xref: /linux/drivers/usb/dwc2/gadget.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
31 
32 
33 #include "core.h"
34 #include "hw.h"
35 
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38 {
39 	return container_of(req, struct dwc2_hsotg_req, req);
40 }
41 
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43 {
44 	return container_of(ep, struct dwc2_hsotg_ep, ep);
45 }
46 
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48 {
49 	return container_of(gadget, struct dwc2_hsotg, gadget);
50 }
51 
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53 {
54 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 }
56 
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58 {
59 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 }
61 
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 						u32 ep_index, u32 dir_in)
64 {
65 	if (dir_in)
66 		return hsotg->eps_in[ep_index];
67 	else
68 		return hsotg->eps_out[ep_index];
69 }
70 
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73 
74 /**
75  * using_dma - return the DMA status of the driver.
76  * @hsotg: The driver state.
77  *
78  * Return true if we're using DMA.
79  *
80  * Currently, we have the DMA support code worked into everywhere
81  * that needs it, but the AMBA DMA implementation in the hardware can
82  * only DMA from 32bit aligned addresses. This means that gadgets such
83  * as the CDC Ethernet cannot work as they often pass packets which are
84  * not 32bit aligned.
85  *
86  * Unfortunately the choice to use DMA or not is global to the controller
87  * and seems to be only settable when the controller is being put through
88  * a core reset. This means we either need to fix the gadgets to take
89  * account of DMA alignment, or add bounce buffers (yuerk).
90  *
91  * g_using_dma is set depending on dts flag.
92  */
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
94 {
95 	return hsotg->params.g_dma;
96 }
97 
98 /*
99  * using_desc_dma - return the descriptor DMA status of the driver.
100  * @hsotg: The driver state.
101  *
102  * Return true if we're using descriptor DMA.
103  */
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105 {
106 	return hsotg->params.g_dma_desc;
107 }
108 
109 /**
110  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111  * @hs_ep: The endpoint
112  *
113  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115  */
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 {
118 	struct dwc2_hsotg *hsotg = hs_ep->parent;
119 	u16 limit = DSTS_SOFFN_LIMIT;
120 
121 	if (hsotg->gadget.speed != USB_SPEED_HIGH)
122 		limit >>= 3;
123 
124 	hs_ep->target_frame += hs_ep->interval;
125 	if (hs_ep->target_frame > limit) {
126 		hs_ep->frame_overrun = true;
127 		hs_ep->target_frame &= limit;
128 	} else {
129 		hs_ep->frame_overrun = false;
130 	}
131 }
132 
133 /**
134  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
135  *                                    by one.
136  * @hs_ep: The endpoint.
137  *
138  * This function used in service interval based scheduling flow to calculate
139  * descriptor frame number filed value. For service interval mode frame
140  * number in descriptor should point to last (u)frame in the interval.
141  *
142  */
143 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
144 {
145 	struct dwc2_hsotg *hsotg = hs_ep->parent;
146 	u16 limit = DSTS_SOFFN_LIMIT;
147 
148 	if (hsotg->gadget.speed != USB_SPEED_HIGH)
149 		limit >>= 3;
150 
151 	if (hs_ep->target_frame)
152 		hs_ep->target_frame -= 1;
153 	else
154 		hs_ep->target_frame = limit;
155 }
156 
157 /**
158  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
159  * @hsotg: The device state
160  * @ints: A bitmask of the interrupts to enable
161  */
162 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
163 {
164 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
165 	u32 new_gsintmsk;
166 
167 	new_gsintmsk = gsintmsk | ints;
168 
169 	if (new_gsintmsk != gsintmsk) {
170 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
171 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
172 	}
173 }
174 
175 /**
176  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
177  * @hsotg: The device state
178  * @ints: A bitmask of the interrupts to enable
179  */
180 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
181 {
182 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
183 	u32 new_gsintmsk;
184 
185 	new_gsintmsk = gsintmsk & ~ints;
186 
187 	if (new_gsintmsk != gsintmsk)
188 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
189 }
190 
191 /**
192  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
193  * @hsotg: The device state
194  * @ep: The endpoint index
195  * @dir_in: True if direction is in.
196  * @en: The enable value, true to enable
197  *
198  * Set or clear the mask for an individual endpoint's interrupt
199  * request.
200  */
201 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
202 				  unsigned int ep, unsigned int dir_in,
203 				 unsigned int en)
204 {
205 	unsigned long flags;
206 	u32 bit = 1 << ep;
207 	u32 daint;
208 
209 	if (!dir_in)
210 		bit <<= 16;
211 
212 	local_irq_save(flags);
213 	daint = dwc2_readl(hsotg, DAINTMSK);
214 	if (en)
215 		daint |= bit;
216 	else
217 		daint &= ~bit;
218 	dwc2_writel(hsotg, daint, DAINTMSK);
219 	local_irq_restore(flags);
220 }
221 
222 /**
223  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
224  *
225  * @hsotg: Programming view of the DWC_otg controller
226  */
227 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
228 {
229 	if (hsotg->hw_params.en_multiple_tx_fifo)
230 		/* In dedicated FIFO mode we need count of IN EPs */
231 		return hsotg->hw_params.num_dev_in_eps;
232 	else
233 		/* In shared FIFO mode we need count of Periodic IN EPs */
234 		return hsotg->hw_params.num_dev_perio_in_ep;
235 }
236 
237 /**
238  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
239  * device mode TX FIFOs
240  *
241  * @hsotg: Programming view of the DWC_otg controller
242  */
243 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
244 {
245 	int addr;
246 	int tx_addr_max;
247 	u32 np_tx_fifo_size;
248 
249 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
250 				hsotg->params.g_np_tx_fifo_size);
251 
252 	/* Get Endpoint Info Control block size in DWORDs. */
253 	tx_addr_max = hsotg->hw_params.total_fifo_size;
254 
255 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
256 	if (tx_addr_max <= addr)
257 		return 0;
258 
259 	return tx_addr_max - addr;
260 }
261 
262 /**
263  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
264  *
265  * @hsotg: Programming view of the DWC_otg controller
266  *
267  */
268 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
269 {
270 	u32 gintsts2;
271 	u32 gintmsk2;
272 
273 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
274 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
275 	gintsts2 &= gintmsk2;
276 
277 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
278 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
279 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
280 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
281 	}
282 }
283 
284 /**
285  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
286  * TX FIFOs
287  *
288  * @hsotg: Programming view of the DWC_otg controller
289  */
290 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
291 {
292 	int tx_fifo_count;
293 	int tx_fifo_depth;
294 
295 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
296 
297 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
298 
299 	if (!tx_fifo_count)
300 		return tx_fifo_depth;
301 	else
302 		return tx_fifo_depth / tx_fifo_count;
303 }
304 
305 /**
306  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
307  * @hsotg: The device instance.
308  */
309 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
310 {
311 	unsigned int ep;
312 	unsigned int addr;
313 	int timeout;
314 
315 	u32 val;
316 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
317 
318 	/* Reset fifo map if not correctly cleared during previous session */
319 	WARN_ON(hsotg->fifo_map);
320 	hsotg->fifo_map = 0;
321 
322 	/* set RX/NPTX FIFO sizes */
323 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
324 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
325 		    FIFOSIZE_STARTADDR_SHIFT) |
326 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
327 		    GNPTXFSIZ);
328 
329 	/*
330 	 * arange all the rest of the TX FIFOs, as some versions of this
331 	 * block have overlapping default addresses. This also ensures
332 	 * that if the settings have been changed, then they are set to
333 	 * known values.
334 	 */
335 
336 	/* start at the end of the GNPTXFSIZ, rounded up */
337 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
338 
339 	/*
340 	 * Configure fifos sizes from provided configuration and assign
341 	 * them to endpoints dynamically according to maxpacket size value of
342 	 * given endpoint.
343 	 */
344 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
345 		if (!txfsz[ep])
346 			continue;
347 		val = addr;
348 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
349 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
350 			  "insufficient fifo memory");
351 		addr += txfsz[ep];
352 
353 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
354 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
355 	}
356 
357 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
358 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
359 		    GDFIFOCFG);
360 	/*
361 	 * according to p428 of the design guide, we need to ensure that
362 	 * all fifos are flushed before continuing
363 	 */
364 
365 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
366 	       GRSTCTL_RXFFLSH, GRSTCTL);
367 
368 	/* wait until the fifos are both flushed */
369 	timeout = 100;
370 	while (1) {
371 		val = dwc2_readl(hsotg, GRSTCTL);
372 
373 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
374 			break;
375 
376 		if (--timeout == 0) {
377 			dev_err(hsotg->dev,
378 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
379 				__func__, val);
380 			break;
381 		}
382 
383 		udelay(1);
384 	}
385 
386 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
387 }
388 
389 /**
390  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
391  * @ep: USB endpoint to allocate request for.
392  * @flags: Allocation flags
393  *
394  * Allocate a new USB request structure appropriate for the specified endpoint
395  */
396 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
397 						       gfp_t flags)
398 {
399 	struct dwc2_hsotg_req *req;
400 
401 	req = kzalloc(sizeof(*req), flags);
402 	if (!req)
403 		return NULL;
404 
405 	INIT_LIST_HEAD(&req->queue);
406 
407 	return &req->req;
408 }
409 
410 /**
411  * is_ep_periodic - return true if the endpoint is in periodic mode.
412  * @hs_ep: The endpoint to query.
413  *
414  * Returns true if the endpoint is in periodic mode, meaning it is being
415  * used for an Interrupt or ISO transfer.
416  */
417 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
418 {
419 	return hs_ep->periodic;
420 }
421 
422 /**
423  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
424  * @hsotg: The device state.
425  * @hs_ep: The endpoint for the request
426  * @hs_req: The request being processed.
427  *
428  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
429  * of a request to ensure the buffer is ready for access by the caller.
430  */
431 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
432 				 struct dwc2_hsotg_ep *hs_ep,
433 				struct dwc2_hsotg_req *hs_req)
434 {
435 	struct usb_request *req = &hs_req->req;
436 
437 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
438 }
439 
440 /*
441  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
442  * for Control endpoint
443  * @hsotg: The device state.
444  *
445  * This function will allocate 4 descriptor chains for EP 0: 2 for
446  * Setup stage, per one for IN and OUT data/status transactions.
447  */
448 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
449 {
450 	hsotg->setup_desc[0] =
451 		dmam_alloc_coherent(hsotg->dev,
452 				    sizeof(struct dwc2_dma_desc),
453 				    &hsotg->setup_desc_dma[0],
454 				    GFP_KERNEL);
455 	if (!hsotg->setup_desc[0])
456 		goto fail;
457 
458 	hsotg->setup_desc[1] =
459 		dmam_alloc_coherent(hsotg->dev,
460 				    sizeof(struct dwc2_dma_desc),
461 				    &hsotg->setup_desc_dma[1],
462 				    GFP_KERNEL);
463 	if (!hsotg->setup_desc[1])
464 		goto fail;
465 
466 	hsotg->ctrl_in_desc =
467 		dmam_alloc_coherent(hsotg->dev,
468 				    sizeof(struct dwc2_dma_desc),
469 				    &hsotg->ctrl_in_desc_dma,
470 				    GFP_KERNEL);
471 	if (!hsotg->ctrl_in_desc)
472 		goto fail;
473 
474 	hsotg->ctrl_out_desc =
475 		dmam_alloc_coherent(hsotg->dev,
476 				    sizeof(struct dwc2_dma_desc),
477 				    &hsotg->ctrl_out_desc_dma,
478 				    GFP_KERNEL);
479 	if (!hsotg->ctrl_out_desc)
480 		goto fail;
481 
482 	return 0;
483 
484 fail:
485 	return -ENOMEM;
486 }
487 
488 /**
489  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
490  * @hsotg: The controller state.
491  * @hs_ep: The endpoint we're going to write for.
492  * @hs_req: The request to write data for.
493  *
494  * This is called when the TxFIFO has some space in it to hold a new
495  * transmission and we have something to give it. The actual setup of
496  * the data size is done elsewhere, so all we have to do is to actually
497  * write the data.
498  *
499  * The return value is zero if there is more space (or nothing was done)
500  * otherwise -ENOSPC is returned if the FIFO space was used up.
501  *
502  * This routine is only needed for PIO
503  */
504 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
505 				 struct dwc2_hsotg_ep *hs_ep,
506 				struct dwc2_hsotg_req *hs_req)
507 {
508 	bool periodic = is_ep_periodic(hs_ep);
509 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
510 	int buf_pos = hs_req->req.actual;
511 	int to_write = hs_ep->size_loaded;
512 	void *data;
513 	int can_write;
514 	int pkt_round;
515 	int max_transfer;
516 
517 	to_write -= (buf_pos - hs_ep->last_load);
518 
519 	/* if there's nothing to write, get out early */
520 	if (to_write == 0)
521 		return 0;
522 
523 	if (periodic && !hsotg->dedicated_fifos) {
524 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
525 		int size_left;
526 		int size_done;
527 
528 		/*
529 		 * work out how much data was loaded so we can calculate
530 		 * how much data is left in the fifo.
531 		 */
532 
533 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
534 
535 		/*
536 		 * if shared fifo, we cannot write anything until the
537 		 * previous data has been completely sent.
538 		 */
539 		if (hs_ep->fifo_load != 0) {
540 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
541 			return -ENOSPC;
542 		}
543 
544 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
545 			__func__, size_left,
546 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
547 
548 		/* how much of the data has moved */
549 		size_done = hs_ep->size_loaded - size_left;
550 
551 		/* how much data is left in the fifo */
552 		can_write = hs_ep->fifo_load - size_done;
553 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
554 			__func__, can_write);
555 
556 		can_write = hs_ep->fifo_size - can_write;
557 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
558 			__func__, can_write);
559 
560 		if (can_write <= 0) {
561 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
562 			return -ENOSPC;
563 		}
564 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
565 		can_write = dwc2_readl(hsotg,
566 				       DTXFSTS(hs_ep->fifo_index));
567 
568 		can_write &= 0xffff;
569 		can_write *= 4;
570 	} else {
571 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
572 			dev_dbg(hsotg->dev,
573 				"%s: no queue slots available (0x%08x)\n",
574 				__func__, gnptxsts);
575 
576 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
577 			return -ENOSPC;
578 		}
579 
580 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
581 		can_write *= 4;	/* fifo size is in 32bit quantities. */
582 	}
583 
584 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
585 
586 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
587 		__func__, gnptxsts, can_write, to_write, max_transfer);
588 
589 	/*
590 	 * limit to 512 bytes of data, it seems at least on the non-periodic
591 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
592 	 * fragment of the end of the transfer in it.
593 	 */
594 	if (can_write > 512 && !periodic)
595 		can_write = 512;
596 
597 	/*
598 	 * limit the write to one max-packet size worth of data, but allow
599 	 * the transfer to return that it did not run out of fifo space
600 	 * doing it.
601 	 */
602 	if (to_write > max_transfer) {
603 		to_write = max_transfer;
604 
605 		/* it's needed only when we do not use dedicated fifos */
606 		if (!hsotg->dedicated_fifos)
607 			dwc2_hsotg_en_gsint(hsotg,
608 					    periodic ? GINTSTS_PTXFEMP :
609 					   GINTSTS_NPTXFEMP);
610 	}
611 
612 	/* see if we can write data */
613 
614 	if (to_write > can_write) {
615 		to_write = can_write;
616 		pkt_round = to_write % max_transfer;
617 
618 		/*
619 		 * Round the write down to an
620 		 * exact number of packets.
621 		 *
622 		 * Note, we do not currently check to see if we can ever
623 		 * write a full packet or not to the FIFO.
624 		 */
625 
626 		if (pkt_round)
627 			to_write -= pkt_round;
628 
629 		/*
630 		 * enable correct FIFO interrupt to alert us when there
631 		 * is more room left.
632 		 */
633 
634 		/* it's needed only when we do not use dedicated fifos */
635 		if (!hsotg->dedicated_fifos)
636 			dwc2_hsotg_en_gsint(hsotg,
637 					    periodic ? GINTSTS_PTXFEMP :
638 					   GINTSTS_NPTXFEMP);
639 	}
640 
641 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
642 		to_write, hs_req->req.length, can_write, buf_pos);
643 
644 	if (to_write <= 0)
645 		return -ENOSPC;
646 
647 	hs_req->req.actual = buf_pos + to_write;
648 	hs_ep->total_data += to_write;
649 
650 	if (periodic)
651 		hs_ep->fifo_load += to_write;
652 
653 	to_write = DIV_ROUND_UP(to_write, 4);
654 	data = hs_req->req.buf + buf_pos;
655 
656 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
657 
658 	return (to_write >= can_write) ? -ENOSPC : 0;
659 }
660 
661 /**
662  * get_ep_limit - get the maximum data legnth for this endpoint
663  * @hs_ep: The endpoint
664  *
665  * Return the maximum data that can be queued in one go on a given endpoint
666  * so that transfers that are too long can be split.
667  */
668 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
669 {
670 	int index = hs_ep->index;
671 	unsigned int maxsize;
672 	unsigned int maxpkt;
673 
674 	if (index != 0) {
675 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
676 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
677 	} else {
678 		maxsize = 64 + 64;
679 		if (hs_ep->dir_in)
680 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
681 		else
682 			maxpkt = 2;
683 	}
684 
685 	/* we made the constant loading easier above by using +1 */
686 	maxpkt--;
687 	maxsize--;
688 
689 	/*
690 	 * constrain by packet count if maxpkts*pktsize is greater
691 	 * than the length register size.
692 	 */
693 
694 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
695 		maxsize = maxpkt * hs_ep->ep.maxpacket;
696 
697 	return maxsize;
698 }
699 
700 /**
701  * dwc2_hsotg_read_frameno - read current frame number
702  * @hsotg: The device instance
703  *
704  * Return the current frame number
705  */
706 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
707 {
708 	u32 dsts;
709 
710 	dsts = dwc2_readl(hsotg, DSTS);
711 	dsts &= DSTS_SOFFN_MASK;
712 	dsts >>= DSTS_SOFFN_SHIFT;
713 
714 	return dsts;
715 }
716 
717 /**
718  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
719  * DMA descriptor chain prepared for specific endpoint
720  * @hs_ep: The endpoint
721  *
722  * Return the maximum data that can be queued in one go on a given endpoint
723  * depending on its descriptor chain capacity so that transfers that
724  * are too long can be split.
725  */
726 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
727 {
728 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
729 	int is_isoc = hs_ep->isochronous;
730 	unsigned int maxsize;
731 	u32 mps = hs_ep->ep.maxpacket;
732 	int dir_in = hs_ep->dir_in;
733 
734 	if (is_isoc)
735 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
736 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
737 					   MAX_DMA_DESC_NUM_HS_ISOC;
738 	else
739 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
740 
741 	/* Interrupt OUT EP with mps not multiple of 4 */
742 	if (hs_ep->index)
743 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
744 			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
745 
746 	return maxsize;
747 }
748 
749 /*
750  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
751  * @hs_ep: The endpoint
752  * @mask: RX/TX bytes mask to be defined
753  *
754  * Returns maximum data payload for one descriptor after analyzing endpoint
755  * characteristics.
756  * DMA descriptor transfer bytes limit depends on EP type:
757  * Control out - MPS,
758  * Isochronous - descriptor rx/tx bytes bitfield limit,
759  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
760  * have concatenations from various descriptors within one packet.
761  * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
762  * to a single descriptor.
763  *
764  * Selects corresponding mask for RX/TX bytes as well.
765  */
766 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
767 {
768 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
769 	u32 mps = hs_ep->ep.maxpacket;
770 	int dir_in = hs_ep->dir_in;
771 	u32 desc_size = 0;
772 
773 	if (!hs_ep->index && !dir_in) {
774 		desc_size = mps;
775 		*mask = DEV_DMA_NBYTES_MASK;
776 	} else if (hs_ep->isochronous) {
777 		if (dir_in) {
778 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
779 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
780 		} else {
781 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
782 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
783 		}
784 	} else {
785 		desc_size = DEV_DMA_NBYTES_LIMIT;
786 		*mask = DEV_DMA_NBYTES_MASK;
787 
788 		/* Round down desc_size to be mps multiple */
789 		desc_size -= desc_size % mps;
790 	}
791 
792 	/* Interrupt OUT EP with mps not multiple of 4 */
793 	if (hs_ep->index)
794 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
795 			desc_size = mps;
796 			*mask = DEV_DMA_NBYTES_MASK;
797 		}
798 
799 	return desc_size;
800 }
801 
802 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
803 						 struct dwc2_dma_desc **desc,
804 						 dma_addr_t dma_buff,
805 						 unsigned int len,
806 						 bool true_last)
807 {
808 	int dir_in = hs_ep->dir_in;
809 	u32 mps = hs_ep->ep.maxpacket;
810 	u32 maxsize = 0;
811 	u32 offset = 0;
812 	u32 mask = 0;
813 	int i;
814 
815 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
816 
817 	hs_ep->desc_count = (len / maxsize) +
818 				((len % maxsize) ? 1 : 0);
819 	if (len == 0)
820 		hs_ep->desc_count = 1;
821 
822 	for (i = 0; i < hs_ep->desc_count; ++i) {
823 		(*desc)->status = 0;
824 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
825 				 << DEV_DMA_BUFF_STS_SHIFT);
826 
827 		if (len > maxsize) {
828 			if (!hs_ep->index && !dir_in)
829 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
830 
831 			(*desc)->status |=
832 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
833 			(*desc)->buf = dma_buff + offset;
834 
835 			len -= maxsize;
836 			offset += maxsize;
837 		} else {
838 			if (true_last)
839 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
840 
841 			if (dir_in)
842 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
843 					((hs_ep->send_zlp && true_last) ?
844 					DEV_DMA_SHORT : 0);
845 
846 			(*desc)->status |=
847 				len << DEV_DMA_NBYTES_SHIFT & mask;
848 			(*desc)->buf = dma_buff + offset;
849 		}
850 
851 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
852 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
853 				 << DEV_DMA_BUFF_STS_SHIFT);
854 		(*desc)++;
855 	}
856 }
857 
858 /*
859  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
860  * @hs_ep: The endpoint
861  * @ureq: Request to transfer
862  * @offset: offset in bytes
863  * @len: Length of the transfer
864  *
865  * This function will iterate over descriptor chain and fill its entries
866  * with corresponding information based on transfer data.
867  */
868 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
869 						 dma_addr_t dma_buff,
870 						 unsigned int len)
871 {
872 	struct usb_request *ureq = NULL;
873 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
874 	struct scatterlist *sg;
875 	int i;
876 	u8 desc_count = 0;
877 
878 	if (hs_ep->req)
879 		ureq = &hs_ep->req->req;
880 
881 	/* non-DMA sg buffer */
882 	if (!ureq || !ureq->num_sgs) {
883 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
884 			dma_buff, len, true);
885 		return;
886 	}
887 
888 	/* DMA sg buffer */
889 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
890 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
891 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
892 			sg_is_last(sg));
893 		desc_count += hs_ep->desc_count;
894 	}
895 
896 	hs_ep->desc_count = desc_count;
897 }
898 
899 /*
900  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
901  * @hs_ep: The isochronous endpoint.
902  * @dma_buff: usb requests dma buffer.
903  * @len: usb request transfer length.
904  *
905  * Fills next free descriptor with the data of the arrived usb request,
906  * frame info, sets Last and IOC bits increments next_desc. If filled
907  * descriptor is not the first one, removes L bit from the previous descriptor
908  * status.
909  */
910 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
911 				      dma_addr_t dma_buff, unsigned int len)
912 {
913 	struct dwc2_dma_desc *desc;
914 	struct dwc2_hsotg *hsotg = hs_ep->parent;
915 	u32 index;
916 	u32 mask = 0;
917 	u8 pid = 0;
918 
919 	dwc2_gadget_get_desc_params(hs_ep, &mask);
920 
921 	index = hs_ep->next_desc;
922 	desc = &hs_ep->desc_list[index];
923 
924 	/* Check if descriptor chain full */
925 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
926 	    DEV_DMA_BUFF_STS_HREADY) {
927 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
928 		return 1;
929 	}
930 
931 	/* Clear L bit of previous desc if more than one entries in the chain */
932 	if (hs_ep->next_desc)
933 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
934 
935 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
936 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
937 
938 	desc->status = 0;
939 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
940 
941 	desc->buf = dma_buff;
942 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
943 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
944 
945 	if (hs_ep->dir_in) {
946 		if (len)
947 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
948 		else
949 			pid = 1;
950 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
951 				 DEV_DMA_ISOC_PID_MASK) |
952 				((len % hs_ep->ep.maxpacket) ?
953 				 DEV_DMA_SHORT : 0) |
954 				((hs_ep->target_frame <<
955 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
956 				 DEV_DMA_ISOC_FRNUM_MASK);
957 	}
958 
959 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
960 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
961 
962 	/* Increment frame number by interval for IN */
963 	if (hs_ep->dir_in)
964 		dwc2_gadget_incr_frame_num(hs_ep);
965 
966 	/* Update index of last configured entry in the chain */
967 	hs_ep->next_desc++;
968 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
969 		hs_ep->next_desc = 0;
970 
971 	return 0;
972 }
973 
974 /*
975  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
976  * @hs_ep: The isochronous endpoint.
977  *
978  * Prepare descriptor chain for isochronous endpoints. Afterwards
979  * write DMA address to HW and enable the endpoint.
980  */
981 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
982 {
983 	struct dwc2_hsotg *hsotg = hs_ep->parent;
984 	struct dwc2_hsotg_req *hs_req, *treq;
985 	int index = hs_ep->index;
986 	int ret;
987 	int i;
988 	u32 dma_reg;
989 	u32 depctl;
990 	u32 ctrl;
991 	struct dwc2_dma_desc *desc;
992 
993 	if (list_empty(&hs_ep->queue)) {
994 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
995 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
996 		return;
997 	}
998 
999 	/* Initialize descriptor chain by Host Busy status */
1000 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1001 		desc = &hs_ep->desc_list[i];
1002 		desc->status = 0;
1003 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1004 				    << DEV_DMA_BUFF_STS_SHIFT);
1005 	}
1006 
1007 	hs_ep->next_desc = 0;
1008 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1009 		dma_addr_t dma_addr = hs_req->req.dma;
1010 
1011 		if (hs_req->req.num_sgs) {
1012 			WARN_ON(hs_req->req.num_sgs > 1);
1013 			dma_addr = sg_dma_address(hs_req->req.sg);
1014 		}
1015 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1016 						 hs_req->req.length);
1017 		if (ret)
1018 			break;
1019 	}
1020 
1021 	hs_ep->compl_desc = 0;
1022 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1023 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1024 
1025 	/* write descriptor chain address to control register */
1026 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1027 
1028 	ctrl = dwc2_readl(hsotg, depctl);
1029 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1030 	dwc2_writel(hsotg, ctrl, depctl);
1031 }
1032 
1033 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1034 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1035 					struct dwc2_hsotg_ep *hs_ep,
1036 				       struct dwc2_hsotg_req *hs_req,
1037 				       int result);
1038 
1039 /**
1040  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1041  * @hsotg: The controller state.
1042  * @hs_ep: The endpoint to process a request for
1043  * @hs_req: The request to start.
1044  * @continuing: True if we are doing more for the current request.
1045  *
1046  * Start the given request running by setting the endpoint registers
1047  * appropriately, and writing any data to the FIFOs.
1048  */
1049 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1050 				 struct dwc2_hsotg_ep *hs_ep,
1051 				struct dwc2_hsotg_req *hs_req,
1052 				bool continuing)
1053 {
1054 	struct usb_request *ureq = &hs_req->req;
1055 	int index = hs_ep->index;
1056 	int dir_in = hs_ep->dir_in;
1057 	u32 epctrl_reg;
1058 	u32 epsize_reg;
1059 	u32 epsize;
1060 	u32 ctrl;
1061 	unsigned int length;
1062 	unsigned int packets;
1063 	unsigned int maxreq;
1064 	unsigned int dma_reg;
1065 
1066 	if (index != 0) {
1067 		if (hs_ep->req && !continuing) {
1068 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1069 			WARN_ON(1);
1070 			return;
1071 		} else if (hs_ep->req != hs_req && continuing) {
1072 			dev_err(hsotg->dev,
1073 				"%s: continue different req\n", __func__);
1074 			WARN_ON(1);
1075 			return;
1076 		}
1077 	}
1078 
1079 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1080 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1081 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1082 
1083 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1084 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1085 		hs_ep->dir_in ? "in" : "out");
1086 
1087 	/* If endpoint is stalled, we will restart request later */
1088 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1089 
1090 	if (index && ctrl & DXEPCTL_STALL) {
1091 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1092 		return;
1093 	}
1094 
1095 	length = ureq->length - ureq->actual;
1096 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1097 		ureq->length, ureq->actual);
1098 
1099 	if (!using_desc_dma(hsotg))
1100 		maxreq = get_ep_limit(hs_ep);
1101 	else
1102 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1103 
1104 	if (length > maxreq) {
1105 		int round = maxreq % hs_ep->ep.maxpacket;
1106 
1107 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1108 			__func__, length, maxreq, round);
1109 
1110 		/* round down to multiple of packets */
1111 		if (round)
1112 			maxreq -= round;
1113 
1114 		length = maxreq;
1115 	}
1116 
1117 	if (length)
1118 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1119 	else
1120 		packets = 1;	/* send one packet if length is zero. */
1121 
1122 	if (dir_in && index != 0)
1123 		if (hs_ep->isochronous)
1124 			epsize = DXEPTSIZ_MC(packets);
1125 		else
1126 			epsize = DXEPTSIZ_MC(1);
1127 	else
1128 		epsize = 0;
1129 
1130 	/*
1131 	 * zero length packet should be programmed on its own and should not
1132 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1133 	 */
1134 	if (dir_in && ureq->zero && !continuing) {
1135 		/* Test if zlp is actually required. */
1136 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1137 		    !(ureq->length % hs_ep->ep.maxpacket))
1138 			hs_ep->send_zlp = 1;
1139 	}
1140 
1141 	epsize |= DXEPTSIZ_PKTCNT(packets);
1142 	epsize |= DXEPTSIZ_XFERSIZE(length);
1143 
1144 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1145 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1146 
1147 	/* store the request as the current one we're doing */
1148 	hs_ep->req = hs_req;
1149 
1150 	if (using_desc_dma(hsotg)) {
1151 		u32 offset = 0;
1152 		u32 mps = hs_ep->ep.maxpacket;
1153 
1154 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1155 		if (!dir_in) {
1156 			if (!index)
1157 				length = mps;
1158 			else if (length % mps)
1159 				length += (mps - (length % mps));
1160 		}
1161 
1162 		if (continuing)
1163 			offset = ureq->actual;
1164 
1165 		/* Fill DDMA chain entries */
1166 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1167 						     length);
1168 
1169 		/* write descriptor chain address to control register */
1170 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1171 
1172 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1173 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1174 	} else {
1175 		/* write size / packets */
1176 		dwc2_writel(hsotg, epsize, epsize_reg);
1177 
1178 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1179 			/*
1180 			 * write DMA address to control register, buffer
1181 			 * already synced by dwc2_hsotg_ep_queue().
1182 			 */
1183 
1184 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1185 
1186 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1187 				__func__, &ureq->dma, dma_reg);
1188 		}
1189 	}
1190 
1191 	if (hs_ep->isochronous) {
1192 		if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1193 			if (hs_ep->interval == 1) {
1194 				if (hs_ep->target_frame & 0x1)
1195 					ctrl |= DXEPCTL_SETODDFR;
1196 				else
1197 					ctrl |= DXEPCTL_SETEVENFR;
1198 			}
1199 			ctrl |= DXEPCTL_CNAK;
1200 		} else {
1201 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1202 			return;
1203 		}
1204 	}
1205 
1206 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1207 
1208 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1209 
1210 	/* For Setup request do not clear NAK */
1211 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1212 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1213 
1214 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1215 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1216 
1217 	/*
1218 	 * set these, it seems that DMA support increments past the end
1219 	 * of the packet buffer so we need to calculate the length from
1220 	 * this information.
1221 	 */
1222 	hs_ep->size_loaded = length;
1223 	hs_ep->last_load = ureq->actual;
1224 
1225 	if (dir_in && !using_dma(hsotg)) {
1226 		/* set these anyway, we may need them for non-periodic in */
1227 		hs_ep->fifo_load = 0;
1228 
1229 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1230 	}
1231 
1232 	/*
1233 	 * Note, trying to clear the NAK here causes problems with transmit
1234 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1235 	 */
1236 
1237 	/* check ep is enabled */
1238 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1239 		dev_dbg(hsotg->dev,
1240 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1241 			 index, dwc2_readl(hsotg, epctrl_reg));
1242 
1243 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1244 		__func__, dwc2_readl(hsotg, epctrl_reg));
1245 
1246 	/* enable ep interrupts */
1247 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1248 }
1249 
1250 /**
1251  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1252  * @hsotg: The device state.
1253  * @hs_ep: The endpoint the request is on.
1254  * @req: The request being processed.
1255  *
1256  * We've been asked to queue a request, so ensure that the memory buffer
1257  * is correctly setup for DMA. If we've been passed an extant DMA address
1258  * then ensure the buffer has been synced to memory. If our buffer has no
1259  * DMA memory, then we map the memory and mark our request to allow us to
1260  * cleanup on completion.
1261  */
1262 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1263 			      struct dwc2_hsotg_ep *hs_ep,
1264 			     struct usb_request *req)
1265 {
1266 	int ret;
1267 
1268 	hs_ep->map_dir = hs_ep->dir_in;
1269 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1270 	if (ret)
1271 		goto dma_error;
1272 
1273 	return 0;
1274 
1275 dma_error:
1276 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1277 		__func__, req->buf, req->length);
1278 
1279 	return -EIO;
1280 }
1281 
1282 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1283 						 struct dwc2_hsotg_ep *hs_ep,
1284 						 struct dwc2_hsotg_req *hs_req)
1285 {
1286 	void *req_buf = hs_req->req.buf;
1287 
1288 	/* If dma is not being used or buffer is aligned */
1289 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1290 		return 0;
1291 
1292 	WARN_ON(hs_req->saved_req_buf);
1293 
1294 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1295 		hs_ep->ep.name, req_buf, hs_req->req.length);
1296 
1297 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1298 	if (!hs_req->req.buf) {
1299 		hs_req->req.buf = req_buf;
1300 		dev_err(hsotg->dev,
1301 			"%s: unable to allocate memory for bounce buffer\n",
1302 			__func__);
1303 		return -ENOMEM;
1304 	}
1305 
1306 	/* Save actual buffer */
1307 	hs_req->saved_req_buf = req_buf;
1308 
1309 	if (hs_ep->dir_in)
1310 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1311 	return 0;
1312 }
1313 
1314 static void
1315 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1316 					 struct dwc2_hsotg_ep *hs_ep,
1317 					 struct dwc2_hsotg_req *hs_req)
1318 {
1319 	/* If dma is not being used or buffer was aligned */
1320 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1321 		return;
1322 
1323 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1324 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1325 
1326 	/* Copy data from bounce buffer on successful out transfer */
1327 	if (!hs_ep->dir_in && !hs_req->req.status)
1328 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1329 		       hs_req->req.actual);
1330 
1331 	/* Free bounce buffer */
1332 	kfree(hs_req->req.buf);
1333 
1334 	hs_req->req.buf = hs_req->saved_req_buf;
1335 	hs_req->saved_req_buf = NULL;
1336 }
1337 
1338 /**
1339  * dwc2_gadget_target_frame_elapsed - Checks target frame
1340  * @hs_ep: The driver endpoint to check
1341  *
1342  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1343  * corresponding transfer.
1344  */
1345 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1346 {
1347 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1348 	u32 target_frame = hs_ep->target_frame;
1349 	u32 current_frame = hsotg->frame_number;
1350 	bool frame_overrun = hs_ep->frame_overrun;
1351 	u16 limit = DSTS_SOFFN_LIMIT;
1352 
1353 	if (hsotg->gadget.speed != USB_SPEED_HIGH)
1354 		limit >>= 3;
1355 
1356 	if (!frame_overrun && current_frame >= target_frame)
1357 		return true;
1358 
1359 	if (frame_overrun && current_frame >= target_frame &&
1360 	    ((current_frame - target_frame) < limit / 2))
1361 		return true;
1362 
1363 	return false;
1364 }
1365 
1366 /*
1367  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1368  * @hsotg: The driver state
1369  * @hs_ep: the ep descriptor chain is for
1370  *
1371  * Called to update EP0 structure's pointers depend on stage of
1372  * control transfer.
1373  */
1374 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1375 					  struct dwc2_hsotg_ep *hs_ep)
1376 {
1377 	switch (hsotg->ep0_state) {
1378 	case DWC2_EP0_SETUP:
1379 	case DWC2_EP0_STATUS_OUT:
1380 		hs_ep->desc_list = hsotg->setup_desc[0];
1381 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1382 		break;
1383 	case DWC2_EP0_DATA_IN:
1384 	case DWC2_EP0_STATUS_IN:
1385 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1386 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1387 		break;
1388 	case DWC2_EP0_DATA_OUT:
1389 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1390 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1391 		break;
1392 	default:
1393 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1394 			hsotg->ep0_state);
1395 		return -EINVAL;
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1402 			       gfp_t gfp_flags)
1403 {
1404 	struct dwc2_hsotg_req *hs_req = our_req(req);
1405 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1406 	struct dwc2_hsotg *hs = hs_ep->parent;
1407 	bool first;
1408 	int ret;
1409 	u32 maxsize = 0;
1410 	u32 mask = 0;
1411 
1412 
1413 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1414 		ep->name, req, req->length, req->buf, req->no_interrupt,
1415 		req->zero, req->short_not_ok);
1416 
1417 	/* Prevent new request submission when controller is suspended */
1418 	if (hs->lx_state != DWC2_L0) {
1419 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1420 			__func__);
1421 		return -EAGAIN;
1422 	}
1423 
1424 	/* initialise status of the request */
1425 	INIT_LIST_HEAD(&hs_req->queue);
1426 	req->actual = 0;
1427 	req->status = -EINPROGRESS;
1428 
1429 	/* Don't queue ISOC request if length greater than mps*mc */
1430 	if (hs_ep->isochronous &&
1431 	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1432 		dev_err(hs->dev, "req length > maxpacket*mc\n");
1433 		return -EINVAL;
1434 	}
1435 
1436 	/* In DDMA mode for ISOC's don't queue request if length greater
1437 	 * than descriptor limits.
1438 	 */
1439 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1440 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1441 		if (hs_ep->dir_in && req->length > maxsize) {
1442 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1443 				req->length, maxsize);
1444 			return -EINVAL;
1445 		}
1446 
1447 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1448 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1449 				req->length, hs_ep->ep.maxpacket);
1450 			return -EINVAL;
1451 		}
1452 	}
1453 
1454 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1455 	if (ret)
1456 		return ret;
1457 
1458 	/* if we're using DMA, sync the buffers as necessary */
1459 	if (using_dma(hs)) {
1460 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1461 		if (ret)
1462 			return ret;
1463 	}
1464 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1465 	if (using_desc_dma(hs) && !hs_ep->index) {
1466 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1467 		if (ret)
1468 			return ret;
1469 	}
1470 
1471 	first = list_empty(&hs_ep->queue);
1472 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1473 
1474 	/*
1475 	 * Handle DDMA isochronous transfers separately - just add new entry
1476 	 * to the descriptor chain.
1477 	 * Transfer will be started once SW gets either one of NAK or
1478 	 * OutTknEpDis interrupts.
1479 	 */
1480 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1481 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1482 			dma_addr_t dma_addr = hs_req->req.dma;
1483 
1484 			if (hs_req->req.num_sgs) {
1485 				WARN_ON(hs_req->req.num_sgs > 1);
1486 				dma_addr = sg_dma_address(hs_req->req.sg);
1487 			}
1488 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1489 						   hs_req->req.length);
1490 		}
1491 		return 0;
1492 	}
1493 
1494 	/* Change EP direction if status phase request is after data out */
1495 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1496 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1497 		hs_ep->dir_in = 1;
1498 
1499 	if (first) {
1500 		if (!hs_ep->isochronous) {
1501 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1502 			return 0;
1503 		}
1504 
1505 		/* Update current frame number value. */
1506 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1507 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1508 			dwc2_gadget_incr_frame_num(hs_ep);
1509 			/* Update current frame number value once more as it
1510 			 * changes here.
1511 			 */
1512 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1513 		}
1514 
1515 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1516 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1517 	}
1518 	return 0;
1519 }
1520 
1521 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1522 				    gfp_t gfp_flags)
1523 {
1524 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1525 	struct dwc2_hsotg *hs = hs_ep->parent;
1526 	unsigned long flags;
1527 	int ret;
1528 
1529 	spin_lock_irqsave(&hs->lock, flags);
1530 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1531 	spin_unlock_irqrestore(&hs->lock, flags);
1532 
1533 	return ret;
1534 }
1535 
1536 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1537 				       struct usb_request *req)
1538 {
1539 	struct dwc2_hsotg_req *hs_req = our_req(req);
1540 
1541 	kfree(hs_req);
1542 }
1543 
1544 /**
1545  * dwc2_hsotg_complete_oursetup - setup completion callback
1546  * @ep: The endpoint the request was on.
1547  * @req: The request completed.
1548  *
1549  * Called on completion of any requests the driver itself
1550  * submitted that need cleaning up.
1551  */
1552 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1553 					 struct usb_request *req)
1554 {
1555 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1556 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1557 
1558 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1559 
1560 	dwc2_hsotg_ep_free_request(ep, req);
1561 }
1562 
1563 /**
1564  * ep_from_windex - convert control wIndex value to endpoint
1565  * @hsotg: The driver state.
1566  * @windex: The control request wIndex field (in host order).
1567  *
1568  * Convert the given wIndex into a pointer to an driver endpoint
1569  * structure, or return NULL if it is not a valid endpoint.
1570  */
1571 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1572 					    u32 windex)
1573 {
1574 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1575 	int idx = windex & 0x7F;
1576 
1577 	if (windex >= 0x100)
1578 		return NULL;
1579 
1580 	if (idx > hsotg->num_of_eps)
1581 		return NULL;
1582 
1583 	return index_to_ep(hsotg, idx, dir);
1584 }
1585 
1586 /**
1587  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1588  * @hsotg: The driver state.
1589  * @testmode: requested usb test mode
1590  * Enable usb Test Mode requested by the Host.
1591  */
1592 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1593 {
1594 	int dctl = dwc2_readl(hsotg, DCTL);
1595 
1596 	dctl &= ~DCTL_TSTCTL_MASK;
1597 	switch (testmode) {
1598 	case USB_TEST_J:
1599 	case USB_TEST_K:
1600 	case USB_TEST_SE0_NAK:
1601 	case USB_TEST_PACKET:
1602 	case USB_TEST_FORCE_ENABLE:
1603 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1604 		break;
1605 	default:
1606 		return -EINVAL;
1607 	}
1608 	dwc2_writel(hsotg, dctl, DCTL);
1609 	return 0;
1610 }
1611 
1612 /**
1613  * dwc2_hsotg_send_reply - send reply to control request
1614  * @hsotg: The device state
1615  * @ep: Endpoint 0
1616  * @buff: Buffer for request
1617  * @length: Length of reply.
1618  *
1619  * Create a request and queue it on the given endpoint. This is useful as
1620  * an internal method of sending replies to certain control requests, etc.
1621  */
1622 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1623 				 struct dwc2_hsotg_ep *ep,
1624 				void *buff,
1625 				int length)
1626 {
1627 	struct usb_request *req;
1628 	int ret;
1629 
1630 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1631 
1632 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1633 	hsotg->ep0_reply = req;
1634 	if (!req) {
1635 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1636 		return -ENOMEM;
1637 	}
1638 
1639 	req->buf = hsotg->ep0_buff;
1640 	req->length = length;
1641 	/*
1642 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1643 	 * STATUS stage.
1644 	 */
1645 	req->zero = 0;
1646 	req->complete = dwc2_hsotg_complete_oursetup;
1647 
1648 	if (length)
1649 		memcpy(req->buf, buff, length);
1650 
1651 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1652 	if (ret) {
1653 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1654 		return ret;
1655 	}
1656 
1657 	return 0;
1658 }
1659 
1660 /**
1661  * dwc2_hsotg_process_req_status - process request GET_STATUS
1662  * @hsotg: The device state
1663  * @ctrl: USB control request
1664  */
1665 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1666 					 struct usb_ctrlrequest *ctrl)
1667 {
1668 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1669 	struct dwc2_hsotg_ep *ep;
1670 	__le16 reply;
1671 	u16 status;
1672 	int ret;
1673 
1674 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1675 
1676 	if (!ep0->dir_in) {
1677 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1678 		return -EINVAL;
1679 	}
1680 
1681 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1682 	case USB_RECIP_DEVICE:
1683 		status = hsotg->gadget.is_selfpowered <<
1684 			 USB_DEVICE_SELF_POWERED;
1685 		status |= hsotg->remote_wakeup_allowed <<
1686 			  USB_DEVICE_REMOTE_WAKEUP;
1687 		reply = cpu_to_le16(status);
1688 		break;
1689 
1690 	case USB_RECIP_INTERFACE:
1691 		/* currently, the data result should be zero */
1692 		reply = cpu_to_le16(0);
1693 		break;
1694 
1695 	case USB_RECIP_ENDPOINT:
1696 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1697 		if (!ep)
1698 			return -ENOENT;
1699 
1700 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1701 		break;
1702 
1703 	default:
1704 		return 0;
1705 	}
1706 
1707 	if (le16_to_cpu(ctrl->wLength) != 2)
1708 		return -EINVAL;
1709 
1710 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1711 	if (ret) {
1712 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1713 		return ret;
1714 	}
1715 
1716 	return 1;
1717 }
1718 
1719 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1720 
1721 /**
1722  * get_ep_head - return the first request on the endpoint
1723  * @hs_ep: The controller endpoint to get
1724  *
1725  * Get the first request on the endpoint.
1726  */
1727 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1728 {
1729 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1730 					queue);
1731 }
1732 
1733 /**
1734  * dwc2_gadget_start_next_request - Starts next request from ep queue
1735  * @hs_ep: Endpoint structure
1736  *
1737  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1738  * in its handler. Hence we need to unmask it here to be able to do
1739  * resynchronization.
1740  */
1741 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1742 {
1743 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1744 	int dir_in = hs_ep->dir_in;
1745 	struct dwc2_hsotg_req *hs_req;
1746 
1747 	if (!list_empty(&hs_ep->queue)) {
1748 		hs_req = get_ep_head(hs_ep);
1749 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1750 		return;
1751 	}
1752 	if (!hs_ep->isochronous)
1753 		return;
1754 
1755 	if (dir_in) {
1756 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1757 			__func__);
1758 	} else {
1759 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1760 			__func__);
1761 	}
1762 }
1763 
1764 /**
1765  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1766  * @hsotg: The device state
1767  * @ctrl: USB control request
1768  */
1769 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1770 					  struct usb_ctrlrequest *ctrl)
1771 {
1772 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1773 	struct dwc2_hsotg_req *hs_req;
1774 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1775 	struct dwc2_hsotg_ep *ep;
1776 	int ret;
1777 	bool halted;
1778 	u32 recip;
1779 	u32 wValue;
1780 	u32 wIndex;
1781 
1782 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1783 		__func__, set ? "SET" : "CLEAR");
1784 
1785 	wValue = le16_to_cpu(ctrl->wValue);
1786 	wIndex = le16_to_cpu(ctrl->wIndex);
1787 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1788 
1789 	switch (recip) {
1790 	case USB_RECIP_DEVICE:
1791 		switch (wValue) {
1792 		case USB_DEVICE_REMOTE_WAKEUP:
1793 			if (set)
1794 				hsotg->remote_wakeup_allowed = 1;
1795 			else
1796 				hsotg->remote_wakeup_allowed = 0;
1797 			break;
1798 
1799 		case USB_DEVICE_TEST_MODE:
1800 			if ((wIndex & 0xff) != 0)
1801 				return -EINVAL;
1802 			if (!set)
1803 				return -EINVAL;
1804 
1805 			hsotg->test_mode = wIndex >> 8;
1806 			break;
1807 		default:
1808 			return -ENOENT;
1809 		}
1810 
1811 		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1812 		if (ret) {
1813 			dev_err(hsotg->dev,
1814 				"%s: failed to send reply\n", __func__);
1815 			return ret;
1816 		}
1817 		break;
1818 
1819 	case USB_RECIP_ENDPOINT:
1820 		ep = ep_from_windex(hsotg, wIndex);
1821 		if (!ep) {
1822 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1823 				__func__, wIndex);
1824 			return -ENOENT;
1825 		}
1826 
1827 		switch (wValue) {
1828 		case USB_ENDPOINT_HALT:
1829 			halted = ep->halted;
1830 
1831 			if (!ep->wedged)
1832 				dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1833 
1834 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1835 			if (ret) {
1836 				dev_err(hsotg->dev,
1837 					"%s: failed to send reply\n", __func__);
1838 				return ret;
1839 			}
1840 
1841 			/*
1842 			 * we have to complete all requests for ep if it was
1843 			 * halted, and the halt was cleared by CLEAR_FEATURE
1844 			 */
1845 
1846 			if (!set && halted) {
1847 				/*
1848 				 * If we have request in progress,
1849 				 * then complete it
1850 				 */
1851 				if (ep->req) {
1852 					hs_req = ep->req;
1853 					ep->req = NULL;
1854 					list_del_init(&hs_req->queue);
1855 					if (hs_req->req.complete) {
1856 						spin_unlock(&hsotg->lock);
1857 						usb_gadget_giveback_request(
1858 							&ep->ep, &hs_req->req);
1859 						spin_lock(&hsotg->lock);
1860 					}
1861 				}
1862 
1863 				/* If we have pending request, then start it */
1864 				if (!ep->req)
1865 					dwc2_gadget_start_next_request(ep);
1866 			}
1867 
1868 			break;
1869 
1870 		default:
1871 			return -ENOENT;
1872 		}
1873 		break;
1874 	default:
1875 		return -ENOENT;
1876 	}
1877 	return 1;
1878 }
1879 
1880 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1881 
1882 /**
1883  * dwc2_hsotg_stall_ep0 - stall ep0
1884  * @hsotg: The device state
1885  *
1886  * Set stall for ep0 as response for setup request.
1887  */
1888 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1889 {
1890 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1891 	u32 reg;
1892 	u32 ctrl;
1893 
1894 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1895 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1896 
1897 	/*
1898 	 * DxEPCTL_Stall will be cleared by EP once it has
1899 	 * taken effect, so no need to clear later.
1900 	 */
1901 
1902 	ctrl = dwc2_readl(hsotg, reg);
1903 	ctrl |= DXEPCTL_STALL;
1904 	ctrl |= DXEPCTL_CNAK;
1905 	dwc2_writel(hsotg, ctrl, reg);
1906 
1907 	dev_dbg(hsotg->dev,
1908 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1909 		ctrl, reg, dwc2_readl(hsotg, reg));
1910 
1911 	 /*
1912 	  * complete won't be called, so we enqueue
1913 	  * setup request here
1914 	  */
1915 	 dwc2_hsotg_enqueue_setup(hsotg);
1916 }
1917 
1918 /**
1919  * dwc2_hsotg_process_control - process a control request
1920  * @hsotg: The device state
1921  * @ctrl: The control request received
1922  *
1923  * The controller has received the SETUP phase of a control request, and
1924  * needs to work out what to do next (and whether to pass it on to the
1925  * gadget driver).
1926  */
1927 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1928 				       struct usb_ctrlrequest *ctrl)
1929 {
1930 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1931 	int ret = 0;
1932 	u32 dcfg;
1933 
1934 	dev_dbg(hsotg->dev,
1935 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1936 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1937 		ctrl->wIndex, ctrl->wLength);
1938 
1939 	if (ctrl->wLength == 0) {
1940 		ep0->dir_in = 1;
1941 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1942 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1943 		ep0->dir_in = 1;
1944 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1945 	} else {
1946 		ep0->dir_in = 0;
1947 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1948 	}
1949 
1950 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1951 		switch (ctrl->bRequest) {
1952 		case USB_REQ_SET_ADDRESS:
1953 			hsotg->connected = 1;
1954 			dcfg = dwc2_readl(hsotg, DCFG);
1955 			dcfg &= ~DCFG_DEVADDR_MASK;
1956 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1957 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1958 			dwc2_writel(hsotg, dcfg, DCFG);
1959 
1960 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1961 
1962 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1963 			return;
1964 
1965 		case USB_REQ_GET_STATUS:
1966 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1967 			break;
1968 
1969 		case USB_REQ_CLEAR_FEATURE:
1970 		case USB_REQ_SET_FEATURE:
1971 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1972 			break;
1973 		}
1974 	}
1975 
1976 	/* as a fallback, try delivering it to the driver to deal with */
1977 
1978 	if (ret == 0 && hsotg->driver) {
1979 		spin_unlock(&hsotg->lock);
1980 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1981 		spin_lock(&hsotg->lock);
1982 		if (ret < 0)
1983 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1984 	}
1985 
1986 	hsotg->delayed_status = false;
1987 	if (ret == USB_GADGET_DELAYED_STATUS)
1988 		hsotg->delayed_status = true;
1989 
1990 	/*
1991 	 * the request is either unhandlable, or is not formatted correctly
1992 	 * so respond with a STALL for the status stage to indicate failure.
1993 	 */
1994 
1995 	if (ret < 0)
1996 		dwc2_hsotg_stall_ep0(hsotg);
1997 }
1998 
1999 /**
2000  * dwc2_hsotg_complete_setup - completion of a setup transfer
2001  * @ep: The endpoint the request was on.
2002  * @req: The request completed.
2003  *
2004  * Called on completion of any requests the driver itself submitted for
2005  * EP0 setup packets
2006  */
2007 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2008 				      struct usb_request *req)
2009 {
2010 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2011 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2012 
2013 	if (req->status < 0) {
2014 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2015 		return;
2016 	}
2017 
2018 	spin_lock(&hsotg->lock);
2019 	if (req->actual == 0)
2020 		dwc2_hsotg_enqueue_setup(hsotg);
2021 	else
2022 		dwc2_hsotg_process_control(hsotg, req->buf);
2023 	spin_unlock(&hsotg->lock);
2024 }
2025 
2026 /**
2027  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2028  * @hsotg: The device state.
2029  *
2030  * Enqueue a request on EP0 if necessary to received any SETUP packets
2031  * received from the host.
2032  */
2033 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2034 {
2035 	struct usb_request *req = hsotg->ctrl_req;
2036 	struct dwc2_hsotg_req *hs_req = our_req(req);
2037 	int ret;
2038 
2039 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2040 
2041 	req->zero = 0;
2042 	req->length = 8;
2043 	req->buf = hsotg->ctrl_buff;
2044 	req->complete = dwc2_hsotg_complete_setup;
2045 
2046 	if (!list_empty(&hs_req->queue)) {
2047 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2048 		return;
2049 	}
2050 
2051 	hsotg->eps_out[0]->dir_in = 0;
2052 	hsotg->eps_out[0]->send_zlp = 0;
2053 	hsotg->ep0_state = DWC2_EP0_SETUP;
2054 
2055 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2056 	if (ret < 0) {
2057 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2058 		/*
2059 		 * Don't think there's much we can do other than watch the
2060 		 * driver fail.
2061 		 */
2062 	}
2063 }
2064 
2065 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2066 				   struct dwc2_hsotg_ep *hs_ep)
2067 {
2068 	u32 ctrl;
2069 	u8 index = hs_ep->index;
2070 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2071 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2072 
2073 	if (hs_ep->dir_in)
2074 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2075 			index);
2076 	else
2077 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2078 			index);
2079 	if (using_desc_dma(hsotg)) {
2080 		/* Not specific buffer needed for ep0 ZLP */
2081 		dma_addr_t dma = hs_ep->desc_list_dma;
2082 
2083 		if (!index)
2084 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2085 
2086 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2087 	} else {
2088 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2089 			    DXEPTSIZ_XFERSIZE(0),
2090 			    epsiz_reg);
2091 	}
2092 
2093 	ctrl = dwc2_readl(hsotg, epctl_reg);
2094 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2095 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2096 	ctrl |= DXEPCTL_USBACTEP;
2097 	dwc2_writel(hsotg, ctrl, epctl_reg);
2098 }
2099 
2100 /**
2101  * dwc2_hsotg_complete_request - complete a request given to us
2102  * @hsotg: The device state.
2103  * @hs_ep: The endpoint the request was on.
2104  * @hs_req: The request to complete.
2105  * @result: The result code (0 => Ok, otherwise errno)
2106  *
2107  * The given request has finished, so call the necessary completion
2108  * if it has one and then look to see if we can start a new request
2109  * on the endpoint.
2110  *
2111  * Note, expects the ep to already be locked as appropriate.
2112  */
2113 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2114 					struct dwc2_hsotg_ep *hs_ep,
2115 				       struct dwc2_hsotg_req *hs_req,
2116 				       int result)
2117 {
2118 	if (!hs_req) {
2119 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2120 		return;
2121 	}
2122 
2123 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2124 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2125 
2126 	/*
2127 	 * only replace the status if we've not already set an error
2128 	 * from a previous transaction
2129 	 */
2130 
2131 	if (hs_req->req.status == -EINPROGRESS)
2132 		hs_req->req.status = result;
2133 
2134 	if (using_dma(hsotg))
2135 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2136 
2137 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2138 
2139 	hs_ep->req = NULL;
2140 	list_del_init(&hs_req->queue);
2141 
2142 	/*
2143 	 * call the complete request with the locks off, just in case the
2144 	 * request tries to queue more work for this endpoint.
2145 	 */
2146 
2147 	if (hs_req->req.complete) {
2148 		spin_unlock(&hsotg->lock);
2149 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2150 		spin_lock(&hsotg->lock);
2151 	}
2152 
2153 	/* In DDMA don't need to proceed to starting of next ISOC request */
2154 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2155 		return;
2156 
2157 	/*
2158 	 * Look to see if there is anything else to do. Note, the completion
2159 	 * of the previous request may have caused a new request to be started
2160 	 * so be careful when doing this.
2161 	 */
2162 
2163 	if (!hs_ep->req && result >= 0)
2164 		dwc2_gadget_start_next_request(hs_ep);
2165 }
2166 
2167 /*
2168  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2169  * @hs_ep: The endpoint the request was on.
2170  *
2171  * Get first request from the ep queue, determine descriptor on which complete
2172  * happened. SW discovers which descriptor currently in use by HW, adjusts
2173  * dma_address and calculates index of completed descriptor based on the value
2174  * of DEPDMA register. Update actual length of request, giveback to gadget.
2175  */
2176 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2177 {
2178 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2179 	struct dwc2_hsotg_req *hs_req;
2180 	struct usb_request *ureq;
2181 	u32 desc_sts;
2182 	u32 mask;
2183 
2184 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2185 
2186 	/* Process only descriptors with buffer status set to DMA done */
2187 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2188 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2189 
2190 		hs_req = get_ep_head(hs_ep);
2191 		if (!hs_req) {
2192 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2193 			return;
2194 		}
2195 		ureq = &hs_req->req;
2196 
2197 		/* Check completion status */
2198 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2199 			DEV_DMA_STS_SUCC) {
2200 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2201 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2202 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2203 				DEV_DMA_ISOC_NBYTES_SHIFT);
2204 
2205 			/* Adjust actual len for ISOC Out if len is
2206 			 * not align of 4
2207 			 */
2208 			if (!hs_ep->dir_in && ureq->length & 0x3)
2209 				ureq->actual += 4 - (ureq->length & 0x3);
2210 
2211 			/* Set actual frame number for completed transfers */
2212 			ureq->frame_number =
2213 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2214 				DEV_DMA_ISOC_FRNUM_SHIFT;
2215 		}
2216 
2217 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2218 
2219 		hs_ep->compl_desc++;
2220 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2221 			hs_ep->compl_desc = 0;
2222 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2223 	}
2224 }
2225 
2226 /*
2227  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2228  * @hs_ep: The isochronous endpoint.
2229  *
2230  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2231  * interrupt. Reset target frame and next_desc to allow to start
2232  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2233  * interrupt for OUT direction.
2234  */
2235 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2236 {
2237 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2238 
2239 	if (!hs_ep->dir_in)
2240 		dwc2_flush_rx_fifo(hsotg);
2241 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2242 
2243 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2244 	hs_ep->next_desc = 0;
2245 	hs_ep->compl_desc = 0;
2246 }
2247 
2248 /**
2249  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2250  * @hsotg: The device state.
2251  * @ep_idx: The endpoint index for the data
2252  * @size: The size of data in the fifo, in bytes
2253  *
2254  * The FIFO status shows there is data to read from the FIFO for a given
2255  * endpoint, so sort out whether we need to read the data into a request
2256  * that has been made for that endpoint.
2257  */
2258 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2259 {
2260 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2261 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2262 	int to_read;
2263 	int max_req;
2264 	int read_ptr;
2265 
2266 	if (!hs_req) {
2267 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2268 		int ptr;
2269 
2270 		dev_dbg(hsotg->dev,
2271 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2272 			 __func__, size, ep_idx, epctl);
2273 
2274 		/* dump the data from the FIFO, we've nothing we can do */
2275 		for (ptr = 0; ptr < size; ptr += 4)
2276 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2277 
2278 		return;
2279 	}
2280 
2281 	to_read = size;
2282 	read_ptr = hs_req->req.actual;
2283 	max_req = hs_req->req.length - read_ptr;
2284 
2285 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2286 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2287 
2288 	if (to_read > max_req) {
2289 		/*
2290 		 * more data appeared than we where willing
2291 		 * to deal with in this request.
2292 		 */
2293 
2294 		/* currently we don't deal this */
2295 		WARN_ON_ONCE(1);
2296 	}
2297 
2298 	hs_ep->total_data += to_read;
2299 	hs_req->req.actual += to_read;
2300 	to_read = DIV_ROUND_UP(to_read, 4);
2301 
2302 	/*
2303 	 * note, we might over-write the buffer end by 3 bytes depending on
2304 	 * alignment of the data.
2305 	 */
2306 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2307 		       hs_req->req.buf + read_ptr, to_read);
2308 }
2309 
2310 /**
2311  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2312  * @hsotg: The device instance
2313  * @dir_in: If IN zlp
2314  *
2315  * Generate a zero-length IN packet request for terminating a SETUP
2316  * transaction.
2317  *
2318  * Note, since we don't write any data to the TxFIFO, then it is
2319  * currently believed that we do not need to wait for any space in
2320  * the TxFIFO.
2321  */
2322 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2323 {
2324 	/* eps_out[0] is used in both directions */
2325 	hsotg->eps_out[0]->dir_in = dir_in;
2326 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2327 
2328 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2329 }
2330 
2331 /*
2332  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2333  * @hs_ep - The endpoint on which transfer went
2334  *
2335  * Iterate over endpoints descriptor chain and get info on bytes remained
2336  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2337  */
2338 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2339 {
2340 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2341 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2342 	unsigned int bytes_rem = 0;
2343 	unsigned int bytes_rem_correction = 0;
2344 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2345 	int i;
2346 	u32 status;
2347 	u32 mps = hs_ep->ep.maxpacket;
2348 	int dir_in = hs_ep->dir_in;
2349 
2350 	if (!desc)
2351 		return -EINVAL;
2352 
2353 	/* Interrupt OUT EP with mps not multiple of 4 */
2354 	if (hs_ep->index)
2355 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2356 			bytes_rem_correction = 4 - (mps % 4);
2357 
2358 	for (i = 0; i < hs_ep->desc_count; ++i) {
2359 		status = desc->status;
2360 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2361 		bytes_rem -= bytes_rem_correction;
2362 
2363 		if (status & DEV_DMA_STS_MASK)
2364 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2365 				i, status & DEV_DMA_STS_MASK);
2366 
2367 		if (status & DEV_DMA_L)
2368 			break;
2369 
2370 		desc++;
2371 	}
2372 
2373 	return bytes_rem;
2374 }
2375 
2376 /**
2377  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2378  * @hsotg: The device instance
2379  * @epnum: The endpoint received from
2380  *
2381  * The RXFIFO has delivered an OutDone event, which means that the data
2382  * transfer for an OUT endpoint has been completed, either by a short
2383  * packet or by the finish of a transfer.
2384  */
2385 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2386 {
2387 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2388 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2389 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2390 	struct usb_request *req = &hs_req->req;
2391 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2392 	int result = 0;
2393 
2394 	if (!hs_req) {
2395 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2396 		return;
2397 	}
2398 
2399 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2400 		dev_dbg(hsotg->dev, "zlp packet received\n");
2401 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2402 		dwc2_hsotg_enqueue_setup(hsotg);
2403 		return;
2404 	}
2405 
2406 	if (using_desc_dma(hsotg))
2407 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2408 
2409 	if (using_dma(hsotg)) {
2410 		unsigned int size_done;
2411 
2412 		/*
2413 		 * Calculate the size of the transfer by checking how much
2414 		 * is left in the endpoint size register and then working it
2415 		 * out from the amount we loaded for the transfer.
2416 		 *
2417 		 * We need to do this as DMA pointers are always 32bit aligned
2418 		 * so may overshoot/undershoot the transfer.
2419 		 */
2420 
2421 		size_done = hs_ep->size_loaded - size_left;
2422 		size_done += hs_ep->last_load;
2423 
2424 		req->actual = size_done;
2425 	}
2426 
2427 	/* if there is more request to do, schedule new transfer */
2428 	if (req->actual < req->length && size_left == 0) {
2429 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2430 		return;
2431 	}
2432 
2433 	if (req->actual < req->length && req->short_not_ok) {
2434 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2435 			__func__, req->actual, req->length);
2436 
2437 		/*
2438 		 * todo - what should we return here? there's no one else
2439 		 * even bothering to check the status.
2440 		 */
2441 	}
2442 
2443 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2444 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2445 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2446 		/* Move to STATUS IN */
2447 		if (!hsotg->delayed_status)
2448 			dwc2_hsotg_ep0_zlp(hsotg, true);
2449 	}
2450 
2451 	/* Set actual frame number for completed transfers */
2452 	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2453 		req->frame_number = hs_ep->target_frame;
2454 		dwc2_gadget_incr_frame_num(hs_ep);
2455 	}
2456 
2457 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2458 }
2459 
2460 /**
2461  * dwc2_hsotg_handle_rx - RX FIFO has data
2462  * @hsotg: The device instance
2463  *
2464  * The IRQ handler has detected that the RX FIFO has some data in it
2465  * that requires processing, so find out what is in there and do the
2466  * appropriate read.
2467  *
2468  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2469  * chunks, so if you have x packets received on an endpoint you'll get x
2470  * FIFO events delivered, each with a packet's worth of data in it.
2471  *
2472  * When using DMA, we should not be processing events from the RXFIFO
2473  * as the actual data should be sent to the memory directly and we turn
2474  * on the completion interrupts to get notifications of transfer completion.
2475  */
2476 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2477 {
2478 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2479 	u32 epnum, status, size;
2480 
2481 	WARN_ON(using_dma(hsotg));
2482 
2483 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2484 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2485 
2486 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2487 	size >>= GRXSTS_BYTECNT_SHIFT;
2488 
2489 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2490 		__func__, grxstsr, size, epnum);
2491 
2492 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2493 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2494 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2495 		break;
2496 
2497 	case GRXSTS_PKTSTS_OUTDONE:
2498 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2499 			dwc2_hsotg_read_frameno(hsotg));
2500 
2501 		if (!using_dma(hsotg))
2502 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2503 		break;
2504 
2505 	case GRXSTS_PKTSTS_SETUPDONE:
2506 		dev_dbg(hsotg->dev,
2507 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2508 			dwc2_hsotg_read_frameno(hsotg),
2509 			dwc2_readl(hsotg, DOEPCTL(0)));
2510 		/*
2511 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2512 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2513 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2514 		 */
2515 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2516 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2517 		break;
2518 
2519 	case GRXSTS_PKTSTS_OUTRX:
2520 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2521 		break;
2522 
2523 	case GRXSTS_PKTSTS_SETUPRX:
2524 		dev_dbg(hsotg->dev,
2525 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2526 			dwc2_hsotg_read_frameno(hsotg),
2527 			dwc2_readl(hsotg, DOEPCTL(0)));
2528 
2529 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2530 
2531 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2532 		break;
2533 
2534 	default:
2535 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2536 			 __func__, grxstsr);
2537 
2538 		dwc2_hsotg_dump(hsotg);
2539 		break;
2540 	}
2541 }
2542 
2543 /**
2544  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2545  * @mps: The maximum packet size in bytes.
2546  */
2547 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2548 {
2549 	switch (mps) {
2550 	case 64:
2551 		return D0EPCTL_MPS_64;
2552 	case 32:
2553 		return D0EPCTL_MPS_32;
2554 	case 16:
2555 		return D0EPCTL_MPS_16;
2556 	case 8:
2557 		return D0EPCTL_MPS_8;
2558 	}
2559 
2560 	/* bad max packet size, warn and return invalid result */
2561 	WARN_ON(1);
2562 	return (u32)-1;
2563 }
2564 
2565 /**
2566  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2567  * @hsotg: The driver state.
2568  * @ep: The index number of the endpoint
2569  * @mps: The maximum packet size in bytes
2570  * @mc: The multicount value
2571  * @dir_in: True if direction is in.
2572  *
2573  * Configure the maximum packet size for the given endpoint, updating
2574  * the hardware control registers to reflect this.
2575  */
2576 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2577 					unsigned int ep, unsigned int mps,
2578 					unsigned int mc, unsigned int dir_in)
2579 {
2580 	struct dwc2_hsotg_ep *hs_ep;
2581 	u32 reg;
2582 
2583 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2584 	if (!hs_ep)
2585 		return;
2586 
2587 	if (ep == 0) {
2588 		u32 mps_bytes = mps;
2589 
2590 		/* EP0 is a special case */
2591 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2592 		if (mps > 3)
2593 			goto bad_mps;
2594 		hs_ep->ep.maxpacket = mps_bytes;
2595 		hs_ep->mc = 1;
2596 	} else {
2597 		if (mps > 1024)
2598 			goto bad_mps;
2599 		hs_ep->mc = mc;
2600 		if (mc > 3)
2601 			goto bad_mps;
2602 		hs_ep->ep.maxpacket = mps;
2603 	}
2604 
2605 	if (dir_in) {
2606 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2607 		reg &= ~DXEPCTL_MPS_MASK;
2608 		reg |= mps;
2609 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2610 	} else {
2611 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2612 		reg &= ~DXEPCTL_MPS_MASK;
2613 		reg |= mps;
2614 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2615 	}
2616 
2617 	return;
2618 
2619 bad_mps:
2620 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2621 }
2622 
2623 /**
2624  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2625  * @hsotg: The driver state
2626  * @idx: The index for the endpoint (0..15)
2627  */
2628 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2629 {
2630 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2631 		    GRSTCTL);
2632 
2633 	/* wait until the fifo is flushed */
2634 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2635 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2636 			 __func__);
2637 }
2638 
2639 /**
2640  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2641  * @hsotg: The driver state
2642  * @hs_ep: The driver endpoint to check.
2643  *
2644  * Check to see if there is a request that has data to send, and if so
2645  * make an attempt to write data into the FIFO.
2646  */
2647 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2648 			    struct dwc2_hsotg_ep *hs_ep)
2649 {
2650 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2651 
2652 	if (!hs_ep->dir_in || !hs_req) {
2653 		/**
2654 		 * if request is not enqueued, we disable interrupts
2655 		 * for endpoints, excepting ep0
2656 		 */
2657 		if (hs_ep->index != 0)
2658 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2659 					      hs_ep->dir_in, 0);
2660 		return 0;
2661 	}
2662 
2663 	if (hs_req->req.actual < hs_req->req.length) {
2664 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2665 			hs_ep->index);
2666 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2667 	}
2668 
2669 	return 0;
2670 }
2671 
2672 /**
2673  * dwc2_hsotg_complete_in - complete IN transfer
2674  * @hsotg: The device state.
2675  * @hs_ep: The endpoint that has just completed.
2676  *
2677  * An IN transfer has been completed, update the transfer's state and then
2678  * call the relevant completion routines.
2679  */
2680 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2681 				   struct dwc2_hsotg_ep *hs_ep)
2682 {
2683 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2684 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2685 	int size_left, size_done;
2686 
2687 	if (!hs_req) {
2688 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2689 		return;
2690 	}
2691 
2692 	/* Finish ZLP handling for IN EP0 transactions */
2693 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2694 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2695 
2696 		/*
2697 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2698 		 * changed to IN. Change back to complete OUT transfer request
2699 		 */
2700 		hs_ep->dir_in = 0;
2701 
2702 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2703 		if (hsotg->test_mode) {
2704 			int ret;
2705 
2706 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2707 			if (ret < 0) {
2708 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2709 					hsotg->test_mode);
2710 				dwc2_hsotg_stall_ep0(hsotg);
2711 				return;
2712 			}
2713 		}
2714 		dwc2_hsotg_enqueue_setup(hsotg);
2715 		return;
2716 	}
2717 
2718 	/*
2719 	 * Calculate the size of the transfer by checking how much is left
2720 	 * in the endpoint size register and then working it out from
2721 	 * the amount we loaded for the transfer.
2722 	 *
2723 	 * We do this even for DMA, as the transfer may have incremented
2724 	 * past the end of the buffer (DMA transfers are always 32bit
2725 	 * aligned).
2726 	 */
2727 	if (using_desc_dma(hsotg)) {
2728 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2729 		if (size_left < 0)
2730 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2731 				size_left);
2732 	} else {
2733 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2734 	}
2735 
2736 	size_done = hs_ep->size_loaded - size_left;
2737 	size_done += hs_ep->last_load;
2738 
2739 	if (hs_req->req.actual != size_done)
2740 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2741 			__func__, hs_req->req.actual, size_done);
2742 
2743 	hs_req->req.actual = size_done;
2744 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2745 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2746 
2747 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2748 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2749 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2750 		return;
2751 	}
2752 
2753 	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2754 	if (hs_ep->send_zlp) {
2755 		hs_ep->send_zlp = 0;
2756 		if (!using_desc_dma(hsotg)) {
2757 			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2758 			/* transfer will be completed on next complete interrupt */
2759 			return;
2760 		}
2761 	}
2762 
2763 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2764 		/* Move to STATUS OUT */
2765 		dwc2_hsotg_ep0_zlp(hsotg, false);
2766 		return;
2767 	}
2768 
2769 	/* Set actual frame number for completed transfers */
2770 	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2771 		hs_req->req.frame_number = hs_ep->target_frame;
2772 		dwc2_gadget_incr_frame_num(hs_ep);
2773 	}
2774 
2775 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2776 }
2777 
2778 /**
2779  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2780  * @hsotg: The device state.
2781  * @idx: Index of ep.
2782  * @dir_in: Endpoint direction 1-in 0-out.
2783  *
2784  * Reads for endpoint with given index and direction, by masking
2785  * epint_reg with coresponding mask.
2786  */
2787 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2788 					  unsigned int idx, int dir_in)
2789 {
2790 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2791 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2792 	u32 ints;
2793 	u32 mask;
2794 	u32 diepempmsk;
2795 
2796 	mask = dwc2_readl(hsotg, epmsk_reg);
2797 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2798 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2799 	mask |= DXEPINT_SETUP_RCVD;
2800 
2801 	ints = dwc2_readl(hsotg, epint_reg);
2802 	ints &= mask;
2803 	return ints;
2804 }
2805 
2806 /**
2807  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2808  * @hs_ep: The endpoint on which interrupt is asserted.
2809  *
2810  * This interrupt indicates that the endpoint has been disabled per the
2811  * application's request.
2812  *
2813  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2814  * in case of ISOC completes current request.
2815  *
2816  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2817  * request starts it.
2818  */
2819 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2820 {
2821 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2822 	struct dwc2_hsotg_req *hs_req;
2823 	unsigned char idx = hs_ep->index;
2824 	int dir_in = hs_ep->dir_in;
2825 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2826 	int dctl = dwc2_readl(hsotg, DCTL);
2827 
2828 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2829 
2830 	if (dir_in) {
2831 		int epctl = dwc2_readl(hsotg, epctl_reg);
2832 
2833 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2834 
2835 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2836 			int dctl = dwc2_readl(hsotg, DCTL);
2837 
2838 			dctl |= DCTL_CGNPINNAK;
2839 			dwc2_writel(hsotg, dctl, DCTL);
2840 		}
2841 	} else {
2842 
2843 		if (dctl & DCTL_GOUTNAKSTS) {
2844 			dctl |= DCTL_CGOUTNAK;
2845 			dwc2_writel(hsotg, dctl, DCTL);
2846 		}
2847 	}
2848 
2849 	if (!hs_ep->isochronous)
2850 		return;
2851 
2852 	if (list_empty(&hs_ep->queue)) {
2853 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2854 			__func__, hs_ep);
2855 		return;
2856 	}
2857 
2858 	do {
2859 		hs_req = get_ep_head(hs_ep);
2860 		if (hs_req)
2861 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2862 						    -ENODATA);
2863 		dwc2_gadget_incr_frame_num(hs_ep);
2864 		/* Update current frame number value. */
2865 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2866 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2867 }
2868 
2869 /**
2870  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2871  * @ep: The endpoint on which interrupt is asserted.
2872  *
2873  * This is starting point for ISOC-OUT transfer, synchronization done with
2874  * first out token received from host while corresponding EP is disabled.
2875  *
2876  * Device does not know initial frame in which out token will come. For this
2877  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2878  * getting this interrupt SW starts calculation for next transfer frame.
2879  */
2880 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2881 {
2882 	struct dwc2_hsotg *hsotg = ep->parent;
2883 	struct dwc2_hsotg_req *hs_req;
2884 	int dir_in = ep->dir_in;
2885 
2886 	if (dir_in || !ep->isochronous)
2887 		return;
2888 
2889 	if (using_desc_dma(hsotg)) {
2890 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2891 			/* Start first ISO Out */
2892 			ep->target_frame = hsotg->frame_number;
2893 			dwc2_gadget_start_isoc_ddma(ep);
2894 		}
2895 		return;
2896 	}
2897 
2898 	if (ep->target_frame == TARGET_FRAME_INITIAL) {
2899 		u32 ctrl;
2900 
2901 		ep->target_frame = hsotg->frame_number;
2902 		if (ep->interval > 1) {
2903 			ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2904 			if (ep->target_frame & 0x1)
2905 				ctrl |= DXEPCTL_SETODDFR;
2906 			else
2907 				ctrl |= DXEPCTL_SETEVENFR;
2908 
2909 			dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2910 		}
2911 	}
2912 
2913 	while (dwc2_gadget_target_frame_elapsed(ep)) {
2914 		hs_req = get_ep_head(ep);
2915 		if (hs_req)
2916 			dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2917 
2918 		dwc2_gadget_incr_frame_num(ep);
2919 		/* Update current frame number value. */
2920 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2921 	}
2922 
2923 	if (!ep->req)
2924 		dwc2_gadget_start_next_request(ep);
2925 
2926 }
2927 
2928 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2929 				   struct dwc2_hsotg_ep *hs_ep);
2930 
2931 /**
2932  * dwc2_gadget_handle_nak - handle NAK interrupt
2933  * @hs_ep: The endpoint on which interrupt is asserted.
2934  *
2935  * This is starting point for ISOC-IN transfer, synchronization done with
2936  * first IN token received from host while corresponding EP is disabled.
2937  *
2938  * Device does not know when first one token will arrive from host. On first
2939  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2940  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2941  * sent in response to that as there was no data in FIFO. SW is basing on this
2942  * interrupt to obtain frame in which token has come and then based on the
2943  * interval calculates next frame for transfer.
2944  */
2945 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2946 {
2947 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2948 	struct dwc2_hsotg_req *hs_req;
2949 	int dir_in = hs_ep->dir_in;
2950 	u32 ctrl;
2951 
2952 	if (!dir_in || !hs_ep->isochronous)
2953 		return;
2954 
2955 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2956 
2957 		if (using_desc_dma(hsotg)) {
2958 			hs_ep->target_frame = hsotg->frame_number;
2959 			dwc2_gadget_incr_frame_num(hs_ep);
2960 
2961 			/* In service interval mode target_frame must
2962 			 * be set to last (u)frame of the service interval.
2963 			 */
2964 			if (hsotg->params.service_interval) {
2965 				/* Set target_frame to the first (u)frame of
2966 				 * the service interval
2967 				 */
2968 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2969 
2970 				/* Set target_frame to the last (u)frame of
2971 				 * the service interval
2972 				 */
2973 				dwc2_gadget_incr_frame_num(hs_ep);
2974 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2975 			}
2976 
2977 			dwc2_gadget_start_isoc_ddma(hs_ep);
2978 			return;
2979 		}
2980 
2981 		hs_ep->target_frame = hsotg->frame_number;
2982 		if (hs_ep->interval > 1) {
2983 			u32 ctrl = dwc2_readl(hsotg,
2984 					      DIEPCTL(hs_ep->index));
2985 			if (hs_ep->target_frame & 0x1)
2986 				ctrl |= DXEPCTL_SETODDFR;
2987 			else
2988 				ctrl |= DXEPCTL_SETEVENFR;
2989 
2990 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2991 		}
2992 	}
2993 
2994 	if (using_desc_dma(hsotg))
2995 		return;
2996 
2997 	ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
2998 	if (ctrl & DXEPCTL_EPENA)
2999 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3000 	else
3001 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3002 
3003 	while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3004 		hs_req = get_ep_head(hs_ep);
3005 		if (hs_req)
3006 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3007 
3008 		dwc2_gadget_incr_frame_num(hs_ep);
3009 		/* Update current frame number value. */
3010 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3011 	}
3012 
3013 	if (!hs_ep->req)
3014 		dwc2_gadget_start_next_request(hs_ep);
3015 }
3016 
3017 /**
3018  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3019  * @hsotg: The driver state
3020  * @idx: The index for the endpoint (0..15)
3021  * @dir_in: Set if this is an IN endpoint
3022  *
3023  * Process and clear any interrupt pending for an individual endpoint
3024  */
3025 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3026 			     int dir_in)
3027 {
3028 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3029 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3030 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3031 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3032 	u32 ints;
3033 
3034 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3035 
3036 	/* Clear endpoint interrupts */
3037 	dwc2_writel(hsotg, ints, epint_reg);
3038 
3039 	if (!hs_ep) {
3040 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3041 			__func__, idx, dir_in ? "in" : "out");
3042 		return;
3043 	}
3044 
3045 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3046 		__func__, idx, dir_in ? "in" : "out", ints);
3047 
3048 	/* Don't process XferCompl interrupt if it is a setup packet */
3049 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3050 		ints &= ~DXEPINT_XFERCOMPL;
3051 
3052 	/*
3053 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3054 	 * stage and xfercomplete was generated without SETUP phase done
3055 	 * interrupt. SW should parse received setup packet only after host's
3056 	 * exit from setup phase of control transfer.
3057 	 */
3058 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3059 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3060 		ints &= ~DXEPINT_XFERCOMPL;
3061 
3062 	if (ints & DXEPINT_XFERCOMPL) {
3063 		dev_dbg(hsotg->dev,
3064 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3065 			__func__, dwc2_readl(hsotg, epctl_reg),
3066 			dwc2_readl(hsotg, epsiz_reg));
3067 
3068 		/* In DDMA handle isochronous requests separately */
3069 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3070 			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3071 		} else if (dir_in) {
3072 			/*
3073 			 * We get OutDone from the FIFO, so we only
3074 			 * need to look at completing IN requests here
3075 			 * if operating slave mode
3076 			 */
3077 			if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3078 				dwc2_hsotg_complete_in(hsotg, hs_ep);
3079 
3080 			if (idx == 0 && !hs_ep->req)
3081 				dwc2_hsotg_enqueue_setup(hsotg);
3082 		} else if (using_dma(hsotg)) {
3083 			/*
3084 			 * We're using DMA, we need to fire an OutDone here
3085 			 * as we ignore the RXFIFO.
3086 			 */
3087 			if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3088 				dwc2_hsotg_handle_outdone(hsotg, idx);
3089 		}
3090 	}
3091 
3092 	if (ints & DXEPINT_EPDISBLD)
3093 		dwc2_gadget_handle_ep_disabled(hs_ep);
3094 
3095 	if (ints & DXEPINT_OUTTKNEPDIS)
3096 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3097 
3098 	if (ints & DXEPINT_NAKINTRPT)
3099 		dwc2_gadget_handle_nak(hs_ep);
3100 
3101 	if (ints & DXEPINT_AHBERR)
3102 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3103 
3104 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3105 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3106 
3107 		if (using_dma(hsotg) && idx == 0) {
3108 			/*
3109 			 * this is the notification we've received a
3110 			 * setup packet. In non-DMA mode we'd get this
3111 			 * from the RXFIFO, instead we need to process
3112 			 * the setup here.
3113 			 */
3114 
3115 			if (dir_in)
3116 				WARN_ON_ONCE(1);
3117 			else
3118 				dwc2_hsotg_handle_outdone(hsotg, 0);
3119 		}
3120 	}
3121 
3122 	if (ints & DXEPINT_STSPHSERCVD) {
3123 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3124 
3125 		/* Safety check EP0 state when STSPHSERCVD asserted */
3126 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3127 			/* Move to STATUS IN for DDMA */
3128 			if (using_desc_dma(hsotg)) {
3129 				if (!hsotg->delayed_status)
3130 					dwc2_hsotg_ep0_zlp(hsotg, true);
3131 				else
3132 				/* In case of 3 stage Control Write with delayed
3133 				 * status, when Status IN transfer started
3134 				 * before STSPHSERCVD asserted, NAKSTS bit not
3135 				 * cleared by CNAK in dwc2_hsotg_start_req()
3136 				 * function. Clear now NAKSTS to allow complete
3137 				 * transfer.
3138 				 */
3139 					dwc2_set_bit(hsotg, DIEPCTL(0),
3140 						     DXEPCTL_CNAK);
3141 			}
3142 		}
3143 
3144 	}
3145 
3146 	if (ints & DXEPINT_BACK2BACKSETUP)
3147 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3148 
3149 	if (ints & DXEPINT_BNAINTR) {
3150 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3151 		if (hs_ep->isochronous)
3152 			dwc2_gadget_handle_isoc_bna(hs_ep);
3153 	}
3154 
3155 	if (dir_in && !hs_ep->isochronous) {
3156 		/* not sure if this is important, but we'll clear it anyway */
3157 		if (ints & DXEPINT_INTKNTXFEMP) {
3158 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3159 				__func__, idx);
3160 		}
3161 
3162 		/* this probably means something bad is happening */
3163 		if (ints & DXEPINT_INTKNEPMIS) {
3164 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3165 				 __func__, idx);
3166 		}
3167 
3168 		/* FIFO has space or is empty (see GAHBCFG) */
3169 		if (hsotg->dedicated_fifos &&
3170 		    ints & DXEPINT_TXFEMP) {
3171 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3172 				__func__, idx);
3173 			if (!using_dma(hsotg))
3174 				dwc2_hsotg_trytx(hsotg, hs_ep);
3175 		}
3176 	}
3177 }
3178 
3179 /**
3180  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3181  * @hsotg: The device state.
3182  *
3183  * Handle updating the device settings after the enumeration phase has
3184  * been completed.
3185  */
3186 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3187 {
3188 	u32 dsts = dwc2_readl(hsotg, DSTS);
3189 	int ep0_mps = 0, ep_mps = 8;
3190 
3191 	/*
3192 	 * This should signal the finish of the enumeration phase
3193 	 * of the USB handshaking, so we should now know what rate
3194 	 * we connected at.
3195 	 */
3196 
3197 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3198 
3199 	/*
3200 	 * note, since we're limited by the size of transfer on EP0, and
3201 	 * it seems IN transfers must be a even number of packets we do
3202 	 * not advertise a 64byte MPS on EP0.
3203 	 */
3204 
3205 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3206 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3207 	case DSTS_ENUMSPD_FS:
3208 	case DSTS_ENUMSPD_FS48:
3209 		hsotg->gadget.speed = USB_SPEED_FULL;
3210 		ep0_mps = EP0_MPS_LIMIT;
3211 		ep_mps = 1023;
3212 		break;
3213 
3214 	case DSTS_ENUMSPD_HS:
3215 		hsotg->gadget.speed = USB_SPEED_HIGH;
3216 		ep0_mps = EP0_MPS_LIMIT;
3217 		ep_mps = 1024;
3218 		break;
3219 
3220 	case DSTS_ENUMSPD_LS:
3221 		hsotg->gadget.speed = USB_SPEED_LOW;
3222 		ep0_mps = 8;
3223 		ep_mps = 8;
3224 		/*
3225 		 * note, we don't actually support LS in this driver at the
3226 		 * moment, and the documentation seems to imply that it isn't
3227 		 * supported by the PHYs on some of the devices.
3228 		 */
3229 		break;
3230 	}
3231 	dev_info(hsotg->dev, "new device is %s\n",
3232 		 usb_speed_string(hsotg->gadget.speed));
3233 
3234 	/*
3235 	 * we should now know the maximum packet size for an
3236 	 * endpoint, so set the endpoints to a default value.
3237 	 */
3238 
3239 	if (ep0_mps) {
3240 		int i;
3241 		/* Initialize ep0 for both in and out directions */
3242 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3243 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3244 		for (i = 1; i < hsotg->num_of_eps; i++) {
3245 			if (hsotg->eps_in[i])
3246 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3247 							    0, 1);
3248 			if (hsotg->eps_out[i])
3249 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3250 							    0, 0);
3251 		}
3252 	}
3253 
3254 	/* ensure after enumeration our EP0 is active */
3255 
3256 	dwc2_hsotg_enqueue_setup(hsotg);
3257 
3258 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3259 		dwc2_readl(hsotg, DIEPCTL0),
3260 		dwc2_readl(hsotg, DOEPCTL0));
3261 }
3262 
3263 /**
3264  * kill_all_requests - remove all requests from the endpoint's queue
3265  * @hsotg: The device state.
3266  * @ep: The endpoint the requests may be on.
3267  * @result: The result code to use.
3268  *
3269  * Go through the requests on the given endpoint and mark them
3270  * completed with the given result code.
3271  */
3272 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3273 			      struct dwc2_hsotg_ep *ep,
3274 			      int result)
3275 {
3276 	unsigned int size;
3277 
3278 	ep->req = NULL;
3279 
3280 	while (!list_empty(&ep->queue)) {
3281 		struct dwc2_hsotg_req *req = get_ep_head(ep);
3282 
3283 		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3284 	}
3285 
3286 	if (!hsotg->dedicated_fifos)
3287 		return;
3288 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3289 	if (size < ep->fifo_size)
3290 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3291 }
3292 
3293 /**
3294  * dwc2_hsotg_disconnect - disconnect service
3295  * @hsotg: The device state.
3296  *
3297  * The device has been disconnected. Remove all current
3298  * transactions and signal the gadget driver that this
3299  * has happened.
3300  */
3301 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3302 {
3303 	unsigned int ep;
3304 
3305 	if (!hsotg->connected)
3306 		return;
3307 
3308 	hsotg->connected = 0;
3309 	hsotg->test_mode = 0;
3310 
3311 	/* all endpoints should be shutdown */
3312 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3313 		if (hsotg->eps_in[ep])
3314 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3315 					  -ESHUTDOWN);
3316 		if (hsotg->eps_out[ep])
3317 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3318 					  -ESHUTDOWN);
3319 	}
3320 
3321 	call_gadget(hsotg, disconnect);
3322 	hsotg->lx_state = DWC2_L3;
3323 
3324 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3325 }
3326 
3327 /**
3328  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3329  * @hsotg: The device state:
3330  * @periodic: True if this is a periodic FIFO interrupt
3331  */
3332 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3333 {
3334 	struct dwc2_hsotg_ep *ep;
3335 	int epno, ret;
3336 
3337 	/* look through for any more data to transmit */
3338 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3339 		ep = index_to_ep(hsotg, epno, 1);
3340 
3341 		if (!ep)
3342 			continue;
3343 
3344 		if (!ep->dir_in)
3345 			continue;
3346 
3347 		if ((periodic && !ep->periodic) ||
3348 		    (!periodic && ep->periodic))
3349 			continue;
3350 
3351 		ret = dwc2_hsotg_trytx(hsotg, ep);
3352 		if (ret < 0)
3353 			break;
3354 	}
3355 }
3356 
3357 /* IRQ flags which will trigger a retry around the IRQ loop */
3358 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3359 			GINTSTS_PTXFEMP |  \
3360 			GINTSTS_RXFLVL)
3361 
3362 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3363 /**
3364  * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3365  * @hsotg: The device state
3366  * @is_usb_reset: Usb resetting flag
3367  *
3368  * Issue a soft reset to the core, and await the core finishing it.
3369  */
3370 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3371 				       bool is_usb_reset)
3372 {
3373 	u32 intmsk;
3374 	u32 val;
3375 	u32 usbcfg;
3376 	u32 dcfg = 0;
3377 	int ep;
3378 
3379 	/* Kill any ep0 requests as controller will be reinitialized */
3380 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3381 
3382 	if (!is_usb_reset) {
3383 		if (dwc2_core_reset(hsotg, true))
3384 			return;
3385 	} else {
3386 		/* all endpoints should be shutdown */
3387 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3388 			if (hsotg->eps_in[ep])
3389 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3390 			if (hsotg->eps_out[ep])
3391 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3392 		}
3393 	}
3394 
3395 	/*
3396 	 * we must now enable ep0 ready for host detection and then
3397 	 * set configuration.
3398 	 */
3399 
3400 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3401 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3402 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3403 	usbcfg |= GUSBCFG_TOUTCAL(7);
3404 
3405 	/* remove the HNP/SRP and set the PHY */
3406 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3407         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3408 
3409 	dwc2_phy_init(hsotg, true);
3410 
3411 	dwc2_hsotg_init_fifo(hsotg);
3412 
3413 	if (!is_usb_reset)
3414 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3415 
3416 	dcfg |= DCFG_EPMISCNT(1);
3417 
3418 	switch (hsotg->params.speed) {
3419 	case DWC2_SPEED_PARAM_LOW:
3420 		dcfg |= DCFG_DEVSPD_LS;
3421 		break;
3422 	case DWC2_SPEED_PARAM_FULL:
3423 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3424 			dcfg |= DCFG_DEVSPD_FS48;
3425 		else
3426 			dcfg |= DCFG_DEVSPD_FS;
3427 		break;
3428 	default:
3429 		dcfg |= DCFG_DEVSPD_HS;
3430 	}
3431 
3432 	if (hsotg->params.ipg_isoc_en)
3433 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3434 
3435 	dwc2_writel(hsotg, dcfg,  DCFG);
3436 
3437 	/* Clear any pending OTG interrupts */
3438 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3439 
3440 	/* Clear any pending interrupts */
3441 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3442 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3443 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3444 		GINTSTS_USBRST | GINTSTS_RESETDET |
3445 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3446 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3447 		GINTSTS_LPMTRANRCVD;
3448 
3449 	if (!using_desc_dma(hsotg))
3450 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3451 
3452 	if (!hsotg->params.external_id_pin_ctl)
3453 		intmsk |= GINTSTS_CONIDSTSCHNG;
3454 
3455 	dwc2_writel(hsotg, intmsk, GINTMSK);
3456 
3457 	if (using_dma(hsotg)) {
3458 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3459 			    hsotg->params.ahbcfg,
3460 			    GAHBCFG);
3461 
3462 		/* Set DDMA mode support in the core if needed */
3463 		if (using_desc_dma(hsotg))
3464 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3465 
3466 	} else {
3467 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3468 						(GAHBCFG_NP_TXF_EMP_LVL |
3469 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3470 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3471 	}
3472 
3473 	/*
3474 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3475 	 * when we have no data to transfer. Otherwise we get being flooded by
3476 	 * interrupts.
3477 	 */
3478 
3479 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3480 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3481 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3482 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3483 		DIEPMSK);
3484 
3485 	/*
3486 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3487 	 * DMA mode we may need this and StsPhseRcvd.
3488 	 */
3489 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3490 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3491 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3492 		DOEPMSK_SETUPMSK,
3493 		DOEPMSK);
3494 
3495 	/* Enable BNA interrupt for DDMA */
3496 	if (using_desc_dma(hsotg)) {
3497 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3498 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3499 	}
3500 
3501 	/* Enable Service Interval mode if supported */
3502 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3503 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3504 
3505 	dwc2_writel(hsotg, 0, DAINTMSK);
3506 
3507 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3508 		dwc2_readl(hsotg, DIEPCTL0),
3509 		dwc2_readl(hsotg, DOEPCTL0));
3510 
3511 	/* enable in and out endpoint interrupts */
3512 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3513 
3514 	/*
3515 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3516 	 * the data. In DMA mode, we get events from the FIFO but also
3517 	 * things we cannot process, so do not use it.
3518 	 */
3519 	if (!using_dma(hsotg))
3520 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3521 
3522 	/* Enable interrupts for EP0 in and out */
3523 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3524 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3525 
3526 	if (!is_usb_reset) {
3527 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3528 		udelay(10);  /* see openiboot */
3529 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3530 	}
3531 
3532 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3533 
3534 	/*
3535 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3536 	 * writing to the EPCTL register..
3537 	 */
3538 
3539 	/* set to read 1 8byte packet */
3540 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3541 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3542 
3543 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3544 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3545 	       DXEPCTL_USBACTEP,
3546 	       DOEPCTL0);
3547 
3548 	/* enable, but don't activate EP0in */
3549 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3550 	       DXEPCTL_USBACTEP, DIEPCTL0);
3551 
3552 	/* clear global NAKs */
3553 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3554 	if (!is_usb_reset)
3555 		val |= DCTL_SFTDISCON;
3556 	dwc2_set_bit(hsotg, DCTL, val);
3557 
3558 	/* configure the core to support LPM */
3559 	dwc2_gadget_init_lpm(hsotg);
3560 
3561 	/* program GREFCLK register if needed */
3562 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3563 		dwc2_gadget_program_ref_clk(hsotg);
3564 
3565 	/* must be at-least 3ms to allow bus to see disconnect */
3566 	mdelay(3);
3567 
3568 	hsotg->lx_state = DWC2_L0;
3569 
3570 	dwc2_hsotg_enqueue_setup(hsotg);
3571 
3572 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3573 		dwc2_readl(hsotg, DIEPCTL0),
3574 		dwc2_readl(hsotg, DOEPCTL0));
3575 }
3576 
3577 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3578 {
3579 	/* set the soft-disconnect bit */
3580 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3581 }
3582 
3583 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3584 {
3585 	/* remove the soft-disconnect and let's go */
3586 	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3587 }
3588 
3589 /**
3590  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3591  * @hsotg: The device state:
3592  *
3593  * This interrupt indicates one of the following conditions occurred while
3594  * transmitting an ISOC transaction.
3595  * - Corrupted IN Token for ISOC EP.
3596  * - Packet not complete in FIFO.
3597  *
3598  * The following actions will be taken:
3599  * - Determine the EP
3600  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3601  */
3602 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3603 {
3604 	struct dwc2_hsotg_ep *hs_ep;
3605 	u32 epctrl;
3606 	u32 daintmsk;
3607 	u32 idx;
3608 
3609 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3610 
3611 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3612 
3613 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3614 		hs_ep = hsotg->eps_in[idx];
3615 		/* Proceed only unmasked ISOC EPs */
3616 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3617 			continue;
3618 
3619 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3620 		if ((epctrl & DXEPCTL_EPENA) &&
3621 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3622 			epctrl |= DXEPCTL_SNAK;
3623 			epctrl |= DXEPCTL_EPDIS;
3624 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3625 		}
3626 	}
3627 
3628 	/* Clear interrupt */
3629 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3630 }
3631 
3632 /**
3633  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3634  * @hsotg: The device state:
3635  *
3636  * This interrupt indicates one of the following conditions occurred while
3637  * transmitting an ISOC transaction.
3638  * - Corrupted OUT Token for ISOC EP.
3639  * - Packet not complete in FIFO.
3640  *
3641  * The following actions will be taken:
3642  * - Determine the EP
3643  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3644  */
3645 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3646 {
3647 	u32 gintsts;
3648 	u32 gintmsk;
3649 	u32 daintmsk;
3650 	u32 epctrl;
3651 	struct dwc2_hsotg_ep *hs_ep;
3652 	int idx;
3653 
3654 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3655 
3656 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3657 	daintmsk >>= DAINT_OUTEP_SHIFT;
3658 
3659 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3660 		hs_ep = hsotg->eps_out[idx];
3661 		/* Proceed only unmasked ISOC EPs */
3662 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3663 			continue;
3664 
3665 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3666 		if ((epctrl & DXEPCTL_EPENA) &&
3667 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3668 			/* Unmask GOUTNAKEFF interrupt */
3669 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3670 			gintmsk |= GINTSTS_GOUTNAKEFF;
3671 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3672 
3673 			gintsts = dwc2_readl(hsotg, GINTSTS);
3674 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3675 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3676 				break;
3677 			}
3678 		}
3679 	}
3680 
3681 	/* Clear interrupt */
3682 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3683 }
3684 
3685 /**
3686  * dwc2_hsotg_irq - handle device interrupt
3687  * @irq: The IRQ number triggered
3688  * @pw: The pw value when registered the handler.
3689  */
3690 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3691 {
3692 	struct dwc2_hsotg *hsotg = pw;
3693 	int retry_count = 8;
3694 	u32 gintsts;
3695 	u32 gintmsk;
3696 
3697 	if (!dwc2_is_device_mode(hsotg))
3698 		return IRQ_NONE;
3699 
3700 	spin_lock(&hsotg->lock);
3701 irq_retry:
3702 	gintsts = dwc2_readl(hsotg, GINTSTS);
3703 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3704 
3705 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3706 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3707 
3708 	gintsts &= gintmsk;
3709 
3710 	if (gintsts & GINTSTS_RESETDET) {
3711 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3712 
3713 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3714 
3715 		/* This event must be used only if controller is suspended */
3716 		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3717 			dwc2_exit_partial_power_down(hsotg, 0, true);
3718 
3719 		hsotg->lx_state = DWC2_L0;
3720 	}
3721 
3722 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3723 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3724 		u32 connected = hsotg->connected;
3725 
3726 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3727 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3728 			dwc2_readl(hsotg, GNPTXSTS));
3729 
3730 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3731 
3732 		/* Report disconnection if it is not already done. */
3733 		dwc2_hsotg_disconnect(hsotg);
3734 
3735 		/* Reset device address to zero */
3736 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3737 
3738 		if (usb_status & GOTGCTL_BSESVLD && connected)
3739 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3740 	}
3741 
3742 	if (gintsts & GINTSTS_ENUMDONE) {
3743 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3744 
3745 		dwc2_hsotg_irq_enumdone(hsotg);
3746 	}
3747 
3748 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3749 		u32 daint = dwc2_readl(hsotg, DAINT);
3750 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3751 		u32 daint_out, daint_in;
3752 		int ep;
3753 
3754 		daint &= daintmsk;
3755 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3756 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3757 
3758 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3759 
3760 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3761 						ep++, daint_out >>= 1) {
3762 			if (daint_out & 1)
3763 				dwc2_hsotg_epint(hsotg, ep, 0);
3764 		}
3765 
3766 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3767 						ep++, daint_in >>= 1) {
3768 			if (daint_in & 1)
3769 				dwc2_hsotg_epint(hsotg, ep, 1);
3770 		}
3771 	}
3772 
3773 	/* check both FIFOs */
3774 
3775 	if (gintsts & GINTSTS_NPTXFEMP) {
3776 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3777 
3778 		/*
3779 		 * Disable the interrupt to stop it happening again
3780 		 * unless one of these endpoint routines decides that
3781 		 * it needs re-enabling
3782 		 */
3783 
3784 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3785 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3786 	}
3787 
3788 	if (gintsts & GINTSTS_PTXFEMP) {
3789 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3790 
3791 		/* See note in GINTSTS_NPTxFEmp */
3792 
3793 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3794 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3795 	}
3796 
3797 	if (gintsts & GINTSTS_RXFLVL) {
3798 		/*
3799 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3800 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3801 		 * set.
3802 		 */
3803 
3804 		dwc2_hsotg_handle_rx(hsotg);
3805 	}
3806 
3807 	if (gintsts & GINTSTS_ERLYSUSP) {
3808 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3809 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3810 	}
3811 
3812 	/*
3813 	 * these next two seem to crop-up occasionally causing the core
3814 	 * to shutdown the USB transfer, so try clearing them and logging
3815 	 * the occurrence.
3816 	 */
3817 
3818 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3819 		u8 idx;
3820 		u32 epctrl;
3821 		u32 gintmsk;
3822 		u32 daintmsk;
3823 		struct dwc2_hsotg_ep *hs_ep;
3824 
3825 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3826 		daintmsk >>= DAINT_OUTEP_SHIFT;
3827 		/* Mask this interrupt */
3828 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3829 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3830 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3831 
3832 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3833 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3834 			hs_ep = hsotg->eps_out[idx];
3835 			/* Proceed only unmasked ISOC EPs */
3836 			if (BIT(idx) & ~daintmsk)
3837 				continue;
3838 
3839 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3840 
3841 			//ISOC Ep's only
3842 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3843 				epctrl |= DXEPCTL_SNAK;
3844 				epctrl |= DXEPCTL_EPDIS;
3845 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3846 				continue;
3847 			}
3848 
3849 			//Non-ISOC EP's
3850 			if (hs_ep->halted) {
3851 				if (!(epctrl & DXEPCTL_EPENA))
3852 					epctrl |= DXEPCTL_EPENA;
3853 				epctrl |= DXEPCTL_EPDIS;
3854 				epctrl |= DXEPCTL_STALL;
3855 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3856 			}
3857 		}
3858 
3859 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3860 	}
3861 
3862 	if (gintsts & GINTSTS_GINNAKEFF) {
3863 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3864 
3865 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3866 
3867 		dwc2_hsotg_dump(hsotg);
3868 	}
3869 
3870 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3871 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3872 
3873 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3874 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3875 
3876 	/*
3877 	 * if we've had fifo events, we should try and go around the
3878 	 * loop again to see if there's any point in returning yet.
3879 	 */
3880 
3881 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3882 		goto irq_retry;
3883 
3884 	/* Check WKUP_ALERT interrupt*/
3885 	if (hsotg->params.service_interval)
3886 		dwc2_gadget_wkup_alert_handler(hsotg);
3887 
3888 	spin_unlock(&hsotg->lock);
3889 
3890 	return IRQ_HANDLED;
3891 }
3892 
3893 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3894 				   struct dwc2_hsotg_ep *hs_ep)
3895 {
3896 	u32 epctrl_reg;
3897 	u32 epint_reg;
3898 
3899 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3900 		DOEPCTL(hs_ep->index);
3901 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3902 		DOEPINT(hs_ep->index);
3903 
3904 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3905 		hs_ep->name);
3906 
3907 	if (hs_ep->dir_in) {
3908 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3909 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3910 			/* Wait for Nak effect */
3911 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3912 						    DXEPINT_INEPNAKEFF, 100))
3913 				dev_warn(hsotg->dev,
3914 					 "%s: timeout DIEPINT.NAKEFF\n",
3915 					 __func__);
3916 		} else {
3917 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3918 			/* Wait for Nak effect */
3919 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3920 						    GINTSTS_GINNAKEFF, 100))
3921 				dev_warn(hsotg->dev,
3922 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3923 					 __func__);
3924 		}
3925 	} else {
3926 		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3927 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3928 
3929 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3930 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3931 
3932 		if (!using_dma(hsotg)) {
3933 			/* Wait for GINTSTS_RXFLVL interrupt */
3934 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3935 						    GINTSTS_RXFLVL, 100)) {
3936 				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3937 					 __func__);
3938 			} else {
3939 				/*
3940 				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3941 				 * to assert GOUTNAKEFF interrupt
3942 				 */
3943 				dwc2_readl(hsotg, GRXSTSP);
3944 			}
3945 		}
3946 
3947 		/* Wait for global nak to take effect */
3948 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3949 					    GINTSTS_GOUTNAKEFF, 100))
3950 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3951 				 __func__);
3952 	}
3953 
3954 	/* Disable ep */
3955 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3956 
3957 	/* Wait for ep to be disabled */
3958 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3959 		dev_warn(hsotg->dev,
3960 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3961 
3962 	/* Clear EPDISBLD interrupt */
3963 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3964 
3965 	if (hs_ep->dir_in) {
3966 		unsigned short fifo_index;
3967 
3968 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3969 			fifo_index = hs_ep->fifo_index;
3970 		else
3971 			fifo_index = 0;
3972 
3973 		/* Flush TX FIFO */
3974 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3975 
3976 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3977 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3978 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3979 
3980 	} else {
3981 		/* Remove global NAKs */
3982 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3983 	}
3984 }
3985 
3986 /**
3987  * dwc2_hsotg_ep_enable - enable the given endpoint
3988  * @ep: The USB endpint to configure
3989  * @desc: The USB endpoint descriptor to configure with.
3990  *
3991  * This is called from the USB gadget code's usb_ep_enable().
3992  */
3993 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3994 				const struct usb_endpoint_descriptor *desc)
3995 {
3996 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3997 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3998 	unsigned long flags;
3999 	unsigned int index = hs_ep->index;
4000 	u32 epctrl_reg;
4001 	u32 epctrl;
4002 	u32 mps;
4003 	u32 mc;
4004 	u32 mask;
4005 	unsigned int dir_in;
4006 	unsigned int i, val, size;
4007 	int ret = 0;
4008 	unsigned char ep_type;
4009 	int desc_num;
4010 
4011 	dev_dbg(hsotg->dev,
4012 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4013 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4014 		desc->wMaxPacketSize, desc->bInterval);
4015 
4016 	/* not to be called for EP0 */
4017 	if (index == 0) {
4018 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4019 		return -EINVAL;
4020 	}
4021 
4022 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4023 	if (dir_in != hs_ep->dir_in) {
4024 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4025 		return -EINVAL;
4026 	}
4027 
4028 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4029 	mps = usb_endpoint_maxp(desc);
4030 	mc = usb_endpoint_maxp_mult(desc);
4031 
4032 	/* ISOC IN in DDMA supported bInterval up to 10 */
4033 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4034 	    dir_in && desc->bInterval > 10) {
4035 		dev_err(hsotg->dev,
4036 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4037 		return -EINVAL;
4038 	}
4039 
4040 	/* High bandwidth ISOC OUT in DDMA not supported */
4041 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4042 	    !dir_in && mc > 1) {
4043 		dev_err(hsotg->dev,
4044 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4045 		return -EINVAL;
4046 	}
4047 
4048 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4049 
4050 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4051 	epctrl = dwc2_readl(hsotg, epctrl_reg);
4052 
4053 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4054 		__func__, epctrl, epctrl_reg);
4055 
4056 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4057 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4058 	else
4059 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4060 
4061 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4062 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4063 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4064 			desc_num * sizeof(struct dwc2_dma_desc),
4065 			&hs_ep->desc_list_dma, GFP_ATOMIC);
4066 		if (!hs_ep->desc_list) {
4067 			ret = -ENOMEM;
4068 			goto error2;
4069 		}
4070 	}
4071 
4072 	spin_lock_irqsave(&hsotg->lock, flags);
4073 
4074 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4075 	epctrl |= DXEPCTL_MPS(mps);
4076 
4077 	/*
4078 	 * mark the endpoint as active, otherwise the core may ignore
4079 	 * transactions entirely for this endpoint
4080 	 */
4081 	epctrl |= DXEPCTL_USBACTEP;
4082 
4083 	/* update the endpoint state */
4084 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4085 
4086 	/* default, set to non-periodic */
4087 	hs_ep->isochronous = 0;
4088 	hs_ep->periodic = 0;
4089 	hs_ep->halted = 0;
4090 	hs_ep->wedged = 0;
4091 	hs_ep->interval = desc->bInterval;
4092 
4093 	switch (ep_type) {
4094 	case USB_ENDPOINT_XFER_ISOC:
4095 		epctrl |= DXEPCTL_EPTYPE_ISO;
4096 		epctrl |= DXEPCTL_SETEVENFR;
4097 		hs_ep->isochronous = 1;
4098 		hs_ep->interval = 1 << (desc->bInterval - 1);
4099 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4100 		hs_ep->next_desc = 0;
4101 		hs_ep->compl_desc = 0;
4102 		if (dir_in) {
4103 			hs_ep->periodic = 1;
4104 			mask = dwc2_readl(hsotg, DIEPMSK);
4105 			mask |= DIEPMSK_NAKMSK;
4106 			dwc2_writel(hsotg, mask, DIEPMSK);
4107 		} else {
4108 			epctrl |= DXEPCTL_SNAK;
4109 			mask = dwc2_readl(hsotg, DOEPMSK);
4110 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4111 			dwc2_writel(hsotg, mask, DOEPMSK);
4112 		}
4113 		break;
4114 
4115 	case USB_ENDPOINT_XFER_BULK:
4116 		epctrl |= DXEPCTL_EPTYPE_BULK;
4117 		break;
4118 
4119 	case USB_ENDPOINT_XFER_INT:
4120 		if (dir_in)
4121 			hs_ep->periodic = 1;
4122 
4123 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4124 			hs_ep->interval = 1 << (desc->bInterval - 1);
4125 
4126 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4127 		break;
4128 
4129 	case USB_ENDPOINT_XFER_CONTROL:
4130 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4131 		break;
4132 	}
4133 
4134 	/*
4135 	 * if the hardware has dedicated fifos, we must give each IN EP
4136 	 * a unique tx-fifo even if it is non-periodic.
4137 	 */
4138 	if (dir_in && hsotg->dedicated_fifos) {
4139 		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4140 		u32 fifo_index = 0;
4141 		u32 fifo_size = UINT_MAX;
4142 
4143 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4144 		for (i = 1; i <= fifo_count; ++i) {
4145 			if (hsotg->fifo_map & (1 << i))
4146 				continue;
4147 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4148 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4149 			if (val < size)
4150 				continue;
4151 			/* Search for smallest acceptable fifo */
4152 			if (val < fifo_size) {
4153 				fifo_size = val;
4154 				fifo_index = i;
4155 			}
4156 		}
4157 		if (!fifo_index) {
4158 			dev_err(hsotg->dev,
4159 				"%s: No suitable fifo found\n", __func__);
4160 			ret = -ENOMEM;
4161 			goto error1;
4162 		}
4163 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4164 		hsotg->fifo_map |= 1 << fifo_index;
4165 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4166 		hs_ep->fifo_index = fifo_index;
4167 		hs_ep->fifo_size = fifo_size;
4168 	}
4169 
4170 	/* for non control endpoints, set PID to D0 */
4171 	if (index && !hs_ep->isochronous)
4172 		epctrl |= DXEPCTL_SETD0PID;
4173 
4174 	/* WA for Full speed ISOC IN in DDMA mode.
4175 	 * By Clear NAK status of EP, core will send ZLP
4176 	 * to IN token and assert NAK interrupt relying
4177 	 * on TxFIFO status only
4178 	 */
4179 
4180 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4181 	    hs_ep->isochronous && dir_in) {
4182 		/* The WA applies only to core versions from 2.72a
4183 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4184 		 * and HS_IOT_1.00a.
4185 		 */
4186 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4187 
4188 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4189 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4190 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4191 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4192 			epctrl |= DXEPCTL_CNAK;
4193 	}
4194 
4195 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4196 		__func__, epctrl);
4197 
4198 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4199 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4200 		__func__, dwc2_readl(hsotg, epctrl_reg));
4201 
4202 	/* enable the endpoint interrupt */
4203 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4204 
4205 error1:
4206 	spin_unlock_irqrestore(&hsotg->lock, flags);
4207 
4208 error2:
4209 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4210 		dmam_free_coherent(hsotg->dev, desc_num *
4211 			sizeof(struct dwc2_dma_desc),
4212 			hs_ep->desc_list, hs_ep->desc_list_dma);
4213 		hs_ep->desc_list = NULL;
4214 	}
4215 
4216 	return ret;
4217 }
4218 
4219 /**
4220  * dwc2_hsotg_ep_disable - disable given endpoint
4221  * @ep: The endpoint to disable.
4222  */
4223 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4224 {
4225 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4226 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4227 	int dir_in = hs_ep->dir_in;
4228 	int index = hs_ep->index;
4229 	u32 epctrl_reg;
4230 	u32 ctrl;
4231 
4232 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4233 
4234 	if (ep == &hsotg->eps_out[0]->ep) {
4235 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4236 		return -EINVAL;
4237 	}
4238 
4239 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4240 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4241 		return -EINVAL;
4242 	}
4243 
4244 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4245 
4246 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4247 
4248 	if (ctrl & DXEPCTL_EPENA)
4249 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4250 
4251 	ctrl &= ~DXEPCTL_EPENA;
4252 	ctrl &= ~DXEPCTL_USBACTEP;
4253 	ctrl |= DXEPCTL_SNAK;
4254 
4255 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4256 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4257 
4258 	/* disable endpoint interrupts */
4259 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4260 
4261 	/* terminate all requests with shutdown */
4262 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4263 
4264 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4265 	hs_ep->fifo_index = 0;
4266 	hs_ep->fifo_size = 0;
4267 
4268 	return 0;
4269 }
4270 
4271 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4272 {
4273 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4274 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4275 	unsigned long flags;
4276 	int ret;
4277 
4278 	spin_lock_irqsave(&hsotg->lock, flags);
4279 	ret = dwc2_hsotg_ep_disable(ep);
4280 	spin_unlock_irqrestore(&hsotg->lock, flags);
4281 	return ret;
4282 }
4283 
4284 /**
4285  * on_list - check request is on the given endpoint
4286  * @ep: The endpoint to check.
4287  * @test: The request to test if it is on the endpoint.
4288  */
4289 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4290 {
4291 	struct dwc2_hsotg_req *req, *treq;
4292 
4293 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4294 		if (req == test)
4295 			return true;
4296 	}
4297 
4298 	return false;
4299 }
4300 
4301 /**
4302  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4303  * @ep: The endpoint to dequeue.
4304  * @req: The request to be removed from a queue.
4305  */
4306 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4307 {
4308 	struct dwc2_hsotg_req *hs_req = our_req(req);
4309 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4310 	struct dwc2_hsotg *hs = hs_ep->parent;
4311 	unsigned long flags;
4312 
4313 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4314 
4315 	spin_lock_irqsave(&hs->lock, flags);
4316 
4317 	if (!on_list(hs_ep, hs_req)) {
4318 		spin_unlock_irqrestore(&hs->lock, flags);
4319 		return -EINVAL;
4320 	}
4321 
4322 	/* Dequeue already started request */
4323 	if (req == &hs_ep->req->req)
4324 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4325 
4326 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4327 	spin_unlock_irqrestore(&hs->lock, flags);
4328 
4329 	return 0;
4330 }
4331 
4332 /**
4333  * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4334  * @ep: The endpoint to be wedged.
4335  *
4336  */
4337 static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4338 {
4339 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4340 	struct dwc2_hsotg *hs = hs_ep->parent;
4341 
4342 	unsigned long	flags;
4343 	int		ret;
4344 
4345 	spin_lock_irqsave(&hs->lock, flags);
4346 	hs_ep->wedged = 1;
4347 	ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4348 	spin_unlock_irqrestore(&hs->lock, flags);
4349 
4350 	return ret;
4351 }
4352 
4353 /**
4354  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4355  * @ep: The endpoint to set halt.
4356  * @value: Set or unset the halt.
4357  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4358  *       the endpoint is busy processing requests.
4359  *
4360  * We need to stall the endpoint immediately if request comes from set_feature
4361  * protocol command handler.
4362  */
4363 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4364 {
4365 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4366 	struct dwc2_hsotg *hs = hs_ep->parent;
4367 	int index = hs_ep->index;
4368 	u32 epreg;
4369 	u32 epctl;
4370 	u32 xfertype;
4371 
4372 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4373 
4374 	if (index == 0) {
4375 		if (value)
4376 			dwc2_hsotg_stall_ep0(hs);
4377 		else
4378 			dev_warn(hs->dev,
4379 				 "%s: can't clear halt on ep0\n", __func__);
4380 		return 0;
4381 	}
4382 
4383 	if (hs_ep->isochronous) {
4384 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4385 		return -EINVAL;
4386 	}
4387 
4388 	if (!now && value && !list_empty(&hs_ep->queue)) {
4389 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4390 			ep->name);
4391 		return -EAGAIN;
4392 	}
4393 
4394 	if (hs_ep->dir_in) {
4395 		epreg = DIEPCTL(index);
4396 		epctl = dwc2_readl(hs, epreg);
4397 
4398 		if (value) {
4399 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4400 			if (epctl & DXEPCTL_EPENA)
4401 				epctl |= DXEPCTL_EPDIS;
4402 		} else {
4403 			epctl &= ~DXEPCTL_STALL;
4404 			hs_ep->wedged = 0;
4405 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4406 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4407 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4408 				epctl |= DXEPCTL_SETD0PID;
4409 		}
4410 		dwc2_writel(hs, epctl, epreg);
4411 	} else {
4412 		epreg = DOEPCTL(index);
4413 		epctl = dwc2_readl(hs, epreg);
4414 
4415 		if (value) {
4416 			/* Unmask GOUTNAKEFF interrupt */
4417 			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4418 
4419 			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4420 				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4421 			// STALL bit will be set in GOUTNAKEFF interrupt handler
4422 		} else {
4423 			epctl &= ~DXEPCTL_STALL;
4424 			hs_ep->wedged = 0;
4425 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4426 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4427 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4428 				epctl |= DXEPCTL_SETD0PID;
4429 			dwc2_writel(hs, epctl, epreg);
4430 		}
4431 	}
4432 
4433 	hs_ep->halted = value;
4434 	return 0;
4435 }
4436 
4437 /**
4438  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4439  * @ep: The endpoint to set halt.
4440  * @value: Set or unset the halt.
4441  */
4442 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4443 {
4444 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4445 	struct dwc2_hsotg *hs = hs_ep->parent;
4446 	unsigned long flags;
4447 	int ret;
4448 
4449 	spin_lock_irqsave(&hs->lock, flags);
4450 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4451 	spin_unlock_irqrestore(&hs->lock, flags);
4452 
4453 	return ret;
4454 }
4455 
4456 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4457 	.enable		= dwc2_hsotg_ep_enable,
4458 	.disable	= dwc2_hsotg_ep_disable_lock,
4459 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4460 	.free_request	= dwc2_hsotg_ep_free_request,
4461 	.queue		= dwc2_hsotg_ep_queue_lock,
4462 	.dequeue	= dwc2_hsotg_ep_dequeue,
4463 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4464 	.set_wedge	= dwc2_gadget_ep_set_wedge,
4465 	/* note, don't believe we have any call for the fifo routines */
4466 };
4467 
4468 /**
4469  * dwc2_hsotg_init - initialize the usb core
4470  * @hsotg: The driver state
4471  */
4472 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4473 {
4474 	/* unmask subset of endpoint interrupts */
4475 
4476 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4477 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4478 		    DIEPMSK);
4479 
4480 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4481 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4482 		    DOEPMSK);
4483 
4484 	dwc2_writel(hsotg, 0, DAINTMSK);
4485 
4486 	/* Be in disconnected state until gadget is registered */
4487 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4488 
4489 	/* setup fifos */
4490 
4491 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4492 		dwc2_readl(hsotg, GRXFSIZ),
4493 		dwc2_readl(hsotg, GNPTXFSIZ));
4494 
4495 	dwc2_hsotg_init_fifo(hsotg);
4496 
4497 	if (using_dma(hsotg))
4498 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4499 }
4500 
4501 /**
4502  * dwc2_hsotg_udc_start - prepare the udc for work
4503  * @gadget: The usb gadget state
4504  * @driver: The usb gadget driver
4505  *
4506  * Perform initialization to prepare udc device and driver
4507  * to work.
4508  */
4509 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4510 				struct usb_gadget_driver *driver)
4511 {
4512 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4513 	unsigned long flags;
4514 	int ret;
4515 
4516 	if (!hsotg) {
4517 		pr_err("%s: called with no device\n", __func__);
4518 		return -ENODEV;
4519 	}
4520 
4521 	if (!driver) {
4522 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4523 		return -EINVAL;
4524 	}
4525 
4526 	if (driver->max_speed < USB_SPEED_FULL)
4527 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4528 
4529 	if (!driver->setup) {
4530 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4531 		return -EINVAL;
4532 	}
4533 
4534 	WARN_ON(hsotg->driver);
4535 
4536 	driver->driver.bus = NULL;
4537 	hsotg->driver = driver;
4538 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4539 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4540 
4541 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4542 		ret = dwc2_lowlevel_hw_enable(hsotg);
4543 		if (ret)
4544 			goto err;
4545 	}
4546 
4547 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4548 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4549 
4550 	spin_lock_irqsave(&hsotg->lock, flags);
4551 	if (dwc2_hw_is_device(hsotg)) {
4552 		dwc2_hsotg_init(hsotg);
4553 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4554 	}
4555 
4556 	hsotg->enabled = 0;
4557 	spin_unlock_irqrestore(&hsotg->lock, flags);
4558 
4559 	gadget->sg_supported = using_desc_dma(hsotg);
4560 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4561 
4562 	return 0;
4563 
4564 err:
4565 	hsotg->driver = NULL;
4566 	return ret;
4567 }
4568 
4569 /**
4570  * dwc2_hsotg_udc_stop - stop the udc
4571  * @gadget: The usb gadget state
4572  *
4573  * Stop udc hw block and stay tunned for future transmissions
4574  */
4575 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4576 {
4577 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4578 	unsigned long flags;
4579 	int ep;
4580 
4581 	if (!hsotg)
4582 		return -ENODEV;
4583 
4584 	/* all endpoints should be shutdown */
4585 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4586 		if (hsotg->eps_in[ep])
4587 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4588 		if (hsotg->eps_out[ep])
4589 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4590 	}
4591 
4592 	spin_lock_irqsave(&hsotg->lock, flags);
4593 
4594 	hsotg->driver = NULL;
4595 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4596 	hsotg->enabled = 0;
4597 
4598 	spin_unlock_irqrestore(&hsotg->lock, flags);
4599 
4600 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4601 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4602 
4603 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4604 		dwc2_lowlevel_hw_disable(hsotg);
4605 
4606 	return 0;
4607 }
4608 
4609 /**
4610  * dwc2_hsotg_gadget_getframe - read the frame number
4611  * @gadget: The usb gadget state
4612  *
4613  * Read the {micro} frame number
4614  */
4615 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4616 {
4617 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4618 }
4619 
4620 /**
4621  * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4622  * @gadget: The usb gadget state
4623  * @is_selfpowered: Whether the device is self-powered
4624  *
4625  * Set if the device is self or bus powered.
4626  */
4627 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4628 				      int is_selfpowered)
4629 {
4630 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4631 	unsigned long flags;
4632 
4633 	spin_lock_irqsave(&hsotg->lock, flags);
4634 	gadget->is_selfpowered = !!is_selfpowered;
4635 	spin_unlock_irqrestore(&hsotg->lock, flags);
4636 
4637 	return 0;
4638 }
4639 
4640 /**
4641  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4642  * @gadget: The usb gadget state
4643  * @is_on: Current state of the USB PHY
4644  *
4645  * Connect/Disconnect the USB PHY pullup
4646  */
4647 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4648 {
4649 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4650 	unsigned long flags;
4651 
4652 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4653 		hsotg->op_state);
4654 
4655 	/* Don't modify pullup state while in host mode */
4656 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4657 		hsotg->enabled = is_on;
4658 		return 0;
4659 	}
4660 
4661 	spin_lock_irqsave(&hsotg->lock, flags);
4662 	if (is_on) {
4663 		hsotg->enabled = 1;
4664 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4665 		/* Enable ACG feature in device mode,if supported */
4666 		dwc2_enable_acg(hsotg);
4667 		dwc2_hsotg_core_connect(hsotg);
4668 	} else {
4669 		dwc2_hsotg_core_disconnect(hsotg);
4670 		dwc2_hsotg_disconnect(hsotg);
4671 		hsotg->enabled = 0;
4672 	}
4673 
4674 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4675 	spin_unlock_irqrestore(&hsotg->lock, flags);
4676 
4677 	return 0;
4678 }
4679 
4680 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4681 {
4682 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4683 	unsigned long flags;
4684 
4685 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4686 	spin_lock_irqsave(&hsotg->lock, flags);
4687 
4688 	/*
4689 	 * If controller is in partial power down state, it must exit from
4690 	 * that state before being initialized / de-initialized
4691 	 */
4692 	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4693 		/*
4694 		 * No need to check the return value as
4695 		 * registers are not being restored.
4696 		 */
4697 		dwc2_exit_partial_power_down(hsotg, 0, false);
4698 
4699 	if (is_active) {
4700 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4701 
4702 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4703 		if (hsotg->enabled) {
4704 			/* Enable ACG feature in device mode,if supported */
4705 			dwc2_enable_acg(hsotg);
4706 			dwc2_hsotg_core_connect(hsotg);
4707 		}
4708 	} else {
4709 		dwc2_hsotg_core_disconnect(hsotg);
4710 		dwc2_hsotg_disconnect(hsotg);
4711 	}
4712 
4713 	spin_unlock_irqrestore(&hsotg->lock, flags);
4714 	return 0;
4715 }
4716 
4717 /**
4718  * dwc2_hsotg_vbus_draw - report bMaxPower field
4719  * @gadget: The usb gadget state
4720  * @mA: Amount of current
4721  *
4722  * Report how much power the device may consume to the phy.
4723  */
4724 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4725 {
4726 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4727 
4728 	if (IS_ERR_OR_NULL(hsotg->uphy))
4729 		return -ENOTSUPP;
4730 	return usb_phy_set_power(hsotg->uphy, mA);
4731 }
4732 
4733 static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4734 {
4735 	struct dwc2_hsotg *hsotg = to_hsotg(g);
4736 	unsigned long		flags;
4737 
4738 	spin_lock_irqsave(&hsotg->lock, flags);
4739 	switch (speed) {
4740 	case USB_SPEED_HIGH:
4741 		hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4742 		break;
4743 	case USB_SPEED_FULL:
4744 		hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4745 		break;
4746 	case USB_SPEED_LOW:
4747 		hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4748 		break;
4749 	default:
4750 		dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4751 	}
4752 	spin_unlock_irqrestore(&hsotg->lock, flags);
4753 }
4754 
4755 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4756 	.get_frame	= dwc2_hsotg_gadget_getframe,
4757 	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4758 	.udc_start		= dwc2_hsotg_udc_start,
4759 	.udc_stop		= dwc2_hsotg_udc_stop,
4760 	.pullup                 = dwc2_hsotg_pullup,
4761 	.udc_set_speed		= dwc2_gadget_set_speed,
4762 	.vbus_session		= dwc2_hsotg_vbus_session,
4763 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4764 };
4765 
4766 /**
4767  * dwc2_hsotg_initep - initialise a single endpoint
4768  * @hsotg: The device state.
4769  * @hs_ep: The endpoint to be initialised.
4770  * @epnum: The endpoint number
4771  * @dir_in: True if direction is in.
4772  *
4773  * Initialise the given endpoint (as part of the probe and device state
4774  * creation) to give to the gadget driver. Setup the endpoint name, any
4775  * direction information and other state that may be required.
4776  */
4777 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4778 			      struct dwc2_hsotg_ep *hs_ep,
4779 				       int epnum,
4780 				       bool dir_in)
4781 {
4782 	char *dir;
4783 
4784 	if (epnum == 0)
4785 		dir = "";
4786 	else if (dir_in)
4787 		dir = "in";
4788 	else
4789 		dir = "out";
4790 
4791 	hs_ep->dir_in = dir_in;
4792 	hs_ep->index = epnum;
4793 
4794 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4795 
4796 	INIT_LIST_HEAD(&hs_ep->queue);
4797 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4798 
4799 	/* add to the list of endpoints known by the gadget driver */
4800 	if (epnum)
4801 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4802 
4803 	hs_ep->parent = hsotg;
4804 	hs_ep->ep.name = hs_ep->name;
4805 
4806 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4807 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4808 	else
4809 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4810 					   epnum ? 1024 : EP0_MPS_LIMIT);
4811 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4812 
4813 	if (epnum == 0) {
4814 		hs_ep->ep.caps.type_control = true;
4815 	} else {
4816 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4817 			hs_ep->ep.caps.type_iso = true;
4818 			hs_ep->ep.caps.type_bulk = true;
4819 		}
4820 		hs_ep->ep.caps.type_int = true;
4821 	}
4822 
4823 	if (dir_in)
4824 		hs_ep->ep.caps.dir_in = true;
4825 	else
4826 		hs_ep->ep.caps.dir_out = true;
4827 
4828 	/*
4829 	 * if we're using dma, we need to set the next-endpoint pointer
4830 	 * to be something valid.
4831 	 */
4832 
4833 	if (using_dma(hsotg)) {
4834 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4835 
4836 		if (dir_in)
4837 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4838 		else
4839 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4840 	}
4841 }
4842 
4843 /**
4844  * dwc2_hsotg_hw_cfg - read HW configuration registers
4845  * @hsotg: Programming view of the DWC_otg controller
4846  *
4847  * Read the USB core HW configuration registers
4848  */
4849 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4850 {
4851 	u32 cfg;
4852 	u32 ep_type;
4853 	u32 i;
4854 
4855 	/* check hardware configuration */
4856 
4857 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4858 
4859 	/* Add ep0 */
4860 	hsotg->num_of_eps++;
4861 
4862 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4863 					sizeof(struct dwc2_hsotg_ep),
4864 					GFP_KERNEL);
4865 	if (!hsotg->eps_in[0])
4866 		return -ENOMEM;
4867 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4868 	hsotg->eps_out[0] = hsotg->eps_in[0];
4869 
4870 	cfg = hsotg->hw_params.dev_ep_dirs;
4871 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4872 		ep_type = cfg & 3;
4873 		/* Direction in or both */
4874 		if (!(ep_type & 2)) {
4875 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4876 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4877 			if (!hsotg->eps_in[i])
4878 				return -ENOMEM;
4879 		}
4880 		/* Direction out or both */
4881 		if (!(ep_type & 1)) {
4882 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4883 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4884 			if (!hsotg->eps_out[i])
4885 				return -ENOMEM;
4886 		}
4887 	}
4888 
4889 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4890 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4891 
4892 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4893 		 hsotg->num_of_eps,
4894 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4895 		 hsotg->fifo_mem);
4896 	return 0;
4897 }
4898 
4899 /**
4900  * dwc2_hsotg_dump - dump state of the udc
4901  * @hsotg: Programming view of the DWC_otg controller
4902  *
4903  */
4904 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4905 {
4906 #ifdef DEBUG
4907 	struct device *dev = hsotg->dev;
4908 	u32 val;
4909 	int idx;
4910 
4911 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4912 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4913 		 dwc2_readl(hsotg, DIEPMSK));
4914 
4915 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4916 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4917 
4918 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4919 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4920 
4921 	/* show periodic fifo settings */
4922 
4923 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4924 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4925 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4926 			 val >> FIFOSIZE_DEPTH_SHIFT,
4927 			 val & FIFOSIZE_STARTADDR_MASK);
4928 	}
4929 
4930 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4931 		dev_info(dev,
4932 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4933 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4934 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4935 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4936 
4937 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4938 		dev_info(dev,
4939 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4940 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4941 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4942 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4943 	}
4944 
4945 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4946 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4947 #endif
4948 }
4949 
4950 /**
4951  * dwc2_gadget_init - init function for gadget
4952  * @hsotg: Programming view of the DWC_otg controller
4953  *
4954  */
4955 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4956 {
4957 	struct device *dev = hsotg->dev;
4958 	int epnum;
4959 	int ret;
4960 
4961 	/* Dump fifo information */
4962 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4963 		hsotg->params.g_np_tx_fifo_size);
4964 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4965 
4966 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4967 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4968 	hsotg->gadget.name = dev_name(dev);
4969 	hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
4970 	hsotg->remote_wakeup_allowed = 0;
4971 
4972 	if (hsotg->params.lpm)
4973 		hsotg->gadget.lpm_capable = true;
4974 
4975 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4976 		hsotg->gadget.is_otg = 1;
4977 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4978 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4979 
4980 	ret = dwc2_hsotg_hw_cfg(hsotg);
4981 	if (ret) {
4982 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4983 		return ret;
4984 	}
4985 
4986 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4987 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4988 	if (!hsotg->ctrl_buff)
4989 		return -ENOMEM;
4990 
4991 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4992 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4993 	if (!hsotg->ep0_buff)
4994 		return -ENOMEM;
4995 
4996 	if (using_desc_dma(hsotg)) {
4997 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4998 		if (ret < 0)
4999 			return ret;
5000 	}
5001 
5002 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5003 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5004 	if (ret < 0) {
5005 		dev_err(dev, "cannot claim IRQ for gadget\n");
5006 		return ret;
5007 	}
5008 
5009 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
5010 
5011 	if (hsotg->num_of_eps == 0) {
5012 		dev_err(dev, "wrong number of EPs (zero)\n");
5013 		return -EINVAL;
5014 	}
5015 
5016 	/* setup endpoint information */
5017 
5018 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5019 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5020 
5021 	/* allocate EP0 request */
5022 
5023 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5024 						     GFP_KERNEL);
5025 	if (!hsotg->ctrl_req) {
5026 		dev_err(dev, "failed to allocate ctrl req\n");
5027 		return -ENOMEM;
5028 	}
5029 
5030 	/* initialise the endpoints now the core has been initialised */
5031 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5032 		if (hsotg->eps_in[epnum])
5033 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5034 					  epnum, 1);
5035 		if (hsotg->eps_out[epnum])
5036 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5037 					  epnum, 0);
5038 	}
5039 
5040 	dwc2_hsotg_dump(hsotg);
5041 
5042 	return 0;
5043 }
5044 
5045 /**
5046  * dwc2_hsotg_remove - remove function for hsotg driver
5047  * @hsotg: Programming view of the DWC_otg controller
5048  *
5049  */
5050 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5051 {
5052 	usb_del_gadget_udc(&hsotg->gadget);
5053 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5054 
5055 	return 0;
5056 }
5057 
5058 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5059 {
5060 	unsigned long flags;
5061 
5062 	if (hsotg->lx_state != DWC2_L0)
5063 		return 0;
5064 
5065 	if (hsotg->driver) {
5066 		int ep;
5067 
5068 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
5069 			 hsotg->driver->driver.name);
5070 
5071 		spin_lock_irqsave(&hsotg->lock, flags);
5072 		if (hsotg->enabled)
5073 			dwc2_hsotg_core_disconnect(hsotg);
5074 		dwc2_hsotg_disconnect(hsotg);
5075 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5076 		spin_unlock_irqrestore(&hsotg->lock, flags);
5077 
5078 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
5079 			if (hsotg->eps_in[ep])
5080 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5081 			if (hsotg->eps_out[ep])
5082 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5083 		}
5084 	}
5085 
5086 	return 0;
5087 }
5088 
5089 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5090 {
5091 	unsigned long flags;
5092 
5093 	if (hsotg->lx_state == DWC2_L2)
5094 		return 0;
5095 
5096 	if (hsotg->driver) {
5097 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5098 			 hsotg->driver->driver.name);
5099 
5100 		spin_lock_irqsave(&hsotg->lock, flags);
5101 		dwc2_hsotg_core_init_disconnected(hsotg, false);
5102 		if (hsotg->enabled) {
5103 			/* Enable ACG feature in device mode,if supported */
5104 			dwc2_enable_acg(hsotg);
5105 			dwc2_hsotg_core_connect(hsotg);
5106 		}
5107 		spin_unlock_irqrestore(&hsotg->lock, flags);
5108 	}
5109 
5110 	return 0;
5111 }
5112 
5113 /**
5114  * dwc2_backup_device_registers() - Backup controller device registers.
5115  * When suspending usb bus, registers needs to be backuped
5116  * if controller power is disabled once suspended.
5117  *
5118  * @hsotg: Programming view of the DWC_otg controller
5119  */
5120 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5121 {
5122 	struct dwc2_dregs_backup *dr;
5123 	int i;
5124 
5125 	dev_dbg(hsotg->dev, "%s\n", __func__);
5126 
5127 	/* Backup dev regs */
5128 	dr = &hsotg->dr_backup;
5129 
5130 	dr->dcfg = dwc2_readl(hsotg, DCFG);
5131 	dr->dctl = dwc2_readl(hsotg, DCTL);
5132 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5133 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5134 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5135 
5136 	for (i = 0; i < hsotg->num_of_eps; i++) {
5137 		/* Backup IN EPs */
5138 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5139 
5140 		/* Ensure DATA PID is correctly configured */
5141 		if (dr->diepctl[i] & DXEPCTL_DPID)
5142 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5143 		else
5144 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5145 
5146 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5147 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5148 
5149 		/* Backup OUT EPs */
5150 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5151 
5152 		/* Ensure DATA PID is correctly configured */
5153 		if (dr->doepctl[i] & DXEPCTL_DPID)
5154 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5155 		else
5156 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5157 
5158 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5159 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5160 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5161 	}
5162 	dr->valid = true;
5163 	return 0;
5164 }
5165 
5166 /**
5167  * dwc2_restore_device_registers() - Restore controller device registers.
5168  * When resuming usb bus, device registers needs to be restored
5169  * if controller power were disabled.
5170  *
5171  * @hsotg: Programming view of the DWC_otg controller
5172  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5173  *
5174  * Return: 0 if successful, negative error code otherwise
5175  */
5176 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5177 {
5178 	struct dwc2_dregs_backup *dr;
5179 	int i;
5180 
5181 	dev_dbg(hsotg->dev, "%s\n", __func__);
5182 
5183 	/* Restore dev regs */
5184 	dr = &hsotg->dr_backup;
5185 	if (!dr->valid) {
5186 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5187 			__func__);
5188 		return -EINVAL;
5189 	}
5190 	dr->valid = false;
5191 
5192 	if (!remote_wakeup)
5193 		dwc2_writel(hsotg, dr->dctl, DCTL);
5194 
5195 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5196 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5197 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5198 
5199 	for (i = 0; i < hsotg->num_of_eps; i++) {
5200 		/* Restore IN EPs */
5201 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5202 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5203 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5204 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5205 		 * hibernation wrong value read and saved from DIEPDMAx,
5206 		 * as result BNA interrupt asserted on hibernation exit
5207 		 * by restoring from saved area.
5208 		 */
5209 		if (hsotg->params.g_dma_desc &&
5210 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5211 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5212 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5213 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5214 		/* Restore OUT EPs */
5215 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5216 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5217 		 * hibernation wrong value read and saved from DOEPDMAx,
5218 		 * as result BNA interrupt asserted on hibernation exit
5219 		 * by restoring from saved area.
5220 		 */
5221 		if (hsotg->params.g_dma_desc &&
5222 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5223 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5224 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5225 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5226 	}
5227 
5228 	return 0;
5229 }
5230 
5231 /**
5232  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5233  *
5234  * @hsotg: Programming view of DWC_otg controller
5235  *
5236  */
5237 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5238 {
5239 	u32 val;
5240 
5241 	if (!hsotg->params.lpm)
5242 		return;
5243 
5244 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5245 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5246 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5247 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5248 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5249 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5250 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5251 	dwc2_writel(hsotg, val, GLPMCFG);
5252 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5253 
5254 	/* Unmask WKUP_ALERT Interrupt */
5255 	if (hsotg->params.service_interval)
5256 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5257 }
5258 
5259 /**
5260  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5261  *
5262  * @hsotg: Programming view of DWC_otg controller
5263  *
5264  */
5265 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5266 {
5267 	u32 val = 0;
5268 
5269 	val |= GREFCLK_REF_CLK_MODE;
5270 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5271 	val |= hsotg->params.sof_cnt_wkup_alert <<
5272 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5273 
5274 	dwc2_writel(hsotg, val, GREFCLK);
5275 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5276 }
5277 
5278 /**
5279  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5280  *
5281  * @hsotg: Programming view of the DWC_otg controller
5282  *
5283  * Return non-zero if failed to enter to hibernation.
5284  */
5285 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5286 {
5287 	u32 gpwrdn;
5288 	int ret = 0;
5289 
5290 	/* Change to L2(suspend) state */
5291 	hsotg->lx_state = DWC2_L2;
5292 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5293 	ret = dwc2_backup_global_registers(hsotg);
5294 	if (ret) {
5295 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5296 			__func__);
5297 		return ret;
5298 	}
5299 	ret = dwc2_backup_device_registers(hsotg);
5300 	if (ret) {
5301 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5302 			__func__);
5303 		return ret;
5304 	}
5305 
5306 	gpwrdn = GPWRDN_PWRDNRSTN;
5307 	gpwrdn |= GPWRDN_PMUACTV;
5308 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5309 	udelay(10);
5310 
5311 	/* Set flag to indicate that we are in hibernation */
5312 	hsotg->hibernated = 1;
5313 
5314 	/* Enable interrupts from wake up logic */
5315 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5316 	gpwrdn |= GPWRDN_PMUINTSEL;
5317 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5318 	udelay(10);
5319 
5320 	/* Unmask device mode interrupts in GPWRDN */
5321 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5322 	gpwrdn |= GPWRDN_RST_DET_MSK;
5323 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5324 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5325 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5326 	udelay(10);
5327 
5328 	/* Enable Power Down Clamp */
5329 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5330 	gpwrdn |= GPWRDN_PWRDNCLMP;
5331 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5332 	udelay(10);
5333 
5334 	/* Switch off VDD */
5335 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5336 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5337 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5338 	udelay(10);
5339 
5340 	/* Save gpwrdn register for further usage if stschng interrupt */
5341 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5342 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5343 
5344 	return ret;
5345 }
5346 
5347 /**
5348  * dwc2_gadget_exit_hibernation()
5349  * This function is for exiting from Device mode hibernation by host initiated
5350  * resume/reset and device initiated remote-wakeup.
5351  *
5352  * @hsotg: Programming view of the DWC_otg controller
5353  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5354  * @reset: indicates whether resume is initiated by Reset.
5355  *
5356  * Return non-zero if failed to exit from hibernation.
5357  */
5358 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5359 				 int rem_wakeup, int reset)
5360 {
5361 	u32 pcgcctl;
5362 	u32 gpwrdn;
5363 	u32 dctl;
5364 	int ret = 0;
5365 	struct dwc2_gregs_backup *gr;
5366 	struct dwc2_dregs_backup *dr;
5367 
5368 	gr = &hsotg->gr_backup;
5369 	dr = &hsotg->dr_backup;
5370 
5371 	if (!hsotg->hibernated) {
5372 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5373 		return 1;
5374 	}
5375 	dev_dbg(hsotg->dev,
5376 		"%s: called with rem_wakeup = %d reset = %d\n",
5377 		__func__, rem_wakeup, reset);
5378 
5379 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5380 
5381 	if (!reset) {
5382 		/* Clear all pending interupts */
5383 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5384 	}
5385 
5386 	/* De-assert Restore */
5387 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5388 	gpwrdn &= ~GPWRDN_RESTORE;
5389 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5390 	udelay(10);
5391 
5392 	if (!rem_wakeup) {
5393 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5394 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5395 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5396 	}
5397 
5398 	/* Restore GUSBCFG, DCFG and DCTL */
5399 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5400 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5401 	dwc2_writel(hsotg, dr->dctl, DCTL);
5402 
5403 	/* On USB Reset, reset device address to zero */
5404 	if (reset)
5405 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5406 
5407 	/* De-assert Wakeup Logic */
5408 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5409 	gpwrdn &= ~GPWRDN_PMUACTV;
5410 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5411 
5412 	if (rem_wakeup) {
5413 		udelay(10);
5414 		/* Start Remote Wakeup Signaling */
5415 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5416 	} else {
5417 		udelay(50);
5418 		/* Set Device programming done bit */
5419 		dctl = dwc2_readl(hsotg, DCTL);
5420 		dctl |= DCTL_PWRONPRGDONE;
5421 		dwc2_writel(hsotg, dctl, DCTL);
5422 	}
5423 	/* Wait for interrupts which must be cleared */
5424 	mdelay(2);
5425 	/* Clear all pending interupts */
5426 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5427 
5428 	/* Restore global registers */
5429 	ret = dwc2_restore_global_registers(hsotg);
5430 	if (ret) {
5431 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5432 			__func__);
5433 		return ret;
5434 	}
5435 
5436 	/* Restore device registers */
5437 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5438 	if (ret) {
5439 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5440 			__func__);
5441 		return ret;
5442 	}
5443 
5444 	if (rem_wakeup) {
5445 		mdelay(10);
5446 		dctl = dwc2_readl(hsotg, DCTL);
5447 		dctl &= ~DCTL_RMTWKUPSIG;
5448 		dwc2_writel(hsotg, dctl, DCTL);
5449 	}
5450 
5451 	hsotg->hibernated = 0;
5452 	hsotg->lx_state = DWC2_L0;
5453 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5454 
5455 	return ret;
5456 }
5457 
5458 /**
5459  * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5460  * power down.
5461  *
5462  * @hsotg: Programming view of the DWC_otg controller
5463  *
5464  * Return: non-zero if failed to enter device partial power down.
5465  *
5466  * This function is for entering device mode partial power down.
5467  */
5468 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5469 {
5470 	u32 pcgcctl;
5471 	int ret = 0;
5472 
5473 	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5474 
5475 	/* Backup all registers */
5476 	ret = dwc2_backup_global_registers(hsotg);
5477 	if (ret) {
5478 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5479 			__func__);
5480 		return ret;
5481 	}
5482 
5483 	ret = dwc2_backup_device_registers(hsotg);
5484 	if (ret) {
5485 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5486 			__func__);
5487 		return ret;
5488 	}
5489 
5490 	/*
5491 	 * Clear any pending interrupts since dwc2 will not be able to
5492 	 * clear them after entering partial_power_down.
5493 	 */
5494 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5495 
5496 	/* Put the controller in low power state */
5497 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5498 
5499 	pcgcctl |= PCGCTL_PWRCLMP;
5500 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5501 	udelay(5);
5502 
5503 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5504 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5505 	udelay(5);
5506 
5507 	pcgcctl |= PCGCTL_STOPPCLK;
5508 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5509 
5510 	/* Set in_ppd flag to 1 as here core enters suspend. */
5511 	hsotg->in_ppd = 1;
5512 	hsotg->lx_state = DWC2_L2;
5513 
5514 	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5515 
5516 	return ret;
5517 }
5518 
5519 /*
5520  * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5521  * power down.
5522  *
5523  * @hsotg: Programming view of the DWC_otg controller
5524  * @restore: indicates whether need to restore the registers or not.
5525  *
5526  * Return: non-zero if failed to exit device partial power down.
5527  *
5528  * This function is for exiting from device mode partial power down.
5529  */
5530 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5531 					bool restore)
5532 {
5533 	u32 pcgcctl;
5534 	u32 dctl;
5535 	struct dwc2_dregs_backup *dr;
5536 	int ret = 0;
5537 
5538 	dr = &hsotg->dr_backup;
5539 
5540 	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5541 
5542 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5543 	pcgcctl &= ~PCGCTL_STOPPCLK;
5544 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5545 
5546 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5547 	pcgcctl &= ~PCGCTL_PWRCLMP;
5548 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5549 
5550 	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5551 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5552 	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5553 
5554 	udelay(100);
5555 	if (restore) {
5556 		ret = dwc2_restore_global_registers(hsotg);
5557 		if (ret) {
5558 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5559 				__func__);
5560 			return ret;
5561 		}
5562 		/* Restore DCFG */
5563 		dwc2_writel(hsotg, dr->dcfg, DCFG);
5564 
5565 		ret = dwc2_restore_device_registers(hsotg, 0);
5566 		if (ret) {
5567 			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5568 				__func__);
5569 			return ret;
5570 		}
5571 	}
5572 
5573 	/* Set the Power-On Programming done bit */
5574 	dctl = dwc2_readl(hsotg, DCTL);
5575 	dctl |= DCTL_PWRONPRGDONE;
5576 	dwc2_writel(hsotg, dctl, DCTL);
5577 
5578 	/* Set in_ppd flag to 0 as here core exits from suspend. */
5579 	hsotg->in_ppd = 0;
5580 	hsotg->lx_state = DWC2_L0;
5581 
5582 	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5583 	return ret;
5584 }
5585 
5586 /**
5587  * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5588  *
5589  * @hsotg: Programming view of the DWC_otg controller
5590  *
5591  * Return: non-zero if failed to enter device partial power down.
5592  *
5593  * This function is for entering device mode clock gating.
5594  */
5595 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5596 {
5597 	u32 pcgctl;
5598 
5599 	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5600 
5601 	/* Set the Phy Clock bit as suspend is received. */
5602 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5603 	pcgctl |= PCGCTL_STOPPCLK;
5604 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5605 	udelay(5);
5606 
5607 	/* Set the Gate hclk as suspend is received. */
5608 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5609 	pcgctl |= PCGCTL_GATEHCLK;
5610 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5611 	udelay(5);
5612 
5613 	hsotg->lx_state = DWC2_L2;
5614 	hsotg->bus_suspended = true;
5615 }
5616 
5617 /*
5618  * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5619  *
5620  * @hsotg: Programming view of the DWC_otg controller
5621  * @rem_wakeup: indicates whether remote wake up is enabled.
5622  *
5623  * This function is for exiting from device mode clock gating.
5624  */
5625 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5626 {
5627 	u32 pcgctl;
5628 	u32 dctl;
5629 
5630 	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5631 
5632 	/* Clear the Gate hclk. */
5633 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5634 	pcgctl &= ~PCGCTL_GATEHCLK;
5635 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5636 	udelay(5);
5637 
5638 	/* Phy Clock bit. */
5639 	pcgctl = dwc2_readl(hsotg, PCGCTL);
5640 	pcgctl &= ~PCGCTL_STOPPCLK;
5641 	dwc2_writel(hsotg, pcgctl, PCGCTL);
5642 	udelay(5);
5643 
5644 	if (rem_wakeup) {
5645 		/* Set Remote Wakeup Signaling */
5646 		dctl = dwc2_readl(hsotg, DCTL);
5647 		dctl |= DCTL_RMTWKUPSIG;
5648 		dwc2_writel(hsotg, dctl, DCTL);
5649 	}
5650 
5651 	/* Change to L0 state */
5652 	call_gadget(hsotg, resume);
5653 	hsotg->lx_state = DWC2_L0;
5654 	hsotg->bus_suspended = false;
5655 }
5656