1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 26 #include <linux/usb/ch9.h> 27 #include <linux/usb/gadget.h> 28 #include <linux/usb/phy.h> 29 #include <linux/usb/composite.h> 30 31 32 #include "core.h" 33 #include "hw.h" 34 35 /* conversion functions */ 36 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 37 { 38 return container_of(req, struct dwc2_hsotg_req, req); 39 } 40 41 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 42 { 43 return container_of(ep, struct dwc2_hsotg_ep, ep); 44 } 45 46 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 47 { 48 return container_of(gadget, struct dwc2_hsotg, gadget); 49 } 50 51 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 52 { 53 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 54 } 55 56 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 57 { 58 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 59 } 60 61 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 62 u32 ep_index, u32 dir_in) 63 { 64 if (dir_in) 65 return hsotg->eps_in[ep_index]; 66 else 67 return hsotg->eps_out[ep_index]; 68 } 69 70 /* forward declaration of functions */ 71 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 72 73 /** 74 * using_dma - return the DMA status of the driver. 75 * @hsotg: The driver state. 76 * 77 * Return true if we're using DMA. 78 * 79 * Currently, we have the DMA support code worked into everywhere 80 * that needs it, but the AMBA DMA implementation in the hardware can 81 * only DMA from 32bit aligned addresses. This means that gadgets such 82 * as the CDC Ethernet cannot work as they often pass packets which are 83 * not 32bit aligned. 84 * 85 * Unfortunately the choice to use DMA or not is global to the controller 86 * and seems to be only settable when the controller is being put through 87 * a core reset. This means we either need to fix the gadgets to take 88 * account of DMA alignment, or add bounce buffers (yuerk). 89 * 90 * g_using_dma is set depending on dts flag. 91 */ 92 static inline bool using_dma(struct dwc2_hsotg *hsotg) 93 { 94 return hsotg->params.g_dma; 95 } 96 97 /* 98 * using_desc_dma - return the descriptor DMA status of the driver. 99 * @hsotg: The driver state. 100 * 101 * Return true if we're using descriptor DMA. 102 */ 103 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 104 { 105 return hsotg->params.g_dma_desc; 106 } 107 108 /** 109 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 110 * @hs_ep: The endpoint 111 * 112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 113 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 114 */ 115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 116 { 117 struct dwc2_hsotg *hsotg = hs_ep->parent; 118 u16 limit = DSTS_SOFFN_LIMIT; 119 120 if (hsotg->gadget.speed != USB_SPEED_HIGH) 121 limit >>= 3; 122 123 hs_ep->target_frame += hs_ep->interval; 124 if (hs_ep->target_frame > limit) { 125 hs_ep->frame_overrun = true; 126 hs_ep->target_frame &= limit; 127 } else { 128 hs_ep->frame_overrun = false; 129 } 130 } 131 132 /** 133 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 134 * by one. 135 * @hs_ep: The endpoint. 136 * 137 * This function used in service interval based scheduling flow to calculate 138 * descriptor frame number filed value. For service interval mode frame 139 * number in descriptor should point to last (u)frame in the interval. 140 * 141 */ 142 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 143 { 144 struct dwc2_hsotg *hsotg = hs_ep->parent; 145 u16 limit = DSTS_SOFFN_LIMIT; 146 147 if (hsotg->gadget.speed != USB_SPEED_HIGH) 148 limit >>= 3; 149 150 if (hs_ep->target_frame) 151 hs_ep->target_frame -= 1; 152 else 153 hs_ep->target_frame = limit; 154 } 155 156 /** 157 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 158 * @hsotg: The device state 159 * @ints: A bitmask of the interrupts to enable 160 */ 161 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 162 { 163 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 164 u32 new_gsintmsk; 165 166 new_gsintmsk = gsintmsk | ints; 167 168 if (new_gsintmsk != gsintmsk) { 169 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 170 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 171 } 172 } 173 174 /** 175 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 176 * @hsotg: The device state 177 * @ints: A bitmask of the interrupts to enable 178 */ 179 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 180 { 181 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 182 u32 new_gsintmsk; 183 184 new_gsintmsk = gsintmsk & ~ints; 185 186 if (new_gsintmsk != gsintmsk) 187 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 188 } 189 190 /** 191 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 192 * @hsotg: The device state 193 * @ep: The endpoint index 194 * @dir_in: True if direction is in. 195 * @en: The enable value, true to enable 196 * 197 * Set or clear the mask for an individual endpoint's interrupt 198 * request. 199 */ 200 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 201 unsigned int ep, unsigned int dir_in, 202 unsigned int en) 203 { 204 unsigned long flags; 205 u32 bit = 1 << ep; 206 u32 daint; 207 208 if (!dir_in) 209 bit <<= 16; 210 211 local_irq_save(flags); 212 daint = dwc2_readl(hsotg, DAINTMSK); 213 if (en) 214 daint |= bit; 215 else 216 daint &= ~bit; 217 dwc2_writel(hsotg, daint, DAINTMSK); 218 local_irq_restore(flags); 219 } 220 221 /** 222 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 223 * 224 * @hsotg: Programming view of the DWC_otg controller 225 */ 226 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 227 { 228 if (hsotg->hw_params.en_multiple_tx_fifo) 229 /* In dedicated FIFO mode we need count of IN EPs */ 230 return hsotg->hw_params.num_dev_in_eps; 231 else 232 /* In shared FIFO mode we need count of Periodic IN EPs */ 233 return hsotg->hw_params.num_dev_perio_in_ep; 234 } 235 236 /** 237 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 238 * device mode TX FIFOs 239 * 240 * @hsotg: Programming view of the DWC_otg controller 241 */ 242 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 243 { 244 int addr; 245 int tx_addr_max; 246 u32 np_tx_fifo_size; 247 248 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 249 hsotg->params.g_np_tx_fifo_size); 250 251 /* Get Endpoint Info Control block size in DWORDs. */ 252 tx_addr_max = hsotg->hw_params.total_fifo_size; 253 254 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 255 if (tx_addr_max <= addr) 256 return 0; 257 258 return tx_addr_max - addr; 259 } 260 261 /** 262 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 263 * 264 * @hsotg: Programming view of the DWC_otg controller 265 * 266 */ 267 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 268 { 269 u32 gintsts2; 270 u32 gintmsk2; 271 272 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 273 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 274 gintsts2 &= gintmsk2; 275 276 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 277 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 278 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 279 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 280 } 281 } 282 283 /** 284 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 285 * TX FIFOs 286 * 287 * @hsotg: Programming view of the DWC_otg controller 288 */ 289 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 290 { 291 int tx_fifo_count; 292 int tx_fifo_depth; 293 294 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 295 296 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 297 298 if (!tx_fifo_count) 299 return tx_fifo_depth; 300 else 301 return tx_fifo_depth / tx_fifo_count; 302 } 303 304 /** 305 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 306 * @hsotg: The device instance. 307 */ 308 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 309 { 310 unsigned int ep; 311 unsigned int addr; 312 int timeout; 313 314 u32 val; 315 u32 *txfsz = hsotg->params.g_tx_fifo_size; 316 317 /* Reset fifo map if not correctly cleared during previous session */ 318 WARN_ON(hsotg->fifo_map); 319 hsotg->fifo_map = 0; 320 321 /* set RX/NPTX FIFO sizes */ 322 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 323 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 324 FIFOSIZE_STARTADDR_SHIFT) | 325 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 326 GNPTXFSIZ); 327 328 /* 329 * arange all the rest of the TX FIFOs, as some versions of this 330 * block have overlapping default addresses. This also ensures 331 * that if the settings have been changed, then they are set to 332 * known values. 333 */ 334 335 /* start at the end of the GNPTXFSIZ, rounded up */ 336 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 337 338 /* 339 * Configure fifos sizes from provided configuration and assign 340 * them to endpoints dynamically according to maxpacket size value of 341 * given endpoint. 342 */ 343 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 344 if (!txfsz[ep]) 345 continue; 346 val = addr; 347 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 348 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 349 "insufficient fifo memory"); 350 addr += txfsz[ep]; 351 352 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 353 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 354 } 355 356 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 357 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 358 GDFIFOCFG); 359 /* 360 * according to p428 of the design guide, we need to ensure that 361 * all fifos are flushed before continuing 362 */ 363 364 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 365 GRSTCTL_RXFFLSH, GRSTCTL); 366 367 /* wait until the fifos are both flushed */ 368 timeout = 100; 369 while (1) { 370 val = dwc2_readl(hsotg, GRSTCTL); 371 372 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 373 break; 374 375 if (--timeout == 0) { 376 dev_err(hsotg->dev, 377 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 378 __func__, val); 379 break; 380 } 381 382 udelay(1); 383 } 384 385 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 386 } 387 388 /** 389 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 390 * @ep: USB endpoint to allocate request for. 391 * @flags: Allocation flags 392 * 393 * Allocate a new USB request structure appropriate for the specified endpoint 394 */ 395 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 396 gfp_t flags) 397 { 398 struct dwc2_hsotg_req *req; 399 400 req = kzalloc(sizeof(*req), flags); 401 if (!req) 402 return NULL; 403 404 INIT_LIST_HEAD(&req->queue); 405 406 return &req->req; 407 } 408 409 /** 410 * is_ep_periodic - return true if the endpoint is in periodic mode. 411 * @hs_ep: The endpoint to query. 412 * 413 * Returns true if the endpoint is in periodic mode, meaning it is being 414 * used for an Interrupt or ISO transfer. 415 */ 416 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 417 { 418 return hs_ep->periodic; 419 } 420 421 /** 422 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 423 * @hsotg: The device state. 424 * @hs_ep: The endpoint for the request 425 * @hs_req: The request being processed. 426 * 427 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 428 * of a request to ensure the buffer is ready for access by the caller. 429 */ 430 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 431 struct dwc2_hsotg_ep *hs_ep, 432 struct dwc2_hsotg_req *hs_req) 433 { 434 struct usb_request *req = &hs_req->req; 435 436 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir); 437 } 438 439 /* 440 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 441 * for Control endpoint 442 * @hsotg: The device state. 443 * 444 * This function will allocate 4 descriptor chains for EP 0: 2 for 445 * Setup stage, per one for IN and OUT data/status transactions. 446 */ 447 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 448 { 449 hsotg->setup_desc[0] = 450 dmam_alloc_coherent(hsotg->dev, 451 sizeof(struct dwc2_dma_desc), 452 &hsotg->setup_desc_dma[0], 453 GFP_KERNEL); 454 if (!hsotg->setup_desc[0]) 455 goto fail; 456 457 hsotg->setup_desc[1] = 458 dmam_alloc_coherent(hsotg->dev, 459 sizeof(struct dwc2_dma_desc), 460 &hsotg->setup_desc_dma[1], 461 GFP_KERNEL); 462 if (!hsotg->setup_desc[1]) 463 goto fail; 464 465 hsotg->ctrl_in_desc = 466 dmam_alloc_coherent(hsotg->dev, 467 sizeof(struct dwc2_dma_desc), 468 &hsotg->ctrl_in_desc_dma, 469 GFP_KERNEL); 470 if (!hsotg->ctrl_in_desc) 471 goto fail; 472 473 hsotg->ctrl_out_desc = 474 dmam_alloc_coherent(hsotg->dev, 475 sizeof(struct dwc2_dma_desc), 476 &hsotg->ctrl_out_desc_dma, 477 GFP_KERNEL); 478 if (!hsotg->ctrl_out_desc) 479 goto fail; 480 481 return 0; 482 483 fail: 484 return -ENOMEM; 485 } 486 487 /** 488 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 489 * @hsotg: The controller state. 490 * @hs_ep: The endpoint we're going to write for. 491 * @hs_req: The request to write data for. 492 * 493 * This is called when the TxFIFO has some space in it to hold a new 494 * transmission and we have something to give it. The actual setup of 495 * the data size is done elsewhere, so all we have to do is to actually 496 * write the data. 497 * 498 * The return value is zero if there is more space (or nothing was done) 499 * otherwise -ENOSPC is returned if the FIFO space was used up. 500 * 501 * This routine is only needed for PIO 502 */ 503 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 504 struct dwc2_hsotg_ep *hs_ep, 505 struct dwc2_hsotg_req *hs_req) 506 { 507 bool periodic = is_ep_periodic(hs_ep); 508 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 509 int buf_pos = hs_req->req.actual; 510 int to_write = hs_ep->size_loaded; 511 void *data; 512 int can_write; 513 int pkt_round; 514 int max_transfer; 515 516 to_write -= (buf_pos - hs_ep->last_load); 517 518 /* if there's nothing to write, get out early */ 519 if (to_write == 0) 520 return 0; 521 522 if (periodic && !hsotg->dedicated_fifos) { 523 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 524 int size_left; 525 int size_done; 526 527 /* 528 * work out how much data was loaded so we can calculate 529 * how much data is left in the fifo. 530 */ 531 532 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 533 534 /* 535 * if shared fifo, we cannot write anything until the 536 * previous data has been completely sent. 537 */ 538 if (hs_ep->fifo_load != 0) { 539 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 540 return -ENOSPC; 541 } 542 543 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 544 __func__, size_left, 545 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 546 547 /* how much of the data has moved */ 548 size_done = hs_ep->size_loaded - size_left; 549 550 /* how much data is left in the fifo */ 551 can_write = hs_ep->fifo_load - size_done; 552 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 553 __func__, can_write); 554 555 can_write = hs_ep->fifo_size - can_write; 556 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 557 __func__, can_write); 558 559 if (can_write <= 0) { 560 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 561 return -ENOSPC; 562 } 563 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 564 can_write = dwc2_readl(hsotg, 565 DTXFSTS(hs_ep->fifo_index)); 566 567 can_write &= 0xffff; 568 can_write *= 4; 569 } else { 570 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 571 dev_dbg(hsotg->dev, 572 "%s: no queue slots available (0x%08x)\n", 573 __func__, gnptxsts); 574 575 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 576 return -ENOSPC; 577 } 578 579 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 580 can_write *= 4; /* fifo size is in 32bit quantities. */ 581 } 582 583 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 584 585 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 586 __func__, gnptxsts, can_write, to_write, max_transfer); 587 588 /* 589 * limit to 512 bytes of data, it seems at least on the non-periodic 590 * FIFO, requests of >512 cause the endpoint to get stuck with a 591 * fragment of the end of the transfer in it. 592 */ 593 if (can_write > 512 && !periodic) 594 can_write = 512; 595 596 /* 597 * limit the write to one max-packet size worth of data, but allow 598 * the transfer to return that it did not run out of fifo space 599 * doing it. 600 */ 601 if (to_write > max_transfer) { 602 to_write = max_transfer; 603 604 /* it's needed only when we do not use dedicated fifos */ 605 if (!hsotg->dedicated_fifos) 606 dwc2_hsotg_en_gsint(hsotg, 607 periodic ? GINTSTS_PTXFEMP : 608 GINTSTS_NPTXFEMP); 609 } 610 611 /* see if we can write data */ 612 613 if (to_write > can_write) { 614 to_write = can_write; 615 pkt_round = to_write % max_transfer; 616 617 /* 618 * Round the write down to an 619 * exact number of packets. 620 * 621 * Note, we do not currently check to see if we can ever 622 * write a full packet or not to the FIFO. 623 */ 624 625 if (pkt_round) 626 to_write -= pkt_round; 627 628 /* 629 * enable correct FIFO interrupt to alert us when there 630 * is more room left. 631 */ 632 633 /* it's needed only when we do not use dedicated fifos */ 634 if (!hsotg->dedicated_fifos) 635 dwc2_hsotg_en_gsint(hsotg, 636 periodic ? GINTSTS_PTXFEMP : 637 GINTSTS_NPTXFEMP); 638 } 639 640 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 641 to_write, hs_req->req.length, can_write, buf_pos); 642 643 if (to_write <= 0) 644 return -ENOSPC; 645 646 hs_req->req.actual = buf_pos + to_write; 647 hs_ep->total_data += to_write; 648 649 if (periodic) 650 hs_ep->fifo_load += to_write; 651 652 to_write = DIV_ROUND_UP(to_write, 4); 653 data = hs_req->req.buf + buf_pos; 654 655 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 656 657 return (to_write >= can_write) ? -ENOSPC : 0; 658 } 659 660 /** 661 * get_ep_limit - get the maximum data legnth for this endpoint 662 * @hs_ep: The endpoint 663 * 664 * Return the maximum data that can be queued in one go on a given endpoint 665 * so that transfers that are too long can be split. 666 */ 667 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 668 { 669 int index = hs_ep->index; 670 unsigned int maxsize; 671 unsigned int maxpkt; 672 673 if (index != 0) { 674 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 675 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 676 } else { 677 maxsize = 64 + 64; 678 if (hs_ep->dir_in) 679 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 680 else 681 maxpkt = 2; 682 } 683 684 /* we made the constant loading easier above by using +1 */ 685 maxpkt--; 686 maxsize--; 687 688 /* 689 * constrain by packet count if maxpkts*pktsize is greater 690 * than the length register size. 691 */ 692 693 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 694 maxsize = maxpkt * hs_ep->ep.maxpacket; 695 696 return maxsize; 697 } 698 699 /** 700 * dwc2_hsotg_read_frameno - read current frame number 701 * @hsotg: The device instance 702 * 703 * Return the current frame number 704 */ 705 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 706 { 707 u32 dsts; 708 709 dsts = dwc2_readl(hsotg, DSTS); 710 dsts &= DSTS_SOFFN_MASK; 711 dsts >>= DSTS_SOFFN_SHIFT; 712 713 return dsts; 714 } 715 716 /** 717 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 718 * DMA descriptor chain prepared for specific endpoint 719 * @hs_ep: The endpoint 720 * 721 * Return the maximum data that can be queued in one go on a given endpoint 722 * depending on its descriptor chain capacity so that transfers that 723 * are too long can be split. 724 */ 725 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 726 { 727 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 728 int is_isoc = hs_ep->isochronous; 729 unsigned int maxsize; 730 u32 mps = hs_ep->ep.maxpacket; 731 int dir_in = hs_ep->dir_in; 732 733 if (is_isoc) 734 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 735 DEV_DMA_ISOC_RX_NBYTES_LIMIT) * 736 MAX_DMA_DESC_NUM_HS_ISOC; 737 else 738 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; 739 740 /* Interrupt OUT EP with mps not multiple of 4 */ 741 if (hs_ep->index) 742 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 743 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC; 744 745 return maxsize; 746 } 747 748 /* 749 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 750 * @hs_ep: The endpoint 751 * @mask: RX/TX bytes mask to be defined 752 * 753 * Returns maximum data payload for one descriptor after analyzing endpoint 754 * characteristics. 755 * DMA descriptor transfer bytes limit depends on EP type: 756 * Control out - MPS, 757 * Isochronous - descriptor rx/tx bytes bitfield limit, 758 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 759 * have concatenations from various descriptors within one packet. 760 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds 761 * to a single descriptor. 762 * 763 * Selects corresponding mask for RX/TX bytes as well. 764 */ 765 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 766 { 767 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 768 u32 mps = hs_ep->ep.maxpacket; 769 int dir_in = hs_ep->dir_in; 770 u32 desc_size = 0; 771 772 if (!hs_ep->index && !dir_in) { 773 desc_size = mps; 774 *mask = DEV_DMA_NBYTES_MASK; 775 } else if (hs_ep->isochronous) { 776 if (dir_in) { 777 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 778 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 779 } else { 780 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 781 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 782 } 783 } else { 784 desc_size = DEV_DMA_NBYTES_LIMIT; 785 *mask = DEV_DMA_NBYTES_MASK; 786 787 /* Round down desc_size to be mps multiple */ 788 desc_size -= desc_size % mps; 789 } 790 791 /* Interrupt OUT EP with mps not multiple of 4 */ 792 if (hs_ep->index) 793 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) { 794 desc_size = mps; 795 *mask = DEV_DMA_NBYTES_MASK; 796 } 797 798 return desc_size; 799 } 800 801 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, 802 struct dwc2_dma_desc **desc, 803 dma_addr_t dma_buff, 804 unsigned int len, 805 bool true_last) 806 { 807 int dir_in = hs_ep->dir_in; 808 u32 mps = hs_ep->ep.maxpacket; 809 u32 maxsize = 0; 810 u32 offset = 0; 811 u32 mask = 0; 812 int i; 813 814 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 815 816 hs_ep->desc_count = (len / maxsize) + 817 ((len % maxsize) ? 1 : 0); 818 if (len == 0) 819 hs_ep->desc_count = 1; 820 821 for (i = 0; i < hs_ep->desc_count; ++i) { 822 (*desc)->status = 0; 823 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY 824 << DEV_DMA_BUFF_STS_SHIFT); 825 826 if (len > maxsize) { 827 if (!hs_ep->index && !dir_in) 828 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 829 830 (*desc)->status |= 831 maxsize << DEV_DMA_NBYTES_SHIFT & mask; 832 (*desc)->buf = dma_buff + offset; 833 834 len -= maxsize; 835 offset += maxsize; 836 } else { 837 if (true_last) 838 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 839 840 if (dir_in) 841 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : 842 ((hs_ep->send_zlp && true_last) ? 843 DEV_DMA_SHORT : 0); 844 845 (*desc)->status |= 846 len << DEV_DMA_NBYTES_SHIFT & mask; 847 (*desc)->buf = dma_buff + offset; 848 } 849 850 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; 851 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY 852 << DEV_DMA_BUFF_STS_SHIFT); 853 (*desc)++; 854 } 855 } 856 857 /* 858 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 859 * @hs_ep: The endpoint 860 * @ureq: Request to transfer 861 * @offset: offset in bytes 862 * @len: Length of the transfer 863 * 864 * This function will iterate over descriptor chain and fill its entries 865 * with corresponding information based on transfer data. 866 */ 867 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 868 dma_addr_t dma_buff, 869 unsigned int len) 870 { 871 struct usb_request *ureq = NULL; 872 struct dwc2_dma_desc *desc = hs_ep->desc_list; 873 struct scatterlist *sg; 874 int i; 875 u8 desc_count = 0; 876 877 if (hs_ep->req) 878 ureq = &hs_ep->req->req; 879 880 /* non-DMA sg buffer */ 881 if (!ureq || !ureq->num_sgs) { 882 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 883 dma_buff, len, true); 884 return; 885 } 886 887 /* DMA sg buffer */ 888 for_each_sg(ureq->sg, sg, ureq->num_mapped_sgs, i) { 889 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 890 sg_dma_address(sg) + sg->offset, sg_dma_len(sg), 891 (i == (ureq->num_mapped_sgs - 1))); 892 desc_count += hs_ep->desc_count; 893 } 894 895 hs_ep->desc_count = desc_count; 896 } 897 898 /* 899 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 900 * @hs_ep: The isochronous endpoint. 901 * @dma_buff: usb requests dma buffer. 902 * @len: usb request transfer length. 903 * 904 * Fills next free descriptor with the data of the arrived usb request, 905 * frame info, sets Last and IOC bits increments next_desc. If filled 906 * descriptor is not the first one, removes L bit from the previous descriptor 907 * status. 908 */ 909 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 910 dma_addr_t dma_buff, unsigned int len) 911 { 912 struct dwc2_dma_desc *desc; 913 struct dwc2_hsotg *hsotg = hs_ep->parent; 914 u32 index; 915 u32 mask = 0; 916 u8 pid = 0; 917 918 dwc2_gadget_get_desc_params(hs_ep, &mask); 919 920 index = hs_ep->next_desc; 921 desc = &hs_ep->desc_list[index]; 922 923 /* Check if descriptor chain full */ 924 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 925 DEV_DMA_BUFF_STS_HREADY) { 926 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 927 return 1; 928 } 929 930 /* Clear L bit of previous desc if more than one entries in the chain */ 931 if (hs_ep->next_desc) 932 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 933 934 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 935 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 936 937 desc->status = 0; 938 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 939 940 desc->buf = dma_buff; 941 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 942 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 943 944 if (hs_ep->dir_in) { 945 if (len) 946 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 947 else 948 pid = 1; 949 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 950 DEV_DMA_ISOC_PID_MASK) | 951 ((len % hs_ep->ep.maxpacket) ? 952 DEV_DMA_SHORT : 0) | 953 ((hs_ep->target_frame << 954 DEV_DMA_ISOC_FRNUM_SHIFT) & 955 DEV_DMA_ISOC_FRNUM_MASK); 956 } 957 958 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 959 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 960 961 /* Increment frame number by interval for IN */ 962 if (hs_ep->dir_in) 963 dwc2_gadget_incr_frame_num(hs_ep); 964 965 /* Update index of last configured entry in the chain */ 966 hs_ep->next_desc++; 967 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) 968 hs_ep->next_desc = 0; 969 970 return 0; 971 } 972 973 /* 974 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 975 * @hs_ep: The isochronous endpoint. 976 * 977 * Prepare descriptor chain for isochronous endpoints. Afterwards 978 * write DMA address to HW and enable the endpoint. 979 */ 980 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 981 { 982 struct dwc2_hsotg *hsotg = hs_ep->parent; 983 struct dwc2_hsotg_req *hs_req, *treq; 984 int index = hs_ep->index; 985 int ret; 986 int i; 987 u32 dma_reg; 988 u32 depctl; 989 u32 ctrl; 990 struct dwc2_dma_desc *desc; 991 992 if (list_empty(&hs_ep->queue)) { 993 hs_ep->target_frame = TARGET_FRAME_INITIAL; 994 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 995 return; 996 } 997 998 /* Initialize descriptor chain by Host Busy status */ 999 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { 1000 desc = &hs_ep->desc_list[i]; 1001 desc->status = 0; 1002 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 1003 << DEV_DMA_BUFF_STS_SHIFT); 1004 } 1005 1006 hs_ep->next_desc = 0; 1007 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 1008 dma_addr_t dma_addr = hs_req->req.dma; 1009 1010 if (hs_req->req.num_sgs) { 1011 WARN_ON(hs_req->req.num_sgs > 1); 1012 dma_addr = sg_dma_address(hs_req->req.sg); 1013 } 1014 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1015 hs_req->req.length); 1016 if (ret) 1017 break; 1018 } 1019 1020 hs_ep->compl_desc = 0; 1021 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1022 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 1023 1024 /* write descriptor chain address to control register */ 1025 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1026 1027 ctrl = dwc2_readl(hsotg, depctl); 1028 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 1029 dwc2_writel(hsotg, ctrl, depctl); 1030 } 1031 1032 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep); 1033 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 1034 struct dwc2_hsotg_ep *hs_ep, 1035 struct dwc2_hsotg_req *hs_req, 1036 int result); 1037 1038 /** 1039 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 1040 * @hsotg: The controller state. 1041 * @hs_ep: The endpoint to process a request for 1042 * @hs_req: The request to start. 1043 * @continuing: True if we are doing more for the current request. 1044 * 1045 * Start the given request running by setting the endpoint registers 1046 * appropriately, and writing any data to the FIFOs. 1047 */ 1048 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 1049 struct dwc2_hsotg_ep *hs_ep, 1050 struct dwc2_hsotg_req *hs_req, 1051 bool continuing) 1052 { 1053 struct usb_request *ureq = &hs_req->req; 1054 int index = hs_ep->index; 1055 int dir_in = hs_ep->dir_in; 1056 u32 epctrl_reg; 1057 u32 epsize_reg; 1058 u32 epsize; 1059 u32 ctrl; 1060 unsigned int length; 1061 unsigned int packets; 1062 unsigned int maxreq; 1063 unsigned int dma_reg; 1064 1065 if (index != 0) { 1066 if (hs_ep->req && !continuing) { 1067 dev_err(hsotg->dev, "%s: active request\n", __func__); 1068 WARN_ON(1); 1069 return; 1070 } else if (hs_ep->req != hs_req && continuing) { 1071 dev_err(hsotg->dev, 1072 "%s: continue different req\n", __func__); 1073 WARN_ON(1); 1074 return; 1075 } 1076 } 1077 1078 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1079 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1080 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1081 1082 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1083 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1084 hs_ep->dir_in ? "in" : "out"); 1085 1086 /* If endpoint is stalled, we will restart request later */ 1087 ctrl = dwc2_readl(hsotg, epctrl_reg); 1088 1089 if (index && ctrl & DXEPCTL_STALL) { 1090 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1091 return; 1092 } 1093 1094 length = ureq->length - ureq->actual; 1095 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1096 ureq->length, ureq->actual); 1097 1098 if (!using_desc_dma(hsotg)) 1099 maxreq = get_ep_limit(hs_ep); 1100 else 1101 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1102 1103 if (length > maxreq) { 1104 int round = maxreq % hs_ep->ep.maxpacket; 1105 1106 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1107 __func__, length, maxreq, round); 1108 1109 /* round down to multiple of packets */ 1110 if (round) 1111 maxreq -= round; 1112 1113 length = maxreq; 1114 } 1115 1116 if (length) 1117 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1118 else 1119 packets = 1; /* send one packet if length is zero. */ 1120 1121 if (dir_in && index != 0) 1122 if (hs_ep->isochronous) 1123 epsize = DXEPTSIZ_MC(packets); 1124 else 1125 epsize = DXEPTSIZ_MC(1); 1126 else 1127 epsize = 0; 1128 1129 /* 1130 * zero length packet should be programmed on its own and should not 1131 * be counted in DIEPTSIZ.PktCnt with other packets. 1132 */ 1133 if (dir_in && ureq->zero && !continuing) { 1134 /* Test if zlp is actually required. */ 1135 if ((ureq->length >= hs_ep->ep.maxpacket) && 1136 !(ureq->length % hs_ep->ep.maxpacket)) 1137 hs_ep->send_zlp = 1; 1138 } 1139 1140 epsize |= DXEPTSIZ_PKTCNT(packets); 1141 epsize |= DXEPTSIZ_XFERSIZE(length); 1142 1143 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1144 __func__, packets, length, ureq->length, epsize, epsize_reg); 1145 1146 /* store the request as the current one we're doing */ 1147 hs_ep->req = hs_req; 1148 1149 if (using_desc_dma(hsotg)) { 1150 u32 offset = 0; 1151 u32 mps = hs_ep->ep.maxpacket; 1152 1153 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1154 if (!dir_in) { 1155 if (!index) 1156 length = mps; 1157 else if (length % mps) 1158 length += (mps - (length % mps)); 1159 } 1160 1161 if (continuing) 1162 offset = ureq->actual; 1163 1164 /* Fill DDMA chain entries */ 1165 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1166 length); 1167 1168 /* write descriptor chain address to control register */ 1169 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1170 1171 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1172 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1173 } else { 1174 /* write size / packets */ 1175 dwc2_writel(hsotg, epsize, epsize_reg); 1176 1177 if (using_dma(hsotg) && !continuing && (length != 0)) { 1178 /* 1179 * write DMA address to control register, buffer 1180 * already synced by dwc2_hsotg_ep_queue(). 1181 */ 1182 1183 dwc2_writel(hsotg, ureq->dma, dma_reg); 1184 1185 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1186 __func__, &ureq->dma, dma_reg); 1187 } 1188 } 1189 1190 if (hs_ep->isochronous) { 1191 if (!dwc2_gadget_target_frame_elapsed(hs_ep)) { 1192 if (hs_ep->interval == 1) { 1193 if (hs_ep->target_frame & 0x1) 1194 ctrl |= DXEPCTL_SETODDFR; 1195 else 1196 ctrl |= DXEPCTL_SETEVENFR; 1197 } 1198 ctrl |= DXEPCTL_CNAK; 1199 } else { 1200 hs_req->req.frame_number = hs_ep->target_frame; 1201 hs_req->req.actual = 0; 1202 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA); 1203 return; 1204 } 1205 } 1206 1207 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1208 1209 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1210 1211 /* For Setup request do not clear NAK */ 1212 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1213 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1214 1215 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1216 dwc2_writel(hsotg, ctrl, epctrl_reg); 1217 1218 /* 1219 * set these, it seems that DMA support increments past the end 1220 * of the packet buffer so we need to calculate the length from 1221 * this information. 1222 */ 1223 hs_ep->size_loaded = length; 1224 hs_ep->last_load = ureq->actual; 1225 1226 if (dir_in && !using_dma(hsotg)) { 1227 /* set these anyway, we may need them for non-periodic in */ 1228 hs_ep->fifo_load = 0; 1229 1230 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1231 } 1232 1233 /* 1234 * Note, trying to clear the NAK here causes problems with transmit 1235 * on the S3C6400 ending up with the TXFIFO becoming full. 1236 */ 1237 1238 /* check ep is enabled */ 1239 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1240 dev_dbg(hsotg->dev, 1241 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1242 index, dwc2_readl(hsotg, epctrl_reg)); 1243 1244 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1245 __func__, dwc2_readl(hsotg, epctrl_reg)); 1246 1247 /* enable ep interrupts */ 1248 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1249 } 1250 1251 /** 1252 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1253 * @hsotg: The device state. 1254 * @hs_ep: The endpoint the request is on. 1255 * @req: The request being processed. 1256 * 1257 * We've been asked to queue a request, so ensure that the memory buffer 1258 * is correctly setup for DMA. If we've been passed an extant DMA address 1259 * then ensure the buffer has been synced to memory. If our buffer has no 1260 * DMA memory, then we map the memory and mark our request to allow us to 1261 * cleanup on completion. 1262 */ 1263 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1264 struct dwc2_hsotg_ep *hs_ep, 1265 struct usb_request *req) 1266 { 1267 int ret; 1268 1269 hs_ep->map_dir = hs_ep->dir_in; 1270 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1271 if (ret) 1272 goto dma_error; 1273 1274 return 0; 1275 1276 dma_error: 1277 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1278 __func__, req->buf, req->length); 1279 1280 return -EIO; 1281 } 1282 1283 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1284 struct dwc2_hsotg_ep *hs_ep, 1285 struct dwc2_hsotg_req *hs_req) 1286 { 1287 void *req_buf = hs_req->req.buf; 1288 1289 /* If dma is not being used or buffer is aligned */ 1290 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1291 return 0; 1292 1293 WARN_ON(hs_req->saved_req_buf); 1294 1295 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1296 hs_ep->ep.name, req_buf, hs_req->req.length); 1297 1298 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1299 if (!hs_req->req.buf) { 1300 hs_req->req.buf = req_buf; 1301 dev_err(hsotg->dev, 1302 "%s: unable to allocate memory for bounce buffer\n", 1303 __func__); 1304 return -ENOMEM; 1305 } 1306 1307 /* Save actual buffer */ 1308 hs_req->saved_req_buf = req_buf; 1309 1310 if (hs_ep->dir_in) 1311 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1312 return 0; 1313 } 1314 1315 static void 1316 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1317 struct dwc2_hsotg_ep *hs_ep, 1318 struct dwc2_hsotg_req *hs_req) 1319 { 1320 /* If dma is not being used or buffer was aligned */ 1321 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1322 return; 1323 1324 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1325 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1326 1327 /* Copy data from bounce buffer on successful out transfer */ 1328 if (!hs_ep->dir_in && !hs_req->req.status) 1329 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1330 hs_req->req.actual); 1331 1332 /* Free bounce buffer */ 1333 kfree(hs_req->req.buf); 1334 1335 hs_req->req.buf = hs_req->saved_req_buf; 1336 hs_req->saved_req_buf = NULL; 1337 } 1338 1339 /** 1340 * dwc2_gadget_target_frame_elapsed - Checks target frame 1341 * @hs_ep: The driver endpoint to check 1342 * 1343 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1344 * corresponding transfer. 1345 */ 1346 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1347 { 1348 struct dwc2_hsotg *hsotg = hs_ep->parent; 1349 u32 target_frame = hs_ep->target_frame; 1350 u32 current_frame = hsotg->frame_number; 1351 bool frame_overrun = hs_ep->frame_overrun; 1352 u16 limit = DSTS_SOFFN_LIMIT; 1353 1354 if (hsotg->gadget.speed != USB_SPEED_HIGH) 1355 limit >>= 3; 1356 1357 if (!frame_overrun && current_frame >= target_frame) 1358 return true; 1359 1360 if (frame_overrun && current_frame >= target_frame && 1361 ((current_frame - target_frame) < limit / 2)) 1362 return true; 1363 1364 return false; 1365 } 1366 1367 /* 1368 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1369 * @hsotg: The driver state 1370 * @hs_ep: the ep descriptor chain is for 1371 * 1372 * Called to update EP0 structure's pointers depend on stage of 1373 * control transfer. 1374 */ 1375 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1376 struct dwc2_hsotg_ep *hs_ep) 1377 { 1378 switch (hsotg->ep0_state) { 1379 case DWC2_EP0_SETUP: 1380 case DWC2_EP0_STATUS_OUT: 1381 hs_ep->desc_list = hsotg->setup_desc[0]; 1382 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1383 break; 1384 case DWC2_EP0_DATA_IN: 1385 case DWC2_EP0_STATUS_IN: 1386 hs_ep->desc_list = hsotg->ctrl_in_desc; 1387 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1388 break; 1389 case DWC2_EP0_DATA_OUT: 1390 hs_ep->desc_list = hsotg->ctrl_out_desc; 1391 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1392 break; 1393 default: 1394 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1395 hsotg->ep0_state); 1396 return -EINVAL; 1397 } 1398 1399 return 0; 1400 } 1401 1402 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1403 gfp_t gfp_flags) 1404 { 1405 struct dwc2_hsotg_req *hs_req = our_req(req); 1406 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1407 struct dwc2_hsotg *hs = hs_ep->parent; 1408 bool first; 1409 int ret; 1410 u32 maxsize = 0; 1411 u32 mask = 0; 1412 1413 1414 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1415 ep->name, req, req->length, req->buf, req->no_interrupt, 1416 req->zero, req->short_not_ok); 1417 1418 if (hs->lx_state == DWC2_L1) { 1419 dwc2_wakeup_from_lpm_l1(hs, true); 1420 } 1421 1422 /* Prevent new request submission when controller is suspended */ 1423 if (hs->lx_state != DWC2_L0) { 1424 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1425 __func__); 1426 return -EAGAIN; 1427 } 1428 1429 /* initialise status of the request */ 1430 INIT_LIST_HEAD(&hs_req->queue); 1431 req->actual = 0; 1432 req->status = -EINPROGRESS; 1433 1434 /* Don't queue ISOC request if length greater than mps*mc */ 1435 if (hs_ep->isochronous && 1436 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1437 dev_err(hs->dev, "req length > maxpacket*mc\n"); 1438 return -EINVAL; 1439 } 1440 1441 /* In DDMA mode for ISOC's don't queue request if length greater 1442 * than descriptor limits. 1443 */ 1444 if (using_desc_dma(hs) && hs_ep->isochronous) { 1445 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1446 if (hs_ep->dir_in && req->length > maxsize) { 1447 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1448 req->length, maxsize); 1449 return -EINVAL; 1450 } 1451 1452 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1453 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1454 req->length, hs_ep->ep.maxpacket); 1455 return -EINVAL; 1456 } 1457 } 1458 1459 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1460 if (ret) 1461 return ret; 1462 1463 /* if we're using DMA, sync the buffers as necessary */ 1464 if (using_dma(hs)) { 1465 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1466 if (ret) 1467 return ret; 1468 } 1469 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1470 if (using_desc_dma(hs) && !hs_ep->index) { 1471 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1472 if (ret) 1473 return ret; 1474 } 1475 1476 first = list_empty(&hs_ep->queue); 1477 list_add_tail(&hs_req->queue, &hs_ep->queue); 1478 1479 /* 1480 * Handle DDMA isochronous transfers separately - just add new entry 1481 * to the descriptor chain. 1482 * Transfer will be started once SW gets either one of NAK or 1483 * OutTknEpDis interrupts. 1484 */ 1485 if (using_desc_dma(hs) && hs_ep->isochronous) { 1486 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1487 dma_addr_t dma_addr = hs_req->req.dma; 1488 1489 if (hs_req->req.num_sgs) { 1490 WARN_ON(hs_req->req.num_sgs > 1); 1491 dma_addr = sg_dma_address(hs_req->req.sg); 1492 } 1493 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1494 hs_req->req.length); 1495 } 1496 return 0; 1497 } 1498 1499 /* Change EP direction if status phase request is after data out */ 1500 if (!hs_ep->index && !req->length && !hs_ep->dir_in && 1501 hs->ep0_state == DWC2_EP0_DATA_OUT) 1502 hs_ep->dir_in = 1; 1503 1504 if (first) { 1505 if (!hs_ep->isochronous) { 1506 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1507 return 0; 1508 } 1509 1510 /* Update current frame number value. */ 1511 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1512 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1513 dwc2_gadget_incr_frame_num(hs_ep); 1514 /* Update current frame number value once more as it 1515 * changes here. 1516 */ 1517 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1518 } 1519 1520 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1521 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1522 } 1523 return 0; 1524 } 1525 1526 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1527 gfp_t gfp_flags) 1528 { 1529 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1530 struct dwc2_hsotg *hs = hs_ep->parent; 1531 unsigned long flags; 1532 int ret; 1533 1534 spin_lock_irqsave(&hs->lock, flags); 1535 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1536 spin_unlock_irqrestore(&hs->lock, flags); 1537 1538 return ret; 1539 } 1540 1541 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1542 struct usb_request *req) 1543 { 1544 struct dwc2_hsotg_req *hs_req = our_req(req); 1545 1546 kfree(hs_req); 1547 } 1548 1549 /** 1550 * dwc2_hsotg_complete_oursetup - setup completion callback 1551 * @ep: The endpoint the request was on. 1552 * @req: The request completed. 1553 * 1554 * Called on completion of any requests the driver itself 1555 * submitted that need cleaning up. 1556 */ 1557 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1558 struct usb_request *req) 1559 { 1560 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1561 struct dwc2_hsotg *hsotg = hs_ep->parent; 1562 1563 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1564 1565 dwc2_hsotg_ep_free_request(ep, req); 1566 } 1567 1568 /** 1569 * ep_from_windex - convert control wIndex value to endpoint 1570 * @hsotg: The driver state. 1571 * @windex: The control request wIndex field (in host order). 1572 * 1573 * Convert the given wIndex into a pointer to an driver endpoint 1574 * structure, or return NULL if it is not a valid endpoint. 1575 */ 1576 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1577 u32 windex) 1578 { 1579 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1580 int idx = windex & 0x7F; 1581 1582 if (windex >= 0x100) 1583 return NULL; 1584 1585 if (idx > hsotg->num_of_eps) 1586 return NULL; 1587 1588 return index_to_ep(hsotg, idx, dir); 1589 } 1590 1591 /** 1592 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1593 * @hsotg: The driver state. 1594 * @testmode: requested usb test mode 1595 * Enable usb Test Mode requested by the Host. 1596 */ 1597 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1598 { 1599 int dctl = dwc2_readl(hsotg, DCTL); 1600 1601 dctl &= ~DCTL_TSTCTL_MASK; 1602 switch (testmode) { 1603 case USB_TEST_J: 1604 case USB_TEST_K: 1605 case USB_TEST_SE0_NAK: 1606 case USB_TEST_PACKET: 1607 case USB_TEST_FORCE_ENABLE: 1608 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1609 break; 1610 default: 1611 return -EINVAL; 1612 } 1613 dwc2_writel(hsotg, dctl, DCTL); 1614 return 0; 1615 } 1616 1617 /** 1618 * dwc2_hsotg_send_reply - send reply to control request 1619 * @hsotg: The device state 1620 * @ep: Endpoint 0 1621 * @buff: Buffer for request 1622 * @length: Length of reply. 1623 * 1624 * Create a request and queue it on the given endpoint. This is useful as 1625 * an internal method of sending replies to certain control requests, etc. 1626 */ 1627 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1628 struct dwc2_hsotg_ep *ep, 1629 void *buff, 1630 int length) 1631 { 1632 struct usb_request *req; 1633 int ret; 1634 1635 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1636 1637 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1638 hsotg->ep0_reply = req; 1639 if (!req) { 1640 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1641 return -ENOMEM; 1642 } 1643 1644 req->buf = hsotg->ep0_buff; 1645 req->length = length; 1646 /* 1647 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1648 * STATUS stage. 1649 */ 1650 req->zero = 0; 1651 req->complete = dwc2_hsotg_complete_oursetup; 1652 1653 if (length) 1654 memcpy(req->buf, buff, length); 1655 1656 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1657 if (ret) { 1658 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1659 return ret; 1660 } 1661 1662 return 0; 1663 } 1664 1665 /** 1666 * dwc2_hsotg_process_req_status - process request GET_STATUS 1667 * @hsotg: The device state 1668 * @ctrl: USB control request 1669 */ 1670 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1671 struct usb_ctrlrequest *ctrl) 1672 { 1673 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1674 struct dwc2_hsotg_ep *ep; 1675 __le16 reply; 1676 u16 status; 1677 int ret; 1678 1679 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1680 1681 if (!ep0->dir_in) { 1682 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1683 return -EINVAL; 1684 } 1685 1686 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1687 case USB_RECIP_DEVICE: 1688 status = hsotg->gadget.is_selfpowered << 1689 USB_DEVICE_SELF_POWERED; 1690 status |= hsotg->remote_wakeup_allowed << 1691 USB_DEVICE_REMOTE_WAKEUP; 1692 reply = cpu_to_le16(status); 1693 break; 1694 1695 case USB_RECIP_INTERFACE: 1696 /* currently, the data result should be zero */ 1697 reply = cpu_to_le16(0); 1698 break; 1699 1700 case USB_RECIP_ENDPOINT: 1701 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1702 if (!ep) 1703 return -ENOENT; 1704 1705 reply = cpu_to_le16(ep->halted ? 1 : 0); 1706 break; 1707 1708 default: 1709 return 0; 1710 } 1711 1712 if (le16_to_cpu(ctrl->wLength) != 2) 1713 return -EINVAL; 1714 1715 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1716 if (ret) { 1717 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1718 return ret; 1719 } 1720 1721 return 1; 1722 } 1723 1724 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1725 1726 /** 1727 * get_ep_head - return the first request on the endpoint 1728 * @hs_ep: The controller endpoint to get 1729 * 1730 * Get the first request on the endpoint. 1731 */ 1732 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1733 { 1734 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1735 queue); 1736 } 1737 1738 /** 1739 * dwc2_gadget_start_next_request - Starts next request from ep queue 1740 * @hs_ep: Endpoint structure 1741 * 1742 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1743 * in its handler. Hence we need to unmask it here to be able to do 1744 * resynchronization. 1745 */ 1746 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1747 { 1748 struct dwc2_hsotg *hsotg = hs_ep->parent; 1749 int dir_in = hs_ep->dir_in; 1750 struct dwc2_hsotg_req *hs_req; 1751 1752 if (!list_empty(&hs_ep->queue)) { 1753 hs_req = get_ep_head(hs_ep); 1754 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1755 return; 1756 } 1757 if (!hs_ep->isochronous) 1758 return; 1759 1760 if (dir_in) { 1761 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1762 __func__); 1763 } else { 1764 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1765 __func__); 1766 } 1767 } 1768 1769 /** 1770 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1771 * @hsotg: The device state 1772 * @ctrl: USB control request 1773 */ 1774 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1775 struct usb_ctrlrequest *ctrl) 1776 { 1777 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1778 struct dwc2_hsotg_req *hs_req; 1779 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1780 struct dwc2_hsotg_ep *ep; 1781 int ret; 1782 bool halted; 1783 u32 recip; 1784 u32 wValue; 1785 u32 wIndex; 1786 1787 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1788 __func__, set ? "SET" : "CLEAR"); 1789 1790 wValue = le16_to_cpu(ctrl->wValue); 1791 wIndex = le16_to_cpu(ctrl->wIndex); 1792 recip = ctrl->bRequestType & USB_RECIP_MASK; 1793 1794 switch (recip) { 1795 case USB_RECIP_DEVICE: 1796 switch (wValue) { 1797 case USB_DEVICE_REMOTE_WAKEUP: 1798 if (set) 1799 hsotg->remote_wakeup_allowed = 1; 1800 else 1801 hsotg->remote_wakeup_allowed = 0; 1802 break; 1803 1804 case USB_DEVICE_TEST_MODE: 1805 if ((wIndex & 0xff) != 0) 1806 return -EINVAL; 1807 if (!set) 1808 return -EINVAL; 1809 1810 hsotg->test_mode = wIndex >> 8; 1811 break; 1812 default: 1813 return -ENOENT; 1814 } 1815 1816 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1817 if (ret) { 1818 dev_err(hsotg->dev, 1819 "%s: failed to send reply\n", __func__); 1820 return ret; 1821 } 1822 break; 1823 1824 case USB_RECIP_ENDPOINT: 1825 ep = ep_from_windex(hsotg, wIndex); 1826 if (!ep) { 1827 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1828 __func__, wIndex); 1829 return -ENOENT; 1830 } 1831 1832 switch (wValue) { 1833 case USB_ENDPOINT_HALT: 1834 halted = ep->halted; 1835 1836 if (!ep->wedged) 1837 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1838 1839 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1840 if (ret) { 1841 dev_err(hsotg->dev, 1842 "%s: failed to send reply\n", __func__); 1843 return ret; 1844 } 1845 1846 /* 1847 * we have to complete all requests for ep if it was 1848 * halted, and the halt was cleared by CLEAR_FEATURE 1849 */ 1850 1851 if (!set && halted) { 1852 /* 1853 * If we have request in progress, 1854 * then complete it 1855 */ 1856 if (ep->req) { 1857 hs_req = ep->req; 1858 ep->req = NULL; 1859 list_del_init(&hs_req->queue); 1860 if (hs_req->req.complete) { 1861 spin_unlock(&hsotg->lock); 1862 usb_gadget_giveback_request( 1863 &ep->ep, &hs_req->req); 1864 spin_lock(&hsotg->lock); 1865 } 1866 } 1867 1868 /* If we have pending request, then start it */ 1869 if (!ep->req) 1870 dwc2_gadget_start_next_request(ep); 1871 } 1872 1873 break; 1874 1875 default: 1876 return -ENOENT; 1877 } 1878 break; 1879 default: 1880 return -ENOENT; 1881 } 1882 return 1; 1883 } 1884 1885 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1886 1887 /** 1888 * dwc2_hsotg_stall_ep0 - stall ep0 1889 * @hsotg: The device state 1890 * 1891 * Set stall for ep0 as response for setup request. 1892 */ 1893 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1894 { 1895 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1896 u32 reg; 1897 u32 ctrl; 1898 1899 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1900 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1901 1902 /* 1903 * DxEPCTL_Stall will be cleared by EP once it has 1904 * taken effect, so no need to clear later. 1905 */ 1906 1907 ctrl = dwc2_readl(hsotg, reg); 1908 ctrl |= DXEPCTL_STALL; 1909 ctrl |= DXEPCTL_CNAK; 1910 dwc2_writel(hsotg, ctrl, reg); 1911 1912 dev_dbg(hsotg->dev, 1913 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1914 ctrl, reg, dwc2_readl(hsotg, reg)); 1915 1916 /* 1917 * complete won't be called, so we enqueue 1918 * setup request here 1919 */ 1920 dwc2_hsotg_enqueue_setup(hsotg); 1921 } 1922 1923 /** 1924 * dwc2_hsotg_process_control - process a control request 1925 * @hsotg: The device state 1926 * @ctrl: The control request received 1927 * 1928 * The controller has received the SETUP phase of a control request, and 1929 * needs to work out what to do next (and whether to pass it on to the 1930 * gadget driver). 1931 */ 1932 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1933 struct usb_ctrlrequest *ctrl) 1934 { 1935 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1936 int ret = 0; 1937 u32 dcfg; 1938 1939 dev_dbg(hsotg->dev, 1940 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1941 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1942 ctrl->wIndex, ctrl->wLength); 1943 1944 if (ctrl->wLength == 0) { 1945 ep0->dir_in = 1; 1946 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1947 } else if (ctrl->bRequestType & USB_DIR_IN) { 1948 ep0->dir_in = 1; 1949 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1950 } else { 1951 ep0->dir_in = 0; 1952 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1953 } 1954 1955 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1956 switch (ctrl->bRequest) { 1957 case USB_REQ_SET_ADDRESS: 1958 hsotg->connected = 1; 1959 dcfg = dwc2_readl(hsotg, DCFG); 1960 dcfg &= ~DCFG_DEVADDR_MASK; 1961 dcfg |= (le16_to_cpu(ctrl->wValue) << 1962 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1963 dwc2_writel(hsotg, dcfg, DCFG); 1964 1965 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1966 1967 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1968 return; 1969 1970 case USB_REQ_GET_STATUS: 1971 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1972 break; 1973 1974 case USB_REQ_CLEAR_FEATURE: 1975 case USB_REQ_SET_FEATURE: 1976 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1977 break; 1978 } 1979 } 1980 1981 /* as a fallback, try delivering it to the driver to deal with */ 1982 1983 if (ret == 0 && hsotg->driver) { 1984 spin_unlock(&hsotg->lock); 1985 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1986 spin_lock(&hsotg->lock); 1987 if (ret < 0) 1988 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1989 } 1990 1991 hsotg->delayed_status = false; 1992 if (ret == USB_GADGET_DELAYED_STATUS) 1993 hsotg->delayed_status = true; 1994 1995 /* 1996 * the request is either unhandlable, or is not formatted correctly 1997 * so respond with a STALL for the status stage to indicate failure. 1998 */ 1999 2000 if (ret < 0) 2001 dwc2_hsotg_stall_ep0(hsotg); 2002 } 2003 2004 /** 2005 * dwc2_hsotg_complete_setup - completion of a setup transfer 2006 * @ep: The endpoint the request was on. 2007 * @req: The request completed. 2008 * 2009 * Called on completion of any requests the driver itself submitted for 2010 * EP0 setup packets 2011 */ 2012 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 2013 struct usb_request *req) 2014 { 2015 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 2016 struct dwc2_hsotg *hsotg = hs_ep->parent; 2017 2018 if (req->status < 0) { 2019 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 2020 return; 2021 } 2022 2023 spin_lock(&hsotg->lock); 2024 if (req->actual == 0) 2025 dwc2_hsotg_enqueue_setup(hsotg); 2026 else 2027 dwc2_hsotg_process_control(hsotg, req->buf); 2028 spin_unlock(&hsotg->lock); 2029 } 2030 2031 /** 2032 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 2033 * @hsotg: The device state. 2034 * 2035 * Enqueue a request on EP0 if necessary to received any SETUP packets 2036 * received from the host. 2037 */ 2038 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 2039 { 2040 struct usb_request *req = hsotg->ctrl_req; 2041 struct dwc2_hsotg_req *hs_req = our_req(req); 2042 int ret; 2043 2044 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 2045 2046 req->zero = 0; 2047 req->length = 8; 2048 req->buf = hsotg->ctrl_buff; 2049 req->complete = dwc2_hsotg_complete_setup; 2050 2051 if (!list_empty(&hs_req->queue)) { 2052 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 2053 return; 2054 } 2055 2056 hsotg->eps_out[0]->dir_in = 0; 2057 hsotg->eps_out[0]->send_zlp = 0; 2058 hsotg->ep0_state = DWC2_EP0_SETUP; 2059 2060 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 2061 if (ret < 0) { 2062 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 2063 /* 2064 * Don't think there's much we can do other than watch the 2065 * driver fail. 2066 */ 2067 } 2068 } 2069 2070 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 2071 struct dwc2_hsotg_ep *hs_ep) 2072 { 2073 u32 ctrl; 2074 u8 index = hs_ep->index; 2075 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2076 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 2077 2078 if (hs_ep->dir_in) 2079 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 2080 index); 2081 else 2082 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 2083 index); 2084 if (using_desc_dma(hsotg)) { 2085 /* Not specific buffer needed for ep0 ZLP */ 2086 dma_addr_t dma = hs_ep->desc_list_dma; 2087 2088 if (!index) 2089 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 2090 2091 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 2092 } else { 2093 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2094 DXEPTSIZ_XFERSIZE(0), 2095 epsiz_reg); 2096 } 2097 2098 ctrl = dwc2_readl(hsotg, epctl_reg); 2099 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2100 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2101 ctrl |= DXEPCTL_USBACTEP; 2102 dwc2_writel(hsotg, ctrl, epctl_reg); 2103 } 2104 2105 /** 2106 * dwc2_hsotg_complete_request - complete a request given to us 2107 * @hsotg: The device state. 2108 * @hs_ep: The endpoint the request was on. 2109 * @hs_req: The request to complete. 2110 * @result: The result code (0 => Ok, otherwise errno) 2111 * 2112 * The given request has finished, so call the necessary completion 2113 * if it has one and then look to see if we can start a new request 2114 * on the endpoint. 2115 * 2116 * Note, expects the ep to already be locked as appropriate. 2117 */ 2118 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2119 struct dwc2_hsotg_ep *hs_ep, 2120 struct dwc2_hsotg_req *hs_req, 2121 int result) 2122 { 2123 if (!hs_req) { 2124 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2125 return; 2126 } 2127 2128 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2129 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2130 2131 /* 2132 * only replace the status if we've not already set an error 2133 * from a previous transaction 2134 */ 2135 2136 if (hs_req->req.status == -EINPROGRESS) 2137 hs_req->req.status = result; 2138 2139 if (using_dma(hsotg)) 2140 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2141 2142 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2143 2144 hs_ep->req = NULL; 2145 list_del_init(&hs_req->queue); 2146 2147 /* 2148 * call the complete request with the locks off, just in case the 2149 * request tries to queue more work for this endpoint. 2150 */ 2151 2152 if (hs_req->req.complete) { 2153 spin_unlock(&hsotg->lock); 2154 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2155 spin_lock(&hsotg->lock); 2156 } 2157 2158 /* In DDMA don't need to proceed to starting of next ISOC request */ 2159 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2160 return; 2161 2162 /* 2163 * Look to see if there is anything else to do. Note, the completion 2164 * of the previous request may have caused a new request to be started 2165 * so be careful when doing this. 2166 */ 2167 2168 if (!hs_ep->req && result >= 0) 2169 dwc2_gadget_start_next_request(hs_ep); 2170 } 2171 2172 /* 2173 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2174 * @hs_ep: The endpoint the request was on. 2175 * 2176 * Get first request from the ep queue, determine descriptor on which complete 2177 * happened. SW discovers which descriptor currently in use by HW, adjusts 2178 * dma_address and calculates index of completed descriptor based on the value 2179 * of DEPDMA register. Update actual length of request, giveback to gadget. 2180 */ 2181 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2182 { 2183 struct dwc2_hsotg *hsotg = hs_ep->parent; 2184 struct dwc2_hsotg_req *hs_req; 2185 struct usb_request *ureq; 2186 u32 desc_sts; 2187 u32 mask; 2188 2189 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2190 2191 /* Process only descriptors with buffer status set to DMA done */ 2192 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2193 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2194 2195 hs_req = get_ep_head(hs_ep); 2196 if (!hs_req) { 2197 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2198 return; 2199 } 2200 ureq = &hs_req->req; 2201 2202 /* Check completion status */ 2203 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2204 DEV_DMA_STS_SUCC) { 2205 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2206 DEV_DMA_ISOC_RX_NBYTES_MASK; 2207 ureq->actual = ureq->length - ((desc_sts & mask) >> 2208 DEV_DMA_ISOC_NBYTES_SHIFT); 2209 2210 /* Adjust actual len for ISOC Out if len is 2211 * not align of 4 2212 */ 2213 if (!hs_ep->dir_in && ureq->length & 0x3) 2214 ureq->actual += 4 - (ureq->length & 0x3); 2215 2216 /* Set actual frame number for completed transfers */ 2217 ureq->frame_number = 2218 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> 2219 DEV_DMA_ISOC_FRNUM_SHIFT; 2220 } 2221 2222 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2223 2224 hs_ep->compl_desc++; 2225 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) 2226 hs_ep->compl_desc = 0; 2227 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2228 } 2229 } 2230 2231 /* 2232 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2233 * @hs_ep: The isochronous endpoint. 2234 * 2235 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2236 * interrupt. Reset target frame and next_desc to allow to start 2237 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2238 * interrupt for OUT direction. 2239 */ 2240 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2241 { 2242 struct dwc2_hsotg *hsotg = hs_ep->parent; 2243 2244 if (!hs_ep->dir_in) 2245 dwc2_flush_rx_fifo(hsotg); 2246 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2247 2248 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2249 hs_ep->next_desc = 0; 2250 hs_ep->compl_desc = 0; 2251 } 2252 2253 /** 2254 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2255 * @hsotg: The device state. 2256 * @ep_idx: The endpoint index for the data 2257 * @size: The size of data in the fifo, in bytes 2258 * 2259 * The FIFO status shows there is data to read from the FIFO for a given 2260 * endpoint, so sort out whether we need to read the data into a request 2261 * that has been made for that endpoint. 2262 */ 2263 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2264 { 2265 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2266 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2267 int to_read; 2268 int max_req; 2269 int read_ptr; 2270 2271 if (!hs_req) { 2272 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2273 int ptr; 2274 2275 dev_dbg(hsotg->dev, 2276 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2277 __func__, size, ep_idx, epctl); 2278 2279 /* dump the data from the FIFO, we've nothing we can do */ 2280 for (ptr = 0; ptr < size; ptr += 4) 2281 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2282 2283 return; 2284 } 2285 2286 to_read = size; 2287 read_ptr = hs_req->req.actual; 2288 max_req = hs_req->req.length - read_ptr; 2289 2290 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2291 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2292 2293 if (to_read > max_req) { 2294 /* 2295 * more data appeared than we where willing 2296 * to deal with in this request. 2297 */ 2298 2299 /* currently we don't deal this */ 2300 WARN_ON_ONCE(1); 2301 } 2302 2303 hs_ep->total_data += to_read; 2304 hs_req->req.actual += to_read; 2305 to_read = DIV_ROUND_UP(to_read, 4); 2306 2307 /* 2308 * note, we might over-write the buffer end by 3 bytes depending on 2309 * alignment of the data. 2310 */ 2311 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2312 hs_req->req.buf + read_ptr, to_read); 2313 } 2314 2315 /** 2316 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2317 * @hsotg: The device instance 2318 * @dir_in: If IN zlp 2319 * 2320 * Generate a zero-length IN packet request for terminating a SETUP 2321 * transaction. 2322 * 2323 * Note, since we don't write any data to the TxFIFO, then it is 2324 * currently believed that we do not need to wait for any space in 2325 * the TxFIFO. 2326 */ 2327 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2328 { 2329 /* eps_out[0] is used in both directions */ 2330 hsotg->eps_out[0]->dir_in = dir_in; 2331 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2332 2333 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2334 } 2335 2336 /* 2337 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2338 * @hs_ep - The endpoint on which transfer went 2339 * 2340 * Iterate over endpoints descriptor chain and get info on bytes remained 2341 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2342 */ 2343 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2344 { 2345 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 2346 struct dwc2_hsotg *hsotg = hs_ep->parent; 2347 unsigned int bytes_rem = 0; 2348 unsigned int bytes_rem_correction = 0; 2349 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2350 int i; 2351 u32 status; 2352 u32 mps = hs_ep->ep.maxpacket; 2353 int dir_in = hs_ep->dir_in; 2354 2355 if (!desc) 2356 return -EINVAL; 2357 2358 /* Interrupt OUT EP with mps not multiple of 4 */ 2359 if (hs_ep->index) 2360 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 2361 bytes_rem_correction = 4 - (mps % 4); 2362 2363 for (i = 0; i < hs_ep->desc_count; ++i) { 2364 status = desc->status; 2365 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2366 bytes_rem -= bytes_rem_correction; 2367 2368 if (status & DEV_DMA_STS_MASK) 2369 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2370 i, status & DEV_DMA_STS_MASK); 2371 2372 if (status & DEV_DMA_L) 2373 break; 2374 2375 desc++; 2376 } 2377 2378 return bytes_rem; 2379 } 2380 2381 /** 2382 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2383 * @hsotg: The device instance 2384 * @epnum: The endpoint received from 2385 * 2386 * The RXFIFO has delivered an OutDone event, which means that the data 2387 * transfer for an OUT endpoint has been completed, either by a short 2388 * packet or by the finish of a transfer. 2389 */ 2390 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2391 { 2392 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2393 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2394 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2395 struct usb_request *req = &hs_req->req; 2396 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2397 int result = 0; 2398 2399 if (!hs_req) { 2400 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2401 return; 2402 } 2403 2404 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2405 dev_dbg(hsotg->dev, "zlp packet received\n"); 2406 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2407 dwc2_hsotg_enqueue_setup(hsotg); 2408 return; 2409 } 2410 2411 if (using_desc_dma(hsotg)) 2412 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2413 2414 if (using_dma(hsotg)) { 2415 unsigned int size_done; 2416 2417 /* 2418 * Calculate the size of the transfer by checking how much 2419 * is left in the endpoint size register and then working it 2420 * out from the amount we loaded for the transfer. 2421 * 2422 * We need to do this as DMA pointers are always 32bit aligned 2423 * so may overshoot/undershoot the transfer. 2424 */ 2425 2426 size_done = hs_ep->size_loaded - size_left; 2427 size_done += hs_ep->last_load; 2428 2429 req->actual = size_done; 2430 } 2431 2432 /* if there is more request to do, schedule new transfer */ 2433 if (req->actual < req->length && size_left == 0) { 2434 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2435 return; 2436 } 2437 2438 if (req->actual < req->length && req->short_not_ok) { 2439 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2440 __func__, req->actual, req->length); 2441 2442 /* 2443 * todo - what should we return here? there's no one else 2444 * even bothering to check the status. 2445 */ 2446 } 2447 2448 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2449 if (!using_desc_dma(hsotg) && epnum == 0 && 2450 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2451 /* Move to STATUS IN */ 2452 if (!hsotg->delayed_status) 2453 dwc2_hsotg_ep0_zlp(hsotg, true); 2454 } 2455 2456 /* Set actual frame number for completed transfers */ 2457 if (!using_desc_dma(hsotg) && hs_ep->isochronous) { 2458 req->frame_number = hs_ep->target_frame; 2459 dwc2_gadget_incr_frame_num(hs_ep); 2460 } 2461 2462 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2463 } 2464 2465 /** 2466 * dwc2_hsotg_handle_rx - RX FIFO has data 2467 * @hsotg: The device instance 2468 * 2469 * The IRQ handler has detected that the RX FIFO has some data in it 2470 * that requires processing, so find out what is in there and do the 2471 * appropriate read. 2472 * 2473 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2474 * chunks, so if you have x packets received on an endpoint you'll get x 2475 * FIFO events delivered, each with a packet's worth of data in it. 2476 * 2477 * When using DMA, we should not be processing events from the RXFIFO 2478 * as the actual data should be sent to the memory directly and we turn 2479 * on the completion interrupts to get notifications of transfer completion. 2480 */ 2481 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2482 { 2483 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2484 u32 epnum, status, size; 2485 2486 WARN_ON(using_dma(hsotg)); 2487 2488 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2489 status = grxstsr & GRXSTS_PKTSTS_MASK; 2490 2491 size = grxstsr & GRXSTS_BYTECNT_MASK; 2492 size >>= GRXSTS_BYTECNT_SHIFT; 2493 2494 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2495 __func__, grxstsr, size, epnum); 2496 2497 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2498 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2499 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2500 break; 2501 2502 case GRXSTS_PKTSTS_OUTDONE: 2503 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2504 dwc2_hsotg_read_frameno(hsotg)); 2505 2506 if (!using_dma(hsotg)) 2507 dwc2_hsotg_handle_outdone(hsotg, epnum); 2508 break; 2509 2510 case GRXSTS_PKTSTS_SETUPDONE: 2511 dev_dbg(hsotg->dev, 2512 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2513 dwc2_hsotg_read_frameno(hsotg), 2514 dwc2_readl(hsotg, DOEPCTL(0))); 2515 /* 2516 * Call dwc2_hsotg_handle_outdone here if it was not called from 2517 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2518 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2519 */ 2520 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2521 dwc2_hsotg_handle_outdone(hsotg, epnum); 2522 break; 2523 2524 case GRXSTS_PKTSTS_OUTRX: 2525 dwc2_hsotg_rx_data(hsotg, epnum, size); 2526 break; 2527 2528 case GRXSTS_PKTSTS_SETUPRX: 2529 dev_dbg(hsotg->dev, 2530 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2531 dwc2_hsotg_read_frameno(hsotg), 2532 dwc2_readl(hsotg, DOEPCTL(0))); 2533 2534 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2535 2536 dwc2_hsotg_rx_data(hsotg, epnum, size); 2537 break; 2538 2539 default: 2540 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2541 __func__, grxstsr); 2542 2543 dwc2_hsotg_dump(hsotg); 2544 break; 2545 } 2546 } 2547 2548 /** 2549 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2550 * @mps: The maximum packet size in bytes. 2551 */ 2552 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2553 { 2554 switch (mps) { 2555 case 64: 2556 return D0EPCTL_MPS_64; 2557 case 32: 2558 return D0EPCTL_MPS_32; 2559 case 16: 2560 return D0EPCTL_MPS_16; 2561 case 8: 2562 return D0EPCTL_MPS_8; 2563 } 2564 2565 /* bad max packet size, warn and return invalid result */ 2566 WARN_ON(1); 2567 return (u32)-1; 2568 } 2569 2570 /** 2571 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2572 * @hsotg: The driver state. 2573 * @ep: The index number of the endpoint 2574 * @mps: The maximum packet size in bytes 2575 * @mc: The multicount value 2576 * @dir_in: True if direction is in. 2577 * 2578 * Configure the maximum packet size for the given endpoint, updating 2579 * the hardware control registers to reflect this. 2580 */ 2581 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2582 unsigned int ep, unsigned int mps, 2583 unsigned int mc, unsigned int dir_in) 2584 { 2585 struct dwc2_hsotg_ep *hs_ep; 2586 u32 reg; 2587 2588 hs_ep = index_to_ep(hsotg, ep, dir_in); 2589 if (!hs_ep) 2590 return; 2591 2592 if (ep == 0) { 2593 u32 mps_bytes = mps; 2594 2595 /* EP0 is a special case */ 2596 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2597 if (mps > 3) 2598 goto bad_mps; 2599 hs_ep->ep.maxpacket = mps_bytes; 2600 hs_ep->mc = 1; 2601 } else { 2602 if (mps > 1024) 2603 goto bad_mps; 2604 hs_ep->mc = mc; 2605 if (mc > 3) 2606 goto bad_mps; 2607 hs_ep->ep.maxpacket = mps; 2608 } 2609 2610 if (dir_in) { 2611 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2612 reg &= ~DXEPCTL_MPS_MASK; 2613 reg |= mps; 2614 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2615 } else { 2616 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2617 reg &= ~DXEPCTL_MPS_MASK; 2618 reg |= mps; 2619 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2620 } 2621 2622 return; 2623 2624 bad_mps: 2625 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2626 } 2627 2628 /** 2629 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2630 * @hsotg: The driver state 2631 * @idx: The index for the endpoint (0..15) 2632 */ 2633 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2634 { 2635 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2636 GRSTCTL); 2637 2638 /* wait until the fifo is flushed */ 2639 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2640 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2641 __func__); 2642 } 2643 2644 /** 2645 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2646 * @hsotg: The driver state 2647 * @hs_ep: The driver endpoint to check. 2648 * 2649 * Check to see if there is a request that has data to send, and if so 2650 * make an attempt to write data into the FIFO. 2651 */ 2652 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2653 struct dwc2_hsotg_ep *hs_ep) 2654 { 2655 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2656 2657 if (!hs_ep->dir_in || !hs_req) { 2658 /** 2659 * if request is not enqueued, we disable interrupts 2660 * for endpoints, excepting ep0 2661 */ 2662 if (hs_ep->index != 0) 2663 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2664 hs_ep->dir_in, 0); 2665 return 0; 2666 } 2667 2668 if (hs_req->req.actual < hs_req->req.length) { 2669 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2670 hs_ep->index); 2671 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2672 } 2673 2674 return 0; 2675 } 2676 2677 /** 2678 * dwc2_hsotg_complete_in - complete IN transfer 2679 * @hsotg: The device state. 2680 * @hs_ep: The endpoint that has just completed. 2681 * 2682 * An IN transfer has been completed, update the transfer's state and then 2683 * call the relevant completion routines. 2684 */ 2685 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2686 struct dwc2_hsotg_ep *hs_ep) 2687 { 2688 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2689 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2690 int size_left, size_done; 2691 2692 if (!hs_req) { 2693 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2694 return; 2695 } 2696 2697 /* Finish ZLP handling for IN EP0 transactions */ 2698 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2699 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2700 2701 /* 2702 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2703 * changed to IN. Change back to complete OUT transfer request 2704 */ 2705 hs_ep->dir_in = 0; 2706 2707 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2708 if (hsotg->test_mode) { 2709 int ret; 2710 2711 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2712 if (ret < 0) { 2713 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2714 hsotg->test_mode); 2715 dwc2_hsotg_stall_ep0(hsotg); 2716 return; 2717 } 2718 } 2719 dwc2_hsotg_enqueue_setup(hsotg); 2720 return; 2721 } 2722 2723 /* 2724 * Calculate the size of the transfer by checking how much is left 2725 * in the endpoint size register and then working it out from 2726 * the amount we loaded for the transfer. 2727 * 2728 * We do this even for DMA, as the transfer may have incremented 2729 * past the end of the buffer (DMA transfers are always 32bit 2730 * aligned). 2731 */ 2732 if (using_desc_dma(hsotg)) { 2733 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2734 if (size_left < 0) 2735 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2736 size_left); 2737 } else { 2738 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2739 } 2740 2741 size_done = hs_ep->size_loaded - size_left; 2742 size_done += hs_ep->last_load; 2743 2744 if (hs_req->req.actual != size_done) 2745 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2746 __func__, hs_req->req.actual, size_done); 2747 2748 hs_req->req.actual = size_done; 2749 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2750 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2751 2752 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2753 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2754 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2755 return; 2756 } 2757 2758 /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */ 2759 if (hs_ep->send_zlp) { 2760 hs_ep->send_zlp = 0; 2761 if (!using_desc_dma(hsotg)) { 2762 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2763 /* transfer will be completed on next complete interrupt */ 2764 return; 2765 } 2766 } 2767 2768 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2769 /* Move to STATUS OUT */ 2770 dwc2_hsotg_ep0_zlp(hsotg, false); 2771 return; 2772 } 2773 2774 /* Set actual frame number for completed transfers */ 2775 if (!using_desc_dma(hsotg) && hs_ep->isochronous) { 2776 hs_req->req.frame_number = hs_ep->target_frame; 2777 dwc2_gadget_incr_frame_num(hs_ep); 2778 } 2779 2780 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2781 } 2782 2783 /** 2784 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2785 * @hsotg: The device state. 2786 * @idx: Index of ep. 2787 * @dir_in: Endpoint direction 1-in 0-out. 2788 * 2789 * Reads for endpoint with given index and direction, by masking 2790 * epint_reg with coresponding mask. 2791 */ 2792 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2793 unsigned int idx, int dir_in) 2794 { 2795 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2796 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2797 u32 ints; 2798 u32 mask; 2799 u32 diepempmsk; 2800 2801 mask = dwc2_readl(hsotg, epmsk_reg); 2802 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2803 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2804 mask |= DXEPINT_SETUP_RCVD; 2805 2806 ints = dwc2_readl(hsotg, epint_reg); 2807 ints &= mask; 2808 return ints; 2809 } 2810 2811 /** 2812 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2813 * @hs_ep: The endpoint on which interrupt is asserted. 2814 * 2815 * This interrupt indicates that the endpoint has been disabled per the 2816 * application's request. 2817 * 2818 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2819 * in case of ISOC completes current request. 2820 * 2821 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2822 * request starts it. 2823 */ 2824 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2825 { 2826 struct dwc2_hsotg *hsotg = hs_ep->parent; 2827 struct dwc2_hsotg_req *hs_req; 2828 unsigned char idx = hs_ep->index; 2829 int dir_in = hs_ep->dir_in; 2830 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2831 int dctl = dwc2_readl(hsotg, DCTL); 2832 2833 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2834 2835 if (dir_in) { 2836 int epctl = dwc2_readl(hsotg, epctl_reg); 2837 2838 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2839 2840 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2841 int dctl = dwc2_readl(hsotg, DCTL); 2842 2843 dctl |= DCTL_CGNPINNAK; 2844 dwc2_writel(hsotg, dctl, DCTL); 2845 } 2846 } else { 2847 2848 if (dctl & DCTL_GOUTNAKSTS) { 2849 dctl |= DCTL_CGOUTNAK; 2850 dwc2_writel(hsotg, dctl, DCTL); 2851 } 2852 } 2853 2854 if (!hs_ep->isochronous) 2855 return; 2856 2857 if (list_empty(&hs_ep->queue)) { 2858 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2859 __func__, hs_ep); 2860 return; 2861 } 2862 2863 do { 2864 hs_req = get_ep_head(hs_ep); 2865 if (hs_req) { 2866 hs_req->req.frame_number = hs_ep->target_frame; 2867 hs_req->req.actual = 0; 2868 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2869 -ENODATA); 2870 } 2871 dwc2_gadget_incr_frame_num(hs_ep); 2872 /* Update current frame number value. */ 2873 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2874 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2875 } 2876 2877 /** 2878 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2879 * @ep: The endpoint on which interrupt is asserted. 2880 * 2881 * This is starting point for ISOC-OUT transfer, synchronization done with 2882 * first out token received from host while corresponding EP is disabled. 2883 * 2884 * Device does not know initial frame in which out token will come. For this 2885 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2886 * getting this interrupt SW starts calculation for next transfer frame. 2887 */ 2888 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2889 { 2890 struct dwc2_hsotg *hsotg = ep->parent; 2891 struct dwc2_hsotg_req *hs_req; 2892 int dir_in = ep->dir_in; 2893 2894 if (dir_in || !ep->isochronous) 2895 return; 2896 2897 if (using_desc_dma(hsotg)) { 2898 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2899 /* Start first ISO Out */ 2900 ep->target_frame = hsotg->frame_number; 2901 dwc2_gadget_start_isoc_ddma(ep); 2902 } 2903 return; 2904 } 2905 2906 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2907 u32 ctrl; 2908 2909 ep->target_frame = hsotg->frame_number; 2910 if (ep->interval > 1) { 2911 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2912 if (ep->target_frame & 0x1) 2913 ctrl |= DXEPCTL_SETODDFR; 2914 else 2915 ctrl |= DXEPCTL_SETEVENFR; 2916 2917 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2918 } 2919 } 2920 2921 while (dwc2_gadget_target_frame_elapsed(ep)) { 2922 hs_req = get_ep_head(ep); 2923 if (hs_req) { 2924 hs_req->req.frame_number = ep->target_frame; 2925 hs_req->req.actual = 0; 2926 dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA); 2927 } 2928 2929 dwc2_gadget_incr_frame_num(ep); 2930 /* Update current frame number value. */ 2931 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2932 } 2933 2934 if (!ep->req) 2935 dwc2_gadget_start_next_request(ep); 2936 2937 } 2938 2939 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 2940 struct dwc2_hsotg_ep *hs_ep); 2941 2942 /** 2943 * dwc2_gadget_handle_nak - handle NAK interrupt 2944 * @hs_ep: The endpoint on which interrupt is asserted. 2945 * 2946 * This is starting point for ISOC-IN transfer, synchronization done with 2947 * first IN token received from host while corresponding EP is disabled. 2948 * 2949 * Device does not know when first one token will arrive from host. On first 2950 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2951 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2952 * sent in response to that as there was no data in FIFO. SW is basing on this 2953 * interrupt to obtain frame in which token has come and then based on the 2954 * interval calculates next frame for transfer. 2955 */ 2956 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2957 { 2958 struct dwc2_hsotg *hsotg = hs_ep->parent; 2959 struct dwc2_hsotg_req *hs_req; 2960 int dir_in = hs_ep->dir_in; 2961 u32 ctrl; 2962 2963 if (!dir_in || !hs_ep->isochronous) 2964 return; 2965 2966 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2967 2968 if (using_desc_dma(hsotg)) { 2969 hs_ep->target_frame = hsotg->frame_number; 2970 dwc2_gadget_incr_frame_num(hs_ep); 2971 2972 /* In service interval mode target_frame must 2973 * be set to last (u)frame of the service interval. 2974 */ 2975 if (hsotg->params.service_interval) { 2976 /* Set target_frame to the first (u)frame of 2977 * the service interval 2978 */ 2979 hs_ep->target_frame &= ~hs_ep->interval + 1; 2980 2981 /* Set target_frame to the last (u)frame of 2982 * the service interval 2983 */ 2984 dwc2_gadget_incr_frame_num(hs_ep); 2985 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2986 } 2987 2988 dwc2_gadget_start_isoc_ddma(hs_ep); 2989 return; 2990 } 2991 2992 hs_ep->target_frame = hsotg->frame_number; 2993 if (hs_ep->interval > 1) { 2994 u32 ctrl = dwc2_readl(hsotg, 2995 DIEPCTL(hs_ep->index)); 2996 if (hs_ep->target_frame & 0x1) 2997 ctrl |= DXEPCTL_SETODDFR; 2998 else 2999 ctrl |= DXEPCTL_SETEVENFR; 3000 3001 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 3002 } 3003 } 3004 3005 if (using_desc_dma(hsotg)) 3006 return; 3007 3008 ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index)); 3009 if (ctrl & DXEPCTL_EPENA) 3010 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 3011 else 3012 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 3013 3014 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 3015 hs_req = get_ep_head(hs_ep); 3016 if (hs_req) { 3017 hs_req->req.frame_number = hs_ep->target_frame; 3018 hs_req->req.actual = 0; 3019 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA); 3020 } 3021 3022 dwc2_gadget_incr_frame_num(hs_ep); 3023 /* Update current frame number value. */ 3024 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 3025 } 3026 3027 if (!hs_ep->req) 3028 dwc2_gadget_start_next_request(hs_ep); 3029 } 3030 3031 /** 3032 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 3033 * @hsotg: The driver state 3034 * @idx: The index for the endpoint (0..15) 3035 * @dir_in: Set if this is an IN endpoint 3036 * 3037 * Process and clear any interrupt pending for an individual endpoint 3038 */ 3039 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 3040 int dir_in) 3041 { 3042 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 3043 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 3044 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 3045 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 3046 u32 ints; 3047 3048 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 3049 3050 /* Clear endpoint interrupts */ 3051 dwc2_writel(hsotg, ints, epint_reg); 3052 3053 if (!hs_ep) { 3054 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 3055 __func__, idx, dir_in ? "in" : "out"); 3056 return; 3057 } 3058 3059 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 3060 __func__, idx, dir_in ? "in" : "out", ints); 3061 3062 /* Don't process XferCompl interrupt if it is a setup packet */ 3063 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 3064 ints &= ~DXEPINT_XFERCOMPL; 3065 3066 /* 3067 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 3068 * stage and xfercomplete was generated without SETUP phase done 3069 * interrupt. SW should parse received setup packet only after host's 3070 * exit from setup phase of control transfer. 3071 */ 3072 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 3073 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 3074 ints &= ~DXEPINT_XFERCOMPL; 3075 3076 if (ints & DXEPINT_XFERCOMPL) { 3077 dev_dbg(hsotg->dev, 3078 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 3079 __func__, dwc2_readl(hsotg, epctl_reg), 3080 dwc2_readl(hsotg, epsiz_reg)); 3081 3082 /* In DDMA handle isochronous requests separately */ 3083 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 3084 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 3085 } else if (dir_in) { 3086 /* 3087 * We get OutDone from the FIFO, so we only 3088 * need to look at completing IN requests here 3089 * if operating slave mode 3090 */ 3091 if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT)) 3092 dwc2_hsotg_complete_in(hsotg, hs_ep); 3093 3094 if (idx == 0 && !hs_ep->req) 3095 dwc2_hsotg_enqueue_setup(hsotg); 3096 } else if (using_dma(hsotg)) { 3097 /* 3098 * We're using DMA, we need to fire an OutDone here 3099 * as we ignore the RXFIFO. 3100 */ 3101 if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS)) 3102 dwc2_hsotg_handle_outdone(hsotg, idx); 3103 } 3104 } 3105 3106 if (ints & DXEPINT_EPDISBLD) 3107 dwc2_gadget_handle_ep_disabled(hs_ep); 3108 3109 if (ints & DXEPINT_OUTTKNEPDIS) 3110 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 3111 3112 if (ints & DXEPINT_NAKINTRPT) 3113 dwc2_gadget_handle_nak(hs_ep); 3114 3115 if (ints & DXEPINT_AHBERR) 3116 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 3117 3118 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 3119 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3120 3121 if (using_dma(hsotg) && idx == 0) { 3122 /* 3123 * this is the notification we've received a 3124 * setup packet. In non-DMA mode we'd get this 3125 * from the RXFIFO, instead we need to process 3126 * the setup here. 3127 */ 3128 3129 if (dir_in) 3130 WARN_ON_ONCE(1); 3131 else 3132 dwc2_hsotg_handle_outdone(hsotg, 0); 3133 } 3134 } 3135 3136 if (ints & DXEPINT_STSPHSERCVD) { 3137 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3138 3139 /* Safety check EP0 state when STSPHSERCVD asserted */ 3140 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3141 /* Move to STATUS IN for DDMA */ 3142 if (using_desc_dma(hsotg)) { 3143 if (!hsotg->delayed_status) 3144 dwc2_hsotg_ep0_zlp(hsotg, true); 3145 else 3146 /* In case of 3 stage Control Write with delayed 3147 * status, when Status IN transfer started 3148 * before STSPHSERCVD asserted, NAKSTS bit not 3149 * cleared by CNAK in dwc2_hsotg_start_req() 3150 * function. Clear now NAKSTS to allow complete 3151 * transfer. 3152 */ 3153 dwc2_set_bit(hsotg, DIEPCTL(0), 3154 DXEPCTL_CNAK); 3155 } 3156 } 3157 3158 } 3159 3160 if (ints & DXEPINT_BACK2BACKSETUP) 3161 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3162 3163 if (ints & DXEPINT_BNAINTR) { 3164 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3165 if (hs_ep->isochronous) 3166 dwc2_gadget_handle_isoc_bna(hs_ep); 3167 } 3168 3169 if (dir_in && !hs_ep->isochronous) { 3170 /* not sure if this is important, but we'll clear it anyway */ 3171 if (ints & DXEPINT_INTKNTXFEMP) { 3172 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3173 __func__, idx); 3174 } 3175 3176 /* this probably means something bad is happening */ 3177 if (ints & DXEPINT_INTKNEPMIS) { 3178 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3179 __func__, idx); 3180 } 3181 3182 /* FIFO has space or is empty (see GAHBCFG) */ 3183 if (hsotg->dedicated_fifos && 3184 ints & DXEPINT_TXFEMP) { 3185 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3186 __func__, idx); 3187 if (!using_dma(hsotg)) 3188 dwc2_hsotg_trytx(hsotg, hs_ep); 3189 } 3190 } 3191 } 3192 3193 /** 3194 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3195 * @hsotg: The device state. 3196 * 3197 * Handle updating the device settings after the enumeration phase has 3198 * been completed. 3199 */ 3200 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3201 { 3202 u32 dsts = dwc2_readl(hsotg, DSTS); 3203 int ep0_mps = 0, ep_mps = 8; 3204 3205 /* 3206 * This should signal the finish of the enumeration phase 3207 * of the USB handshaking, so we should now know what rate 3208 * we connected at. 3209 */ 3210 3211 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3212 3213 /* 3214 * note, since we're limited by the size of transfer on EP0, and 3215 * it seems IN transfers must be a even number of packets we do 3216 * not advertise a 64byte MPS on EP0. 3217 */ 3218 3219 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3220 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3221 case DSTS_ENUMSPD_FS: 3222 case DSTS_ENUMSPD_FS48: 3223 hsotg->gadget.speed = USB_SPEED_FULL; 3224 ep0_mps = EP0_MPS_LIMIT; 3225 ep_mps = 1023; 3226 break; 3227 3228 case DSTS_ENUMSPD_HS: 3229 hsotg->gadget.speed = USB_SPEED_HIGH; 3230 ep0_mps = EP0_MPS_LIMIT; 3231 ep_mps = 1024; 3232 break; 3233 3234 case DSTS_ENUMSPD_LS: 3235 hsotg->gadget.speed = USB_SPEED_LOW; 3236 ep0_mps = 8; 3237 ep_mps = 8; 3238 /* 3239 * note, we don't actually support LS in this driver at the 3240 * moment, and the documentation seems to imply that it isn't 3241 * supported by the PHYs on some of the devices. 3242 */ 3243 break; 3244 } 3245 dev_info(hsotg->dev, "new device is %s\n", 3246 usb_speed_string(hsotg->gadget.speed)); 3247 3248 /* 3249 * we should now know the maximum packet size for an 3250 * endpoint, so set the endpoints to a default value. 3251 */ 3252 3253 if (ep0_mps) { 3254 int i; 3255 /* Initialize ep0 for both in and out directions */ 3256 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3257 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3258 for (i = 1; i < hsotg->num_of_eps; i++) { 3259 if (hsotg->eps_in[i]) 3260 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3261 0, 1); 3262 if (hsotg->eps_out[i]) 3263 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3264 0, 0); 3265 } 3266 } 3267 3268 /* ensure after enumeration our EP0 is active */ 3269 3270 dwc2_hsotg_enqueue_setup(hsotg); 3271 3272 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3273 dwc2_readl(hsotg, DIEPCTL0), 3274 dwc2_readl(hsotg, DOEPCTL0)); 3275 } 3276 3277 /** 3278 * kill_all_requests - remove all requests from the endpoint's queue 3279 * @hsotg: The device state. 3280 * @ep: The endpoint the requests may be on. 3281 * @result: The result code to use. 3282 * 3283 * Go through the requests on the given endpoint and mark them 3284 * completed with the given result code. 3285 */ 3286 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3287 struct dwc2_hsotg_ep *ep, 3288 int result) 3289 { 3290 unsigned int size; 3291 3292 ep->req = NULL; 3293 3294 while (!list_empty(&ep->queue)) { 3295 struct dwc2_hsotg_req *req = get_ep_head(ep); 3296 3297 dwc2_hsotg_complete_request(hsotg, ep, req, result); 3298 } 3299 3300 if (!hsotg->dedicated_fifos) 3301 return; 3302 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3303 if (size < ep->fifo_size) 3304 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3305 } 3306 3307 /** 3308 * dwc2_hsotg_disconnect - disconnect service 3309 * @hsotg: The device state. 3310 * 3311 * The device has been disconnected. Remove all current 3312 * transactions and signal the gadget driver that this 3313 * has happened. 3314 */ 3315 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3316 { 3317 unsigned int ep; 3318 3319 if (!hsotg->connected) 3320 return; 3321 3322 hsotg->connected = 0; 3323 hsotg->test_mode = 0; 3324 3325 /* all endpoints should be shutdown */ 3326 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3327 if (hsotg->eps_in[ep]) 3328 kill_all_requests(hsotg, hsotg->eps_in[ep], 3329 -ESHUTDOWN); 3330 if (hsotg->eps_out[ep]) 3331 kill_all_requests(hsotg, hsotg->eps_out[ep], 3332 -ESHUTDOWN); 3333 } 3334 3335 call_gadget(hsotg, disconnect); 3336 hsotg->lx_state = DWC2_L3; 3337 3338 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3339 } 3340 3341 /** 3342 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3343 * @hsotg: The device state: 3344 * @periodic: True if this is a periodic FIFO interrupt 3345 */ 3346 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3347 { 3348 struct dwc2_hsotg_ep *ep; 3349 int epno, ret; 3350 3351 /* look through for any more data to transmit */ 3352 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3353 ep = index_to_ep(hsotg, epno, 1); 3354 3355 if (!ep) 3356 continue; 3357 3358 if (!ep->dir_in) 3359 continue; 3360 3361 if ((periodic && !ep->periodic) || 3362 (!periodic && ep->periodic)) 3363 continue; 3364 3365 ret = dwc2_hsotg_trytx(hsotg, ep); 3366 if (ret < 0) 3367 break; 3368 } 3369 } 3370 3371 /* IRQ flags which will trigger a retry around the IRQ loop */ 3372 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3373 GINTSTS_PTXFEMP | \ 3374 GINTSTS_RXFLVL) 3375 3376 static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3377 /** 3378 * dwc2_hsotg_core_init_disconnected - issue softreset to the core 3379 * @hsotg: The device state 3380 * @is_usb_reset: Usb resetting flag 3381 * 3382 * Issue a soft reset to the core, and await the core finishing it. 3383 */ 3384 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3385 bool is_usb_reset) 3386 { 3387 u32 intmsk; 3388 u32 val; 3389 u32 usbcfg; 3390 u32 dcfg = 0; 3391 int ep; 3392 3393 /* Kill any ep0 requests as controller will be reinitialized */ 3394 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3395 3396 if (!is_usb_reset) { 3397 if (dwc2_core_reset(hsotg, true)) 3398 return; 3399 } else { 3400 /* all endpoints should be shutdown */ 3401 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3402 if (hsotg->eps_in[ep]) 3403 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3404 if (hsotg->eps_out[ep]) 3405 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3406 } 3407 } 3408 3409 /* 3410 * we must now enable ep0 ready for host detection and then 3411 * set configuration. 3412 */ 3413 3414 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3415 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3416 usbcfg &= ~GUSBCFG_TOUTCAL_MASK; 3417 usbcfg |= GUSBCFG_TOUTCAL(7); 3418 3419 /* remove the HNP/SRP and set the PHY */ 3420 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); 3421 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3422 3423 dwc2_phy_init(hsotg, true); 3424 3425 dwc2_hsotg_init_fifo(hsotg); 3426 3427 if (!is_usb_reset) { 3428 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3429 if (hsotg->params.eusb2_disc) 3430 dwc2_set_bit(hsotg, GOTGCTL, GOTGCTL_EUSB2_DISC_SUPP); 3431 } 3432 3433 dcfg |= DCFG_EPMISCNT(1); 3434 3435 switch (hsotg->params.speed) { 3436 case DWC2_SPEED_PARAM_LOW: 3437 dcfg |= DCFG_DEVSPD_LS; 3438 break; 3439 case DWC2_SPEED_PARAM_FULL: 3440 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3441 dcfg |= DCFG_DEVSPD_FS48; 3442 else 3443 dcfg |= DCFG_DEVSPD_FS; 3444 break; 3445 default: 3446 dcfg |= DCFG_DEVSPD_HS; 3447 } 3448 3449 if (hsotg->params.ipg_isoc_en) 3450 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3451 3452 dwc2_writel(hsotg, dcfg, DCFG); 3453 3454 /* Clear any pending OTG interrupts */ 3455 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3456 3457 /* Clear any pending interrupts */ 3458 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3459 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3460 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3461 GINTSTS_USBRST | GINTSTS_RESETDET | 3462 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3463 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3464 GINTSTS_LPMTRANRCVD; 3465 3466 if (!using_desc_dma(hsotg)) 3467 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3468 3469 if (!hsotg->params.external_id_pin_ctl) 3470 intmsk |= GINTSTS_CONIDSTSCHNG; 3471 3472 dwc2_writel(hsotg, intmsk, GINTMSK); 3473 3474 if (using_dma(hsotg)) { 3475 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3476 hsotg->params.ahbcfg, 3477 GAHBCFG); 3478 3479 /* Set DDMA mode support in the core if needed */ 3480 if (using_desc_dma(hsotg)) 3481 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3482 3483 } else { 3484 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3485 (GAHBCFG_NP_TXF_EMP_LVL | 3486 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3487 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3488 } 3489 3490 /* 3491 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3492 * when we have no data to transfer. Otherwise we get being flooded by 3493 * interrupts. 3494 */ 3495 3496 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3497 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3498 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3499 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3500 DIEPMSK); 3501 3502 /* 3503 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3504 * DMA mode we may need this and StsPhseRcvd. 3505 */ 3506 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3507 DOEPMSK_STSPHSERCVDMSK) : 0) | 3508 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3509 DOEPMSK_SETUPMSK, 3510 DOEPMSK); 3511 3512 /* Enable BNA interrupt for DDMA */ 3513 if (using_desc_dma(hsotg)) { 3514 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3515 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3516 } 3517 3518 /* Enable Service Interval mode if supported */ 3519 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3520 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3521 3522 dwc2_writel(hsotg, 0, DAINTMSK); 3523 3524 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3525 dwc2_readl(hsotg, DIEPCTL0), 3526 dwc2_readl(hsotg, DOEPCTL0)); 3527 3528 /* enable in and out endpoint interrupts */ 3529 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3530 3531 /* 3532 * Enable the RXFIFO when in slave mode, as this is how we collect 3533 * the data. In DMA mode, we get events from the FIFO but also 3534 * things we cannot process, so do not use it. 3535 */ 3536 if (!using_dma(hsotg)) 3537 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3538 3539 /* Enable interrupts for EP0 in and out */ 3540 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3541 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3542 3543 if (!is_usb_reset) { 3544 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3545 udelay(10); /* see openiboot */ 3546 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3547 } 3548 3549 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3550 3551 /* 3552 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3553 * writing to the EPCTL register.. 3554 */ 3555 3556 /* set to read 1 8byte packet */ 3557 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3558 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3559 3560 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3561 DXEPCTL_CNAK | DXEPCTL_EPENA | 3562 DXEPCTL_USBACTEP, 3563 DOEPCTL0); 3564 3565 /* enable, but don't activate EP0in */ 3566 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3567 DXEPCTL_USBACTEP, DIEPCTL0); 3568 3569 /* clear global NAKs */ 3570 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3571 if (!is_usb_reset) 3572 val |= DCTL_SFTDISCON; 3573 dwc2_set_bit(hsotg, DCTL, val); 3574 3575 /* configure the core to support LPM */ 3576 dwc2_gadget_init_lpm(hsotg); 3577 3578 /* program GREFCLK register if needed */ 3579 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3580 dwc2_gadget_program_ref_clk(hsotg); 3581 3582 /* must be at-least 3ms to allow bus to see disconnect */ 3583 mdelay(3); 3584 3585 hsotg->lx_state = DWC2_L0; 3586 3587 dwc2_hsotg_enqueue_setup(hsotg); 3588 3589 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3590 dwc2_readl(hsotg, DIEPCTL0), 3591 dwc2_readl(hsotg, DOEPCTL0)); 3592 } 3593 3594 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3595 { 3596 /* set the soft-disconnect bit */ 3597 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3598 } 3599 3600 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3601 { 3602 /* remove the soft-disconnect and let's go */ 3603 if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD)) 3604 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3605 } 3606 3607 /** 3608 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3609 * @hsotg: The device state: 3610 * 3611 * This interrupt indicates one of the following conditions occurred while 3612 * transmitting an ISOC transaction. 3613 * - Corrupted IN Token for ISOC EP. 3614 * - Packet not complete in FIFO. 3615 * 3616 * The following actions will be taken: 3617 * - Determine the EP 3618 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3619 */ 3620 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3621 { 3622 struct dwc2_hsotg_ep *hs_ep; 3623 u32 epctrl; 3624 u32 daintmsk; 3625 u32 idx; 3626 3627 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3628 3629 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3630 3631 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3632 hs_ep = hsotg->eps_in[idx]; 3633 /* Proceed only unmasked ISOC EPs */ 3634 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3635 continue; 3636 3637 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3638 if ((epctrl & DXEPCTL_EPENA) && 3639 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3640 epctrl |= DXEPCTL_SNAK; 3641 epctrl |= DXEPCTL_EPDIS; 3642 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3643 } 3644 } 3645 3646 /* Clear interrupt */ 3647 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3648 } 3649 3650 /** 3651 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3652 * @hsotg: The device state: 3653 * 3654 * This interrupt indicates one of the following conditions occurred while 3655 * transmitting an ISOC transaction. 3656 * - Corrupted OUT Token for ISOC EP. 3657 * - Packet not complete in FIFO. 3658 * 3659 * The following actions will be taken: 3660 * - Determine the EP 3661 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3662 */ 3663 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3664 { 3665 u32 gintsts; 3666 u32 gintmsk; 3667 u32 daintmsk; 3668 u32 epctrl; 3669 struct dwc2_hsotg_ep *hs_ep; 3670 int idx; 3671 3672 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3673 3674 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3675 daintmsk >>= DAINT_OUTEP_SHIFT; 3676 3677 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3678 hs_ep = hsotg->eps_out[idx]; 3679 /* Proceed only unmasked ISOC EPs */ 3680 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3681 continue; 3682 3683 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3684 if ((epctrl & DXEPCTL_EPENA) && 3685 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3686 /* Unmask GOUTNAKEFF interrupt */ 3687 gintmsk = dwc2_readl(hsotg, GINTMSK); 3688 gintmsk |= GINTSTS_GOUTNAKEFF; 3689 dwc2_writel(hsotg, gintmsk, GINTMSK); 3690 3691 gintsts = dwc2_readl(hsotg, GINTSTS); 3692 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3693 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3694 break; 3695 } 3696 } 3697 } 3698 3699 /* Clear interrupt */ 3700 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3701 } 3702 3703 /** 3704 * dwc2_hsotg_irq - handle device interrupt 3705 * @irq: The IRQ number triggered 3706 * @pw: The pw value when registered the handler. 3707 */ 3708 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3709 { 3710 struct dwc2_hsotg *hsotg = pw; 3711 int retry_count = 8; 3712 u32 gintsts; 3713 u32 gintmsk; 3714 3715 if (!dwc2_is_device_mode(hsotg)) 3716 return IRQ_NONE; 3717 3718 spin_lock(&hsotg->lock); 3719 irq_retry: 3720 gintsts = dwc2_readl(hsotg, GINTSTS); 3721 gintmsk = dwc2_readl(hsotg, GINTMSK); 3722 3723 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3724 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3725 3726 gintsts &= gintmsk; 3727 3728 if (gintsts & GINTSTS_RESETDET) { 3729 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3730 3731 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3732 3733 /* This event must be used only if controller is suspended */ 3734 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2) 3735 dwc2_exit_partial_power_down(hsotg, 0, true); 3736 3737 /* Exit gadget mode clock gating. */ 3738 if (hsotg->params.power_down == 3739 DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended && 3740 !hsotg->params.no_clock_gating) 3741 dwc2_gadget_exit_clock_gating(hsotg, 0); 3742 3743 hsotg->lx_state = DWC2_L0; 3744 } 3745 3746 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3747 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3748 u32 connected = hsotg->connected; 3749 3750 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3751 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3752 dwc2_readl(hsotg, GNPTXSTS)); 3753 3754 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3755 3756 /* Report disconnection if it is not already done. */ 3757 dwc2_hsotg_disconnect(hsotg); 3758 3759 /* Reset device address to zero */ 3760 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3761 3762 if (usb_status & GOTGCTL_BSESVLD && connected) 3763 dwc2_hsotg_core_init_disconnected(hsotg, true); 3764 } 3765 3766 if (gintsts & GINTSTS_ENUMDONE) { 3767 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3768 3769 dwc2_hsotg_irq_enumdone(hsotg); 3770 } 3771 3772 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3773 u32 daint = dwc2_readl(hsotg, DAINT); 3774 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3775 u32 daint_out, daint_in; 3776 int ep; 3777 3778 daint &= daintmsk; 3779 daint_out = daint >> DAINT_OUTEP_SHIFT; 3780 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3781 3782 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3783 3784 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3785 ep++, daint_out >>= 1) { 3786 if (daint_out & 1) 3787 dwc2_hsotg_epint(hsotg, ep, 0); 3788 } 3789 3790 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3791 ep++, daint_in >>= 1) { 3792 if (daint_in & 1) 3793 dwc2_hsotg_epint(hsotg, ep, 1); 3794 } 3795 } 3796 3797 /* check both FIFOs */ 3798 3799 if (gintsts & GINTSTS_NPTXFEMP) { 3800 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3801 3802 /* 3803 * Disable the interrupt to stop it happening again 3804 * unless one of these endpoint routines decides that 3805 * it needs re-enabling 3806 */ 3807 3808 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3809 dwc2_hsotg_irq_fifoempty(hsotg, false); 3810 } 3811 3812 if (gintsts & GINTSTS_PTXFEMP) { 3813 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3814 3815 /* See note in GINTSTS_NPTxFEmp */ 3816 3817 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3818 dwc2_hsotg_irq_fifoempty(hsotg, true); 3819 } 3820 3821 if (gintsts & GINTSTS_RXFLVL) { 3822 /* 3823 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3824 * we need to retry dwc2_hsotg_handle_rx if this is still 3825 * set. 3826 */ 3827 3828 dwc2_hsotg_handle_rx(hsotg); 3829 } 3830 3831 if (gintsts & GINTSTS_ERLYSUSP) { 3832 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3833 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3834 } 3835 3836 /* 3837 * these next two seem to crop-up occasionally causing the core 3838 * to shutdown the USB transfer, so try clearing them and logging 3839 * the occurrence. 3840 */ 3841 3842 if (gintsts & GINTSTS_GOUTNAKEFF) { 3843 u8 idx; 3844 u32 epctrl; 3845 u32 gintmsk; 3846 u32 daintmsk; 3847 struct dwc2_hsotg_ep *hs_ep; 3848 3849 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3850 daintmsk >>= DAINT_OUTEP_SHIFT; 3851 /* Mask this interrupt */ 3852 gintmsk = dwc2_readl(hsotg, GINTMSK); 3853 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3854 dwc2_writel(hsotg, gintmsk, GINTMSK); 3855 3856 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3857 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3858 hs_ep = hsotg->eps_out[idx]; 3859 /* Proceed only unmasked ISOC EPs */ 3860 if (BIT(idx) & ~daintmsk) 3861 continue; 3862 3863 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3864 3865 //ISOC Ep's only 3866 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3867 epctrl |= DXEPCTL_SNAK; 3868 epctrl |= DXEPCTL_EPDIS; 3869 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3870 continue; 3871 } 3872 3873 //Non-ISOC EP's 3874 if (hs_ep->halted) { 3875 if (!(epctrl & DXEPCTL_EPENA)) 3876 epctrl |= DXEPCTL_EPENA; 3877 epctrl |= DXEPCTL_EPDIS; 3878 epctrl |= DXEPCTL_STALL; 3879 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3880 } 3881 } 3882 3883 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3884 } 3885 3886 if (gintsts & GINTSTS_GINNAKEFF) { 3887 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3888 3889 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3890 3891 dwc2_hsotg_dump(hsotg); 3892 } 3893 3894 if (gintsts & GINTSTS_INCOMPL_SOIN) 3895 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3896 3897 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3898 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3899 3900 /* 3901 * if we've had fifo events, we should try and go around the 3902 * loop again to see if there's any point in returning yet. 3903 */ 3904 3905 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3906 goto irq_retry; 3907 3908 /* Check WKUP_ALERT interrupt*/ 3909 if (hsotg->params.service_interval) 3910 dwc2_gadget_wkup_alert_handler(hsotg); 3911 3912 spin_unlock(&hsotg->lock); 3913 3914 return IRQ_HANDLED; 3915 } 3916 3917 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3918 struct dwc2_hsotg_ep *hs_ep) 3919 { 3920 u32 epctrl_reg; 3921 u32 epint_reg; 3922 3923 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3924 DOEPCTL(hs_ep->index); 3925 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3926 DOEPINT(hs_ep->index); 3927 3928 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3929 hs_ep->name); 3930 3931 if (hs_ep->dir_in) { 3932 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3933 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3934 /* Wait for Nak effect */ 3935 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3936 DXEPINT_INEPNAKEFF, 100)) 3937 dev_warn(hsotg->dev, 3938 "%s: timeout DIEPINT.NAKEFF\n", 3939 __func__); 3940 } else { 3941 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3942 /* Wait for Nak effect */ 3943 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3944 GINTSTS_GINNAKEFF, 100)) 3945 dev_warn(hsotg->dev, 3946 "%s: timeout GINTSTS.GINNAKEFF\n", 3947 __func__); 3948 } 3949 } else { 3950 /* Mask GINTSTS_GOUTNAKEFF interrupt */ 3951 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF); 3952 3953 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3954 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3955 3956 if (!using_dma(hsotg)) { 3957 /* Wait for GINTSTS_RXFLVL interrupt */ 3958 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3959 GINTSTS_RXFLVL, 100)) { 3960 dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n", 3961 __func__); 3962 } else { 3963 /* 3964 * Pop GLOBAL OUT NAK status packet from RxFIFO 3965 * to assert GOUTNAKEFF interrupt 3966 */ 3967 dwc2_readl(hsotg, GRXSTSP); 3968 } 3969 } 3970 3971 /* Wait for global nak to take effect */ 3972 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3973 GINTSTS_GOUTNAKEFF, 100)) 3974 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3975 __func__); 3976 } 3977 3978 /* Disable ep */ 3979 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3980 3981 /* Wait for ep to be disabled */ 3982 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3983 dev_warn(hsotg->dev, 3984 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3985 3986 /* Clear EPDISBLD interrupt */ 3987 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3988 3989 if (hs_ep->dir_in) { 3990 unsigned short fifo_index; 3991 3992 if (hsotg->dedicated_fifos || hs_ep->periodic) 3993 fifo_index = hs_ep->fifo_index; 3994 else 3995 fifo_index = 0; 3996 3997 /* Flush TX FIFO */ 3998 dwc2_flush_tx_fifo(hsotg, fifo_index); 3999 4000 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 4001 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 4002 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 4003 4004 } else { 4005 /* Remove global NAKs */ 4006 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 4007 } 4008 } 4009 4010 /** 4011 * dwc2_hsotg_ep_enable - enable the given endpoint 4012 * @ep: The USB endpint to configure 4013 * @desc: The USB endpoint descriptor to configure with. 4014 * 4015 * This is called from the USB gadget code's usb_ep_enable(). 4016 */ 4017 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 4018 const struct usb_endpoint_descriptor *desc) 4019 { 4020 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4021 struct dwc2_hsotg *hsotg = hs_ep->parent; 4022 unsigned long flags; 4023 unsigned int index = hs_ep->index; 4024 u32 epctrl_reg; 4025 u32 epctrl; 4026 u32 mps; 4027 u32 mc; 4028 u32 mask; 4029 unsigned int dir_in; 4030 unsigned int i, val, size; 4031 int ret = 0; 4032 unsigned char ep_type; 4033 int desc_num; 4034 4035 dev_dbg(hsotg->dev, 4036 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 4037 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 4038 desc->wMaxPacketSize, desc->bInterval); 4039 4040 /* not to be called for EP0 */ 4041 if (index == 0) { 4042 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 4043 return -EINVAL; 4044 } 4045 4046 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 4047 if (dir_in != hs_ep->dir_in) { 4048 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 4049 return -EINVAL; 4050 } 4051 4052 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 4053 mps = usb_endpoint_maxp(desc); 4054 mc = usb_endpoint_maxp_mult(desc); 4055 4056 /* ISOC IN in DDMA supported bInterval up to 10 */ 4057 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4058 dir_in && desc->bInterval > 10) { 4059 dev_err(hsotg->dev, 4060 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 4061 return -EINVAL; 4062 } 4063 4064 /* High bandwidth ISOC OUT in DDMA not supported */ 4065 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4066 !dir_in && mc > 1) { 4067 dev_err(hsotg->dev, 4068 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 4069 return -EINVAL; 4070 } 4071 4072 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 4073 4074 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4075 epctrl = dwc2_readl(hsotg, epctrl_reg); 4076 4077 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 4078 __func__, epctrl, epctrl_reg); 4079 4080 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) 4081 desc_num = MAX_DMA_DESC_NUM_HS_ISOC; 4082 else 4083 desc_num = MAX_DMA_DESC_NUM_GENERIC; 4084 4085 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 4086 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 4087 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 4088 desc_num * sizeof(struct dwc2_dma_desc), 4089 &hs_ep->desc_list_dma, GFP_ATOMIC); 4090 if (!hs_ep->desc_list) { 4091 ret = -ENOMEM; 4092 goto error2; 4093 } 4094 } 4095 4096 spin_lock_irqsave(&hsotg->lock, flags); 4097 4098 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 4099 epctrl |= DXEPCTL_MPS(mps); 4100 4101 /* 4102 * mark the endpoint as active, otherwise the core may ignore 4103 * transactions entirely for this endpoint 4104 */ 4105 epctrl |= DXEPCTL_USBACTEP; 4106 4107 /* update the endpoint state */ 4108 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 4109 4110 /* default, set to non-periodic */ 4111 hs_ep->isochronous = 0; 4112 hs_ep->periodic = 0; 4113 hs_ep->halted = 0; 4114 hs_ep->wedged = 0; 4115 hs_ep->interval = desc->bInterval; 4116 4117 switch (ep_type) { 4118 case USB_ENDPOINT_XFER_ISOC: 4119 epctrl |= DXEPCTL_EPTYPE_ISO; 4120 epctrl |= DXEPCTL_SETEVENFR; 4121 hs_ep->isochronous = 1; 4122 hs_ep->interval = 1 << (desc->bInterval - 1); 4123 hs_ep->target_frame = TARGET_FRAME_INITIAL; 4124 hs_ep->next_desc = 0; 4125 hs_ep->compl_desc = 0; 4126 if (dir_in) { 4127 hs_ep->periodic = 1; 4128 mask = dwc2_readl(hsotg, DIEPMSK); 4129 mask |= DIEPMSK_NAKMSK; 4130 dwc2_writel(hsotg, mask, DIEPMSK); 4131 } else { 4132 epctrl |= DXEPCTL_SNAK; 4133 mask = dwc2_readl(hsotg, DOEPMSK); 4134 mask |= DOEPMSK_OUTTKNEPDISMSK; 4135 dwc2_writel(hsotg, mask, DOEPMSK); 4136 } 4137 break; 4138 4139 case USB_ENDPOINT_XFER_BULK: 4140 epctrl |= DXEPCTL_EPTYPE_BULK; 4141 break; 4142 4143 case USB_ENDPOINT_XFER_INT: 4144 if (dir_in) 4145 hs_ep->periodic = 1; 4146 4147 if (hsotg->gadget.speed == USB_SPEED_HIGH) 4148 hs_ep->interval = 1 << (desc->bInterval - 1); 4149 4150 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 4151 break; 4152 4153 case USB_ENDPOINT_XFER_CONTROL: 4154 epctrl |= DXEPCTL_EPTYPE_CONTROL; 4155 break; 4156 } 4157 4158 /* 4159 * if the hardware has dedicated fifos, we must give each IN EP 4160 * a unique tx-fifo even if it is non-periodic. 4161 */ 4162 if (dir_in && hsotg->dedicated_fifos) { 4163 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 4164 u32 fifo_index = 0; 4165 u32 fifo_size = UINT_MAX; 4166 4167 size = hs_ep->ep.maxpacket * hs_ep->mc; 4168 for (i = 1; i <= fifo_count; ++i) { 4169 if (hsotg->fifo_map & (1 << i)) 4170 continue; 4171 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 4172 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 4173 if (val < size) 4174 continue; 4175 /* Search for smallest acceptable fifo */ 4176 if (val < fifo_size) { 4177 fifo_size = val; 4178 fifo_index = i; 4179 } 4180 } 4181 if (!fifo_index) { 4182 dev_err(hsotg->dev, 4183 "%s: No suitable fifo found\n", __func__); 4184 ret = -ENOMEM; 4185 goto error1; 4186 } 4187 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); 4188 hsotg->fifo_map |= 1 << fifo_index; 4189 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4190 hs_ep->fifo_index = fifo_index; 4191 hs_ep->fifo_size = fifo_size; 4192 } 4193 4194 /* for non control endpoints, set PID to D0 */ 4195 if (index && !hs_ep->isochronous) 4196 epctrl |= DXEPCTL_SETD0PID; 4197 4198 /* WA for Full speed ISOC IN in DDMA mode. 4199 * By Clear NAK status of EP, core will send ZLP 4200 * to IN token and assert NAK interrupt relying 4201 * on TxFIFO status only 4202 */ 4203 4204 if (hsotg->gadget.speed == USB_SPEED_FULL && 4205 hs_ep->isochronous && dir_in) { 4206 /* The WA applies only to core versions from 2.72a 4207 * to 4.00a (including both). Also for FS_IOT_1.00a 4208 * and HS_IOT_1.00a. 4209 */ 4210 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4211 4212 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4213 gsnpsid <= DWC2_CORE_REV_4_00a) || 4214 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4215 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4216 epctrl |= DXEPCTL_CNAK; 4217 } 4218 4219 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4220 __func__, epctrl); 4221 4222 dwc2_writel(hsotg, epctrl, epctrl_reg); 4223 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4224 __func__, dwc2_readl(hsotg, epctrl_reg)); 4225 4226 /* enable the endpoint interrupt */ 4227 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4228 4229 error1: 4230 spin_unlock_irqrestore(&hsotg->lock, flags); 4231 4232 error2: 4233 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4234 dmam_free_coherent(hsotg->dev, desc_num * 4235 sizeof(struct dwc2_dma_desc), 4236 hs_ep->desc_list, hs_ep->desc_list_dma); 4237 hs_ep->desc_list = NULL; 4238 } 4239 4240 return ret; 4241 } 4242 4243 /** 4244 * dwc2_hsotg_ep_disable - disable given endpoint 4245 * @ep: The endpoint to disable. 4246 */ 4247 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4248 { 4249 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4250 struct dwc2_hsotg *hsotg = hs_ep->parent; 4251 int dir_in = hs_ep->dir_in; 4252 int index = hs_ep->index; 4253 u32 epctrl_reg; 4254 u32 ctrl; 4255 4256 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4257 4258 if (ep == &hsotg->eps_out[0]->ep) { 4259 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4260 return -EINVAL; 4261 } 4262 4263 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4264 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4265 return -EINVAL; 4266 } 4267 4268 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4269 4270 ctrl = dwc2_readl(hsotg, epctrl_reg); 4271 4272 if (ctrl & DXEPCTL_EPENA) 4273 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4274 4275 ctrl &= ~DXEPCTL_EPENA; 4276 ctrl &= ~DXEPCTL_USBACTEP; 4277 ctrl |= DXEPCTL_SNAK; 4278 4279 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4280 dwc2_writel(hsotg, ctrl, epctrl_reg); 4281 4282 /* disable endpoint interrupts */ 4283 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4284 4285 /* terminate all requests with shutdown */ 4286 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4287 4288 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4289 hs_ep->fifo_index = 0; 4290 hs_ep->fifo_size = 0; 4291 4292 return 0; 4293 } 4294 4295 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4296 { 4297 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4298 struct dwc2_hsotg *hsotg = hs_ep->parent; 4299 unsigned long flags; 4300 int ret; 4301 4302 spin_lock_irqsave(&hsotg->lock, flags); 4303 ret = dwc2_hsotg_ep_disable(ep); 4304 spin_unlock_irqrestore(&hsotg->lock, flags); 4305 return ret; 4306 } 4307 4308 /** 4309 * on_list - check request is on the given endpoint 4310 * @ep: The endpoint to check. 4311 * @test: The request to test if it is on the endpoint. 4312 */ 4313 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4314 { 4315 struct dwc2_hsotg_req *req, *treq; 4316 4317 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4318 if (req == test) 4319 return true; 4320 } 4321 4322 return false; 4323 } 4324 4325 /** 4326 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4327 * @ep: The endpoint to dequeue. 4328 * @req: The request to be removed from a queue. 4329 */ 4330 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4331 { 4332 struct dwc2_hsotg_req *hs_req = our_req(req); 4333 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4334 struct dwc2_hsotg *hs = hs_ep->parent; 4335 unsigned long flags; 4336 4337 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4338 4339 spin_lock_irqsave(&hs->lock, flags); 4340 4341 if (!on_list(hs_ep, hs_req)) { 4342 spin_unlock_irqrestore(&hs->lock, flags); 4343 return -EINVAL; 4344 } 4345 4346 /* Dequeue already started request */ 4347 if (req == &hs_ep->req->req) 4348 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4349 4350 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4351 spin_unlock_irqrestore(&hs->lock, flags); 4352 4353 return 0; 4354 } 4355 4356 /** 4357 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint 4358 * @ep: The endpoint to be wedged. 4359 * 4360 */ 4361 static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep) 4362 { 4363 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4364 struct dwc2_hsotg *hs = hs_ep->parent; 4365 4366 unsigned long flags; 4367 int ret; 4368 4369 spin_lock_irqsave(&hs->lock, flags); 4370 hs_ep->wedged = 1; 4371 ret = dwc2_hsotg_ep_sethalt(ep, 1, false); 4372 spin_unlock_irqrestore(&hs->lock, flags); 4373 4374 return ret; 4375 } 4376 4377 /** 4378 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4379 * @ep: The endpoint to set halt. 4380 * @value: Set or unset the halt. 4381 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4382 * the endpoint is busy processing requests. 4383 * 4384 * We need to stall the endpoint immediately if request comes from set_feature 4385 * protocol command handler. 4386 */ 4387 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4388 { 4389 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4390 struct dwc2_hsotg *hs = hs_ep->parent; 4391 int index = hs_ep->index; 4392 u32 epreg; 4393 u32 epctl; 4394 u32 xfertype; 4395 4396 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4397 4398 if (index == 0) { 4399 if (value) 4400 dwc2_hsotg_stall_ep0(hs); 4401 else 4402 dev_warn(hs->dev, 4403 "%s: can't clear halt on ep0\n", __func__); 4404 return 0; 4405 } 4406 4407 if (hs_ep->isochronous) { 4408 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4409 return -EINVAL; 4410 } 4411 4412 if (!now && value && !list_empty(&hs_ep->queue)) { 4413 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4414 ep->name); 4415 return -EAGAIN; 4416 } 4417 4418 if (hs_ep->dir_in) { 4419 epreg = DIEPCTL(index); 4420 epctl = dwc2_readl(hs, epreg); 4421 4422 if (value) { 4423 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4424 if (epctl & DXEPCTL_EPENA) 4425 epctl |= DXEPCTL_EPDIS; 4426 } else { 4427 epctl &= ~DXEPCTL_STALL; 4428 hs_ep->wedged = 0; 4429 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4430 if (xfertype == DXEPCTL_EPTYPE_BULK || 4431 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4432 epctl |= DXEPCTL_SETD0PID; 4433 } 4434 dwc2_writel(hs, epctl, epreg); 4435 } else { 4436 epreg = DOEPCTL(index); 4437 epctl = dwc2_readl(hs, epreg); 4438 4439 if (value) { 4440 /* Unmask GOUTNAKEFF interrupt */ 4441 dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF); 4442 4443 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF)) 4444 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK); 4445 // STALL bit will be set in GOUTNAKEFF interrupt handler 4446 } else { 4447 epctl &= ~DXEPCTL_STALL; 4448 hs_ep->wedged = 0; 4449 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4450 if (xfertype == DXEPCTL_EPTYPE_BULK || 4451 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4452 epctl |= DXEPCTL_SETD0PID; 4453 dwc2_writel(hs, epctl, epreg); 4454 } 4455 } 4456 4457 hs_ep->halted = value; 4458 return 0; 4459 } 4460 4461 /** 4462 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4463 * @ep: The endpoint to set halt. 4464 * @value: Set or unset the halt. 4465 */ 4466 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4467 { 4468 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4469 struct dwc2_hsotg *hs = hs_ep->parent; 4470 unsigned long flags; 4471 int ret; 4472 4473 spin_lock_irqsave(&hs->lock, flags); 4474 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4475 spin_unlock_irqrestore(&hs->lock, flags); 4476 4477 return ret; 4478 } 4479 4480 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4481 .enable = dwc2_hsotg_ep_enable, 4482 .disable = dwc2_hsotg_ep_disable_lock, 4483 .alloc_request = dwc2_hsotg_ep_alloc_request, 4484 .free_request = dwc2_hsotg_ep_free_request, 4485 .queue = dwc2_hsotg_ep_queue_lock, 4486 .dequeue = dwc2_hsotg_ep_dequeue, 4487 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4488 .set_wedge = dwc2_gadget_ep_set_wedge, 4489 /* note, don't believe we have any call for the fifo routines */ 4490 }; 4491 4492 /** 4493 * dwc2_hsotg_init - initialize the usb core 4494 * @hsotg: The driver state 4495 */ 4496 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4497 { 4498 /* unmask subset of endpoint interrupts */ 4499 4500 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4501 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4502 DIEPMSK); 4503 4504 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4505 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4506 DOEPMSK); 4507 4508 dwc2_writel(hsotg, 0, DAINTMSK); 4509 4510 /* Be in disconnected state until gadget is registered */ 4511 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4512 4513 /* setup fifos */ 4514 4515 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4516 dwc2_readl(hsotg, GRXFSIZ), 4517 dwc2_readl(hsotg, GNPTXFSIZ)); 4518 4519 dwc2_hsotg_init_fifo(hsotg); 4520 4521 if (using_dma(hsotg)) 4522 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4523 } 4524 4525 /** 4526 * dwc2_hsotg_udc_start - prepare the udc for work 4527 * @gadget: The usb gadget state 4528 * @driver: The usb gadget driver 4529 * 4530 * Perform initialization to prepare udc device and driver 4531 * to work. 4532 */ 4533 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4534 struct usb_gadget_driver *driver) 4535 { 4536 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4537 unsigned long flags; 4538 int ret; 4539 4540 if (!hsotg) { 4541 pr_err("%s: called with no device\n", __func__); 4542 return -ENODEV; 4543 } 4544 4545 if (!driver) { 4546 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4547 return -EINVAL; 4548 } 4549 4550 if (driver->max_speed < USB_SPEED_FULL) 4551 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4552 4553 if (!driver->setup) { 4554 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4555 return -EINVAL; 4556 } 4557 4558 WARN_ON(hsotg->driver); 4559 4560 hsotg->driver = driver; 4561 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4562 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4563 4564 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4565 ret = dwc2_lowlevel_hw_enable(hsotg); 4566 if (ret) 4567 goto err; 4568 } 4569 4570 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4571 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4572 4573 spin_lock_irqsave(&hsotg->lock, flags); 4574 if (dwc2_hw_is_device(hsotg)) { 4575 dwc2_hsotg_init(hsotg); 4576 dwc2_hsotg_core_init_disconnected(hsotg, false); 4577 } 4578 4579 hsotg->enabled = 0; 4580 spin_unlock_irqrestore(&hsotg->lock, flags); 4581 4582 gadget->sg_supported = using_desc_dma(hsotg); 4583 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4584 4585 return 0; 4586 4587 err: 4588 hsotg->driver = NULL; 4589 return ret; 4590 } 4591 4592 /** 4593 * dwc2_hsotg_udc_stop - stop the udc 4594 * @gadget: The usb gadget state 4595 * 4596 * Stop udc hw block and stay tunned for future transmissions 4597 */ 4598 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4599 { 4600 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4601 unsigned long flags; 4602 int ep; 4603 4604 if (!hsotg) 4605 return -ENODEV; 4606 4607 /* all endpoints should be shutdown */ 4608 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4609 if (hsotg->eps_in[ep]) 4610 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4611 if (hsotg->eps_out[ep]) 4612 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4613 } 4614 4615 spin_lock_irqsave(&hsotg->lock, flags); 4616 4617 hsotg->driver = NULL; 4618 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4619 hsotg->enabled = 0; 4620 4621 spin_unlock_irqrestore(&hsotg->lock, flags); 4622 4623 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4624 otg_set_peripheral(hsotg->uphy->otg, NULL); 4625 4626 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4627 dwc2_lowlevel_hw_disable(hsotg); 4628 4629 return 0; 4630 } 4631 4632 /** 4633 * dwc2_hsotg_gadget_getframe - read the frame number 4634 * @gadget: The usb gadget state 4635 * 4636 * Read the {micro} frame number 4637 */ 4638 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4639 { 4640 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4641 } 4642 4643 /** 4644 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered 4645 * @gadget: The usb gadget state 4646 * @is_selfpowered: Whether the device is self-powered 4647 * 4648 * Set if the device is self or bus powered. 4649 */ 4650 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget, 4651 int is_selfpowered) 4652 { 4653 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4654 unsigned long flags; 4655 4656 spin_lock_irqsave(&hsotg->lock, flags); 4657 gadget->is_selfpowered = !!is_selfpowered; 4658 spin_unlock_irqrestore(&hsotg->lock, flags); 4659 4660 return 0; 4661 } 4662 4663 /** 4664 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4665 * @gadget: The usb gadget state 4666 * @is_on: Current state of the USB PHY 4667 * 4668 * Connect/Disconnect the USB PHY pullup 4669 */ 4670 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4671 { 4672 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4673 unsigned long flags; 4674 4675 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4676 hsotg->op_state); 4677 4678 /* Don't modify pullup state while in host mode */ 4679 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4680 hsotg->enabled = is_on; 4681 return 0; 4682 } 4683 4684 spin_lock_irqsave(&hsotg->lock, flags); 4685 if (is_on) { 4686 hsotg->enabled = 1; 4687 dwc2_hsotg_core_init_disconnected(hsotg, false); 4688 /* Enable ACG feature in device mode,if supported */ 4689 dwc2_enable_acg(hsotg); 4690 dwc2_hsotg_core_connect(hsotg); 4691 } else { 4692 dwc2_hsotg_core_disconnect(hsotg); 4693 dwc2_hsotg_disconnect(hsotg); 4694 hsotg->enabled = 0; 4695 } 4696 4697 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4698 spin_unlock_irqrestore(&hsotg->lock, flags); 4699 4700 return 0; 4701 } 4702 4703 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4704 { 4705 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4706 unsigned long flags; 4707 4708 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4709 spin_lock_irqsave(&hsotg->lock, flags); 4710 4711 /* 4712 * If controller is in partial power down state, it must exit from 4713 * that state before being initialized / de-initialized 4714 */ 4715 if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd) 4716 /* 4717 * No need to check the return value as 4718 * registers are not being restored. 4719 */ 4720 dwc2_exit_partial_power_down(hsotg, 0, false); 4721 4722 if (is_active) { 4723 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4724 4725 dwc2_hsotg_core_init_disconnected(hsotg, false); 4726 if (hsotg->enabled) { 4727 /* Enable ACG feature in device mode,if supported */ 4728 dwc2_enable_acg(hsotg); 4729 dwc2_hsotg_core_connect(hsotg); 4730 } 4731 } else { 4732 dwc2_hsotg_core_disconnect(hsotg); 4733 dwc2_hsotg_disconnect(hsotg); 4734 } 4735 4736 spin_unlock_irqrestore(&hsotg->lock, flags); 4737 return 0; 4738 } 4739 4740 /** 4741 * dwc2_hsotg_vbus_draw - report bMaxPower field 4742 * @gadget: The usb gadget state 4743 * @mA: Amount of current 4744 * 4745 * Report how much power the device may consume to the phy. 4746 */ 4747 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4748 { 4749 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4750 4751 if (IS_ERR_OR_NULL(hsotg->uphy)) 4752 return -ENOTSUPP; 4753 return usb_phy_set_power(hsotg->uphy, mA); 4754 } 4755 4756 static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed) 4757 { 4758 struct dwc2_hsotg *hsotg = to_hsotg(g); 4759 unsigned long flags; 4760 4761 spin_lock_irqsave(&hsotg->lock, flags); 4762 switch (speed) { 4763 case USB_SPEED_HIGH: 4764 hsotg->params.speed = DWC2_SPEED_PARAM_HIGH; 4765 break; 4766 case USB_SPEED_FULL: 4767 hsotg->params.speed = DWC2_SPEED_PARAM_FULL; 4768 break; 4769 case USB_SPEED_LOW: 4770 hsotg->params.speed = DWC2_SPEED_PARAM_LOW; 4771 break; 4772 default: 4773 dev_err(hsotg->dev, "invalid speed (%d)\n", speed); 4774 } 4775 spin_unlock_irqrestore(&hsotg->lock, flags); 4776 } 4777 4778 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4779 .get_frame = dwc2_hsotg_gadget_getframe, 4780 .set_selfpowered = dwc2_hsotg_set_selfpowered, 4781 .udc_start = dwc2_hsotg_udc_start, 4782 .udc_stop = dwc2_hsotg_udc_stop, 4783 .pullup = dwc2_hsotg_pullup, 4784 .udc_set_speed = dwc2_gadget_set_speed, 4785 .vbus_session = dwc2_hsotg_vbus_session, 4786 .vbus_draw = dwc2_hsotg_vbus_draw, 4787 }; 4788 4789 /** 4790 * dwc2_hsotg_initep - initialise a single endpoint 4791 * @hsotg: The device state. 4792 * @hs_ep: The endpoint to be initialised. 4793 * @epnum: The endpoint number 4794 * @dir_in: True if direction is in. 4795 * 4796 * Initialise the given endpoint (as part of the probe and device state 4797 * creation) to give to the gadget driver. Setup the endpoint name, any 4798 * direction information and other state that may be required. 4799 */ 4800 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4801 struct dwc2_hsotg_ep *hs_ep, 4802 int epnum, 4803 bool dir_in) 4804 { 4805 char *dir; 4806 4807 if (epnum == 0) 4808 dir = ""; 4809 else if (dir_in) 4810 dir = "in"; 4811 else 4812 dir = "out"; 4813 4814 hs_ep->dir_in = dir_in; 4815 hs_ep->index = epnum; 4816 4817 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4818 4819 INIT_LIST_HEAD(&hs_ep->queue); 4820 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4821 4822 /* add to the list of endpoints known by the gadget driver */ 4823 if (epnum) 4824 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4825 4826 hs_ep->parent = hsotg; 4827 hs_ep->ep.name = hs_ep->name; 4828 4829 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4830 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4831 else 4832 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4833 epnum ? 1024 : EP0_MPS_LIMIT); 4834 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4835 4836 if (epnum == 0) { 4837 hs_ep->ep.caps.type_control = true; 4838 } else { 4839 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4840 hs_ep->ep.caps.type_iso = true; 4841 hs_ep->ep.caps.type_bulk = true; 4842 } 4843 hs_ep->ep.caps.type_int = true; 4844 } 4845 4846 if (dir_in) 4847 hs_ep->ep.caps.dir_in = true; 4848 else 4849 hs_ep->ep.caps.dir_out = true; 4850 4851 /* 4852 * if we're using dma, we need to set the next-endpoint pointer 4853 * to be something valid. 4854 */ 4855 4856 if (using_dma(hsotg)) { 4857 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4858 4859 if (dir_in) 4860 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4861 else 4862 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4863 } 4864 } 4865 4866 /** 4867 * dwc2_hsotg_hw_cfg - read HW configuration registers 4868 * @hsotg: Programming view of the DWC_otg controller 4869 * 4870 * Read the USB core HW configuration registers 4871 */ 4872 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4873 { 4874 u32 cfg; 4875 u32 ep_type; 4876 u32 i; 4877 4878 /* check hardware configuration */ 4879 4880 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4881 4882 /* Add ep0 */ 4883 hsotg->num_of_eps++; 4884 4885 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4886 sizeof(struct dwc2_hsotg_ep), 4887 GFP_KERNEL); 4888 if (!hsotg->eps_in[0]) 4889 return -ENOMEM; 4890 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4891 hsotg->eps_out[0] = hsotg->eps_in[0]; 4892 4893 cfg = hsotg->hw_params.dev_ep_dirs; 4894 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4895 ep_type = cfg & 3; 4896 /* Direction in or both */ 4897 if (!(ep_type & 2)) { 4898 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4899 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4900 if (!hsotg->eps_in[i]) 4901 return -ENOMEM; 4902 } 4903 /* Direction out or both */ 4904 if (!(ep_type & 1)) { 4905 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4906 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4907 if (!hsotg->eps_out[i]) 4908 return -ENOMEM; 4909 } 4910 } 4911 4912 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4913 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4914 4915 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4916 hsotg->num_of_eps, 4917 hsotg->dedicated_fifos ? "dedicated" : "shared", 4918 hsotg->fifo_mem); 4919 return 0; 4920 } 4921 4922 /** 4923 * dwc2_hsotg_dump - dump state of the udc 4924 * @hsotg: Programming view of the DWC_otg controller 4925 * 4926 */ 4927 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4928 { 4929 #ifdef DEBUG 4930 struct device *dev = hsotg->dev; 4931 u32 val; 4932 int idx; 4933 4934 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4935 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4936 dwc2_readl(hsotg, DIEPMSK)); 4937 4938 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4939 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4940 4941 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4942 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4943 4944 /* show periodic fifo settings */ 4945 4946 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4947 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4948 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4949 val >> FIFOSIZE_DEPTH_SHIFT, 4950 val & FIFOSIZE_STARTADDR_MASK); 4951 } 4952 4953 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4954 dev_info(dev, 4955 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4956 dwc2_readl(hsotg, DIEPCTL(idx)), 4957 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4958 dwc2_readl(hsotg, DIEPDMA(idx))); 4959 4960 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4961 dev_info(dev, 4962 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4963 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4964 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4965 dwc2_readl(hsotg, DOEPDMA(idx))); 4966 } 4967 4968 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4969 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4970 #endif 4971 } 4972 4973 /** 4974 * dwc2_gadget_init - init function for gadget 4975 * @hsotg: Programming view of the DWC_otg controller 4976 * 4977 */ 4978 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4979 { 4980 struct device *dev = hsotg->dev; 4981 int epnum; 4982 int ret; 4983 4984 /* Dump fifo information */ 4985 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4986 hsotg->params.g_np_tx_fifo_size); 4987 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4988 4989 switch (hsotg->params.speed) { 4990 case DWC2_SPEED_PARAM_LOW: 4991 hsotg->gadget.max_speed = USB_SPEED_LOW; 4992 break; 4993 case DWC2_SPEED_PARAM_FULL: 4994 hsotg->gadget.max_speed = USB_SPEED_FULL; 4995 break; 4996 default: 4997 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4998 break; 4999 } 5000 5001 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 5002 hsotg->gadget.name = dev_name(dev); 5003 hsotg->gadget.otg_caps = &hsotg->params.otg_caps; 5004 hsotg->remote_wakeup_allowed = 0; 5005 5006 if (hsotg->params.lpm) 5007 hsotg->gadget.lpm_capable = true; 5008 5009 if (hsotg->dr_mode == USB_DR_MODE_OTG) 5010 hsotg->gadget.is_otg = 1; 5011 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 5012 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 5013 5014 ret = dwc2_hsotg_hw_cfg(hsotg); 5015 if (ret) { 5016 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 5017 return ret; 5018 } 5019 5020 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 5021 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 5022 if (!hsotg->ctrl_buff) 5023 return -ENOMEM; 5024 5025 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 5026 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 5027 if (!hsotg->ep0_buff) 5028 return -ENOMEM; 5029 5030 if (using_desc_dma(hsotg)) { 5031 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 5032 if (ret < 0) 5033 return ret; 5034 } 5035 5036 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 5037 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 5038 if (ret < 0) { 5039 dev_err(dev, "cannot claim IRQ for gadget\n"); 5040 return ret; 5041 } 5042 5043 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 5044 5045 if (hsotg->num_of_eps == 0) { 5046 dev_err(dev, "wrong number of EPs (zero)\n"); 5047 return -EINVAL; 5048 } 5049 5050 /* setup endpoint information */ 5051 5052 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 5053 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 5054 5055 /* allocate EP0 request */ 5056 5057 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 5058 GFP_KERNEL); 5059 if (!hsotg->ctrl_req) { 5060 dev_err(dev, "failed to allocate ctrl req\n"); 5061 return -ENOMEM; 5062 } 5063 5064 /* initialise the endpoints now the core has been initialised */ 5065 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 5066 if (hsotg->eps_in[epnum]) 5067 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 5068 epnum, 1); 5069 if (hsotg->eps_out[epnum]) 5070 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 5071 epnum, 0); 5072 } 5073 5074 dwc2_hsotg_dump(hsotg); 5075 5076 return 0; 5077 } 5078 5079 /** 5080 * dwc2_hsotg_remove - remove function for hsotg driver 5081 * @hsotg: Programming view of the DWC_otg controller 5082 * 5083 */ 5084 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 5085 { 5086 usb_del_gadget_udc(&hsotg->gadget); 5087 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 5088 5089 return 0; 5090 } 5091 5092 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 5093 { 5094 unsigned long flags; 5095 5096 if (hsotg->lx_state != DWC2_L0) 5097 return 0; 5098 5099 if (hsotg->driver) { 5100 int ep; 5101 5102 dev_info(hsotg->dev, "suspending usb gadget %s\n", 5103 hsotg->driver->driver.name); 5104 5105 spin_lock_irqsave(&hsotg->lock, flags); 5106 if (hsotg->enabled) 5107 dwc2_hsotg_core_disconnect(hsotg); 5108 dwc2_hsotg_disconnect(hsotg); 5109 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 5110 spin_unlock_irqrestore(&hsotg->lock, flags); 5111 5112 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 5113 if (hsotg->eps_in[ep]) 5114 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 5115 if (hsotg->eps_out[ep]) 5116 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 5117 } 5118 } 5119 5120 return 0; 5121 } 5122 5123 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 5124 { 5125 unsigned long flags; 5126 5127 if (hsotg->lx_state == DWC2_L2) 5128 return 0; 5129 5130 if (hsotg->driver) { 5131 dev_info(hsotg->dev, "resuming usb gadget %s\n", 5132 hsotg->driver->driver.name); 5133 5134 spin_lock_irqsave(&hsotg->lock, flags); 5135 dwc2_hsotg_core_init_disconnected(hsotg, false); 5136 if (hsotg->enabled) { 5137 /* Enable ACG feature in device mode,if supported */ 5138 dwc2_enable_acg(hsotg); 5139 dwc2_hsotg_core_connect(hsotg); 5140 } 5141 spin_unlock_irqrestore(&hsotg->lock, flags); 5142 } 5143 5144 return 0; 5145 } 5146 5147 /** 5148 * dwc2_backup_device_registers() - Backup controller device registers. 5149 * When suspending usb bus, registers needs to be backuped 5150 * if controller power is disabled once suspended. 5151 * 5152 * @hsotg: Programming view of the DWC_otg controller 5153 */ 5154 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 5155 { 5156 struct dwc2_dregs_backup *dr; 5157 int i; 5158 5159 dev_dbg(hsotg->dev, "%s\n", __func__); 5160 5161 /* Backup dev regs */ 5162 dr = &hsotg->dr_backup; 5163 5164 dr->dcfg = dwc2_readl(hsotg, DCFG); 5165 dr->dctl = dwc2_readl(hsotg, DCTL); 5166 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 5167 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 5168 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 5169 5170 for (i = 0; i < hsotg->num_of_eps; i++) { 5171 /* Backup IN EPs */ 5172 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 5173 5174 /* Ensure DATA PID is correctly configured */ 5175 if (dr->diepctl[i] & DXEPCTL_DPID) 5176 dr->diepctl[i] |= DXEPCTL_SETD1PID; 5177 else 5178 dr->diepctl[i] |= DXEPCTL_SETD0PID; 5179 5180 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 5181 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 5182 5183 /* Backup OUT EPs */ 5184 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 5185 5186 /* Ensure DATA PID is correctly configured */ 5187 if (dr->doepctl[i] & DXEPCTL_DPID) 5188 dr->doepctl[i] |= DXEPCTL_SETD1PID; 5189 else 5190 dr->doepctl[i] |= DXEPCTL_SETD0PID; 5191 5192 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 5193 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 5194 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 5195 } 5196 dr->valid = true; 5197 return 0; 5198 } 5199 5200 /** 5201 * dwc2_restore_device_registers() - Restore controller device registers. 5202 * When resuming usb bus, device registers needs to be restored 5203 * if controller power were disabled. 5204 * 5205 * @hsotg: Programming view of the DWC_otg controller 5206 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 5207 * 5208 * Return: 0 if successful, negative error code otherwise 5209 */ 5210 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 5211 { 5212 struct dwc2_dregs_backup *dr; 5213 int i; 5214 5215 dev_dbg(hsotg->dev, "%s\n", __func__); 5216 5217 /* Restore dev regs */ 5218 dr = &hsotg->dr_backup; 5219 if (!dr->valid) { 5220 dev_err(hsotg->dev, "%s: no device registers to restore\n", 5221 __func__); 5222 return -EINVAL; 5223 } 5224 dr->valid = false; 5225 5226 if (!remote_wakeup) 5227 dwc2_writel(hsotg, dr->dctl, DCTL); 5228 5229 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 5230 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 5231 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 5232 5233 for (i = 0; i < hsotg->num_of_eps; i++) { 5234 /* Restore IN EPs */ 5235 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 5236 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 5237 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5238 /** WA for enabled EPx's IN in DDMA mode. On entering to 5239 * hibernation wrong value read and saved from DIEPDMAx, 5240 * as result BNA interrupt asserted on hibernation exit 5241 * by restoring from saved area. 5242 */ 5243 if (using_desc_dma(hsotg) && 5244 (dr->diepctl[i] & DXEPCTL_EPENA)) 5245 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 5246 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 5247 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 5248 /* Restore OUT EPs */ 5249 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5250 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5251 * hibernation wrong value read and saved from DOEPDMAx, 5252 * as result BNA interrupt asserted on hibernation exit 5253 * by restoring from saved area. 5254 */ 5255 if (using_desc_dma(hsotg) && 5256 (dr->doepctl[i] & DXEPCTL_EPENA)) 5257 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5258 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5259 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5260 } 5261 5262 return 0; 5263 } 5264 5265 /** 5266 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5267 * 5268 * @hsotg: Programming view of DWC_otg controller 5269 * 5270 */ 5271 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5272 { 5273 u32 val; 5274 5275 if (!hsotg->params.lpm) 5276 return; 5277 5278 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5279 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5280 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5281 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5282 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5283 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; 5284 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5285 dwc2_writel(hsotg, val, GLPMCFG); 5286 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5287 5288 /* Unmask WKUP_ALERT Interrupt */ 5289 if (hsotg->params.service_interval) 5290 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5291 } 5292 5293 /** 5294 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5295 * 5296 * @hsotg: Programming view of DWC_otg controller 5297 * 5298 */ 5299 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5300 { 5301 u32 val = 0; 5302 5303 val |= GREFCLK_REF_CLK_MODE; 5304 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5305 val |= hsotg->params.sof_cnt_wkup_alert << 5306 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5307 5308 dwc2_writel(hsotg, val, GREFCLK); 5309 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5310 } 5311 5312 /** 5313 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5314 * 5315 * @hsotg: Programming view of the DWC_otg controller 5316 * 5317 * Return non-zero if failed to enter to hibernation. 5318 */ 5319 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5320 { 5321 u32 gpwrdn; 5322 u32 gusbcfg; 5323 u32 pcgcctl; 5324 int ret = 0; 5325 5326 /* Change to L2(suspend) state */ 5327 hsotg->lx_state = DWC2_L2; 5328 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5329 ret = dwc2_backup_global_registers(hsotg); 5330 if (ret) { 5331 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5332 __func__); 5333 return ret; 5334 } 5335 ret = dwc2_backup_device_registers(hsotg); 5336 if (ret) { 5337 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5338 __func__); 5339 return ret; 5340 } 5341 5342 gpwrdn = GPWRDN_PWRDNRSTN; 5343 udelay(10); 5344 gusbcfg = dwc2_readl(hsotg, GUSBCFG); 5345 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) { 5346 /* ULPI interface */ 5347 gpwrdn |= GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY; 5348 } 5349 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5350 udelay(10); 5351 5352 /* Suspend the Phy Clock */ 5353 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5354 pcgcctl |= PCGCTL_STOPPCLK; 5355 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5356 udelay(10); 5357 5358 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5359 gpwrdn |= GPWRDN_PMUACTV; 5360 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5361 udelay(10); 5362 5363 /* Set flag to indicate that we are in hibernation */ 5364 hsotg->hibernated = 1; 5365 5366 /* Enable interrupts from wake up logic */ 5367 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5368 gpwrdn |= GPWRDN_PMUINTSEL; 5369 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5370 udelay(10); 5371 5372 /* Unmask device mode interrupts in GPWRDN */ 5373 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5374 gpwrdn |= GPWRDN_RST_DET_MSK; 5375 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5376 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5377 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5378 udelay(10); 5379 5380 /* Enable Power Down Clamp */ 5381 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5382 gpwrdn |= GPWRDN_PWRDNCLMP; 5383 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5384 udelay(10); 5385 5386 /* Switch off VDD */ 5387 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5388 gpwrdn |= GPWRDN_PWRDNSWTCH; 5389 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5390 udelay(10); 5391 5392 /* Save gpwrdn register for further usage if stschng interrupt */ 5393 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5394 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5395 5396 return ret; 5397 } 5398 5399 /** 5400 * dwc2_gadget_exit_hibernation() 5401 * This function is for exiting from Device mode hibernation by host initiated 5402 * resume/reset and device initiated remote-wakeup. 5403 * 5404 * @hsotg: Programming view of the DWC_otg controller 5405 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5406 * @reset: indicates whether resume is initiated by Reset. 5407 * 5408 * Return non-zero if failed to exit from hibernation. 5409 */ 5410 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5411 int rem_wakeup, int reset) 5412 { 5413 u32 pcgcctl; 5414 u32 gpwrdn; 5415 u32 dctl; 5416 int ret = 0; 5417 struct dwc2_gregs_backup *gr; 5418 struct dwc2_dregs_backup *dr; 5419 5420 gr = &hsotg->gr_backup; 5421 dr = &hsotg->dr_backup; 5422 5423 if (!hsotg->hibernated) { 5424 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5425 return 1; 5426 } 5427 dev_dbg(hsotg->dev, 5428 "%s: called with rem_wakeup = %d reset = %d\n", 5429 __func__, rem_wakeup, reset); 5430 5431 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5432 5433 if (!reset) { 5434 /* Clear all pending interupts */ 5435 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5436 } 5437 5438 /* De-assert Restore */ 5439 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5440 gpwrdn &= ~GPWRDN_RESTORE; 5441 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5442 udelay(10); 5443 5444 if (!rem_wakeup) { 5445 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5446 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5447 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5448 } 5449 5450 /* Restore GUSBCFG, DCFG and DCTL */ 5451 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5452 dwc2_writel(hsotg, dr->dcfg, DCFG); 5453 dwc2_writel(hsotg, dr->dctl, DCTL); 5454 5455 /* On USB Reset, reset device address to zero */ 5456 if (reset) 5457 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 5458 5459 /* Reset ULPI latch */ 5460 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5461 gpwrdn &= ~GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY; 5462 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5463 5464 /* De-assert Wakeup Logic */ 5465 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5466 gpwrdn &= ~GPWRDN_PMUACTV; 5467 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5468 5469 if (rem_wakeup) { 5470 udelay(10); 5471 /* Start Remote Wakeup Signaling */ 5472 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5473 } else { 5474 udelay(50); 5475 /* Set Device programming done bit */ 5476 dctl = dwc2_readl(hsotg, DCTL); 5477 dctl |= DCTL_PWRONPRGDONE; 5478 dwc2_writel(hsotg, dctl, DCTL); 5479 } 5480 /* Wait for interrupts which must be cleared */ 5481 mdelay(2); 5482 /* Clear all pending interupts */ 5483 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5484 5485 /* Restore global registers */ 5486 ret = dwc2_restore_global_registers(hsotg); 5487 if (ret) { 5488 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5489 __func__); 5490 return ret; 5491 } 5492 5493 /* Restore device registers */ 5494 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5495 if (ret) { 5496 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5497 __func__); 5498 return ret; 5499 } 5500 5501 if (rem_wakeup) { 5502 mdelay(10); 5503 dctl = dwc2_readl(hsotg, DCTL); 5504 dctl &= ~DCTL_RMTWKUPSIG; 5505 dwc2_writel(hsotg, dctl, DCTL); 5506 } 5507 5508 hsotg->hibernated = 0; 5509 hsotg->lx_state = DWC2_L0; 5510 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5511 5512 return ret; 5513 } 5514 5515 /** 5516 * dwc2_gadget_enter_partial_power_down() - Put controller in partial 5517 * power down. 5518 * 5519 * @hsotg: Programming view of the DWC_otg controller 5520 * 5521 * Return: non-zero if failed to enter device partial power down. 5522 * 5523 * This function is for entering device mode partial power down. 5524 */ 5525 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg) 5526 { 5527 u32 pcgcctl; 5528 int ret = 0; 5529 5530 dev_dbg(hsotg->dev, "Entering device partial power down started.\n"); 5531 5532 /* Backup all registers */ 5533 ret = dwc2_backup_global_registers(hsotg); 5534 if (ret) { 5535 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5536 __func__); 5537 return ret; 5538 } 5539 5540 ret = dwc2_backup_device_registers(hsotg); 5541 if (ret) { 5542 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5543 __func__); 5544 return ret; 5545 } 5546 5547 /* 5548 * Clear any pending interrupts since dwc2 will not be able to 5549 * clear them after entering partial_power_down. 5550 */ 5551 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5552 5553 /* Put the controller in low power state */ 5554 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5555 5556 pcgcctl |= PCGCTL_PWRCLMP; 5557 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5558 udelay(5); 5559 5560 pcgcctl |= PCGCTL_RSTPDWNMODULE; 5561 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5562 udelay(5); 5563 5564 pcgcctl |= PCGCTL_STOPPCLK; 5565 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5566 5567 /* Set in_ppd flag to 1 as here core enters suspend. */ 5568 hsotg->in_ppd = 1; 5569 hsotg->lx_state = DWC2_L2; 5570 5571 dev_dbg(hsotg->dev, "Entering device partial power down completed.\n"); 5572 5573 return ret; 5574 } 5575 5576 /* 5577 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial 5578 * power down. 5579 * 5580 * @hsotg: Programming view of the DWC_otg controller 5581 * @restore: indicates whether need to restore the registers or not. 5582 * 5583 * Return: non-zero if failed to exit device partial power down. 5584 * 5585 * This function is for exiting from device mode partial power down. 5586 */ 5587 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, 5588 bool restore) 5589 { 5590 u32 pcgcctl; 5591 u32 dctl; 5592 struct dwc2_dregs_backup *dr; 5593 int ret = 0; 5594 5595 dr = &hsotg->dr_backup; 5596 5597 dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n"); 5598 5599 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5600 pcgcctl &= ~PCGCTL_STOPPCLK; 5601 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5602 5603 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5604 pcgcctl &= ~PCGCTL_PWRCLMP; 5605 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5606 5607 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5608 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5609 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5610 5611 udelay(100); 5612 if (restore) { 5613 ret = dwc2_restore_global_registers(hsotg); 5614 if (ret) { 5615 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5616 __func__); 5617 return ret; 5618 } 5619 /* Restore DCFG */ 5620 dwc2_writel(hsotg, dr->dcfg, DCFG); 5621 5622 ret = dwc2_restore_device_registers(hsotg, 0); 5623 if (ret) { 5624 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5625 __func__); 5626 return ret; 5627 } 5628 } 5629 5630 /* Set the Power-On Programming done bit */ 5631 dctl = dwc2_readl(hsotg, DCTL); 5632 dctl |= DCTL_PWRONPRGDONE; 5633 dwc2_writel(hsotg, dctl, DCTL); 5634 5635 /* Set in_ppd flag to 0 as here core exits from suspend. */ 5636 hsotg->in_ppd = 0; 5637 hsotg->lx_state = DWC2_L0; 5638 5639 dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n"); 5640 return ret; 5641 } 5642 5643 /** 5644 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating. 5645 * 5646 * @hsotg: Programming view of the DWC_otg controller 5647 * 5648 * Return: non-zero if failed to enter device partial power down. 5649 * 5650 * This function is for entering device mode clock gating. 5651 */ 5652 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) 5653 { 5654 u32 pcgctl; 5655 5656 dev_dbg(hsotg->dev, "Entering device clock gating.\n"); 5657 5658 /* Set the Phy Clock bit as suspend is received. */ 5659 pcgctl = dwc2_readl(hsotg, PCGCTL); 5660 pcgctl |= PCGCTL_STOPPCLK; 5661 dwc2_writel(hsotg, pcgctl, PCGCTL); 5662 udelay(5); 5663 5664 /* Set the Gate hclk as suspend is received. */ 5665 pcgctl = dwc2_readl(hsotg, PCGCTL); 5666 pcgctl |= PCGCTL_GATEHCLK; 5667 dwc2_writel(hsotg, pcgctl, PCGCTL); 5668 udelay(5); 5669 5670 hsotg->lx_state = DWC2_L2; 5671 hsotg->bus_suspended = true; 5672 } 5673 5674 /* 5675 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating. 5676 * 5677 * @hsotg: Programming view of the DWC_otg controller 5678 * @rem_wakeup: indicates whether remote wake up is enabled. 5679 * 5680 * This function is for exiting from device mode clock gating. 5681 */ 5682 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup) 5683 { 5684 u32 pcgctl; 5685 u32 dctl; 5686 5687 dev_dbg(hsotg->dev, "Exiting device clock gating.\n"); 5688 5689 /* Clear the Gate hclk. */ 5690 pcgctl = dwc2_readl(hsotg, PCGCTL); 5691 pcgctl &= ~PCGCTL_GATEHCLK; 5692 dwc2_writel(hsotg, pcgctl, PCGCTL); 5693 udelay(5); 5694 5695 /* Phy Clock bit. */ 5696 pcgctl = dwc2_readl(hsotg, PCGCTL); 5697 pcgctl &= ~PCGCTL_STOPPCLK; 5698 dwc2_writel(hsotg, pcgctl, PCGCTL); 5699 udelay(5); 5700 5701 if (rem_wakeup) { 5702 /* Set Remote Wakeup Signaling */ 5703 dctl = dwc2_readl(hsotg, DCTL); 5704 dctl |= DCTL_RMTWKUPSIG; 5705 dwc2_writel(hsotg, dctl, DCTL); 5706 } 5707 5708 /* Change to L0 state */ 5709 call_gadget(hsotg, resume); 5710 hsotg->lx_state = DWC2_L0; 5711 hsotg->bus_suspended = false; 5712 } 5713