg)) {
3094 			/*
3095 			 * We're using DMA, we need to fire an OutDone here
3096 			 * as we ignore the RXFIFO.
3097 			 */
3098 			if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3099 				dwc2_hsotg_handle_outdone(hsotg, idx);
3100 		}
3101 	}
3102 
3103 	if (ints & DXEPINT_EPDISBLD)
3104 		dwc2_gadget_handle_ep_disabled(hs_ep);
3105 
3106 	if (ints & DXEPINT_OUTTKNEPDIS)
3107 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3108 
3109 	if (ints & DXEPINT_NAKINTRPT)
3110 		dwc2_gadget_handle_nak(hs_ep);
3111 
3112 	if (ints & DXEPINT_AHBERR)
3113 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3114 
3115 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3116 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3117 
3118 		if (using_dma(hsotg) && idx == 0) {
3119 			/*
3120 			 * this is the notification we've received a
3121 			 * setup packet. In non-DMA mode we'd get this
3122 			 * from the RXFIFO, instead we need to process
3123 			 * the setup here.
3124 			 */
3125 
3126 			if (dir_in)
3127 				WARN_ON_ONCE(1);
3128 			else
3129 				dwc2_hsotg_handle_outdone(hsotg, 0);
3130 		}
3131 	}
3132 
3133 	if (ints & DXEPINT_STSPHSERCVD) {
3134 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3135 
3136 		/* Safety check EP0 state when STSPHSERCVD asserted */
3137 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3138 			/* Move to STATUS IN for DDMA */
3139 			if (using_desc_dma(hsotg)) {
3140 				if (!hsotg->delayed_status)
3141 					dwc2_hsotg_ep0_zlp(hsotg, true);
3142 				else
3143 				/* In case of 3 stage Control Write with delayed
3144 				 * status, when Status IN transfer started
3145 				 * before STSPHSERCVD asserted, NAKSTS bit not
3146 				 * cleared by CNAK in dwc2_hsotg_start_req()
3147 				 * function. Clear now NAKSTS to allow complete
3148 				 * transfer.
3149 				 */
3150 					dwc2_set_bit(hsotg, DIEPCTL(0),
3151 						     DXEPCTL_CNAK);
3152 			}
3153 		}
3154 
3155 	}
3156 
3157 	if (ints & DXEPINT_BACK2BACKSETUP)
3158 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3159 
3160 	if (ints & DXEPINT_BNAINTR) {
3161 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3162 		if (hs_ep->isochronous)
3163 			dwc2_gadget_handle_isoc_bna(hs_ep);
3164 	}
3165 
3166 	if (dir_in && !hs_ep->isochronous) {
3167 		/* not sure if this is important, but we'll clear it anyway */
3168 		if (ints & DXEPINT_INTKNTXFEMP) {
3169 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3170 				__func__, idx);
3171 		}
3172 
3173 		/* this probably means something bad is happening */
3174 		if (ints & DXEPINT_INTKNEPMIS) {
3175 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3176 				 __func__, idx);
3177 		}
3178 
3179 		/* FIFO has space or is empty (see GAHBCFG) */
3180 		if (hsotg->dedicated_fifos &&
3181 		    ints & DXEPINT_TXFEMP) {
3182 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3183 				__func__, idx);
3184 			if (!using_dma(hsotg))
3185 				dwc2_hsotg_trytx(hsotg, hs_ep);
3186 		}
3187 	}
3188 }
3189 
3190 /**
3191  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3192  * @hsotg: The device state.
3193  *
3194  * Handle updating the device settings after the enumeration phase has
3195  * been completed.
3196  */
3197 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3198 {
3199 	u32 dsts = dwc2_readl(hsotg, DSTS);
3200 	int ep0_mps = 0, ep_mps = 8;
3201 
3202 	/*
3203 	 * This should signal the finish of the enumeration phase
3204 	 * of the USB handshaking, so we should now know what rate
3205 	 * we connected at.
3206 	 */
3207 
3208 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3209 
3210 	/*
3211 	 * note, since we're limited by the size of transfer on EP0, and
3212 	 * it seems IN transfers must be a even number of packets we do
3213 	 * not advertise a 64byte MPS on EP0.
3214 	 */
3215 
3216 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3217 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3218 	case DSTS_ENUMSPD_FS:
3219 	case DSTS_ENUMSPD_FS48:
3220 		hsotg->gadget.speed = USB_SPEED_FULL;
3221 		ep0_mps = EP0_MPS_LIMIT;
3222 		ep_mps = 1023;
3223 		break;
3224 
3225 	case DSTS_ENUMSPD_HS:
3226 		hsotg->gadget.speed = USB_SPEED_HIGH;
3227 		ep0_mps = EP0_MPS_LIMIT;
3228 		ep_mps = 1024;
3229 		break;
3230 
3231 	case DSTS_ENUMSPD_LS:
3232 		hsotg->gadget.speed = USB_SPEED_LOW;
3233 		ep0_mps = 8;
3234 		ep_mps = 8;
3235 		/*
3236 		 * note, we don't actually support LS in this driver at the
3237 		 * moment, and the documentation seems to imply that it isn't
3238 		 * supported by the PHYs on some of the devices.
3239 		 */
3240 		break;
3241 	}
3242 	dev_info(hsotg->dev, "new device is %s\n",
3243 		 usb_speed_string(hsotg->gadget.speed));
3244 
3245 	/*
3246 	 * we should now know the maximum packet size for an
3247 	 * endpoint, so set the endpoints to a default value.
3248 	 */
3249 
3250 	if (ep0_mps) {
3251 		int i;
3252 		/* Initialize ep0 for both in and out directions */
3253 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3254 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3255 		for (i = 1; i < hsotg->num_of_eps; i++) {
3256 			if (hsotg->eps_in[i])
3257 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3258 							    0, 1);
3259 			if (hsotg->eps_out[i])
3260 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3261 							    0, 0);
3262 		}
3263 	}
3264 
3265 	/* ensure after enumeration our EP0 is active */
3266 
3267 	dwc2_hsotg_enqueue_setup(hsotg);
3268 
3269 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3270 		dwc2_readl(hsotg, DIEPCTL0),
3271 		dwc2_readl(hsotg, DOEPCTL0));
3272 }
3273 
3274 /**
3275  * kill_all_requests - remove all requests from the endpoint's queue
3276  * @hsotg: The device state.
3277  * @ep: The endpoint the requests may be on.
3278  * @result: The result code to use.
3279  *
3280  * Go through the requests on the given endpoint and mark them
3281  * completed with the given result code.
3282  */
3283 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3284 			      struct dwc2_hsotg_ep *ep,
3285 			      int result)
3286 {
3287 	unsigned int size;
3288 
3289 	ep->req = NULL;
3290 
3291 	while (!list_empty(&ep->queue)) {
3292 		struct dwc2_hsotg_req *req = get_ep_head(ep);
3293 
3294 		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3295 	}
3296 
3297 	if (!hsotg->dedicated_fifos)
3298 		return;
3299 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3300 	if (size < ep->fifo_size)
3301 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3302 }
3303 
3304 /**
3305  * dwc2_hsotg_disconnect - disconnect service
3306  * @hsotg: The device state.
3307  *
3308  * The device has been disconnected. Remove all current
3309  * transactions and signal the gadget driver that this
3310  * has happened.
3311  */
3312 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3313 {
3314 	unsigned int ep;
3315 
3316 	if (!hsotg->connected)
3317 		return;
3318 
3319 	hsotg->connected = 0;
3320 	hsotg->test_mode = 0;
3321 
3322 	/* all endpoints should be shutdown */
3323 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3324 		if (hsotg->eps_in[ep])
3325 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3326 					  -ESHUTDOWN);
3327 		if (hsotg->eps_out[ep])
3328 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3329 					  -ESHUTDOWN);
3330 	}
3331 
3332 	call_gadget(hsotg, disconnect);
3333 	hsotg->lx_state = DWC2_L3;
3334 
3335 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3336 }
3337 
3338 /**
3339  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3340  * @hsotg: The device state:
3341  * @periodic: True if this is a periodic FIFO interrupt
3342  */
3343 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3344 {
3345 	struct dwc2_hsotg_ep *ep;
3346 	int epno, ret;
3347 
3348 	/* look through for any more data to transmit */
3349 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3350 		ep = index_to_ep(hsotg, epno, 1);
3351 
3352 		if (!ep)
3353 			continue;
3354 
3355 		if (!ep->dir_in)
3356 			continue;
3357 
3358 		if ((periodic && !ep->periodic) ||
3359 		    (!periodic && ep->periodic))
3360 			continue;
3361 
3362 		ret = dwc2_hsotg_trytx(hsotg, ep);
3363 		if (ret < 0)
3364 			break;
3365 	}
3366 }
3367 
3368 /* IRQ flags which will trigger a retry around the IRQ loop */
3369 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3370 			GINTSTS_PTXFEMP |  \
3371 			GINTSTS_RXFLVL)
3372 
3373 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3374 /**
3375  * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3376  * @hsotg: The device state
3377  * @is_usb_reset: Usb resetting flag
3378  *
3379  * Issue a soft reset to the core, and await the core finishing it.
3380  */
3381 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3382 				       bool is_usb_reset)
3383 {
3384 	u32 intmsk;
3385 	u32 val;
3386 	u32 usbcfg;
3387 	u32 dcfg = 0;
3388 	int ep;
3389 
3390 	/* Kill any ep0 requests as controller will be reinitialized */
3391 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3392 
3393 	if (!is_usb_reset) {
3394 		if (dwc2_core_reset(hsotg, true))
3395 			return;
3396 	} else {
3397 		/* all endpoints should be shutdown */
3398 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3399 			if (hsotg->eps_in[ep])
3400 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3401 			if (hsotg->eps_out[ep])
3402 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3403 		}
3404 	}
3405 
3406 	/*
3407 	 * we must now enable ep0 ready for host detection and then
3408 	 * set configuration.
3409 	 */
3410 
3411 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3412 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3413 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3414 	usbcfg |= GUSBCFG_TOUTCAL(7);
3415 
3416 	/* remove the HNP/SRP and set the PHY */
3417 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3418         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3419 
3420 	dwc2_phy_init(hsotg, true);
3421 
3422 	dwc2_hsotg_init_fifo(hsotg);
3423 
3424 	if (!is_usb_reset)
3425 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3426 
3427 	dcfg |= DCFG_EPMISCNT(1);
3428 
3429 	switch (hsotg->params.speed) {
3430 	case DWC2_SPEED_PARAM_LOW:
3431 		dcfg |= DCFG_DEVSPD_LS;
3432 		break;
3433 	case DWC2_SPEED_PARAM_FULL:
3434 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3435 			dcfg |= DCFG_DEVSPD_FS48;
3436 		else
3437 			dcfg |= DCFG_DEVSPD_FS;
3438 		break;
3439 	default:
3440 		dcfg |= DCFG_DEVSPD_HS;
3441 	}
3442 
3443 	if (hsotg->params.ipg_isoc_en)
3444 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3445 
3446 	dwc2_writel(hsotg, dcfg,  DCFG);
3447 
3448 	/* Clear any pending OTG interrupts */
3449 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3450 
3451 	/* Clear any pending interrupts */
3452 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3453 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3454 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3455 		GINTSTS_USBRST | GINTSTS_RESETDET |
3456 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3457 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3458 		GINTSTS_LPMTRANRCVD;
3459 
3460 	if (!using_desc_dma(hsotg))
3461 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3462 
3463 	if (!hsotg->params.external_id_pin_ctl)
3464 		intmsk |= GINTSTS_CONIDSTSCHNG;
3465 
3466 	dwc2_writel(hsotg, intmsk, GINTMSK);
3467 
3468 	if (using_dma(hsotg)) {
3469 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3470 			    hsotg->params.ahbcfg,
3471 			    GAHBCFG);
3472 
3473 		/* Set DDMA mode support in the core if needed */
3474 		if (using_desc_dma(hsotg))
3475 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3476 
3477 	} else {
3478 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3479 						(GAHBCFG_NP_TXF_EMP_LVL |
3480 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3481 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3482 	}
3483 
3484 	/*
3485 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3486 	 * when we have no data to transfer. Otherwise we get being flooded by
3487 	 * interrupts.
3488 	 */
3489 
3490 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3491 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3492 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3493 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3494 		DIEPMSK);
3495 
3496 	/*
3497 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3498 	 * DMA mode we may need this and StsPhseRcvd.
3499 	 */
3500 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3501 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3502 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3503 		DOEPMSK_SETUPMSK,
3504 		DOEPMSK);
3505 
3506 	/* Enable BNA interrupt for DDMA */
3507 	if (using_desc_dma(hsotg)) {
3508 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3509 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3510 	}
3511 
3512 	/* Enable Service Interval mode if supported */
3513 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3514 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3515 
3516 	dwc2_writel(hsotg, 0, DAINTMSK);
3517 
3518 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3519 		dwc2_readl(hsotg, DIEPCTL0),
3520 		dwc2_readl(hsotg, DOEPCTL0));
3521 
3522 	/* enable in and out endpoint interrupts */
3523 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3524 
3525 	/*
3526 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3527 	 * the data. In DMA mode, we get events from the FIFO but also
3528 	 * things we cannot process, so do not use it.
3529 	 */
3530 	if (!using_dma(hsotg))
3531 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3532 
3533 	/* Enable interrupts for EP0 in and out */
3534 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3535 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3536 
3537 	if (!is_usb_reset) {
3538 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3539 		udelay(10);  /* see openiboot */
3540 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3541 	}
3542 
3543 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3544 
3545 	/*
3546 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3547 	 * writing to the EPCTL register..
3548 	 */
3549 
3550 	/* set to read 1 8byte packet */
3551 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3552 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3553 
3554 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3555 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3556 	       DXEPCTL_USBACTEP,
3557 	       DOEPCTL0);
3558 
3559 	/* enable, but don't activate EP0in */
3560 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3561 	       DXEPCTL_USBACTEP, DIEPCTL0);
3562 
3563 	/* clear global NAKs */
3564 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3565 	if (!is_usb_reset)
3566 		val |= DCTL_SFTDISCON;
3567 	dwc2_set_bit(hsotg, DCTL, val);
3568 
3569 	/* configure the core to support LPM */
3570 	dwc2_gadget_init_lpm(hsotg);
3571 
3572 	/* program GREFCLK register if needed */
3573 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3574 		dwc2_gadget_program_ref_clk(hsotg);
3575 
3576 	/* must be at-least 3ms to allow bus to see disconnect */
3577 	mdelay(3);
3578 
3579 	hsotg->lx_state = DWC2_L0;
3580 
3581 	dwc2_hsotg_enqueue_setup(hsotg);
3582 
3583 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3584 		dwc2_readl(hsotg, DIEPCTL0),
3585 		dwc2_readl(hsotg, DOEPCTL0));
3586 }
3587 
3588 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3589 {
3590 	/* set the soft-disconnect bit */
3591 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3592 }
3593 
3594 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3595 {
3596 	/* remove the soft-disconnect and let's go */
3597 	if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3598 		dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3599 }
3600 
3601 /**
3602  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3603  * @hsotg: The device state:
3604  *
3605  * This interrupt indicates one of the following conditions occurred while
3606  * transmitting an ISOC transaction.
3607  * - Corrupted IN Token for ISOC EP.
3608  * - Packet not complete in FIFO.
3609  *
3610  * The following actions will be taken:
3611  * - Determine the EP
3612  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3613  */
3614 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3615 {
3616 	struct dwc2_hsotg_ep *hs_ep;
3617 	u32 epctrl;
3618 	u32 daintmsk;
3619 	u32 idx;
3620 
3621 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3622 
3623 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3624 
3625 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3626 		hs_ep = hsotg->eps_in[idx];
3627 		/* Proceed only unmasked ISOC EPs */
3628 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3629 			continue;
3630 
3631 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3632 		if ((epctrl & DXEPCTL_EPENA) &&
3633 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3634 			epctrl |= DXEPCTL_SNAK;
3635 			epctrl |= DXEPCTL_EPDIS;
3636 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3637 		}
3638 	}
3639 
3640 	/* Clear interrupt */
3641 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3642 }
3643 
3644 /**
3645  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3646  * @hsotg: The device state:
3647  *
3648  * This interrupt indicates one of the following conditions occurred while
3649  * transmitting an ISOC transaction.
3650  * - Corrupted OUT Token for ISOC EP.
3651  * - Packet not complete in FIFO.
3652  *
3653  * The following actions will be taken:
3654  * - Determine the EP
3655  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3656  */
3657 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3658 {
3659 	u32 gintsts;
3660 	u32 gintmsk;
3661 	u32 daintmsk;
3662 	u32 epctrl;
3663 	struct dwc2_hsotg_ep *hs_ep;
3664 	int idx;
3665 
3666 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3667 
3668 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3669 	daintmsk >>= DAINT_OUTEP_SHIFT;
3670 
3671 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3672 		hs_ep = hsotg->eps_out[idx];
3673 		/* Proceed only unmasked ISOC EPs */
3674 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3675 			continue;
3676 
3677 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3678 		if ((epctrl & DXEPCTL_EPENA) &&
3679 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3680 			/* Unmask GOUTNAKEFF interrupt */
3681 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3682 			gintmsk |= GINTSTS_GOUTNAKEFF;
3683 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3684 
3685 			gintsts = dwc2_readl(hsotg, GINTSTS);
3686 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3687 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3688 				break;
3689 			}
3690 		}
3691 	}
3692 
3693 	/* Clear interrupt */
3694 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3695 }
3696 
3697 /**
3698  * dwc2_hsotg_irq - handle device interrupt
3699  * @irq: The IRQ number triggered
3700  * @pw: The pw value when registered the handler.
3701  */
3702 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3703 {
3704 	struct dwc2_hsotg *hsotg = pw;
3705 	int retry_count = 8;
3706 	u32 gintsts;
3707 	u32 gintmsk;
3708 
3709 	if (!dwc2_is_device_mode(hsotg))
3710 		return IRQ_NONE;
3711 
3712 	spin_lock(&hsotg->lock);
3713 irq_retry:
3714 	gintsts = dwc2_readl(hsotg, GINTSTS);
3715 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3716 
3717 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3718 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3719 
3720 	gintsts &= gintmsk;
3721 
3722 	if (gintsts & GINTSTS_RESETDET) {
3723 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3724 
3725 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3726 
3727 		/* This event must be used only if controller is suspended */
3728 		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3729 			dwc2_exit_partial_power_down(hsotg, 0, true);
3730 
3731 		hsotg->lx_state = DWC2_L0;
3732 	}
3733 
3734 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3735 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3736 		u32 connected = hsotg->connected;
3737 
3738 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3739 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3740 			dwc2_readl(hsotg, GNPTXSTS));
3741 
3742 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3743 
3744 		/* Report disconnection if it is not already done. */
3745 		dwc2_hsotg_disconnect(hsotg);
3746 
3747 		/* Reset device address to zero */
3748 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3749 
3750 		if (usb_status & GOTGCTL_BSESVLD && connected)
3751 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3752 	}
3753 
3754 	if (gintsts & GINTSTS_ENUMDONE) {
3755 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3756 
3757 		dwc2_hsotg_irq_enumdone(hsotg);
3758 	}
3759 
3760 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3761 		u32 daint = dwc2_readl(hsotg, DAINT);
3762 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3763 		u32 daint_out, daint_in;
3764 		int ep;
3765 
3766 		daint &= daintmsk;
3767 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3768 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3769 
3770 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3771 
3772 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3773 						ep++, daint_out >>= 1) {
3774 			if (daint_out & 1)
3775 				dwc2_hsotg_epint(hsotg, ep, 0);
3776 		}
3777 
3778 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3779 						ep++, daint_in >>= 1) {
3780 			if (daint_in & 1)
3781 				dwc2_hsotg_epint(hsotg, ep, 1);
3782 		}
3783 	}
3784 
3785 	/* check both FIFOs */
3786 
3787 	if (gintsts & GINTSTS_NPTXFEMP) {
3788 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3789 
3790 		/*
3791 		 * Disable the interrupt to stop it happening again
3792 		 * unless one of these endpoint routines decides that
3793 		 * it needs re-enabling
3794 		 */
3795 
3796 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3797 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3798 	}
3799 
3800 	if (gintsts & GINTSTS_PTXFEMP) {
3801 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3802 
3803 		/* See note in GINTSTS_NPTxFEmp */
3804 
3805 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3806 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3807 	}
3808 
3809 	if (gintsts & GINTSTS_RXFLVL) {
3810 		/*
3811 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3812 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3813 		 * set.
3814 		 */
3815 
3816 		dwc2_hsotg_handle_rx(hsotg);
3817 	}
3818 
3819 	if (gintsts & GINTSTS_ERLYSUSP) {
3820 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3821 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3822 	}
3823 
3824 	/*
3825 	 * these next two seem to crop-up occasionally causing the core
3826 	 * to shutdown the USB transfer, so try clearing them and logging
3827 	 * the occurrence.
3828 	 */
3829 
3830 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3831 		u8 idx;
3832 		u32 epctrl;
3833 		u32 gintmsk;
3834 		u32 daintmsk;
3835 		struct dwc2_hsotg_ep *hs_ep;
3836 
3837 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3838 		daintmsk >>= DAINT_OUTEP_SHIFT;
3839 		/* Mask this interrupt */
3840 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3841 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3842 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3843 
3844 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3845 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3846 			hs_ep = hsotg->eps_out[idx];
3847 			/* Proceed only unmasked ISOC EPs */
3848 			if (BIT(idx) & ~daintmsk)
3849 				continue;
3850 
3851 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3852 
3853 			//ISOC Ep's only
3854 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3855 				epctrl |= DXEPCTL_SNAK;
3856 				epctrl |= DXEPCTL_EPDIS;
3857 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3858 				continue;
3859 			}
3860 
3861 			//Non-ISOC EP's
3862 			if (hs_ep->halted) {
3863 				if (!(epctrl & DXEPCTL_EPENA))
3864 					epctrl |= DXEPCTL_EPENA;
3865 				epctrl |= DXEPCTL_EPDIS;
3866 				epctrl |= DXEPCTL_STALL;
3867 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3868 			}
3869 		}
3870 
3871 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3872 	}
3873 
3874 	if (gintsts & GINTSTS_GINNAKEFF) {
3875 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3876 
3877 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3878 
3879 		dwc2_hsotg_dump(hsotg);
3880 	}
3881 
3882 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3883 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3884 
3885 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3886 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3887 
3888 	/*
3889 	 * if we've had fifo events, we should try and go around the
3890 	 * loop again to see if there's any point in returning yet.
3891 	 */
3892 
3893 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3894 		goto irq_retry;
3895 
3896 	/* Check WKUP_ALERT interrupt*/
3897 	if (hsotg->params.service_interval)
3898 		dwc2_gadget_wkup_alert_handler(hsotg);
3899 
3900 	spin_unlock(&hsotg->lock);
3901 
3902 	return IRQ_HANDLED;
3903 }
3904 
3905 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3906 				   struct dwc2_hsotg_ep *hs_ep)
3907 {
3908 	u32 epctrl_reg;
3909 	u32 epint_reg;
3910 
3911 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3912 		DOEPCTL(hs_ep->index);
3913 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3914 		DOEPINT(hs_ep->index);
3915 
3916 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3917 		hs_ep->name);
3918 
3919 	if (hs_ep->dir_in) {
3920 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3921 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3922 			/* Wait for Nak effect */
3923 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3924 						    DXEPINT_INEPNAKEFF, 100))
3925 				dev_warn(hsotg->dev,
3926 					 "%s: timeout DIEPINT.NAKEFF\n",
3927 					 __func__);
3928 		} else {
3929 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3930 			/* Wait for Nak effect */
3931 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3932 						    GINTSTS_GINNAKEFF, 100))
3933 				dev_warn(hsotg->dev,
3934 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3935 					 __func__);
3936 		}
3937 	} else {
3938 		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3939 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3940 
3941 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3942 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3943 
3944 		if (!using_dma(hsotg)) {
3945 			/* Wait for GINTSTS_RXFLVL interrupt */
3946 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3947 						    GINTSTS_RXFLVL, 100)) {
3948 				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3949 					 __func__);
3950 			} else {
3951 				/*
3952 				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3953 				 * to assert GOUTNAKEFF interrupt
3954 				 */
3955 				dwc2_readl(hsotg, GRXSTSP);
3956 			}
3957 		}
3958 
3959 		/* Wait for global nak to take effect */
3960 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3961 					    GINTSTS_GOUTNAKEFF, 100))
3962 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3963 				 __func__);
3964 	}
3965 
3966 	/* Disable ep */
3967 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3968 
3969 	/* Wait for ep to be disabled */
3970 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3971 		dev_warn(hsotg->dev,
3972 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3973 
3974 	/* Clear EPDISBLD interrupt */
3975 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3976 
3977 	if (hs_ep->dir_in) {
3978 		unsigned short fifo_index;
3979 
3980 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3981 			fifo_index = hs_ep->fifo_index;
3982 		else
3983 			fifo_index = 0;
3984 
3985 		/* Flush TX FIFO */
3986 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3987 
3988 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3989 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3990 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3991 
3992 	} else {
3993 		/* Remove global NAKs */
3994 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3995 	}
3996 }
3997 
3998 /**
3999  * dwc2_hsotg_ep_enable - enable the given endpoint
4000  * @ep: The USB endpint to configure
4001  * @desc: The USB endpoint descriptor to configure with.
4002  *
4003  * This is called from the USB gadget code's usb_ep_enable().
4004  */
4005 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4006 				const struct usb_endpoint_descriptor *desc)
4007 {
4008 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4009 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4010 	unsigned long flags;
4011 	unsigned int index = hs_ep->index;
4012 	u32 epctrl_reg;
4013 	u32 epctrl;
4014 	u32 mps;
4015 	u32 mc;
4016 	u32 mask;
4017 	unsigned int dir_in;
4018 	unsigned int i, val, size;
4019 	int ret = 0;
4020 	unsigned char ep_type;
4021 	int desc_num;
4022 
4023 	dev_dbg(hsotg->dev,
4024 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4025 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4026 		desc->wMaxPacketSize, desc->bInterval);
4027 
4028 	/* not to be called for EP0 */
4029 	if (index == 0) {
4030 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4031 		return -EINVAL;
4032 	}
4033 
4034 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4035 	if (dir_in != hs_ep->dir_in) {
4036 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4037 		return -EINVAL;
4038 	}
4039 
4040 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4041 	mps = usb_endpoint_maxp(desc);
4042 	mc = usb_endpoint_maxp_mult(desc);
4043 
4044 	/* ISOC IN in DDMA supported bInterval up to 10 */
4045 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4046 	    dir_in && desc->bInterval > 10) {
4047 		dev_err(hsotg->dev,
4048 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4049 		return -EINVAL;
4050 	}
4051 
4052 	/* High bandwidth ISOC OUT in DDMA not supported */
4053 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4054 	    !dir_in && mc > 1) {
4055 		dev_err(hsotg->dev,
4056 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4057 		return -EINVAL;
4058 	}
4059 
4060 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4061 
4062 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4063 	epctrl = dwc2_readl(hsotg, epctrl_reg);
4064 
4065 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4066 		__func__, epctrl, epctrl_reg);
4067 
4068 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4069 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4070 	else
4071 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4072 
4073 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4074 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4075 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4076 			desc_num * sizeof(struct dwc2_dma_desc),
4077 			&hs_ep->desc_list_dma, GFP_ATOMIC);
4078 		if (!hs_ep->desc_list) {
4079 			ret = -ENOMEM;
4080 			goto error2;
4081 		}
4082 	}
4083 
4084 	spin_lock_irqsave(&hsotg->lock, flags);
4085 
4086 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4087 	epctrl |= DXEPCTL_MPS(mps);
4088 
4089 	/*
4090 	 * mark the endpoint as active, otherwise the core may ignore
4091 	 * transactions entirely for this endpoint
4092 	 */
4093 	epctrl |= DXEPCTL_USBACTEP;
4094 
4095 	/* update the endpoint state */
4096 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4097 
4098 	/* default, set to non-periodic */
4099 	hs_ep->isochronous = 0;
4100 	hs_ep->periodic = 0;
4101 	hs_ep->halted = 0;
4102 	hs_ep->wedged = 0;
4103 	hs_ep->interval = desc->bInterval;
4104 
4105 	switch (ep_type) {
4106 	case USB_ENDPOINT_XFER_ISOC:
4107 		epctrl |= DXEPCTL_EPTYPE_ISO;
4108 		epctrl |= DXEPCTL_SETEVENFR;
4109 		hs_ep->isochronous = 1;
4110 		hs_ep->interval = 1 << (desc->bInterval - 1);
4111 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4112 		hs_ep->next_desc = 0;
4113 		hs_ep->compl_desc = 0;
4114 		if (dir_in) {
4115 			hs_ep->periodic = 1;
4116 			mask = dwc2_readl(hsotg, DIEPMSK);
4117 			mask |= DIEPMSK_NAKMSK;
4118 			dwc2_writel(hsotg, mask, DIEPMSK);
4119 		} else {
4120 			epctrl |= DXEPCTL_SNAK;
4121 			mask = dwc2_readl(hsotg, DOEPMSK);
4122 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4123 			dwc2_writel(hsotg, mask, DOEPMSK);
4124 		}
4125 		break;
4126 
4127 	case USB_ENDPOINT_XFER_BULK:
4128 		epctrl |= DXEPCTL_EPTYPE_BULK;
4129 		break;
4130 
4131 	case USB_ENDPOINT_XFER_INT:
4132 		if (dir_in)
4133 			hs_ep->periodic = 1;
4134 
4135 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4136 			hs_ep->interval = 1 << (desc->bInterval - 1);
4137 
4138 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4139 		break;
4140 
4141 	case USB_ENDPOINT_XFER_CONTROL:
4142 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4143 		break;
4144 	}
4145 
4146 	/*
4147 	 * if the hardware has dedicated fifos, we must give each IN EP
4148 	 * a unique tx-fifo even if it is non-periodic.
4149 	 */
4150 	if (dir_in && hsotg->dedicated_fifos) {
4151 		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4152 		u32 fifo_index = 0;
4153 		u32 fifo_size = UINT_MAX;
4154 
4155 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4156 		for (i = 1; i <= fifo_count; ++i) {
4157 			if (hsotg->fifo_map & (1 << i))
4158 				continue;
4159 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4160 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4161 			if (val < size)
4162 				continue;
4163 			/* Search for smallest acceptable fifo */
4164 			if (val < fifo_size) {
4165 				fifo_size = val;
4166 				fifo_index = i;
4167 			}
4168 		}
4169 		if (!fifo_index) {
4170 			dev_err(hsotg->dev,
4171 				"%s: No suitable fifo found\n", __func__);
4172 			ret = -ENOMEM;
4173 			goto error1;
4174 		}
4175 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4176 		hsotg->fifo_map |= 1 << fifo_index;
4177 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4178 		hs_ep->fifo_index = fifo_index;
4179 		hs_ep->fifo_size = fifo_size;
4180 	}
4181 
4182 	/* for non control endpoints, set PID to D0 */
4183 	if (index && !hs_ep->isochronous)
4184 		epctrl |= DXEPCTL_SETD0PID;
4185 
4186 	/* WA for Full speed ISOC IN in DDMA mode.
4187 	 * By Clear NAK status of EP, core will send ZLP
4188 	 * to IN token and assert NAK interrupt relying
4189 	 * on TxFIFO status only
4190 	 */
4191 
4192 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4193 	    hs_ep->isochronous && dir_in) {
4194 		/* The WA applies only to core versions from 2.72a
4195 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4196 		 * and HS_IOT_1.00a.
4197 		 */
4198 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4199 
4200 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4201 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4202 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4203 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4204 			epctrl |= DXEPCTL_CNAK;
4205 	}
4206 
4207 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4208 		__func__, epctrl);
4209 
4210 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4211 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4212 		__func__, dwc2_readl(hsotg, epctrl_reg));
4213 
4214 	/* enable the endpoint interrupt */
4215 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4216 
4217 error1:
4218 	spin_unlock_irqrestore(&hsotg->lock, flags);
4219 
4220 error2:
4221 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4222 		dmam_free_coherent(hsotg->dev, desc_num *
4223 			sizeof(struct dwc2_dma_desc),
4224 			hs_ep->desc_list, hs_ep->desc_list_dma);
4225 		hs_ep->desc_list = NULL;
4226 	}
4227 
4228 	return ret;
4229 }
4230 
4231 /**
4232  * dwc2_hsotg_ep_disable - disable given endpoint
4233  * @ep: The endpoint to disable.
4234  */
4235 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4236 {
4237 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4238 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4239 	int dir_in = hs_ep->dir_in;
4240 	int index = hs_ep->index;
4241 	u32 epctrl_reg;
4242 	u32 ctrl;
4243 
4244 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4245 
4246 	if (ep == &hsotg->eps_out[0]->ep) {
4247 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4248 		return -EINVAL;
4249 	}
4250 
4251 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4252 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4253 		return -EINVAL;
4254 	}
4255 
4256 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4257 
4258 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4259 
4260 	if (ctrl & DXEPCTL_EPENA)
4261 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4262 
4263 	ctrl &= ~DXEPCTL_EPENA;
4264 	ctrl &= ~DXEPCTL_USBACTEP;
4265 	ctrl |= DXEPCTL_SNAK;
4266 
4267 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4268 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4269 
4270 	/* disable endpoint interrupts */
4271 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4272 
4273 	/* terminate all requests with shutdown */
4274 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4275 
4276 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4277 	hs_ep->fifo_index = 0;
4278 	hs_ep->fifo_size = 0;
4279 
4280 	return 0;
4281 }
4282 
4283 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4284 {
4285 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4286 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4287 	unsigned long flags;
4288 	int ret;
4289 
4290 	spin_lock_irqsave(&hsotg->lock, flags);
4291 	ret = dwc2_hsotg_ep_disable(ep);
4292 	spin_unlock_irqrestore(&hsotg->lock, flags);
4293 	return ret;
4294 }
4295 
4296 /**
4297  * on_list - check request is on the given endpoint
4298  * @ep: The endpoint to check.
4299  * @test: The request to test if it is on the endpoint.
4300  */
4301 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4302 {
4303 	struct dwc2_hsotg_req *req, *treq;
4304 
4305 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4306 		if (req == test)
4307 			return true;
4308 	}
4309 
4310 	return false;
4311 }
4312 
4313 /**
4314  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4315  * @ep: The endpoint to dequeue.
4316  * @req: The request to be removed from a queue.
4317  */
4318 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4319 {
4320 	struct dwc2_hsotg_req *hs_req = our_req(req);
4321 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4322 	struct dwc2_hsotg *hs = hs_ep->parent;
4323 	unsigned long flags;
4324 
4325 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4326 
4327 	spin_lock_irqsave(&hs->lock, flags);
4328 
4329 	if (!on_list(hs_ep, hs_req)) {
4330 		spin_unlock_irqrestore(&hs->lock, flags);
4331 		return -EINVAL;
4332 	}
4333 
4334 	/* Dequeue already started request */
4335 	if (req == &hs_ep->req->req)
4336 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4337 
4338 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4339 	spin_unlock_irqrestore(&hs->lock, flags);
4340 
4341 	return 0;
4342 }
4343 
4344 /**
4345  * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4346  * @ep: The endpoint to be wedged.
4347  *
4348  */
4349 static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4350 {
4351 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4352 	struct dwc2_hsotg *hs = hs_ep->parent;
4353 
4354 	unsigned long	flags;
4355 	int		ret;
4356 
4357 	spin_lock_irqsave(&hs->lock, flags);
4358 	hs_ep->wedged = 1;
4359 	ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4360 	spin_unlock_irqrestore(&hs->lock, flags);
4361 
4362 	return ret;
4363 }
4364 
4365 /**
4366  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4367  * @ep: The endpoint to set halt.
4368  * @value: Set or unset the halt.
4369  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4370  *       the endpoint is busy processing requests.
4371  *
4372  * We need to stall the endpoint immediately if request comes from set_feature
4373  * protocol command handler.
4374  */
4375 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4376 {
4377 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4378 	struct dwc2_hsotg *hs = hs_ep->parent;
4379 	int index = hs_ep->index;
4380 	u32 epreg;
4381 	u32 epctl;
4382 	u32 xfertype;
4383 
4384 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4385 
4386 	if (index == 0) {
4387 		if (value)
4388 			dwc2_hsotg_stall_ep0(hs);
4389 		else
4390 			dev_warn(hs->dev,
4391 				 "%s: can't clear halt on ep0\n", __func__);
4392 		return 0;
4393 	}
4394 
4395 	if (hs_ep->isochronous) {
4396 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4397 		return -EINVAL;
4398 	}
4399 
4400 	if (!now && value && !list_empty(&hs_ep->queue)) {
4401 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4402 			ep->name);
4403 		return -EAGAIN;
4404 	}
4405 
4406 	if (hs_ep->dir_in) {
4407 		epreg = DIEPCTL(index);
4408 		epctl = dwc2_readl(hs, epreg);
4409 
4410 		if (value) {
4411 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4412 			if (epctl & DXEPCTL_EPENA)
4413 				epctl |= DXEPCTL_EPDIS;
4414 		} else {
4415 			epctl &= ~DXEPCTL_STALL;
4416 			hs_ep->wedged = 0;
4417 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4418 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4419 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4420 				epctl |= DXEPCTL_SETD0PID;
4421 		}
4422 		dwc2_writel(hs, epctl, epreg);
4423 	} else {
4424 		epreg = DOEPCTL(index);
4425 		epctl = dwc2_readl(hs, epreg);
4426 
4427 		if (value) {
4428 			/* Unmask GOUTNAKEFF interrupt */
4429 			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4430 
4431 			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4432 				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4433 			// STALL bit will be set in GOUTNAKEFF interrupt handler
4434 		} else {
4435 			epctl &= ~DXEPCTL_STALL;
4436 			hs_ep->wedged = 0;
4437 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4438 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4439 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4440 				epctl |= DXEPCTL_SETD0PID;
4441 			dwc2_writel(hs, epctl, epreg);
4442 		}
4443 	}
4444 
4445 	hs_ep->halted = value;
4446 	return 0;
4447 }
4448 
4449 /**
4450  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4451  * @ep: The endpoint to set halt.
4452  * @value: Set or unset the halt.
4453  */
4454 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4455 {
4456 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4457 	struct dwc2_hsotg *hs = hs_ep->parent;
4458 	unsigned long flags;
4459 	int ret;
4460 
4461 	spin_lock_irqsave(&hs->lock, flags);
4462 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4463 	spin_unlock_irqrestore(&hs->lock, flags);
4464 
4465 	return ret;
4466 }
4467 
4468 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4469 	.enable		= dwc2_hsotg_ep_enable,
4470 	.disable	= dwc2_hsotg_ep_disable_lock,
4471 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4472 	.free_request	= dwc2_hsotg_ep_free_request,
4473 	.queue		= dwc2_hsotg_ep_queue_lock,
4474 	.dequeue	= dwc2_hsotg_ep_dequeue,
4475 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4476 	.set_wedge	= dwc2_gadget_ep_set_wedge,
4477 	/* note, don't believe we have any call for the fifo routines */
4478 };
4479 
4480 /**
4481  * dwc2_hsotg_init - initialize the usb core
4482  * @hsotg: The driver state
4483  */
4484 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4485 {
4486 	/* unmask subset of endpoint interrupts */
4487 
4488 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4489 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4490 		    DIEPMSK);
4491 
4492 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4493 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4494 		    DOEPMSK);
4495 
4496 	dwc2_writel(hsotg, 0, DAINTMSK);
4497 
4498 	/* Be in disconnected state until gadget is registered */
4499 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4500 
4501 	/* setup fifos */
4502 
4503 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4504 		dwc2_readl(hsotg, GRXFSIZ),
4505 		dwc2_readl(hsotg, GNPTXFSIZ));
4506 
4507 	dwc2_hsotg_init_fifo(hsotg);
4508 
4509 	if (using_dma(hsotg))
4510 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4511 }
4512 
4513 /**
4514  * dwc2_hsotg_udc_start - prepare the udc for work
4515  * @gadget: The usb gadget state
4516  * @driver: The usb gadget driver
4517  *
4518  * Perform initialization to prepare udc device and driver
4519  * to work.
4520  */
4521 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4522 				struct usb_gadget_driver *driver)
4523 {
4524 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4525 	unsigned long flags;
4526 	int ret;
4527 
4528 	if (!hsotg) {
4529 		pr_err("%s: called with no device\n", __func__);
4530 		return -ENODEV;
4531 	}
4532 
4533 	if (!driver) {
4534 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4535 		return -EINVAL;
4536 	}
4537 
4538 	if (driver->max_speed < USB_SPEED_FULL)
4539 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4540 
4541 	if (!driver->setup) {
4542 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4543 		return -EINVAL;
4544 	}
4545 
4546 	WARN_ON(hsotg->driver);
4547 
4548 	hsotg->driver = driver;
4549 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4550 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4551 
4552 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4553 		ret = dwc2_lowlevel_hw_enable(hsotg);
4554 		if (ret)
4555 			goto err;
4556 	}
4557 
4558 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4559 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4560 
4561 	spin_lock_irqsave(&hsotg->lock, flags);
4562 	if (dwc2_hw_is_device(hsotg)) {
4563 		dwc2_hsotg_init(hsotg);
4564 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4565 	}
4566 
4567 	hsotg->enabled = 0;
4568 	spin_unlock_irqrestore(&hsotg->lock, flags);
4569 
4570 	gadget->sg_supported = using_desc_dma(hsotg);
4571 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4572 
4573 	return 0;
4574 
4575 err:
4576 	hsotg->driver = NULL;
4577 	return ret;
4578 }
4579 
4580 /**
4581  * dwc2_hsotg_udc_stop - stop the udc
4582  * @gadget: The usb gadget state
4583  *
4584  * Stop udc hw block and stay tunned for future transmissions
4585  */
4586 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4587 {
4588 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4589 	unsigned long flags;
4590 	int ep;
4591 
4592 	if (!hsotg)
4593 		return -ENODEV;
4594 
4595 	/* all endpoints should be shutdown */
4596 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4597 		if (hsotg->eps_in[ep])
4598 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4599 		if (hsotg->eps_out[ep])
4600 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4601 	}
4602 
4603 	spin_lock_irqsave(&hsotg->lock, flags);
4604 
4605 	hsotg->driver = NULL;
4606 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4607 	hsotg->enabled = 0;
4608 
4609 	spin_unlock_irqrestore(&hsotg->lock, flags);
4610 
4611 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4612 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4613 
4614 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4615 		dwc2_lowlevel_hw_disable(hsotg);
4616 
4617 	return 0;
4618 }
4619 
4620 /**
4621  * dwc2_hsotg_gadget_getframe - read the frame number
4622  * @gadget: The usb gadget state
4623  *
4624  * Read the {micro} frame number
4625  */
4626 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4627 {
4628 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4629 }
4630 
4631 /**
4632  * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4633  * @gadget: The usb gadget state
4634  * @is_selfpowered: Whether the device is self-powered
4635  *
4636  * Set if the device is self or bus powered.
4637  */
4638 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4639 				      int is_selfpowered)
4640 {
4641 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4642 	unsigned long flags;
4643 
4644 	spin_lock_irqsave(&hsotg->lock, flags);
4645 	gadget->is_selfpowered = !!is_selfpowered;
4646 	spin_unlock_irqrestore(&hsotg->lock, flags);
4647 
4648 	return 0;
4649 }
4650 
4651 /**
4652  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4653  * @gadget: The usb gadget state
4654  * @is_on: Current state of the USB PHY
4655  *
4656  * Connect/Disconnect the USB PHY pullup
4657  */
4658 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4659 {
4660 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4661 	unsigned long flags;
4662 
4663 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4664 		hsotg->op_state);
4665 
4666 	/* Don't modify pullup state while in host mode */
4667 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4668 		hsotg->enabled = is_on;
4669 		return 0;
4670 	}
4671 
4672 	spin_lock_irqsave(&hsotg->lock, flags);
4673 	if (is_on) {
4674 		hsotg->enabled = 1;
4675 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4676 		/* Enable ACG feature in device mode,if supported */
4677 		dwc2_enable_acg(hsotg);
4678 		dwc2_hsotg_core_connect(hsotg);
4679 	} else {
4680 		dwc2_hsotg_core_disconnect(hsotg);
4681 		dwc2_hsotg_disconnect(hsotg);
4682 		hsotg->enabled = 0;
4683 	}
4684 
4685 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4686 	spin_unlock_irqrestore(&hsotg->lock, flags);
4687 
4688 	return 0;
4689 }
4690 
4691 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4692 {
4693 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4694 	unsigned long flags;
4695 
4696 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4697 	spin_lock_irqsave(&hsotg->lock, flags);
4698 
4699 	/*
4700 	 * If controller is in partial power down state, it must exit from
4701 	 * that state before being initialized / de-initialized
4702 	 */
4703 	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4704 		/*
4705 		 * No need to check the return value as
4706 		 * registers are not being restored.
4707 		 */
4708 		dwc2_exit_partial_power_down(hsotg, 0, false);
4709 
4710 	if (is_active) {
4711 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4712 
4713 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4714 		if (hsotg->enabled) {
4715 			/* Enable ACG feature in device mode,if supported */
4716 			dwc2_enable_acg(hsotg);
4717 			dwc2_hsotg_core_connect(hsotg);
4718 		}
4719 	} else {
4720 		dwc2_hsotg_core_disconnect(hsotg);
4721 		dwc2_hsotg_disconnect(hsotg);
4722 	}
4723 
4724 	spin_unlock_irqrestore(&hsotg->lock, flags);
4725 	return 0;
4726 }
4727 
4728 /**
4729  * dwc2_hsotg_vbus_draw - report bMaxPower field
4730  * @gadget: The usb gadget state
4731  * @mA: Amount of current
4732  *
4733  * Report how much power the device may consume to the phy.
4734  */
4735 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4736 {
4737 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4738 
4739 	if (IS_ERR_OR_NULL(hsotg->uphy))
4740 		return -ENOTSUPP;
4741 	return usb_phy_set_power(hsotg->uphy, mA);
4742 }
4743 
4744 static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4745 {
4746 	struct dwc2_hsotg *hsotg = to_hsotg(g);
4747 	unsigned long		flags;
4748 
4749 	spin_lock_irqsave(&hsotg->lock, flags);
4750 	switch (speed) {
4751 	case USB_SPEED_HIGH:
4752 		hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4753 		break;
4754 	case USB_SPEED_FULL:
4755 		hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4756 		break;
4757 	case USB_SPEED_LOW:
4758 		hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4759 		break;
4760 	default:
4761 		dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4762 	}
4763 	spin_unlock_irqrestore(&hsotg->lock, flags);
4764 }
4765 
4766 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4767 	.get_frame	= dwc2_hsotg_gadget_getframe,
4768 	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4769 	.udc_start		= dwc2_hsotg_udc_start,
4770 	.udc_stop		= dwc2_hsotg_udc_stop,
4771 	.pullup                 = dwc2_hsotg_pullup,
4772 	.udc_set_speed		= dwc2_gadget_set_speed,
4773 	.vbus_session		= dwc2_hsotg_vbus_session,
4774 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4775 };
4776 
4777 /**
4778  * dwc2_hsotg_initep - initialise a single endpoint
4779  * @hsotg: The device state.
4780  * @hs_ep: The endpoint to be initialised.
4781  * @epnum: The endpoint number
4782  * @dir_in: True if direction is in.
4783  *
4784  * Initialise the given endpoint (as part of the probe and device state
4785  * creation) to give to the gadget driver. Setup the endpoint name, any
4786  * direction information and other state that may be required.
4787  */
4788 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4789 			      struct dwc2_hsotg_ep *hs_ep,
4790 				       int epnum,
4791 				       bool dir_in)
4792 {
4793 	char *dir;
4794 
4795 	if (epnum == 0)
4796 		dir = "";
4797 	else if (dir_in)
4798 		dir = "in";
4799 	else
4800 		dir = "out";
4801 
4802 	hs_ep->dir_in = dir_in;
4803 	hs_ep->index = epnum;
4804 
4805 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4806 
4807 	INIT_LIST_HEAD(&hs_ep->queue);
4808 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4809 
4810 	/* add to the list of endpoints known by the gadget driver */
4811 	if (epnum)
4812 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4813 
4814 	hs_ep->parent = hsotg;
4815 	hs_ep->ep.name = hs_ep->name;
4816 
4817 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4818 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4819 	else
4820 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4821 					   epnum ? 1024 : EP0_MPS_LIMIT);
4822 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4823 
4824 	if (epnum == 0) {
4825 		hs_ep->ep.caps.type_control = true;
4826 	} else {
4827 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4828 			hs_ep->ep.caps.type_iso = true;
4829 			hs_ep->ep.caps.type_bulk = true;
4830 		}
4831 		hs_ep->ep.caps.type_int = true;
4832 	}
4833 
4834 	if (dir_in)
4835 		hs_ep->ep.caps.dir_in = true;
4836 	else
4837 		hs_ep->ep.caps.dir_out = true;
4838 
4839 	/*
4840 	 * if we're using dma, we need to set the next-endpoint pointer
4841 	 * to be something valid.
4842 	 */
4843 
4844 	if (using_dma(hsotg)) {
4845 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4846 
4847 		if (dir_in)
4848 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4849 		else
4850 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4851 	}
4852 }
4853 
4854 /**
4855  * dwc2_hsotg_hw_cfg - read HW configuration registers
4856  * @hsotg: Programming view of the DWC_otg controller
4857  *
4858  * Read the USB core HW configuration registers
4859  */
4860 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4861 {
4862 	u32 cfg;
4863 	u32 ep_type;
4864 	u32 i;
4865 
4866 	/* check hardware configuration */
4867 
4868 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4869 
4870 	/* Add ep0 */
4871 	hsotg->num_of_eps++;
4872 
4873 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4874 					sizeof(struct dwc2_hsotg_ep),
4875 					GFP_KERNEL);
4876 	if (!hsotg->eps_in[0])
4877 		return -ENOMEM;
4878 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4879 	hsotg->eps_out[0] = hsotg->eps_in[0];
4880 
4881 	cfg = hsotg->hw_params.dev_ep_dirs;
4882 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4883 		ep_type = cfg & 3;
4884 		/* Direction in or both */
4885 		if (!(ep_type & 2)) {
4886 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4887 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4888 			if (!hsotg->eps_in[i])
4889 				return -ENOMEM;
4890 		}
4891 		/* Direction out or both */
4892 		if (!(ep_type & 1)) {
4893 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4894 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4895 			if (!hsotg->eps_out[i])
4896 				return -ENOMEM;
4897 		}
4898 	}
4899 
4900 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4901 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4902 
4903 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4904 		 hsotg->num_of_eps,
4905 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4906 		 hsotg->fifo_mem);
4907 	return 0;
4908 }
4909 
4910 /**
4911  * dwc2_hsotg_dump - dump state of the udc
4912  * @hsotg: Programming view of the DWC_otg controller
4913  *
4914  */
4915 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4916 {
4917 #ifdef DEBUG
4918 	struct device *dev = hsotg->dev;
4919 	u32 val;
4920 	int idx;
4921 
4922 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4923 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4924 		 dwc2_readl(hsotg, DIEPMSK));
4925 
4926 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4927 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4928 
4929 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4930 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4931 
4932 	/* show periodic fifo settings */
4933 
4934 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4935 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4936 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4937 			 val >> FIFOSIZE_DEPTH_SHIFT,
4938 			 val & FIFOSIZE_STARTADDR_MASK);
4939 	}
4940 
4941 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4942 		dev_info(dev,
4943 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4944 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4945 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4946 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4947 
4948 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4949 		dev_info(dev,
4950 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4951 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4952 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4953 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4954 	}
4955 
4956 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4957 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4958 #endif
4959 }
4960 
4961 /**
4962  * dwc2_gadget_init - init function for gadget
4963  * @hsotg: Programming view of the DWC_otg controller
4964  *
4965  */
4966 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4967 {
4968 	struct device *dev = hsotg->dev;
4969 	int epnum;
4970 	int ret;
4971 
4972 	/* Dump fifo information */
4973 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4974 		hsotg->params.g_np_tx_fifo_size);
4975 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4976 
4977 	switch (hsotg->params.speed) {
4978 	case DWC2_SPEED_PARAM_LOW:
4979 		hsotg->gadget.max_speed = USB_SPEED_LOW;
4980 		break;
4981 	case DWC2_SPEED_PARAM_FULL:
4982 		hsotg->gadget.max_speed = USB_SPEED_FULL;
4983 		break;
4984 	default:
4985 		hsotg->gadget.max_speed = USB_SPEED_HIGH;
4986 		break;
4987 	}
4988 
4989 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4990 	hsotg->gadget.name = dev_name(dev);
4991 	hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
4992 	hsotg->remote_wakeup_allowed = 0;
4993 
4994 	if (hsotg->params.lpm)
4995 		hsotg->gadget.lpm_capable = true;
4996 
4997 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4998 		hsotg->gadget.is_otg = 1;
4999 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
5000 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
5001 
5002 	ret = dwc2_hsotg_hw_cfg(hsotg);
5003 	if (ret) {
5004 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
5005 		return ret;
5006 	}
5007 
5008 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
5009 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5010 	if (!hsotg->ctrl_buff)
5011 		return -ENOMEM;
5012 
5013 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
5014 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5015 	if (!hsotg->ep0_buff)
5016 		return -ENOMEM;
5017 
5018 	if (using_desc_dma(hsotg)) {
5019 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5020 		if (ret < 0)
5021 			return ret;
5022 	}
5023 
5024 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5025 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5026 	if (ret < 0) {
5027 		dev_err(dev, "cannot claim IRQ for gadget\n");
5028 		return ret;
5029 	}
5030 
5031 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
5032 
5033 	if (hsotg->num_of_eps == 0) {
5034 		dev_err(dev, "wrong number of EPs (zero)\n");
5035 		return -EINVAL;
5036 	}
5037 
5038 	/* setup endpoint information */
5039 
5040 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5041 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5042 
5043 	/* allocate EP0 request */
5044 
5045 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5046 						     GFP_KERNEL);
5047 	if (!hsotg->ctrl_req) {
5048 		dev_err(dev, "failed to allocate ctrl req\n");
5049 		return -ENOMEM;
5050 	}
5051 
5052 	/* initialise the endpoints now the core has been initialised */
5053 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5054 		if (hsotg->eps_in[epnum])
5055 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5056 					  epnum, 1);
5057 		if (hsotg->eps_out[epnum])
5058 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5059 					  epnum, 0);
5060 	}
5061 
5062 	dwc2_hsotg_dump(hsotg);
5063 
5064 	return 0;
5065 }
5066 
5067 /**
5068  * dwc2_hsotg_remove - remove function for hsotg driver
5069  * @hsotg: Programming view of the DWC_otg controller
5070  *
5071  */
5072 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5073 {
5074 	usb_del_gadget_udc(&hsotg->gadget);
5075 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5076 
5077 	return 0;
5078 }
5079 
5080 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5081 {
5082 	unsigned long flags;
5083 
5084 	if (hsotg->lx_state != DWC2_L0)
5085 		return 0;
5086 
5087 	if (hsotg->driver) {
5088 		int ep;
5089 
5090 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
5091 			 hsotg->driver->driver.name);
5092 
5093 		spin_lock_irqsave(&hsotg->lock, flags);
5094 		if (hsotg->enabled)
5095 			dwc2_hsotg_core_disconnect(hsotg);
5096 		dwc2_hsotg_disconnect(hsotg);
5097 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5098 		spin_unlock_irqrestore(&hsotg->lock, flags);
5099 
5100 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5101 			if (hsotg->eps_in[ep])
5102 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5103 			if (hsotg->eps_out[ep])
5104 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5105 		}
5106 	}
5107 
5108 	return 0;
5109 }
5110 
5111 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5112 {
5113 	unsigned long flags;
5114 
5115 	if (hsotg->lx_state == DWC2_L2)
5116 		return 0;
5117 
5118 	if (hsotg->driver) {
5119 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5120 			 hsotg->driver->driver.name);
5121 
5122 		spin_lock_irqsave(&hsotg->lock, flags);
5123 		dwc2_hsotg_core_init_disconnected(hsotg, false);
5124 		if (hsotg->enabled) {
5125 			/* Enable ACG feature in device mode,if supported */
5126 			dwc2_enable_acg(hsotg);
5127 			dwc2_hsotg_core_connect(hsotg);
5128 		}
5129 		spin_unlock_irqrestore(&hsotg->lock, flags);
5130 	}
5131 
5132 	return 0;
5133 }
5134 
5135 /**
5136  * dwc2_backup_device_registers() - Backup controller device registers.
5137  * When suspending usb bus, registers needs to be backuped
5138  * if controller power is disabled once suspended.
5139  *
5140  * @hsotg: Programming view of the DWC_otg controller
5141  */
5142 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5143 {
5144 	struct dwc2_dregs_backup *dr;
5145 	int i;
5146 
5147 	dev_dbg(hsotg->dev, "%s\n", __func__);
5148 
5149 	/* Backup dev regs */
5150 	dr = &hsotg->dr_backup;
5151 
5152 	dr->dcfg = dwc2_readl(hsotg, DCFG);
5153 	dr->dctl = dwc2_readl(hsotg, DCTL);
5154 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5155 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5156 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5157 
5158 	for (i = 0; i < hsotg->num_of_eps; i++) {
5159 		/* Backup IN EPs */
5160 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5161 
5162 		/* Ensure DATA PID is correctly configured */
5163 		if (dr->diepctl[i] & DXEPCTL_DPID)
5164 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5165 		else
5166 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5167 
5168 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5169 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5170 
5171 		/* Backup OUT EPs */
5172 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5173 
5174 		/* Ensure DATA PID is correctly configured */
5175 		if (dr->doepctl[i] & DXEPCTL_DPID)
5176 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5177 		else
5178 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5179 
5180 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5181 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5182 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5183 	}
5184 	dr->valid = true;
5185 	return 0;
5186 }
5187 
5188 /**
5189  * dwc2_restore_device_registers() - Restore controller device registers.
5190  * When resuming usb bus, device registers needs to be restored
5191  * if controller power were disabled.
5192  *
5193  * @hsotg: Programming view of the DWC_otg controller
5194  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5195  *
5196  * Return: 0 if successful, negative error code otherwise
5197  */
5198 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5199 {
5200 	struct dwc2_dregs_backup *dr;
5201 	int i;
5202 
5203 	dev_dbg(hsotg->dev, "%s\n", __func__);
5204 
5205 	/* Restore dev regs */
5206 	dr = &hsotg->dr_backup;
5207 	if (!dr->valid) {
5208 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5209 			__func__);
5210 		return -EINVAL;
5211 	}
5212 	dr->valid = false;
5213 
5214 	if (!remote_wakeup)
5215 		dwc2_writel(hsotg, dr->dctl, DCTL);
5216 
5217 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5218 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5219 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5220 
5221 	for (i = 0; i < hsotg->num_of_eps; i++) {
5222 		/* Restore IN EPs */
5223 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5224 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5225 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5226 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5227 		 * hibernation wrong value read and saved from DIEPDMAx,
5228 		 * as result BNA interrupt asserted on hibernation exit
5229 		 * by restoring from saved area.
5230 		 */
5231 		if (using_desc_dma(hsotg) &&
5232 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5233 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5234 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5235 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5236 		/* Restore OUT EPs */
5237 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5238 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5239 		 * hibernation wrong value read and saved from DOEPDMAx,
5240 		 * as result BNA interrupt asserted on hibernation exit
5241 		 * by restoring from saved area.
5242 		 */
5243 		if (using_desc_dma(hsotg) &&
5244 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5245 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5246 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5247 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5248 	}
5249 
5250 	return 0;
5251 }
5252 
5253 /**
5254  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5255  *
5256  * @hsotg: Programming view of DWC_otg controller
5257  *
5258  */
5259 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5260 {
5261 	u32 val;
5262 
5263 	if (!hsotg->params.lpm)
5264 		return;
5265 
5266 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5267 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5268 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5269 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5270 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5271 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5272 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5273 	dwc2_writel(hsotg, val, GLPMCFG);
5274 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5275 
5276 	/* Unmask WKUP_ALERT Interrupt */
5277 	if (hsotg->params.service_interval)
5278 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5279 }
5280 
5281 /**
5282  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5283  *
5284  * @hsotg: Programming view of DWC_otg controller
5285  *
5286  */
5287 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5288 {
5289 	u32 val = 0;
5290 
5291 	val |= GREFCLK_REF_CLK_MODE;
5292 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5293 	val |= hsotg->params.sof_cnt_wkup_alert <<
5294 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5295 
5296 	dwc2_writel(hsotg, val, GREFCLK);
5297 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5298 }
5299 
5300 /**
5301  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5302  *
5303  * @hsotg: Programming view of the DWC_otg controller
5304  *
5305  * Return non-zero if failed to enter to hibernation.
5306  */
5307 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5308 {
5309 	u32 gpwrdn;
5310 	int ret = 0;
5311 
5312 	/* Change to L2(suspend) state */
5313 	hsotg->lx_state = DWC2_L2;
5314 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5315 	ret = dwc2_backup_global_registers(hsotg);
5316 	if (ret) {
5317 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5318 			__func__);
5319 		return ret;
5320 	}
5321 	ret = dwc2_backup_device_registers(hsotg);
5322 	if (ret) {
5323 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5324 			__func__);
5325 		return ret;
5326 	}
5327 
5328 	gpwrdn = GPWRDN_PWRDNRSTN;
5329 	gpwrdn |= GPWRDN_PMUACTV;
5330 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5331 	udelay(10);
5332 
5333 	/* Set flag to indicate that we are in hibernation */
5334 	hsotg->hibernated = 1;
5335 
5336 	/* Enable interrupts from wake up logic */
5337 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5338 	gpwrdn |= GPWRDN_PMUINTSEL;
5339 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5340 	udelay(10);
5341 
5342 	/* Unmask device mode interrupts in GPWRDN */
5343 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5344 	gpwrdn |= GPWRDN_RST_DET_MSK;
5345 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5346 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5347 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5348 	udelay(10);
5349 
5350 	/* Enable Power Down Clamp */
5351 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5352 	gpwrdn |= GPWRDN_PWRDNCLMP;
5353 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5354 	udelay(10);
5355 
5356 	/* Switch off VDD */
5357 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5358 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5359 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5360 	udelay(10);
5361 
5362 	/* Save gpwrdn register for further usage if stschng interrupt */
5363 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5364 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5365 
5366 	return ret;
5367 }
5368 
5369 /**
5370  * dwc2_gadget_exit_hibernation()
5371  * This function is for exiting from Device mode hibernation by host initiated
5372  * resume/reset and device initiated remote-wakeup.
5373  *
5374  * @hsotg: Programming view of the DWC_otg controller
5375  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5376  * @reset: indicates whether resume is initiated by Reset.
5377  *
5378  * Return non-zero if failed to exit from hibernation.
5379  */
5380 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5381 				 int rem_wakeup, int reset)
5382 {
5383 	u32 pcgcctl;
5384 	u32 gpwrdn;
5385 	u32 dctl;
5386 	int ret = 0;
5387 	struct dwc2_gregs_backup *gr;
5388 	struct dwc2_dregs_backup *dr;
5389 
5390 	gr = &hsotg->gr_backup;
5391 	dr = &hsotg->dr_backup;
5392 
5393 	if (!hsotg->hibernated) {
5394 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5395 		return 1;
5396 	}
5397 	dev_dbg(hsotg->dev,
5398 		"%s: called with rem_wakeup = %d reset = %d\n",
5399 		__func__, rem_wakeup, reset);
5400 
5401 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5402 
5403 	if (!reset) {
5404 		/* Clear all pending interupts */
5405 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5406 	}
5407 
5408 	/* De-assert Restore */
5409 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5410 	gpwrdn &= ~GPWRDN_RESTORE;
5411 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5412 	udelay(10);
5413 
5414 	if (!rem_wakeup) {
5415 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5416 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5417 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5418 	}
5419 
5420 	/* Restore GUSBCFG, DCFG and DCTL */
5421 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5422 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5423 	dwc2_writel(hsotg, dr->dctl, DCTL);
5424 
5425 	/* On USB Reset, reset device address to zero */
5426 	if (reset)
5427 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5428 
5429 	/* De-assert Wakeup Logic */
5430 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5431 	gpwrdn &= ~GPWRDN_PMUACTV;
5432 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5433 
5434 	if (rem_wakeup) {
5435 		udelay(10);
5436 		/* Start Remote Wakeup Signaling */
5437 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5438 	} else {
5439 		udelay(50);
5440 		/* Set Device programming done bit */
5441 		dctl = dwc2_readl(hsotg, DCTL);
5442 		dctl |= DCTL_PWRONPRGDONE;
5443 		dwc2_writel(hsotg, dctl, DCTL);
5444 	}
5445 	/* Wait for interrupts which must be cleared */
5446 	mdelay(2);
5447 	/* Clear all pending interupts */
5448 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5449 
5450 	/* Restore global registers */
5451 	ret = dwc2_restore_global_registers(hsotg);
5452 	if (ret) {
5453 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5454 			__func__);
5455 		return ret;
5456 	}
5457 
5458 	/* Restore device registers */
5459 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5460 	if (ret) {
5461 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5462 			__func__);
5463 		return ret;
5464 	}
5465 
5466 	if (rem_wakeup) {
5467 		mdelay(10);
5468 		dctl = dwc2_readl(hsotg, DCTL);
5469 		dctl &= ~DCTL_RMTWKUPSIG;
5470 		dwc2_writel(hsotg, dctl, DCTL);
5471 	}
5472 
5473 	hsotg->hibernated = 0;
5474 	hsotg->lx_state = DWC2_L0;
5475 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5476 
5477 	return ret;
5478 }
5479 
5480 /**
5481  * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5482  * power down.
5483  *
5484  * @hsotg: Programming view of the DWC_otg controller
5485  *
5486  * Return: non-zero if failed to enter device partial power down.
5487  *
5488  * This function is for entering device mode partial power down.
5489  */
5490 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5491 {
5492 	u32 pcgcctl;
5493 	int ret = 0;
5494 
5495 	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5496 
5497 	/* Backup all registers */
5498 	ret = dwc2_backup_global_registers(hsotg);
5499 	if (ret) {
5500 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5501 			__func__);
5502 		return ret;
5503 	}
5504 
5505 	ret = dwc2_backup_device_registers(hsotg);
5506 	if (ret) {
5507 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5508 			__func__);
5509 		return ret;
5510 	}
5511 
5512 	/*
5513 	 * Clear any pending interrupts since dwc2 will not be able to
5514 	 * clear them after entering partial_power_down.
5515 	 */
5516 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5517 
5518 	/* Put the controller in low power state */
5519 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5520 
5521 	pcgcctl |= PCGCTL_PWRCLMP;
5522 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5523 	udelay(5);
5524 
5525 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5526 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5527 	udelay(5);
5528 
5529 	pcgcctl |= PCGCTL_STOPPCLK;
5530 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5531 
5532 	/* Set in_ppd flag to 1 as here core enters suspend. */
5533 	hsotg->in_ppd = 1;
5534 	hsotg->lx_state = DWC2_L2;
5535 
5536 	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5537 
5538 	return ret;
5539 }
5540 
5541 /*
5542  * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5543  * power down.
5544  *
5545  * @hsotg: Programming view of the DWC_otg controller
5546  * @restore: indicates whether need to restore the registers or not.
5547  *
5548  * Return: non-zero if failed to exit device partial power down.
5549  *
5550  * This function is for exiting from device mode partial power down.
5551  */
5552 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5553 					bool restore)
5554 {
5555 	u32 pcgcctl;
5556 	u32 dctl;
5557 	struct dwc2_dregs_backup *dr;
5558 	int ret = 0;
5559 
5560 	dr = &hsotg->dr_backup;
5561 
5562 	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5563 
5564 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5565 	pcgcctl &= ~PCGCTL_STOPPCLK;
5566 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5567 
5568 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5569 	pcgcctl &= ~PCGCTL_PWRCLMP;
5570 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5571 
5572 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5573 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5574 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5575 
5576 	udelay(100);
5577 	if (restore) {
5578 		ret = dwc2_restore_global_registers(hsotg);
5579 		if (ret) {
5580 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5581 				__func__);
5582 			return ret;
5583 		}
5584 		/* Restore DCFG */
5585 		dwc2_writel(hsotg, dr->dcfg, DCFG);
5586 
5587 		ret = dwc2_restore_device_registers(hsotg, 0);
5588 		if (ret) {
5589 			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5590 				__func__);
5591 			return ret;
5592 		}
5593 	}
5594 
5595 	/* Set the Power-On Programming done bit */
5596 	dctl = dwc2_readl(hsotg, DCTL);
5597 	dctl |= DCTL_PWRONPRGDONE;
5598 	dwc2_writel(hsotg, dctl, DCTL);
5599 
5600 	/* Set in_ppd flag to 0 as here core exits from suspend. */
5601 	hsotg->in_ppd = 0;
5602 	hsotg->lx_state = DWC2_L0;
5603 
5604 	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5605 	return ret;
5606 }
5607 
5608 /**
5609  * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5610  *
5611  * @hsotg: Programming view of the DWC_otg controller
5612  *
5613  * Return: non-zero if failed to enter device partial power down.
5614  *
5615  * This function is for entering device mode clock gating.
5616  */
5617 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5618 {
5619 	u32 pcgctl;
5620 
5621 	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5622 
5623 	/* Set the Phy Clock bit as suspend is received. */
5624 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5625 	pcgctl |= PCGCTL_STOPPCLK;
5626 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5627 	udelay(5);
5628 
5629 	/* Set the Gate hclk as suspend is received. */
5630 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5631 	pcgctl |= PCGCTL_GATEHCLK;
5632 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5633 	udelay(5);
5634 
5635 	hsotg->lx_state = DWC2_L2;
5636 	hsotg->bus_suspended = true;
5637 }
5638 
5639 /*
5640  * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5641  *
5642  * @hsotg: Programming view of the DWC_otg controller
5643  * @rem_wakeup: indicates whether remote wake up is enabled.
5644  *
5645  * This function is for exiting from device mode clock gating.
5646  */
5647 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5648 {
5649 	u32 pcgctl;
5650 	u32 dctl;
5651 
5652 	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5653 
5654 	/* Clear the Gate hclk. */
5655 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5656 	pcgctl &= ~PCGCTL_GATEHCLK;
5657 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5658 	udelay(5);
5659 
5660 	/* Phy Clock bit. */
5661 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5662 	pcgctl &= ~PCGCTL_STOPPCLK;
5663 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5664 	udelay(5);
5665 
5666 	if (rem_wakeup) {
5667 		/* Set Remote Wakeup Signaling */
5668 		dctl = dwc2_readl(hsotg, DCTL);
5669 		dctl |= DCTL_RMTWKUPSIG;
5670 		dwc2_writel(hsotg, dctl, DCTL);
5671 	}
5672 
5673 	/* Change to L0 state */
5674 	call_gadget(hsotg, resume);
5675 	hsotg->lx_state = DWC2_L0;
5676 	hsotg->bus_suspended = false;
5677 }
5678