1 /* 2 * drivers/usb/core/usb.c 3 * 4 * (C) Copyright Linus Torvalds 1999 5 * (C) Copyright Johannes Erdfelt 1999-2001 6 * (C) Copyright Andreas Gal 1999 7 * (C) Copyright Gregory P. Smith 1999 8 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 9 * (C) Copyright Randy Dunlap 2000 10 * (C) Copyright David Brownell 2000-2004 11 * (C) Copyright Yggdrasil Computing, Inc. 2000 12 * (usb_device_id matching changes by Adam J. Richter) 13 * (C) Copyright Greg Kroah-Hartman 2002-2003 14 * 15 * NOTE! This is not actually a driver at all, rather this is 16 * just a collection of helper routines that implement the 17 * generic USB things that the real drivers can use.. 18 * 19 * Think of this as a "USB library" rather than anything else. 20 * It should be considered a slave, with no callbacks. Callbacks 21 * are evil. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/string.h> 27 #include <linux/bitops.h> 28 #include <linux/slab.h> 29 #include <linux/interrupt.h> /* for in_interrupt() */ 30 #include <linux/kmod.h> 31 #include <linux/init.h> 32 #include <linux/spinlock.h> 33 #include <linux/errno.h> 34 #include <linux/usb.h> 35 #include <linux/usb/hcd.h> 36 #include <linux/mutex.h> 37 #include <linux/workqueue.h> 38 #include <linux/debugfs.h> 39 40 #include <asm/io.h> 41 #include <linux/scatterlist.h> 42 #include <linux/mm.h> 43 #include <linux/dma-mapping.h> 44 45 #include "usb.h" 46 47 48 const char *usbcore_name = "usbcore"; 49 50 static bool nousb; /* Disable USB when built into kernel image */ 51 52 #ifdef CONFIG_PM_RUNTIME 53 static int usb_autosuspend_delay = 2; /* Default delay value, 54 * in seconds */ 55 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); 56 MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); 57 58 #else 59 #define usb_autosuspend_delay 0 60 #endif 61 62 63 /** 64 * usb_find_alt_setting() - Given a configuration, find the alternate setting 65 * for the given interface. 66 * @config: the configuration to search (not necessarily the current config). 67 * @iface_num: interface number to search in 68 * @alt_num: alternate interface setting number to search for. 69 * 70 * Search the configuration's interface cache for the given alt setting. 71 */ 72 struct usb_host_interface *usb_find_alt_setting( 73 struct usb_host_config *config, 74 unsigned int iface_num, 75 unsigned int alt_num) 76 { 77 struct usb_interface_cache *intf_cache = NULL; 78 int i; 79 80 for (i = 0; i < config->desc.bNumInterfaces; i++) { 81 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber 82 == iface_num) { 83 intf_cache = config->intf_cache[i]; 84 break; 85 } 86 } 87 if (!intf_cache) 88 return NULL; 89 for (i = 0; i < intf_cache->num_altsetting; i++) 90 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num) 91 return &intf_cache->altsetting[i]; 92 93 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, " 94 "config %u\n", alt_num, iface_num, 95 config->desc.bConfigurationValue); 96 return NULL; 97 } 98 EXPORT_SYMBOL_GPL(usb_find_alt_setting); 99 100 /** 101 * usb_ifnum_to_if - get the interface object with a given interface number 102 * @dev: the device whose current configuration is considered 103 * @ifnum: the desired interface 104 * 105 * This walks the device descriptor for the currently active configuration 106 * and returns a pointer to the interface with that particular interface 107 * number, or null. 108 * 109 * Note that configuration descriptors are not required to assign interface 110 * numbers sequentially, so that it would be incorrect to assume that 111 * the first interface in that descriptor corresponds to interface zero. 112 * This routine helps device drivers avoid such mistakes. 113 * However, you should make sure that you do the right thing with any 114 * alternate settings available for this interfaces. 115 * 116 * Don't call this function unless you are bound to one of the interfaces 117 * on this device or you have locked the device! 118 */ 119 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 120 unsigned ifnum) 121 { 122 struct usb_host_config *config = dev->actconfig; 123 int i; 124 125 if (!config) 126 return NULL; 127 for (i = 0; i < config->desc.bNumInterfaces; i++) 128 if (config->interface[i]->altsetting[0] 129 .desc.bInterfaceNumber == ifnum) 130 return config->interface[i]; 131 132 return NULL; 133 } 134 EXPORT_SYMBOL_GPL(usb_ifnum_to_if); 135 136 /** 137 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. 138 * @intf: the interface containing the altsetting in question 139 * @altnum: the desired alternate setting number 140 * 141 * This searches the altsetting array of the specified interface for 142 * an entry with the correct bAlternateSetting value and returns a pointer 143 * to that entry, or null. 144 * 145 * Note that altsettings need not be stored sequentially by number, so 146 * it would be incorrect to assume that the first altsetting entry in 147 * the array corresponds to altsetting zero. This routine helps device 148 * drivers avoid such mistakes. 149 * 150 * Don't call this function unless you are bound to the intf interface 151 * or you have locked the device! 152 */ 153 struct usb_host_interface *usb_altnum_to_altsetting( 154 const struct usb_interface *intf, 155 unsigned int altnum) 156 { 157 int i; 158 159 for (i = 0; i < intf->num_altsetting; i++) { 160 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 161 return &intf->altsetting[i]; 162 } 163 return NULL; 164 } 165 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); 166 167 struct find_interface_arg { 168 int minor; 169 struct device_driver *drv; 170 }; 171 172 static int __find_interface(struct device *dev, void *data) 173 { 174 struct find_interface_arg *arg = data; 175 struct usb_interface *intf; 176 177 if (!is_usb_interface(dev)) 178 return 0; 179 180 if (dev->driver != arg->drv) 181 return 0; 182 intf = to_usb_interface(dev); 183 return intf->minor == arg->minor; 184 } 185 186 /** 187 * usb_find_interface - find usb_interface pointer for driver and device 188 * @drv: the driver whose current configuration is considered 189 * @minor: the minor number of the desired device 190 * 191 * This walks the bus device list and returns a pointer to the interface 192 * with the matching minor and driver. Note, this only works for devices 193 * that share the USB major number. 194 */ 195 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 196 { 197 struct find_interface_arg argb; 198 struct device *dev; 199 200 argb.minor = minor; 201 argb.drv = &drv->drvwrap.driver; 202 203 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface); 204 205 /* Drop reference count from bus_find_device */ 206 put_device(dev); 207 208 return dev ? to_usb_interface(dev) : NULL; 209 } 210 EXPORT_SYMBOL_GPL(usb_find_interface); 211 212 struct each_dev_arg { 213 void *data; 214 int (*fn)(struct usb_device *, void *); 215 }; 216 217 static int __each_dev(struct device *dev, void *data) 218 { 219 struct each_dev_arg *arg = (struct each_dev_arg *)data; 220 221 /* There are struct usb_interface on the same bus, filter them out */ 222 if (!is_usb_device(dev)) 223 return 0; 224 225 return arg->fn(container_of(dev, struct usb_device, dev), arg->data); 226 } 227 228 /** 229 * usb_for_each_dev - iterate over all USB devices in the system 230 * @data: data pointer that will be handed to the callback function 231 * @fn: callback function to be called for each USB device 232 * 233 * Iterate over all USB devices and call @fn for each, passing it @data. If it 234 * returns anything other than 0, we break the iteration prematurely and return 235 * that value. 236 */ 237 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)) 238 { 239 struct each_dev_arg arg = {data, fn}; 240 241 return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev); 242 } 243 EXPORT_SYMBOL_GPL(usb_for_each_dev); 244 245 /** 246 * usb_release_dev - free a usb device structure when all users of it are finished. 247 * @dev: device that's been disconnected 248 * 249 * Will be called only by the device core when all users of this usb device are 250 * done. 251 */ 252 static void usb_release_dev(struct device *dev) 253 { 254 struct usb_device *udev; 255 struct usb_hcd *hcd; 256 257 udev = to_usb_device(dev); 258 hcd = bus_to_hcd(udev->bus); 259 260 usb_destroy_configuration(udev); 261 usb_release_bos_descriptor(udev); 262 usb_put_hcd(hcd); 263 kfree(udev->product); 264 kfree(udev->manufacturer); 265 kfree(udev->serial); 266 kfree(udev); 267 } 268 269 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 270 { 271 struct usb_device *usb_dev; 272 273 usb_dev = to_usb_device(dev); 274 275 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) 276 return -ENOMEM; 277 278 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) 279 return -ENOMEM; 280 281 return 0; 282 } 283 284 #ifdef CONFIG_PM 285 286 /* USB device Power-Management thunks. 287 * There's no need to distinguish here between quiescing a USB device 288 * and powering it down; the generic_suspend() routine takes care of 289 * it by skipping the usb_port_suspend() call for a quiesce. And for 290 * USB interfaces there's no difference at all. 291 */ 292 293 static int usb_dev_prepare(struct device *dev) 294 { 295 return 0; /* Implement eventually? */ 296 } 297 298 static void usb_dev_complete(struct device *dev) 299 { 300 /* Currently used only for rebinding interfaces */ 301 usb_resume_complete(dev); 302 } 303 304 static int usb_dev_suspend(struct device *dev) 305 { 306 return usb_suspend(dev, PMSG_SUSPEND); 307 } 308 309 static int usb_dev_resume(struct device *dev) 310 { 311 return usb_resume(dev, PMSG_RESUME); 312 } 313 314 static int usb_dev_freeze(struct device *dev) 315 { 316 return usb_suspend(dev, PMSG_FREEZE); 317 } 318 319 static int usb_dev_thaw(struct device *dev) 320 { 321 return usb_resume(dev, PMSG_THAW); 322 } 323 324 static int usb_dev_poweroff(struct device *dev) 325 { 326 return usb_suspend(dev, PMSG_HIBERNATE); 327 } 328 329 static int usb_dev_restore(struct device *dev) 330 { 331 return usb_resume(dev, PMSG_RESTORE); 332 } 333 334 static const struct dev_pm_ops usb_device_pm_ops = { 335 .prepare = usb_dev_prepare, 336 .complete = usb_dev_complete, 337 .suspend = usb_dev_suspend, 338 .resume = usb_dev_resume, 339 .freeze = usb_dev_freeze, 340 .thaw = usb_dev_thaw, 341 .poweroff = usb_dev_poweroff, 342 .restore = usb_dev_restore, 343 #ifdef CONFIG_PM_RUNTIME 344 .runtime_suspend = usb_runtime_suspend, 345 .runtime_resume = usb_runtime_resume, 346 .runtime_idle = usb_runtime_idle, 347 #endif 348 }; 349 350 #endif /* CONFIG_PM */ 351 352 353 static char *usb_devnode(struct device *dev, 354 umode_t *mode, kuid_t *uid, kgid_t *gid) 355 { 356 struct usb_device *usb_dev; 357 358 usb_dev = to_usb_device(dev); 359 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", 360 usb_dev->bus->busnum, usb_dev->devnum); 361 } 362 363 struct device_type usb_device_type = { 364 .name = "usb_device", 365 .release = usb_release_dev, 366 .uevent = usb_dev_uevent, 367 .devnode = usb_devnode, 368 #ifdef CONFIG_PM 369 .pm = &usb_device_pm_ops, 370 #endif 371 }; 372 373 374 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */ 375 static unsigned usb_bus_is_wusb(struct usb_bus *bus) 376 { 377 struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self); 378 return hcd->wireless; 379 } 380 381 382 /** 383 * usb_alloc_dev - usb device constructor (usbcore-internal) 384 * @parent: hub to which device is connected; null to allocate a root hub 385 * @bus: bus used to access the device 386 * @port1: one-based index of port; ignored for root hubs 387 * Context: !in_interrupt() 388 * 389 * Only hub drivers (including virtual root hub drivers for host 390 * controllers) should ever call this. 391 * 392 * This call may not be used in a non-sleeping context. 393 */ 394 struct usb_device *usb_alloc_dev(struct usb_device *parent, 395 struct usb_bus *bus, unsigned port1) 396 { 397 struct usb_device *dev; 398 struct usb_hcd *usb_hcd = bus_to_hcd(bus); 399 unsigned root_hub = 0; 400 401 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 402 if (!dev) 403 return NULL; 404 405 if (!usb_get_hcd(usb_hcd)) { 406 kfree(dev); 407 return NULL; 408 } 409 /* Root hubs aren't true devices, so don't allocate HCD resources */ 410 if (usb_hcd->driver->alloc_dev && parent && 411 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { 412 usb_put_hcd(bus_to_hcd(bus)); 413 kfree(dev); 414 return NULL; 415 } 416 417 device_initialize(&dev->dev); 418 dev->dev.bus = &usb_bus_type; 419 dev->dev.type = &usb_device_type; 420 dev->dev.groups = usb_device_groups; 421 dev->dev.dma_mask = bus->controller->dma_mask; 422 set_dev_node(&dev->dev, dev_to_node(bus->controller)); 423 dev->state = USB_STATE_ATTACHED; 424 dev->lpm_disable_count = 1; 425 atomic_set(&dev->urbnum, 0); 426 427 INIT_LIST_HEAD(&dev->ep0.urb_list); 428 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 429 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 430 /* ep0 maxpacket comes later, from device descriptor */ 431 usb_enable_endpoint(dev, &dev->ep0, false); 432 dev->can_submit = 1; 433 434 /* Save readable and stable topology id, distinguishing devices 435 * by location for diagnostics, tools, driver model, etc. The 436 * string is a path along hub ports, from the root. Each device's 437 * dev->devpath will be stable until USB is re-cabled, and hubs 438 * are often labeled with these port numbers. The name isn't 439 * as stable: bus->busnum changes easily from modprobe order, 440 * cardbus or pci hotplugging, and so on. 441 */ 442 if (unlikely(!parent)) { 443 dev->devpath[0] = '0'; 444 dev->route = 0; 445 446 dev->dev.parent = bus->controller; 447 dev_set_name(&dev->dev, "usb%d", bus->busnum); 448 root_hub = 1; 449 } else { 450 /* match any labeling on the hubs; it's one-based */ 451 if (parent->devpath[0] == '0') { 452 snprintf(dev->devpath, sizeof dev->devpath, 453 "%d", port1); 454 /* Root ports are not counted in route string */ 455 dev->route = 0; 456 } else { 457 snprintf(dev->devpath, sizeof dev->devpath, 458 "%s.%d", parent->devpath, port1); 459 /* Route string assumes hubs have less than 16 ports */ 460 if (port1 < 15) 461 dev->route = parent->route + 462 (port1 << ((parent->level - 1)*4)); 463 else 464 dev->route = parent->route + 465 (15 << ((parent->level - 1)*4)); 466 } 467 468 dev->dev.parent = &parent->dev; 469 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); 470 471 /* hub driver sets up TT records */ 472 } 473 474 dev->portnum = port1; 475 dev->bus = bus; 476 dev->parent = parent; 477 INIT_LIST_HEAD(&dev->filelist); 478 479 #ifdef CONFIG_PM 480 pm_runtime_set_autosuspend_delay(&dev->dev, 481 usb_autosuspend_delay * 1000); 482 dev->connect_time = jiffies; 483 dev->active_duration = -jiffies; 484 #endif 485 if (root_hub) /* Root hub always ok [and always wired] */ 486 dev->authorized = 1; 487 else { 488 dev->authorized = usb_hcd->authorized_default; 489 dev->wusb = usb_bus_is_wusb(bus)? 1 : 0; 490 } 491 return dev; 492 } 493 494 /** 495 * usb_get_dev - increments the reference count of the usb device structure 496 * @dev: the device being referenced 497 * 498 * Each live reference to a device should be refcounted. 499 * 500 * Drivers for USB interfaces should normally record such references in 501 * their probe() methods, when they bind to an interface, and release 502 * them by calling usb_put_dev(), in their disconnect() methods. 503 * 504 * A pointer to the device with the incremented reference counter is returned. 505 */ 506 struct usb_device *usb_get_dev(struct usb_device *dev) 507 { 508 if (dev) 509 get_device(&dev->dev); 510 return dev; 511 } 512 EXPORT_SYMBOL_GPL(usb_get_dev); 513 514 /** 515 * usb_put_dev - release a use of the usb device structure 516 * @dev: device that's been disconnected 517 * 518 * Must be called when a user of a device is finished with it. When the last 519 * user of the device calls this function, the memory of the device is freed. 520 */ 521 void usb_put_dev(struct usb_device *dev) 522 { 523 if (dev) 524 put_device(&dev->dev); 525 } 526 EXPORT_SYMBOL_GPL(usb_put_dev); 527 528 /** 529 * usb_get_intf - increments the reference count of the usb interface structure 530 * @intf: the interface being referenced 531 * 532 * Each live reference to a interface must be refcounted. 533 * 534 * Drivers for USB interfaces should normally record such references in 535 * their probe() methods, when they bind to an interface, and release 536 * them by calling usb_put_intf(), in their disconnect() methods. 537 * 538 * A pointer to the interface with the incremented reference counter is 539 * returned. 540 */ 541 struct usb_interface *usb_get_intf(struct usb_interface *intf) 542 { 543 if (intf) 544 get_device(&intf->dev); 545 return intf; 546 } 547 EXPORT_SYMBOL_GPL(usb_get_intf); 548 549 /** 550 * usb_put_intf - release a use of the usb interface structure 551 * @intf: interface that's been decremented 552 * 553 * Must be called when a user of an interface is finished with it. When the 554 * last user of the interface calls this function, the memory of the interface 555 * is freed. 556 */ 557 void usb_put_intf(struct usb_interface *intf) 558 { 559 if (intf) 560 put_device(&intf->dev); 561 } 562 EXPORT_SYMBOL_GPL(usb_put_intf); 563 564 /* USB device locking 565 * 566 * USB devices and interfaces are locked using the semaphore in their 567 * embedded struct device. The hub driver guarantees that whenever a 568 * device is connected or disconnected, drivers are called with the 569 * USB device locked as well as their particular interface. 570 * 571 * Complications arise when several devices are to be locked at the same 572 * time. Only hub-aware drivers that are part of usbcore ever have to 573 * do this; nobody else needs to worry about it. The rule for locking 574 * is simple: 575 * 576 * When locking both a device and its parent, always lock the 577 * the parent first. 578 */ 579 580 /** 581 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure 582 * @udev: device that's being locked 583 * @iface: interface bound to the driver making the request (optional) 584 * 585 * Attempts to acquire the device lock, but fails if the device is 586 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 587 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 588 * lock, the routine polls repeatedly. This is to prevent deadlock with 589 * disconnect; in some drivers (such as usb-storage) the disconnect() 590 * or suspend() method will block waiting for a device reset to complete. 591 * 592 * Returns a negative error code for failure, otherwise 0. 593 */ 594 int usb_lock_device_for_reset(struct usb_device *udev, 595 const struct usb_interface *iface) 596 { 597 unsigned long jiffies_expire = jiffies + HZ; 598 599 if (udev->state == USB_STATE_NOTATTACHED) 600 return -ENODEV; 601 if (udev->state == USB_STATE_SUSPENDED) 602 return -EHOSTUNREACH; 603 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 604 iface->condition == USB_INTERFACE_UNBOUND)) 605 return -EINTR; 606 607 while (!usb_trylock_device(udev)) { 608 609 /* If we can't acquire the lock after waiting one second, 610 * we're probably deadlocked */ 611 if (time_after(jiffies, jiffies_expire)) 612 return -EBUSY; 613 614 msleep(15); 615 if (udev->state == USB_STATE_NOTATTACHED) 616 return -ENODEV; 617 if (udev->state == USB_STATE_SUSPENDED) 618 return -EHOSTUNREACH; 619 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 620 iface->condition == USB_INTERFACE_UNBOUND)) 621 return -EINTR; 622 } 623 return 0; 624 } 625 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); 626 627 /** 628 * usb_get_current_frame_number - return current bus frame number 629 * @dev: the device whose bus is being queried 630 * 631 * Returns the current frame number for the USB host controller 632 * used with the given USB device. This can be used when scheduling 633 * isochronous requests. 634 * 635 * Note that different kinds of host controller have different 636 * "scheduling horizons". While one type might support scheduling only 637 * 32 frames into the future, others could support scheduling up to 638 * 1024 frames into the future. 639 */ 640 int usb_get_current_frame_number(struct usb_device *dev) 641 { 642 return usb_hcd_get_frame_number(dev); 643 } 644 EXPORT_SYMBOL_GPL(usb_get_current_frame_number); 645 646 /*-------------------------------------------------------------------*/ 647 /* 648 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 649 * extra field of the interface and endpoint descriptor structs. 650 */ 651 652 int __usb_get_extra_descriptor(char *buffer, unsigned size, 653 unsigned char type, void **ptr) 654 { 655 struct usb_descriptor_header *header; 656 657 while (size >= sizeof(struct usb_descriptor_header)) { 658 header = (struct usb_descriptor_header *)buffer; 659 660 if (header->bLength < 2) { 661 printk(KERN_ERR 662 "%s: bogus descriptor, type %d length %d\n", 663 usbcore_name, 664 header->bDescriptorType, 665 header->bLength); 666 return -1; 667 } 668 669 if (header->bDescriptorType == type) { 670 *ptr = header; 671 return 0; 672 } 673 674 buffer += header->bLength; 675 size -= header->bLength; 676 } 677 return -1; 678 } 679 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); 680 681 /** 682 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 683 * @dev: device the buffer will be used with 684 * @size: requested buffer size 685 * @mem_flags: affect whether allocation may block 686 * @dma: used to return DMA address of buffer 687 * 688 * Return value is either null (indicating no buffer could be allocated), or 689 * the cpu-space pointer to a buffer that may be used to perform DMA to the 690 * specified device. Such cpu-space buffers are returned along with the DMA 691 * address (through the pointer provided). 692 * 693 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 694 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU 695 * hardware during URB completion/resubmit. The implementation varies between 696 * platforms, depending on details of how DMA will work to this device. 697 * Using these buffers also eliminates cacheline sharing problems on 698 * architectures where CPU caches are not DMA-coherent. On systems without 699 * bus-snooping caches, these buffers are uncached. 700 * 701 * When the buffer is no longer used, free it with usb_free_coherent(). 702 */ 703 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags, 704 dma_addr_t *dma) 705 { 706 if (!dev || !dev->bus) 707 return NULL; 708 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 709 } 710 EXPORT_SYMBOL_GPL(usb_alloc_coherent); 711 712 /** 713 * usb_free_coherent - free memory allocated with usb_alloc_coherent() 714 * @dev: device the buffer was used with 715 * @size: requested buffer size 716 * @addr: CPU address of buffer 717 * @dma: DMA address of buffer 718 * 719 * This reclaims an I/O buffer, letting it be reused. The memory must have 720 * been allocated using usb_alloc_coherent(), and the parameters must match 721 * those provided in that allocation request. 722 */ 723 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr, 724 dma_addr_t dma) 725 { 726 if (!dev || !dev->bus) 727 return; 728 if (!addr) 729 return; 730 hcd_buffer_free(dev->bus, size, addr, dma); 731 } 732 EXPORT_SYMBOL_GPL(usb_free_coherent); 733 734 /** 735 * usb_buffer_map - create DMA mapping(s) for an urb 736 * @urb: urb whose transfer_buffer/setup_packet will be mapped 737 * 738 * Return value is either null (indicating no buffer could be mapped), or 739 * the parameter. URB_NO_TRANSFER_DMA_MAP is 740 * added to urb->transfer_flags if the operation succeeds. If the device 741 * is connected to this system through a non-DMA controller, this operation 742 * always succeeds. 743 * 744 * This call would normally be used for an urb which is reused, perhaps 745 * as the target of a large periodic transfer, with usb_buffer_dmasync() 746 * calls to synchronize memory and dma state. 747 * 748 * Reverse the effect of this call with usb_buffer_unmap(). 749 */ 750 #if 0 751 struct urb *usb_buffer_map(struct urb *urb) 752 { 753 struct usb_bus *bus; 754 struct device *controller; 755 756 if (!urb 757 || !urb->dev 758 || !(bus = urb->dev->bus) 759 || !(controller = bus->controller)) 760 return NULL; 761 762 if (controller->dma_mask) { 763 urb->transfer_dma = dma_map_single(controller, 764 urb->transfer_buffer, urb->transfer_buffer_length, 765 usb_pipein(urb->pipe) 766 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 767 /* FIXME generic api broken like pci, can't report errors */ 768 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */ 769 } else 770 urb->transfer_dma = ~0; 771 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 772 return urb; 773 } 774 EXPORT_SYMBOL_GPL(usb_buffer_map); 775 #endif /* 0 */ 776 777 /* XXX DISABLED, no users currently. If you wish to re-enable this 778 * XXX please determine whether the sync is to transfer ownership of 779 * XXX the buffer from device to cpu or vice verse, and thusly use the 780 * XXX appropriate _for_{cpu,device}() method. -DaveM 781 */ 782 #if 0 783 784 /** 785 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s) 786 * @urb: urb whose transfer_buffer/setup_packet will be synchronized 787 */ 788 void usb_buffer_dmasync(struct urb *urb) 789 { 790 struct usb_bus *bus; 791 struct device *controller; 792 793 if (!urb 794 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 795 || !urb->dev 796 || !(bus = urb->dev->bus) 797 || !(controller = bus->controller)) 798 return; 799 800 if (controller->dma_mask) { 801 dma_sync_single_for_cpu(controller, 802 urb->transfer_dma, urb->transfer_buffer_length, 803 usb_pipein(urb->pipe) 804 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 805 if (usb_pipecontrol(urb->pipe)) 806 dma_sync_single_for_cpu(controller, 807 urb->setup_dma, 808 sizeof(struct usb_ctrlrequest), 809 DMA_TO_DEVICE); 810 } 811 } 812 EXPORT_SYMBOL_GPL(usb_buffer_dmasync); 813 #endif 814 815 /** 816 * usb_buffer_unmap - free DMA mapping(s) for an urb 817 * @urb: urb whose transfer_buffer will be unmapped 818 * 819 * Reverses the effect of usb_buffer_map(). 820 */ 821 #if 0 822 void usb_buffer_unmap(struct urb *urb) 823 { 824 struct usb_bus *bus; 825 struct device *controller; 826 827 if (!urb 828 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 829 || !urb->dev 830 || !(bus = urb->dev->bus) 831 || !(controller = bus->controller)) 832 return; 833 834 if (controller->dma_mask) { 835 dma_unmap_single(controller, 836 urb->transfer_dma, urb->transfer_buffer_length, 837 usb_pipein(urb->pipe) 838 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 839 } 840 urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP; 841 } 842 EXPORT_SYMBOL_GPL(usb_buffer_unmap); 843 #endif /* 0 */ 844 845 #if 0 846 /** 847 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint 848 * @dev: device to which the scatterlist will be mapped 849 * @is_in: mapping transfer direction 850 * @sg: the scatterlist to map 851 * @nents: the number of entries in the scatterlist 852 * 853 * Return value is either < 0 (indicating no buffers could be mapped), or 854 * the number of DMA mapping array entries in the scatterlist. 855 * 856 * The caller is responsible for placing the resulting DMA addresses from 857 * the scatterlist into URB transfer buffer pointers, and for setting the 858 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs. 859 * 860 * Top I/O rates come from queuing URBs, instead of waiting for each one 861 * to complete before starting the next I/O. This is particularly easy 862 * to do with scatterlists. Just allocate and submit one URB for each DMA 863 * mapping entry returned, stopping on the first error or when all succeed. 864 * Better yet, use the usb_sg_*() calls, which do that (and more) for you. 865 * 866 * This call would normally be used when translating scatterlist requests, 867 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it 868 * may be able to coalesce mappings for improved I/O efficiency. 869 * 870 * Reverse the effect of this call with usb_buffer_unmap_sg(). 871 */ 872 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 873 struct scatterlist *sg, int nents) 874 { 875 struct usb_bus *bus; 876 struct device *controller; 877 878 if (!dev 879 || !(bus = dev->bus) 880 || !(controller = bus->controller) 881 || !controller->dma_mask) 882 return -EINVAL; 883 884 /* FIXME generic api broken like pci, can't report errors */ 885 return dma_map_sg(controller, sg, nents, 886 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM; 887 } 888 EXPORT_SYMBOL_GPL(usb_buffer_map_sg); 889 #endif 890 891 /* XXX DISABLED, no users currently. If you wish to re-enable this 892 * XXX please determine whether the sync is to transfer ownership of 893 * XXX the buffer from device to cpu or vice verse, and thusly use the 894 * XXX appropriate _for_{cpu,device}() method. -DaveM 895 */ 896 #if 0 897 898 /** 899 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s) 900 * @dev: device to which the scatterlist will be mapped 901 * @is_in: mapping transfer direction 902 * @sg: the scatterlist to synchronize 903 * @n_hw_ents: the positive return value from usb_buffer_map_sg 904 * 905 * Use this when you are re-using a scatterlist's data buffers for 906 * another USB request. 907 */ 908 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 909 struct scatterlist *sg, int n_hw_ents) 910 { 911 struct usb_bus *bus; 912 struct device *controller; 913 914 if (!dev 915 || !(bus = dev->bus) 916 || !(controller = bus->controller) 917 || !controller->dma_mask) 918 return; 919 920 dma_sync_sg_for_cpu(controller, sg, n_hw_ents, 921 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 922 } 923 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg); 924 #endif 925 926 #if 0 927 /** 928 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist 929 * @dev: device to which the scatterlist will be mapped 930 * @is_in: mapping transfer direction 931 * @sg: the scatterlist to unmap 932 * @n_hw_ents: the positive return value from usb_buffer_map_sg 933 * 934 * Reverses the effect of usb_buffer_map_sg(). 935 */ 936 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 937 struct scatterlist *sg, int n_hw_ents) 938 { 939 struct usb_bus *bus; 940 struct device *controller; 941 942 if (!dev 943 || !(bus = dev->bus) 944 || !(controller = bus->controller) 945 || !controller->dma_mask) 946 return; 947 948 dma_unmap_sg(controller, sg, n_hw_ents, 949 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 950 } 951 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg); 952 #endif 953 954 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */ 955 #ifdef MODULE 956 module_param(nousb, bool, 0444); 957 #else 958 core_param(nousb, nousb, bool, 0444); 959 #endif 960 961 /* 962 * for external read access to <nousb> 963 */ 964 int usb_disabled(void) 965 { 966 return nousb; 967 } 968 EXPORT_SYMBOL_GPL(usb_disabled); 969 970 /* 971 * Notifications of device and interface registration 972 */ 973 static int usb_bus_notify(struct notifier_block *nb, unsigned long action, 974 void *data) 975 { 976 struct device *dev = data; 977 978 switch (action) { 979 case BUS_NOTIFY_ADD_DEVICE: 980 if (dev->type == &usb_device_type) 981 (void) usb_create_sysfs_dev_files(to_usb_device(dev)); 982 else if (dev->type == &usb_if_device_type) 983 usb_create_sysfs_intf_files(to_usb_interface(dev)); 984 break; 985 986 case BUS_NOTIFY_DEL_DEVICE: 987 if (dev->type == &usb_device_type) 988 usb_remove_sysfs_dev_files(to_usb_device(dev)); 989 else if (dev->type == &usb_if_device_type) 990 usb_remove_sysfs_intf_files(to_usb_interface(dev)); 991 break; 992 } 993 return 0; 994 } 995 996 static struct notifier_block usb_bus_nb = { 997 .notifier_call = usb_bus_notify, 998 }; 999 1000 struct dentry *usb_debug_root; 1001 EXPORT_SYMBOL_GPL(usb_debug_root); 1002 1003 static struct dentry *usb_debug_devices; 1004 1005 static int usb_debugfs_init(void) 1006 { 1007 usb_debug_root = debugfs_create_dir("usb", NULL); 1008 if (!usb_debug_root) 1009 return -ENOENT; 1010 1011 usb_debug_devices = debugfs_create_file("devices", 0444, 1012 usb_debug_root, NULL, 1013 &usbfs_devices_fops); 1014 if (!usb_debug_devices) { 1015 debugfs_remove(usb_debug_root); 1016 usb_debug_root = NULL; 1017 return -ENOENT; 1018 } 1019 1020 return 0; 1021 } 1022 1023 static void usb_debugfs_cleanup(void) 1024 { 1025 debugfs_remove(usb_debug_devices); 1026 debugfs_remove(usb_debug_root); 1027 } 1028 1029 /* 1030 * Init 1031 */ 1032 static int __init usb_init(void) 1033 { 1034 int retval; 1035 if (nousb) { 1036 pr_info("%s: USB support disabled\n", usbcore_name); 1037 return 0; 1038 } 1039 1040 retval = usb_debugfs_init(); 1041 if (retval) 1042 goto out; 1043 1044 usb_acpi_register(); 1045 retval = bus_register(&usb_bus_type); 1046 if (retval) 1047 goto bus_register_failed; 1048 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); 1049 if (retval) 1050 goto bus_notifier_failed; 1051 retval = usb_major_init(); 1052 if (retval) 1053 goto major_init_failed; 1054 retval = usb_register(&usbfs_driver); 1055 if (retval) 1056 goto driver_register_failed; 1057 retval = usb_devio_init(); 1058 if (retval) 1059 goto usb_devio_init_failed; 1060 retval = usb_hub_init(); 1061 if (retval) 1062 goto hub_init_failed; 1063 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 1064 if (!retval) 1065 goto out; 1066 1067 usb_hub_cleanup(); 1068 hub_init_failed: 1069 usb_devio_cleanup(); 1070 usb_devio_init_failed: 1071 usb_deregister(&usbfs_driver); 1072 driver_register_failed: 1073 usb_major_cleanup(); 1074 major_init_failed: 1075 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1076 bus_notifier_failed: 1077 bus_unregister(&usb_bus_type); 1078 bus_register_failed: 1079 usb_acpi_unregister(); 1080 usb_debugfs_cleanup(); 1081 out: 1082 return retval; 1083 } 1084 1085 /* 1086 * Cleanup 1087 */ 1088 static void __exit usb_exit(void) 1089 { 1090 /* This will matter if shutdown/reboot does exitcalls. */ 1091 if (nousb) 1092 return; 1093 1094 usb_deregister_device_driver(&usb_generic_driver); 1095 usb_major_cleanup(); 1096 usb_deregister(&usbfs_driver); 1097 usb_devio_cleanup(); 1098 usb_hub_cleanup(); 1099 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1100 bus_unregister(&usb_bus_type); 1101 usb_acpi_unregister(); 1102 usb_debugfs_cleanup(); 1103 } 1104 1105 subsys_initcall(usb_init); 1106 module_exit(usb_exit); 1107 MODULE_LICENSE("GPL"); 1108