xref: /linux/drivers/usb/core/usb.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39 
40 #include <asm/io.h>
41 #include <linux/scatterlist.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44 
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static bool nousb;	/* Disable USB when built into kernel image */
51 
52 #ifdef	CONFIG_PM_RUNTIME
53 static int usb_autosuspend_delay = 2;		/* Default delay value,
54 						 * in seconds */
55 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
56 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
57 
58 #else
59 #define usb_autosuspend_delay		0
60 #endif
61 
62 
63 /**
64  * usb_find_alt_setting() - Given a configuration, find the alternate setting
65  * for the given interface.
66  * @config: the configuration to search (not necessarily the current config).
67  * @iface_num: interface number to search in
68  * @alt_num: alternate interface setting number to search for.
69  *
70  * Search the configuration's interface cache for the given alt setting.
71  */
72 struct usb_host_interface *usb_find_alt_setting(
73 		struct usb_host_config *config,
74 		unsigned int iface_num,
75 		unsigned int alt_num)
76 {
77 	struct usb_interface_cache *intf_cache = NULL;
78 	int i;
79 
80 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
81 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
82 				== iface_num) {
83 			intf_cache = config->intf_cache[i];
84 			break;
85 		}
86 	}
87 	if (!intf_cache)
88 		return NULL;
89 	for (i = 0; i < intf_cache->num_altsetting; i++)
90 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
91 			return &intf_cache->altsetting[i];
92 
93 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
94 			"config %u\n", alt_num, iface_num,
95 			config->desc.bConfigurationValue);
96 	return NULL;
97 }
98 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
99 
100 /**
101  * usb_ifnum_to_if - get the interface object with a given interface number
102  * @dev: the device whose current configuration is considered
103  * @ifnum: the desired interface
104  *
105  * This walks the device descriptor for the currently active configuration
106  * and returns a pointer to the interface with that particular interface
107  * number, or null.
108  *
109  * Note that configuration descriptors are not required to assign interface
110  * numbers sequentially, so that it would be incorrect to assume that
111  * the first interface in that descriptor corresponds to interface zero.
112  * This routine helps device drivers avoid such mistakes.
113  * However, you should make sure that you do the right thing with any
114  * alternate settings available for this interfaces.
115  *
116  * Don't call this function unless you are bound to one of the interfaces
117  * on this device or you have locked the device!
118  */
119 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
120 				      unsigned ifnum)
121 {
122 	struct usb_host_config *config = dev->actconfig;
123 	int i;
124 
125 	if (!config)
126 		return NULL;
127 	for (i = 0; i < config->desc.bNumInterfaces; i++)
128 		if (config->interface[i]->altsetting[0]
129 				.desc.bInterfaceNumber == ifnum)
130 			return config->interface[i];
131 
132 	return NULL;
133 }
134 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
135 
136 /**
137  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
138  * @intf: the interface containing the altsetting in question
139  * @altnum: the desired alternate setting number
140  *
141  * This searches the altsetting array of the specified interface for
142  * an entry with the correct bAlternateSetting value and returns a pointer
143  * to that entry, or null.
144  *
145  * Note that altsettings need not be stored sequentially by number, so
146  * it would be incorrect to assume that the first altsetting entry in
147  * the array corresponds to altsetting zero.  This routine helps device
148  * drivers avoid such mistakes.
149  *
150  * Don't call this function unless you are bound to the intf interface
151  * or you have locked the device!
152  */
153 struct usb_host_interface *usb_altnum_to_altsetting(
154 					const struct usb_interface *intf,
155 					unsigned int altnum)
156 {
157 	int i;
158 
159 	for (i = 0; i < intf->num_altsetting; i++) {
160 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
161 			return &intf->altsetting[i];
162 	}
163 	return NULL;
164 }
165 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
166 
167 struct find_interface_arg {
168 	int minor;
169 	struct device_driver *drv;
170 };
171 
172 static int __find_interface(struct device *dev, void *data)
173 {
174 	struct find_interface_arg *arg = data;
175 	struct usb_interface *intf;
176 
177 	if (!is_usb_interface(dev))
178 		return 0;
179 
180 	if (dev->driver != arg->drv)
181 		return 0;
182 	intf = to_usb_interface(dev);
183 	return intf->minor == arg->minor;
184 }
185 
186 /**
187  * usb_find_interface - find usb_interface pointer for driver and device
188  * @drv: the driver whose current configuration is considered
189  * @minor: the minor number of the desired device
190  *
191  * This walks the bus device list and returns a pointer to the interface
192  * with the matching minor and driver.  Note, this only works for devices
193  * that share the USB major number.
194  */
195 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
196 {
197 	struct find_interface_arg argb;
198 	struct device *dev;
199 
200 	argb.minor = minor;
201 	argb.drv = &drv->drvwrap.driver;
202 
203 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
204 
205 	/* Drop reference count from bus_find_device */
206 	put_device(dev);
207 
208 	return dev ? to_usb_interface(dev) : NULL;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_interface);
211 
212 struct each_dev_arg {
213 	void *data;
214 	int (*fn)(struct usb_device *, void *);
215 };
216 
217 static int __each_dev(struct device *dev, void *data)
218 {
219 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
220 
221 	/* There are struct usb_interface on the same bus, filter them out */
222 	if (!is_usb_device(dev))
223 		return 0;
224 
225 	return arg->fn(container_of(dev, struct usb_device, dev), arg->data);
226 }
227 
228 /**
229  * usb_for_each_dev - iterate over all USB devices in the system
230  * @data: data pointer that will be handed to the callback function
231  * @fn: callback function to be called for each USB device
232  *
233  * Iterate over all USB devices and call @fn for each, passing it @data. If it
234  * returns anything other than 0, we break the iteration prematurely and return
235  * that value.
236  */
237 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
238 {
239 	struct each_dev_arg arg = {data, fn};
240 
241 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
242 }
243 EXPORT_SYMBOL_GPL(usb_for_each_dev);
244 
245 /**
246  * usb_release_dev - free a usb device structure when all users of it are finished.
247  * @dev: device that's been disconnected
248  *
249  * Will be called only by the device core when all users of this usb device are
250  * done.
251  */
252 static void usb_release_dev(struct device *dev)
253 {
254 	struct usb_device *udev;
255 	struct usb_hcd *hcd;
256 
257 	udev = to_usb_device(dev);
258 	hcd = bus_to_hcd(udev->bus);
259 
260 	usb_destroy_configuration(udev);
261 	usb_release_bos_descriptor(udev);
262 	usb_put_hcd(hcd);
263 	kfree(udev->product);
264 	kfree(udev->manufacturer);
265 	kfree(udev->serial);
266 	kfree(udev);
267 }
268 
269 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
270 {
271 	struct usb_device *usb_dev;
272 
273 	usb_dev = to_usb_device(dev);
274 
275 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
276 		return -ENOMEM;
277 
278 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
279 		return -ENOMEM;
280 
281 	return 0;
282 }
283 
284 #ifdef	CONFIG_PM
285 
286 /* USB device Power-Management thunks.
287  * There's no need to distinguish here between quiescing a USB device
288  * and powering it down; the generic_suspend() routine takes care of
289  * it by skipping the usb_port_suspend() call for a quiesce.  And for
290  * USB interfaces there's no difference at all.
291  */
292 
293 static int usb_dev_prepare(struct device *dev)
294 {
295 	return 0;		/* Implement eventually? */
296 }
297 
298 static void usb_dev_complete(struct device *dev)
299 {
300 	/* Currently used only for rebinding interfaces */
301 	usb_resume_complete(dev);
302 }
303 
304 static int usb_dev_suspend(struct device *dev)
305 {
306 	return usb_suspend(dev, PMSG_SUSPEND);
307 }
308 
309 static int usb_dev_resume(struct device *dev)
310 {
311 	return usb_resume(dev, PMSG_RESUME);
312 }
313 
314 static int usb_dev_freeze(struct device *dev)
315 {
316 	return usb_suspend(dev, PMSG_FREEZE);
317 }
318 
319 static int usb_dev_thaw(struct device *dev)
320 {
321 	return usb_resume(dev, PMSG_THAW);
322 }
323 
324 static int usb_dev_poweroff(struct device *dev)
325 {
326 	return usb_suspend(dev, PMSG_HIBERNATE);
327 }
328 
329 static int usb_dev_restore(struct device *dev)
330 {
331 	return usb_resume(dev, PMSG_RESTORE);
332 }
333 
334 static const struct dev_pm_ops usb_device_pm_ops = {
335 	.prepare =	usb_dev_prepare,
336 	.complete =	usb_dev_complete,
337 	.suspend =	usb_dev_suspend,
338 	.resume =	usb_dev_resume,
339 	.freeze =	usb_dev_freeze,
340 	.thaw =		usb_dev_thaw,
341 	.poweroff =	usb_dev_poweroff,
342 	.restore =	usb_dev_restore,
343 #ifdef CONFIG_PM_RUNTIME
344 	.runtime_suspend =	usb_runtime_suspend,
345 	.runtime_resume =	usb_runtime_resume,
346 	.runtime_idle =		usb_runtime_idle,
347 #endif
348 };
349 
350 #endif	/* CONFIG_PM */
351 
352 
353 static char *usb_devnode(struct device *dev,
354 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
355 {
356 	struct usb_device *usb_dev;
357 
358 	usb_dev = to_usb_device(dev);
359 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
360 			 usb_dev->bus->busnum, usb_dev->devnum);
361 }
362 
363 struct device_type usb_device_type = {
364 	.name =		"usb_device",
365 	.release =	usb_release_dev,
366 	.uevent =	usb_dev_uevent,
367 	.devnode = 	usb_devnode,
368 #ifdef CONFIG_PM
369 	.pm =		&usb_device_pm_ops,
370 #endif
371 };
372 
373 
374 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
375 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
376 {
377 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
378 	return hcd->wireless;
379 }
380 
381 
382 /**
383  * usb_alloc_dev - usb device constructor (usbcore-internal)
384  * @parent: hub to which device is connected; null to allocate a root hub
385  * @bus: bus used to access the device
386  * @port1: one-based index of port; ignored for root hubs
387  * Context: !in_interrupt()
388  *
389  * Only hub drivers (including virtual root hub drivers for host
390  * controllers) should ever call this.
391  *
392  * This call may not be used in a non-sleeping context.
393  */
394 struct usb_device *usb_alloc_dev(struct usb_device *parent,
395 				 struct usb_bus *bus, unsigned port1)
396 {
397 	struct usb_device *dev;
398 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
399 	unsigned root_hub = 0;
400 
401 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
402 	if (!dev)
403 		return NULL;
404 
405 	if (!usb_get_hcd(usb_hcd)) {
406 		kfree(dev);
407 		return NULL;
408 	}
409 	/* Root hubs aren't true devices, so don't allocate HCD resources */
410 	if (usb_hcd->driver->alloc_dev && parent &&
411 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
412 		usb_put_hcd(bus_to_hcd(bus));
413 		kfree(dev);
414 		return NULL;
415 	}
416 
417 	device_initialize(&dev->dev);
418 	dev->dev.bus = &usb_bus_type;
419 	dev->dev.type = &usb_device_type;
420 	dev->dev.groups = usb_device_groups;
421 	dev->dev.dma_mask = bus->controller->dma_mask;
422 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
423 	dev->state = USB_STATE_ATTACHED;
424 	dev->lpm_disable_count = 1;
425 	atomic_set(&dev->urbnum, 0);
426 
427 	INIT_LIST_HEAD(&dev->ep0.urb_list);
428 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
429 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
430 	/* ep0 maxpacket comes later, from device descriptor */
431 	usb_enable_endpoint(dev, &dev->ep0, false);
432 	dev->can_submit = 1;
433 
434 	/* Save readable and stable topology id, distinguishing devices
435 	 * by location for diagnostics, tools, driver model, etc.  The
436 	 * string is a path along hub ports, from the root.  Each device's
437 	 * dev->devpath will be stable until USB is re-cabled, and hubs
438 	 * are often labeled with these port numbers.  The name isn't
439 	 * as stable:  bus->busnum changes easily from modprobe order,
440 	 * cardbus or pci hotplugging, and so on.
441 	 */
442 	if (unlikely(!parent)) {
443 		dev->devpath[0] = '0';
444 		dev->route = 0;
445 
446 		dev->dev.parent = bus->controller;
447 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
448 		root_hub = 1;
449 	} else {
450 		/* match any labeling on the hubs; it's one-based */
451 		if (parent->devpath[0] == '0') {
452 			snprintf(dev->devpath, sizeof dev->devpath,
453 				"%d", port1);
454 			/* Root ports are not counted in route string */
455 			dev->route = 0;
456 		} else {
457 			snprintf(dev->devpath, sizeof dev->devpath,
458 				"%s.%d", parent->devpath, port1);
459 			/* Route string assumes hubs have less than 16 ports */
460 			if (port1 < 15)
461 				dev->route = parent->route +
462 					(port1 << ((parent->level - 1)*4));
463 			else
464 				dev->route = parent->route +
465 					(15 << ((parent->level - 1)*4));
466 		}
467 
468 		dev->dev.parent = &parent->dev;
469 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
470 
471 		/* hub driver sets up TT records */
472 	}
473 
474 	dev->portnum = port1;
475 	dev->bus = bus;
476 	dev->parent = parent;
477 	INIT_LIST_HEAD(&dev->filelist);
478 
479 #ifdef	CONFIG_PM
480 	pm_runtime_set_autosuspend_delay(&dev->dev,
481 			usb_autosuspend_delay * 1000);
482 	dev->connect_time = jiffies;
483 	dev->active_duration = -jiffies;
484 #endif
485 	if (root_hub)	/* Root hub always ok [and always wired] */
486 		dev->authorized = 1;
487 	else {
488 		dev->authorized = usb_hcd->authorized_default;
489 		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
490 	}
491 	return dev;
492 }
493 
494 /**
495  * usb_get_dev - increments the reference count of the usb device structure
496  * @dev: the device being referenced
497  *
498  * Each live reference to a device should be refcounted.
499  *
500  * Drivers for USB interfaces should normally record such references in
501  * their probe() methods, when they bind to an interface, and release
502  * them by calling usb_put_dev(), in their disconnect() methods.
503  *
504  * A pointer to the device with the incremented reference counter is returned.
505  */
506 struct usb_device *usb_get_dev(struct usb_device *dev)
507 {
508 	if (dev)
509 		get_device(&dev->dev);
510 	return dev;
511 }
512 EXPORT_SYMBOL_GPL(usb_get_dev);
513 
514 /**
515  * usb_put_dev - release a use of the usb device structure
516  * @dev: device that's been disconnected
517  *
518  * Must be called when a user of a device is finished with it.  When the last
519  * user of the device calls this function, the memory of the device is freed.
520  */
521 void usb_put_dev(struct usb_device *dev)
522 {
523 	if (dev)
524 		put_device(&dev->dev);
525 }
526 EXPORT_SYMBOL_GPL(usb_put_dev);
527 
528 /**
529  * usb_get_intf - increments the reference count of the usb interface structure
530  * @intf: the interface being referenced
531  *
532  * Each live reference to a interface must be refcounted.
533  *
534  * Drivers for USB interfaces should normally record such references in
535  * their probe() methods, when they bind to an interface, and release
536  * them by calling usb_put_intf(), in their disconnect() methods.
537  *
538  * A pointer to the interface with the incremented reference counter is
539  * returned.
540  */
541 struct usb_interface *usb_get_intf(struct usb_interface *intf)
542 {
543 	if (intf)
544 		get_device(&intf->dev);
545 	return intf;
546 }
547 EXPORT_SYMBOL_GPL(usb_get_intf);
548 
549 /**
550  * usb_put_intf - release a use of the usb interface structure
551  * @intf: interface that's been decremented
552  *
553  * Must be called when a user of an interface is finished with it.  When the
554  * last user of the interface calls this function, the memory of the interface
555  * is freed.
556  */
557 void usb_put_intf(struct usb_interface *intf)
558 {
559 	if (intf)
560 		put_device(&intf->dev);
561 }
562 EXPORT_SYMBOL_GPL(usb_put_intf);
563 
564 /*			USB device locking
565  *
566  * USB devices and interfaces are locked using the semaphore in their
567  * embedded struct device.  The hub driver guarantees that whenever a
568  * device is connected or disconnected, drivers are called with the
569  * USB device locked as well as their particular interface.
570  *
571  * Complications arise when several devices are to be locked at the same
572  * time.  Only hub-aware drivers that are part of usbcore ever have to
573  * do this; nobody else needs to worry about it.  The rule for locking
574  * is simple:
575  *
576  *	When locking both a device and its parent, always lock the
577  *	the parent first.
578  */
579 
580 /**
581  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
582  * @udev: device that's being locked
583  * @iface: interface bound to the driver making the request (optional)
584  *
585  * Attempts to acquire the device lock, but fails if the device is
586  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
587  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
588  * lock, the routine polls repeatedly.  This is to prevent deadlock with
589  * disconnect; in some drivers (such as usb-storage) the disconnect()
590  * or suspend() method will block waiting for a device reset to complete.
591  *
592  * Returns a negative error code for failure, otherwise 0.
593  */
594 int usb_lock_device_for_reset(struct usb_device *udev,
595 			      const struct usb_interface *iface)
596 {
597 	unsigned long jiffies_expire = jiffies + HZ;
598 
599 	if (udev->state == USB_STATE_NOTATTACHED)
600 		return -ENODEV;
601 	if (udev->state == USB_STATE_SUSPENDED)
602 		return -EHOSTUNREACH;
603 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
604 			iface->condition == USB_INTERFACE_UNBOUND))
605 		return -EINTR;
606 
607 	while (!usb_trylock_device(udev)) {
608 
609 		/* If we can't acquire the lock after waiting one second,
610 		 * we're probably deadlocked */
611 		if (time_after(jiffies, jiffies_expire))
612 			return -EBUSY;
613 
614 		msleep(15);
615 		if (udev->state == USB_STATE_NOTATTACHED)
616 			return -ENODEV;
617 		if (udev->state == USB_STATE_SUSPENDED)
618 			return -EHOSTUNREACH;
619 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
620 				iface->condition == USB_INTERFACE_UNBOUND))
621 			return -EINTR;
622 	}
623 	return 0;
624 }
625 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
626 
627 /**
628  * usb_get_current_frame_number - return current bus frame number
629  * @dev: the device whose bus is being queried
630  *
631  * Returns the current frame number for the USB host controller
632  * used with the given USB device.  This can be used when scheduling
633  * isochronous requests.
634  *
635  * Note that different kinds of host controller have different
636  * "scheduling horizons".  While one type might support scheduling only
637  * 32 frames into the future, others could support scheduling up to
638  * 1024 frames into the future.
639  */
640 int usb_get_current_frame_number(struct usb_device *dev)
641 {
642 	return usb_hcd_get_frame_number(dev);
643 }
644 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
645 
646 /*-------------------------------------------------------------------*/
647 /*
648  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
649  * extra field of the interface and endpoint descriptor structs.
650  */
651 
652 int __usb_get_extra_descriptor(char *buffer, unsigned size,
653 			       unsigned char type, void **ptr)
654 {
655 	struct usb_descriptor_header *header;
656 
657 	while (size >= sizeof(struct usb_descriptor_header)) {
658 		header = (struct usb_descriptor_header *)buffer;
659 
660 		if (header->bLength < 2) {
661 			printk(KERN_ERR
662 				"%s: bogus descriptor, type %d length %d\n",
663 				usbcore_name,
664 				header->bDescriptorType,
665 				header->bLength);
666 			return -1;
667 		}
668 
669 		if (header->bDescriptorType == type) {
670 			*ptr = header;
671 			return 0;
672 		}
673 
674 		buffer += header->bLength;
675 		size -= header->bLength;
676 	}
677 	return -1;
678 }
679 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
680 
681 /**
682  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
683  * @dev: device the buffer will be used with
684  * @size: requested buffer size
685  * @mem_flags: affect whether allocation may block
686  * @dma: used to return DMA address of buffer
687  *
688  * Return value is either null (indicating no buffer could be allocated), or
689  * the cpu-space pointer to a buffer that may be used to perform DMA to the
690  * specified device.  Such cpu-space buffers are returned along with the DMA
691  * address (through the pointer provided).
692  *
693  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
694  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
695  * hardware during URB completion/resubmit.  The implementation varies between
696  * platforms, depending on details of how DMA will work to this device.
697  * Using these buffers also eliminates cacheline sharing problems on
698  * architectures where CPU caches are not DMA-coherent.  On systems without
699  * bus-snooping caches, these buffers are uncached.
700  *
701  * When the buffer is no longer used, free it with usb_free_coherent().
702  */
703 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
704 			 dma_addr_t *dma)
705 {
706 	if (!dev || !dev->bus)
707 		return NULL;
708 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
709 }
710 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
711 
712 /**
713  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
714  * @dev: device the buffer was used with
715  * @size: requested buffer size
716  * @addr: CPU address of buffer
717  * @dma: DMA address of buffer
718  *
719  * This reclaims an I/O buffer, letting it be reused.  The memory must have
720  * been allocated using usb_alloc_coherent(), and the parameters must match
721  * those provided in that allocation request.
722  */
723 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
724 		       dma_addr_t dma)
725 {
726 	if (!dev || !dev->bus)
727 		return;
728 	if (!addr)
729 		return;
730 	hcd_buffer_free(dev->bus, size, addr, dma);
731 }
732 EXPORT_SYMBOL_GPL(usb_free_coherent);
733 
734 /**
735  * usb_buffer_map - create DMA mapping(s) for an urb
736  * @urb: urb whose transfer_buffer/setup_packet will be mapped
737  *
738  * Return value is either null (indicating no buffer could be mapped), or
739  * the parameter.  URB_NO_TRANSFER_DMA_MAP is
740  * added to urb->transfer_flags if the operation succeeds.  If the device
741  * is connected to this system through a non-DMA controller, this operation
742  * always succeeds.
743  *
744  * This call would normally be used for an urb which is reused, perhaps
745  * as the target of a large periodic transfer, with usb_buffer_dmasync()
746  * calls to synchronize memory and dma state.
747  *
748  * Reverse the effect of this call with usb_buffer_unmap().
749  */
750 #if 0
751 struct urb *usb_buffer_map(struct urb *urb)
752 {
753 	struct usb_bus		*bus;
754 	struct device		*controller;
755 
756 	if (!urb
757 			|| !urb->dev
758 			|| !(bus = urb->dev->bus)
759 			|| !(controller = bus->controller))
760 		return NULL;
761 
762 	if (controller->dma_mask) {
763 		urb->transfer_dma = dma_map_single(controller,
764 			urb->transfer_buffer, urb->transfer_buffer_length,
765 			usb_pipein(urb->pipe)
766 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
767 	/* FIXME generic api broken like pci, can't report errors */
768 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
769 	} else
770 		urb->transfer_dma = ~0;
771 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
772 	return urb;
773 }
774 EXPORT_SYMBOL_GPL(usb_buffer_map);
775 #endif  /*  0  */
776 
777 /* XXX DISABLED, no users currently.  If you wish to re-enable this
778  * XXX please determine whether the sync is to transfer ownership of
779  * XXX the buffer from device to cpu or vice verse, and thusly use the
780  * XXX appropriate _for_{cpu,device}() method.  -DaveM
781  */
782 #if 0
783 
784 /**
785  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
786  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
787  */
788 void usb_buffer_dmasync(struct urb *urb)
789 {
790 	struct usb_bus		*bus;
791 	struct device		*controller;
792 
793 	if (!urb
794 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
795 			|| !urb->dev
796 			|| !(bus = urb->dev->bus)
797 			|| !(controller = bus->controller))
798 		return;
799 
800 	if (controller->dma_mask) {
801 		dma_sync_single_for_cpu(controller,
802 			urb->transfer_dma, urb->transfer_buffer_length,
803 			usb_pipein(urb->pipe)
804 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
805 		if (usb_pipecontrol(urb->pipe))
806 			dma_sync_single_for_cpu(controller,
807 					urb->setup_dma,
808 					sizeof(struct usb_ctrlrequest),
809 					DMA_TO_DEVICE);
810 	}
811 }
812 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
813 #endif
814 
815 /**
816  * usb_buffer_unmap - free DMA mapping(s) for an urb
817  * @urb: urb whose transfer_buffer will be unmapped
818  *
819  * Reverses the effect of usb_buffer_map().
820  */
821 #if 0
822 void usb_buffer_unmap(struct urb *urb)
823 {
824 	struct usb_bus		*bus;
825 	struct device		*controller;
826 
827 	if (!urb
828 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
829 			|| !urb->dev
830 			|| !(bus = urb->dev->bus)
831 			|| !(controller = bus->controller))
832 		return;
833 
834 	if (controller->dma_mask) {
835 		dma_unmap_single(controller,
836 			urb->transfer_dma, urb->transfer_buffer_length,
837 			usb_pipein(urb->pipe)
838 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
839 	}
840 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
841 }
842 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
843 #endif  /*  0  */
844 
845 #if 0
846 /**
847  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
848  * @dev: device to which the scatterlist will be mapped
849  * @is_in: mapping transfer direction
850  * @sg: the scatterlist to map
851  * @nents: the number of entries in the scatterlist
852  *
853  * Return value is either < 0 (indicating no buffers could be mapped), or
854  * the number of DMA mapping array entries in the scatterlist.
855  *
856  * The caller is responsible for placing the resulting DMA addresses from
857  * the scatterlist into URB transfer buffer pointers, and for setting the
858  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
859  *
860  * Top I/O rates come from queuing URBs, instead of waiting for each one
861  * to complete before starting the next I/O.   This is particularly easy
862  * to do with scatterlists.  Just allocate and submit one URB for each DMA
863  * mapping entry returned, stopping on the first error or when all succeed.
864  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
865  *
866  * This call would normally be used when translating scatterlist requests,
867  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
868  * may be able to coalesce mappings for improved I/O efficiency.
869  *
870  * Reverse the effect of this call with usb_buffer_unmap_sg().
871  */
872 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
873 		      struct scatterlist *sg, int nents)
874 {
875 	struct usb_bus		*bus;
876 	struct device		*controller;
877 
878 	if (!dev
879 			|| !(bus = dev->bus)
880 			|| !(controller = bus->controller)
881 			|| !controller->dma_mask)
882 		return -EINVAL;
883 
884 	/* FIXME generic api broken like pci, can't report errors */
885 	return dma_map_sg(controller, sg, nents,
886 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
887 }
888 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
889 #endif
890 
891 /* XXX DISABLED, no users currently.  If you wish to re-enable this
892  * XXX please determine whether the sync is to transfer ownership of
893  * XXX the buffer from device to cpu or vice verse, and thusly use the
894  * XXX appropriate _for_{cpu,device}() method.  -DaveM
895  */
896 #if 0
897 
898 /**
899  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
900  * @dev: device to which the scatterlist will be mapped
901  * @is_in: mapping transfer direction
902  * @sg: the scatterlist to synchronize
903  * @n_hw_ents: the positive return value from usb_buffer_map_sg
904  *
905  * Use this when you are re-using a scatterlist's data buffers for
906  * another USB request.
907  */
908 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
909 			   struct scatterlist *sg, int n_hw_ents)
910 {
911 	struct usb_bus		*bus;
912 	struct device		*controller;
913 
914 	if (!dev
915 			|| !(bus = dev->bus)
916 			|| !(controller = bus->controller)
917 			|| !controller->dma_mask)
918 		return;
919 
920 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
921 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
922 }
923 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
924 #endif
925 
926 #if 0
927 /**
928  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
929  * @dev: device to which the scatterlist will be mapped
930  * @is_in: mapping transfer direction
931  * @sg: the scatterlist to unmap
932  * @n_hw_ents: the positive return value from usb_buffer_map_sg
933  *
934  * Reverses the effect of usb_buffer_map_sg().
935  */
936 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
937 			 struct scatterlist *sg, int n_hw_ents)
938 {
939 	struct usb_bus		*bus;
940 	struct device		*controller;
941 
942 	if (!dev
943 			|| !(bus = dev->bus)
944 			|| !(controller = bus->controller)
945 			|| !controller->dma_mask)
946 		return;
947 
948 	dma_unmap_sg(controller, sg, n_hw_ents,
949 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
950 }
951 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
952 #endif
953 
954 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
955 #ifdef MODULE
956 module_param(nousb, bool, 0444);
957 #else
958 core_param(nousb, nousb, bool, 0444);
959 #endif
960 
961 /*
962  * for external read access to <nousb>
963  */
964 int usb_disabled(void)
965 {
966 	return nousb;
967 }
968 EXPORT_SYMBOL_GPL(usb_disabled);
969 
970 /*
971  * Notifications of device and interface registration
972  */
973 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
974 		void *data)
975 {
976 	struct device *dev = data;
977 
978 	switch (action) {
979 	case BUS_NOTIFY_ADD_DEVICE:
980 		if (dev->type == &usb_device_type)
981 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
982 		else if (dev->type == &usb_if_device_type)
983 			usb_create_sysfs_intf_files(to_usb_interface(dev));
984 		break;
985 
986 	case BUS_NOTIFY_DEL_DEVICE:
987 		if (dev->type == &usb_device_type)
988 			usb_remove_sysfs_dev_files(to_usb_device(dev));
989 		else if (dev->type == &usb_if_device_type)
990 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
991 		break;
992 	}
993 	return 0;
994 }
995 
996 static struct notifier_block usb_bus_nb = {
997 	.notifier_call = usb_bus_notify,
998 };
999 
1000 struct dentry *usb_debug_root;
1001 EXPORT_SYMBOL_GPL(usb_debug_root);
1002 
1003 static struct dentry *usb_debug_devices;
1004 
1005 static int usb_debugfs_init(void)
1006 {
1007 	usb_debug_root = debugfs_create_dir("usb", NULL);
1008 	if (!usb_debug_root)
1009 		return -ENOENT;
1010 
1011 	usb_debug_devices = debugfs_create_file("devices", 0444,
1012 						usb_debug_root, NULL,
1013 						&usbfs_devices_fops);
1014 	if (!usb_debug_devices) {
1015 		debugfs_remove(usb_debug_root);
1016 		usb_debug_root = NULL;
1017 		return -ENOENT;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static void usb_debugfs_cleanup(void)
1024 {
1025 	debugfs_remove(usb_debug_devices);
1026 	debugfs_remove(usb_debug_root);
1027 }
1028 
1029 /*
1030  * Init
1031  */
1032 static int __init usb_init(void)
1033 {
1034 	int retval;
1035 	if (nousb) {
1036 		pr_info("%s: USB support disabled\n", usbcore_name);
1037 		return 0;
1038 	}
1039 
1040 	retval = usb_debugfs_init();
1041 	if (retval)
1042 		goto out;
1043 
1044 	usb_acpi_register();
1045 	retval = bus_register(&usb_bus_type);
1046 	if (retval)
1047 		goto bus_register_failed;
1048 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1049 	if (retval)
1050 		goto bus_notifier_failed;
1051 	retval = usb_major_init();
1052 	if (retval)
1053 		goto major_init_failed;
1054 	retval = usb_register(&usbfs_driver);
1055 	if (retval)
1056 		goto driver_register_failed;
1057 	retval = usb_devio_init();
1058 	if (retval)
1059 		goto usb_devio_init_failed;
1060 	retval = usb_hub_init();
1061 	if (retval)
1062 		goto hub_init_failed;
1063 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1064 	if (!retval)
1065 		goto out;
1066 
1067 	usb_hub_cleanup();
1068 hub_init_failed:
1069 	usb_devio_cleanup();
1070 usb_devio_init_failed:
1071 	usb_deregister(&usbfs_driver);
1072 driver_register_failed:
1073 	usb_major_cleanup();
1074 major_init_failed:
1075 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1076 bus_notifier_failed:
1077 	bus_unregister(&usb_bus_type);
1078 bus_register_failed:
1079 	usb_acpi_unregister();
1080 	usb_debugfs_cleanup();
1081 out:
1082 	return retval;
1083 }
1084 
1085 /*
1086  * Cleanup
1087  */
1088 static void __exit usb_exit(void)
1089 {
1090 	/* This will matter if shutdown/reboot does exitcalls. */
1091 	if (nousb)
1092 		return;
1093 
1094 	usb_deregister_device_driver(&usb_generic_driver);
1095 	usb_major_cleanup();
1096 	usb_deregister(&usbfs_driver);
1097 	usb_devio_cleanup();
1098 	usb_hub_cleanup();
1099 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1100 	bus_unregister(&usb_bus_type);
1101 	usb_acpi_unregister();
1102 	usb_debugfs_cleanup();
1103 }
1104 
1105 subsys_initcall(usb_init);
1106 module_exit(usb_exit);
1107 MODULE_LICENSE("GPL");
1108