xref: /linux/drivers/usb/core/usb.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * Released under the GPLv2 only.
16  * SPDX-License-Identifier: GPL-2.0
17  *
18  * NOTE! This is not actually a driver at all, rather this is
19  * just a collection of helper routines that implement the
20  * generic USB things that the real drivers can use..
21  *
22  * Think of this as a "USB library" rather than anything else.
23  * It should be considered a slave, with no callbacks. Callbacks
24  * are evil.
25  */
26 
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/string.h>
30 #include <linux/bitops.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>  /* for in_interrupt() */
33 #include <linux/kmod.h>
34 #include <linux/init.h>
35 #include <linux/spinlock.h>
36 #include <linux/errno.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/mutex.h>
40 #include <linux/workqueue.h>
41 #include <linux/debugfs.h>
42 #include <linux/usb/of.h>
43 
44 #include <asm/io.h>
45 #include <linux/scatterlist.h>
46 #include <linux/mm.h>
47 #include <linux/dma-mapping.h>
48 
49 #include "usb.h"
50 
51 
52 const char *usbcore_name = "usbcore";
53 
54 static bool nousb;	/* Disable USB when built into kernel image */
55 
56 module_param(nousb, bool, 0444);
57 
58 /*
59  * for external read access to <nousb>
60  */
61 int usb_disabled(void)
62 {
63 	return nousb;
64 }
65 EXPORT_SYMBOL_GPL(usb_disabled);
66 
67 #ifdef	CONFIG_PM
68 static int usb_autosuspend_delay = 2;		/* Default delay value,
69 						 * in seconds */
70 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
71 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
72 
73 #else
74 #define usb_autosuspend_delay		0
75 #endif
76 
77 static bool match_endpoint(struct usb_endpoint_descriptor *epd,
78 		struct usb_endpoint_descriptor **bulk_in,
79 		struct usb_endpoint_descriptor **bulk_out,
80 		struct usb_endpoint_descriptor **int_in,
81 		struct usb_endpoint_descriptor **int_out)
82 {
83 	switch (usb_endpoint_type(epd)) {
84 	case USB_ENDPOINT_XFER_BULK:
85 		if (usb_endpoint_dir_in(epd)) {
86 			if (bulk_in && !*bulk_in) {
87 				*bulk_in = epd;
88 				break;
89 			}
90 		} else {
91 			if (bulk_out && !*bulk_out) {
92 				*bulk_out = epd;
93 				break;
94 			}
95 		}
96 
97 		return false;
98 	case USB_ENDPOINT_XFER_INT:
99 		if (usb_endpoint_dir_in(epd)) {
100 			if (int_in && !*int_in) {
101 				*int_in = epd;
102 				break;
103 			}
104 		} else {
105 			if (int_out && !*int_out) {
106 				*int_out = epd;
107 				break;
108 			}
109 		}
110 
111 		return false;
112 	default:
113 		return false;
114 	}
115 
116 	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
117 			(!int_in || *int_in) && (!int_out || *int_out);
118 }
119 
120 /**
121  * usb_find_common_endpoints() -- look up common endpoint descriptors
122  * @alt:	alternate setting to search
123  * @bulk_in:	pointer to descriptor pointer, or NULL
124  * @bulk_out:	pointer to descriptor pointer, or NULL
125  * @int_in:	pointer to descriptor pointer, or NULL
126  * @int_out:	pointer to descriptor pointer, or NULL
127  *
128  * Search the alternate setting's endpoint descriptors for the first bulk-in,
129  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
130  * provided pointers (unless they are NULL).
131  *
132  * If a requested endpoint is not found, the corresponding pointer is set to
133  * NULL.
134  *
135  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
136  */
137 int usb_find_common_endpoints(struct usb_host_interface *alt,
138 		struct usb_endpoint_descriptor **bulk_in,
139 		struct usb_endpoint_descriptor **bulk_out,
140 		struct usb_endpoint_descriptor **int_in,
141 		struct usb_endpoint_descriptor **int_out)
142 {
143 	struct usb_endpoint_descriptor *epd;
144 	int i;
145 
146 	if (bulk_in)
147 		*bulk_in = NULL;
148 	if (bulk_out)
149 		*bulk_out = NULL;
150 	if (int_in)
151 		*int_in = NULL;
152 	if (int_out)
153 		*int_out = NULL;
154 
155 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
156 		epd = &alt->endpoint[i].desc;
157 
158 		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
159 			return 0;
160 	}
161 
162 	return -ENXIO;
163 }
164 EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
165 
166 /**
167  * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
168  * @alt:	alternate setting to search
169  * @bulk_in:	pointer to descriptor pointer, or NULL
170  * @bulk_out:	pointer to descriptor pointer, or NULL
171  * @int_in:	pointer to descriptor pointer, or NULL
172  * @int_out:	pointer to descriptor pointer, or NULL
173  *
174  * Search the alternate setting's endpoint descriptors for the last bulk-in,
175  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
176  * provided pointers (unless they are NULL).
177  *
178  * If a requested endpoint is not found, the corresponding pointer is set to
179  * NULL.
180  *
181  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
182  */
183 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
184 		struct usb_endpoint_descriptor **bulk_in,
185 		struct usb_endpoint_descriptor **bulk_out,
186 		struct usb_endpoint_descriptor **int_in,
187 		struct usb_endpoint_descriptor **int_out)
188 {
189 	struct usb_endpoint_descriptor *epd;
190 	int i;
191 
192 	if (bulk_in)
193 		*bulk_in = NULL;
194 	if (bulk_out)
195 		*bulk_out = NULL;
196 	if (int_in)
197 		*int_in = NULL;
198 	if (int_out)
199 		*int_out = NULL;
200 
201 	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
202 		epd = &alt->endpoint[i].desc;
203 
204 		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
205 			return 0;
206 	}
207 
208 	return -ENXIO;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
211 
212 /**
213  * usb_find_alt_setting() - Given a configuration, find the alternate setting
214  * for the given interface.
215  * @config: the configuration to search (not necessarily the current config).
216  * @iface_num: interface number to search in
217  * @alt_num: alternate interface setting number to search for.
218  *
219  * Search the configuration's interface cache for the given alt setting.
220  *
221  * Return: The alternate setting, if found. %NULL otherwise.
222  */
223 struct usb_host_interface *usb_find_alt_setting(
224 		struct usb_host_config *config,
225 		unsigned int iface_num,
226 		unsigned int alt_num)
227 {
228 	struct usb_interface_cache *intf_cache = NULL;
229 	int i;
230 
231 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
232 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
233 				== iface_num) {
234 			intf_cache = config->intf_cache[i];
235 			break;
236 		}
237 	}
238 	if (!intf_cache)
239 		return NULL;
240 	for (i = 0; i < intf_cache->num_altsetting; i++)
241 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
242 			return &intf_cache->altsetting[i];
243 
244 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
245 			"config %u\n", alt_num, iface_num,
246 			config->desc.bConfigurationValue);
247 	return NULL;
248 }
249 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
250 
251 /**
252  * usb_ifnum_to_if - get the interface object with a given interface number
253  * @dev: the device whose current configuration is considered
254  * @ifnum: the desired interface
255  *
256  * This walks the device descriptor for the currently active configuration
257  * to find the interface object with the particular interface number.
258  *
259  * Note that configuration descriptors are not required to assign interface
260  * numbers sequentially, so that it would be incorrect to assume that
261  * the first interface in that descriptor corresponds to interface zero.
262  * This routine helps device drivers avoid such mistakes.
263  * However, you should make sure that you do the right thing with any
264  * alternate settings available for this interfaces.
265  *
266  * Don't call this function unless you are bound to one of the interfaces
267  * on this device or you have locked the device!
268  *
269  * Return: A pointer to the interface that has @ifnum as interface number,
270  * if found. %NULL otherwise.
271  */
272 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
273 				      unsigned ifnum)
274 {
275 	struct usb_host_config *config = dev->actconfig;
276 	int i;
277 
278 	if (!config)
279 		return NULL;
280 	for (i = 0; i < config->desc.bNumInterfaces; i++)
281 		if (config->interface[i]->altsetting[0]
282 				.desc.bInterfaceNumber == ifnum)
283 			return config->interface[i];
284 
285 	return NULL;
286 }
287 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
288 
289 /**
290  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
291  * @intf: the interface containing the altsetting in question
292  * @altnum: the desired alternate setting number
293  *
294  * This searches the altsetting array of the specified interface for
295  * an entry with the correct bAlternateSetting value.
296  *
297  * Note that altsettings need not be stored sequentially by number, so
298  * it would be incorrect to assume that the first altsetting entry in
299  * the array corresponds to altsetting zero.  This routine helps device
300  * drivers avoid such mistakes.
301  *
302  * Don't call this function unless you are bound to the intf interface
303  * or you have locked the device!
304  *
305  * Return: A pointer to the entry of the altsetting array of @intf that
306  * has @altnum as the alternate setting number. %NULL if not found.
307  */
308 struct usb_host_interface *usb_altnum_to_altsetting(
309 					const struct usb_interface *intf,
310 					unsigned int altnum)
311 {
312 	int i;
313 
314 	for (i = 0; i < intf->num_altsetting; i++) {
315 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
316 			return &intf->altsetting[i];
317 	}
318 	return NULL;
319 }
320 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
321 
322 struct find_interface_arg {
323 	int minor;
324 	struct device_driver *drv;
325 };
326 
327 static int __find_interface(struct device *dev, void *data)
328 {
329 	struct find_interface_arg *arg = data;
330 	struct usb_interface *intf;
331 
332 	if (!is_usb_interface(dev))
333 		return 0;
334 
335 	if (dev->driver != arg->drv)
336 		return 0;
337 	intf = to_usb_interface(dev);
338 	return intf->minor == arg->minor;
339 }
340 
341 /**
342  * usb_find_interface - find usb_interface pointer for driver and device
343  * @drv: the driver whose current configuration is considered
344  * @minor: the minor number of the desired device
345  *
346  * This walks the bus device list and returns a pointer to the interface
347  * with the matching minor and driver.  Note, this only works for devices
348  * that share the USB major number.
349  *
350  * Return: A pointer to the interface with the matching major and @minor.
351  */
352 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
353 {
354 	struct find_interface_arg argb;
355 	struct device *dev;
356 
357 	argb.minor = minor;
358 	argb.drv = &drv->drvwrap.driver;
359 
360 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
361 
362 	/* Drop reference count from bus_find_device */
363 	put_device(dev);
364 
365 	return dev ? to_usb_interface(dev) : NULL;
366 }
367 EXPORT_SYMBOL_GPL(usb_find_interface);
368 
369 struct each_dev_arg {
370 	void *data;
371 	int (*fn)(struct usb_device *, void *);
372 };
373 
374 static int __each_dev(struct device *dev, void *data)
375 {
376 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
377 
378 	/* There are struct usb_interface on the same bus, filter them out */
379 	if (!is_usb_device(dev))
380 		return 0;
381 
382 	return arg->fn(to_usb_device(dev), arg->data);
383 }
384 
385 /**
386  * usb_for_each_dev - iterate over all USB devices in the system
387  * @data: data pointer that will be handed to the callback function
388  * @fn: callback function to be called for each USB device
389  *
390  * Iterate over all USB devices and call @fn for each, passing it @data. If it
391  * returns anything other than 0, we break the iteration prematurely and return
392  * that value.
393  */
394 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
395 {
396 	struct each_dev_arg arg = {data, fn};
397 
398 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
399 }
400 EXPORT_SYMBOL_GPL(usb_for_each_dev);
401 
402 /**
403  * usb_release_dev - free a usb device structure when all users of it are finished.
404  * @dev: device that's been disconnected
405  *
406  * Will be called only by the device core when all users of this usb device are
407  * done.
408  */
409 static void usb_release_dev(struct device *dev)
410 {
411 	struct usb_device *udev;
412 	struct usb_hcd *hcd;
413 
414 	udev = to_usb_device(dev);
415 	hcd = bus_to_hcd(udev->bus);
416 
417 	usb_destroy_configuration(udev);
418 	usb_release_bos_descriptor(udev);
419 	usb_put_hcd(hcd);
420 	kfree(udev->product);
421 	kfree(udev->manufacturer);
422 	kfree(udev->serial);
423 	kfree(udev);
424 }
425 
426 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
427 {
428 	struct usb_device *usb_dev;
429 
430 	usb_dev = to_usb_device(dev);
431 
432 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
433 		return -ENOMEM;
434 
435 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
436 		return -ENOMEM;
437 
438 	return 0;
439 }
440 
441 #ifdef	CONFIG_PM
442 
443 /* USB device Power-Management thunks.
444  * There's no need to distinguish here between quiescing a USB device
445  * and powering it down; the generic_suspend() routine takes care of
446  * it by skipping the usb_port_suspend() call for a quiesce.  And for
447  * USB interfaces there's no difference at all.
448  */
449 
450 static int usb_dev_prepare(struct device *dev)
451 {
452 	return 0;		/* Implement eventually? */
453 }
454 
455 static void usb_dev_complete(struct device *dev)
456 {
457 	/* Currently used only for rebinding interfaces */
458 	usb_resume_complete(dev);
459 }
460 
461 static int usb_dev_suspend(struct device *dev)
462 {
463 	return usb_suspend(dev, PMSG_SUSPEND);
464 }
465 
466 static int usb_dev_resume(struct device *dev)
467 {
468 	return usb_resume(dev, PMSG_RESUME);
469 }
470 
471 static int usb_dev_freeze(struct device *dev)
472 {
473 	return usb_suspend(dev, PMSG_FREEZE);
474 }
475 
476 static int usb_dev_thaw(struct device *dev)
477 {
478 	return usb_resume(dev, PMSG_THAW);
479 }
480 
481 static int usb_dev_poweroff(struct device *dev)
482 {
483 	return usb_suspend(dev, PMSG_HIBERNATE);
484 }
485 
486 static int usb_dev_restore(struct device *dev)
487 {
488 	return usb_resume(dev, PMSG_RESTORE);
489 }
490 
491 static const struct dev_pm_ops usb_device_pm_ops = {
492 	.prepare =	usb_dev_prepare,
493 	.complete =	usb_dev_complete,
494 	.suspend =	usb_dev_suspend,
495 	.resume =	usb_dev_resume,
496 	.freeze =	usb_dev_freeze,
497 	.thaw =		usb_dev_thaw,
498 	.poweroff =	usb_dev_poweroff,
499 	.restore =	usb_dev_restore,
500 	.runtime_suspend =	usb_runtime_suspend,
501 	.runtime_resume =	usb_runtime_resume,
502 	.runtime_idle =		usb_runtime_idle,
503 };
504 
505 #endif	/* CONFIG_PM */
506 
507 
508 static char *usb_devnode(struct device *dev,
509 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
510 {
511 	struct usb_device *usb_dev;
512 
513 	usb_dev = to_usb_device(dev);
514 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
515 			 usb_dev->bus->busnum, usb_dev->devnum);
516 }
517 
518 struct device_type usb_device_type = {
519 	.name =		"usb_device",
520 	.release =	usb_release_dev,
521 	.uevent =	usb_dev_uevent,
522 	.devnode = 	usb_devnode,
523 #ifdef CONFIG_PM
524 	.pm =		&usb_device_pm_ops,
525 #endif
526 };
527 
528 
529 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
530 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
531 {
532 	struct usb_hcd *hcd = bus_to_hcd(bus);
533 	return hcd->wireless;
534 }
535 
536 
537 /**
538  * usb_alloc_dev - usb device constructor (usbcore-internal)
539  * @parent: hub to which device is connected; null to allocate a root hub
540  * @bus: bus used to access the device
541  * @port1: one-based index of port; ignored for root hubs
542  * Context: !in_interrupt()
543  *
544  * Only hub drivers (including virtual root hub drivers for host
545  * controllers) should ever call this.
546  *
547  * This call may not be used in a non-sleeping context.
548  *
549  * Return: On success, a pointer to the allocated usb device. %NULL on
550  * failure.
551  */
552 struct usb_device *usb_alloc_dev(struct usb_device *parent,
553 				 struct usb_bus *bus, unsigned port1)
554 {
555 	struct usb_device *dev;
556 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
557 	unsigned root_hub = 0;
558 	unsigned raw_port = port1;
559 
560 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
561 	if (!dev)
562 		return NULL;
563 
564 	if (!usb_get_hcd(usb_hcd)) {
565 		kfree(dev);
566 		return NULL;
567 	}
568 	/* Root hubs aren't true devices, so don't allocate HCD resources */
569 	if (usb_hcd->driver->alloc_dev && parent &&
570 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
571 		usb_put_hcd(bus_to_hcd(bus));
572 		kfree(dev);
573 		return NULL;
574 	}
575 
576 	device_initialize(&dev->dev);
577 	dev->dev.bus = &usb_bus_type;
578 	dev->dev.type = &usb_device_type;
579 	dev->dev.groups = usb_device_groups;
580 	/*
581 	 * Fake a dma_mask/offset for the USB device:
582 	 * We cannot really use the dma-mapping API (dma_alloc_* and
583 	 * dma_map_*) for USB devices but instead need to use
584 	 * usb_alloc_coherent and pass data in 'urb's, but some subsystems
585 	 * manually look into the mask/offset pair to determine whether
586 	 * they need bounce buffers.
587 	 * Note: calling dma_set_mask() on a USB device would set the
588 	 * mask for the entire HCD, so don't do that.
589 	 */
590 	dev->dev.dma_mask = bus->sysdev->dma_mask;
591 	dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
592 	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
593 	dev->state = USB_STATE_ATTACHED;
594 	dev->lpm_disable_count = 1;
595 	atomic_set(&dev->urbnum, 0);
596 
597 	INIT_LIST_HEAD(&dev->ep0.urb_list);
598 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
599 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
600 	/* ep0 maxpacket comes later, from device descriptor */
601 	usb_enable_endpoint(dev, &dev->ep0, false);
602 	dev->can_submit = 1;
603 
604 	/* Save readable and stable topology id, distinguishing devices
605 	 * by location for diagnostics, tools, driver model, etc.  The
606 	 * string is a path along hub ports, from the root.  Each device's
607 	 * dev->devpath will be stable until USB is re-cabled, and hubs
608 	 * are often labeled with these port numbers.  The name isn't
609 	 * as stable:  bus->busnum changes easily from modprobe order,
610 	 * cardbus or pci hotplugging, and so on.
611 	 */
612 	if (unlikely(!parent)) {
613 		dev->devpath[0] = '0';
614 		dev->route = 0;
615 
616 		dev->dev.parent = bus->controller;
617 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
618 		root_hub = 1;
619 	} else {
620 		/* match any labeling on the hubs; it's one-based */
621 		if (parent->devpath[0] == '0') {
622 			snprintf(dev->devpath, sizeof dev->devpath,
623 				"%d", port1);
624 			/* Root ports are not counted in route string */
625 			dev->route = 0;
626 		} else {
627 			snprintf(dev->devpath, sizeof dev->devpath,
628 				"%s.%d", parent->devpath, port1);
629 			/* Route string assumes hubs have less than 16 ports */
630 			if (port1 < 15)
631 				dev->route = parent->route +
632 					(port1 << ((parent->level - 1)*4));
633 			else
634 				dev->route = parent->route +
635 					(15 << ((parent->level - 1)*4));
636 		}
637 
638 		dev->dev.parent = &parent->dev;
639 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
640 
641 		if (!parent->parent) {
642 			/* device under root hub's port */
643 			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
644 				port1);
645 		}
646 		dev->dev.of_node = usb_of_get_child_node(parent->dev.of_node,
647 				raw_port);
648 
649 		/* hub driver sets up TT records */
650 	}
651 
652 	dev->portnum = port1;
653 	dev->bus = bus;
654 	dev->parent = parent;
655 	INIT_LIST_HEAD(&dev->filelist);
656 
657 #ifdef	CONFIG_PM
658 	pm_runtime_set_autosuspend_delay(&dev->dev,
659 			usb_autosuspend_delay * 1000);
660 	dev->connect_time = jiffies;
661 	dev->active_duration = -jiffies;
662 #endif
663 	if (root_hub)	/* Root hub always ok [and always wired] */
664 		dev->authorized = 1;
665 	else {
666 		dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
667 		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
668 	}
669 	return dev;
670 }
671 EXPORT_SYMBOL_GPL(usb_alloc_dev);
672 
673 /**
674  * usb_get_dev - increments the reference count of the usb device structure
675  * @dev: the device being referenced
676  *
677  * Each live reference to a device should be refcounted.
678  *
679  * Drivers for USB interfaces should normally record such references in
680  * their probe() methods, when they bind to an interface, and release
681  * them by calling usb_put_dev(), in their disconnect() methods.
682  *
683  * Return: A pointer to the device with the incremented reference counter.
684  */
685 struct usb_device *usb_get_dev(struct usb_device *dev)
686 {
687 	if (dev)
688 		get_device(&dev->dev);
689 	return dev;
690 }
691 EXPORT_SYMBOL_GPL(usb_get_dev);
692 
693 /**
694  * usb_put_dev - release a use of the usb device structure
695  * @dev: device that's been disconnected
696  *
697  * Must be called when a user of a device is finished with it.  When the last
698  * user of the device calls this function, the memory of the device is freed.
699  */
700 void usb_put_dev(struct usb_device *dev)
701 {
702 	if (dev)
703 		put_device(&dev->dev);
704 }
705 EXPORT_SYMBOL_GPL(usb_put_dev);
706 
707 /**
708  * usb_get_intf - increments the reference count of the usb interface structure
709  * @intf: the interface being referenced
710  *
711  * Each live reference to a interface must be refcounted.
712  *
713  * Drivers for USB interfaces should normally record such references in
714  * their probe() methods, when they bind to an interface, and release
715  * them by calling usb_put_intf(), in their disconnect() methods.
716  *
717  * Return: A pointer to the interface with the incremented reference counter.
718  */
719 struct usb_interface *usb_get_intf(struct usb_interface *intf)
720 {
721 	if (intf)
722 		get_device(&intf->dev);
723 	return intf;
724 }
725 EXPORT_SYMBOL_GPL(usb_get_intf);
726 
727 /**
728  * usb_put_intf - release a use of the usb interface structure
729  * @intf: interface that's been decremented
730  *
731  * Must be called when a user of an interface is finished with it.  When the
732  * last user of the interface calls this function, the memory of the interface
733  * is freed.
734  */
735 void usb_put_intf(struct usb_interface *intf)
736 {
737 	if (intf)
738 		put_device(&intf->dev);
739 }
740 EXPORT_SYMBOL_GPL(usb_put_intf);
741 
742 /*			USB device locking
743  *
744  * USB devices and interfaces are locked using the semaphore in their
745  * embedded struct device.  The hub driver guarantees that whenever a
746  * device is connected or disconnected, drivers are called with the
747  * USB device locked as well as their particular interface.
748  *
749  * Complications arise when several devices are to be locked at the same
750  * time.  Only hub-aware drivers that are part of usbcore ever have to
751  * do this; nobody else needs to worry about it.  The rule for locking
752  * is simple:
753  *
754  *	When locking both a device and its parent, always lock the
755  *	the parent first.
756  */
757 
758 /**
759  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
760  * @udev: device that's being locked
761  * @iface: interface bound to the driver making the request (optional)
762  *
763  * Attempts to acquire the device lock, but fails if the device is
764  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
765  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
766  * lock, the routine polls repeatedly.  This is to prevent deadlock with
767  * disconnect; in some drivers (such as usb-storage) the disconnect()
768  * or suspend() method will block waiting for a device reset to complete.
769  *
770  * Return: A negative error code for failure, otherwise 0.
771  */
772 int usb_lock_device_for_reset(struct usb_device *udev,
773 			      const struct usb_interface *iface)
774 {
775 	unsigned long jiffies_expire = jiffies + HZ;
776 
777 	if (udev->state == USB_STATE_NOTATTACHED)
778 		return -ENODEV;
779 	if (udev->state == USB_STATE_SUSPENDED)
780 		return -EHOSTUNREACH;
781 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
782 			iface->condition == USB_INTERFACE_UNBOUND))
783 		return -EINTR;
784 
785 	while (!usb_trylock_device(udev)) {
786 
787 		/* If we can't acquire the lock after waiting one second,
788 		 * we're probably deadlocked */
789 		if (time_after(jiffies, jiffies_expire))
790 			return -EBUSY;
791 
792 		msleep(15);
793 		if (udev->state == USB_STATE_NOTATTACHED)
794 			return -ENODEV;
795 		if (udev->state == USB_STATE_SUSPENDED)
796 			return -EHOSTUNREACH;
797 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
798 				iface->condition == USB_INTERFACE_UNBOUND))
799 			return -EINTR;
800 	}
801 	return 0;
802 }
803 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
804 
805 /**
806  * usb_get_current_frame_number - return current bus frame number
807  * @dev: the device whose bus is being queried
808  *
809  * Return: The current frame number for the USB host controller used
810  * with the given USB device. This can be used when scheduling
811  * isochronous requests.
812  *
813  * Note: Different kinds of host controller have different "scheduling
814  * horizons". While one type might support scheduling only 32 frames
815  * into the future, others could support scheduling up to 1024 frames
816  * into the future.
817  *
818  */
819 int usb_get_current_frame_number(struct usb_device *dev)
820 {
821 	return usb_hcd_get_frame_number(dev);
822 }
823 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
824 
825 /*-------------------------------------------------------------------*/
826 /*
827  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
828  * extra field of the interface and endpoint descriptor structs.
829  */
830 
831 int __usb_get_extra_descriptor(char *buffer, unsigned size,
832 			       unsigned char type, void **ptr)
833 {
834 	struct usb_descriptor_header *header;
835 
836 	while (size >= sizeof(struct usb_descriptor_header)) {
837 		header = (struct usb_descriptor_header *)buffer;
838 
839 		if (header->bLength < 2) {
840 			printk(KERN_ERR
841 				"%s: bogus descriptor, type %d length %d\n",
842 				usbcore_name,
843 				header->bDescriptorType,
844 				header->bLength);
845 			return -1;
846 		}
847 
848 		if (header->bDescriptorType == type) {
849 			*ptr = header;
850 			return 0;
851 		}
852 
853 		buffer += header->bLength;
854 		size -= header->bLength;
855 	}
856 	return -1;
857 }
858 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
859 
860 /**
861  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
862  * @dev: device the buffer will be used with
863  * @size: requested buffer size
864  * @mem_flags: affect whether allocation may block
865  * @dma: used to return DMA address of buffer
866  *
867  * Return: Either null (indicating no buffer could be allocated), or the
868  * cpu-space pointer to a buffer that may be used to perform DMA to the
869  * specified device.  Such cpu-space buffers are returned along with the DMA
870  * address (through the pointer provided).
871  *
872  * Note:
873  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
874  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
875  * hardware during URB completion/resubmit.  The implementation varies between
876  * platforms, depending on details of how DMA will work to this device.
877  * Using these buffers also eliminates cacheline sharing problems on
878  * architectures where CPU caches are not DMA-coherent.  On systems without
879  * bus-snooping caches, these buffers are uncached.
880  *
881  * When the buffer is no longer used, free it with usb_free_coherent().
882  */
883 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
884 			 dma_addr_t *dma)
885 {
886 	if (!dev || !dev->bus)
887 		return NULL;
888 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
889 }
890 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
891 
892 /**
893  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
894  * @dev: device the buffer was used with
895  * @size: requested buffer size
896  * @addr: CPU address of buffer
897  * @dma: DMA address of buffer
898  *
899  * This reclaims an I/O buffer, letting it be reused.  The memory must have
900  * been allocated using usb_alloc_coherent(), and the parameters must match
901  * those provided in that allocation request.
902  */
903 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
904 		       dma_addr_t dma)
905 {
906 	if (!dev || !dev->bus)
907 		return;
908 	if (!addr)
909 		return;
910 	hcd_buffer_free(dev->bus, size, addr, dma);
911 }
912 EXPORT_SYMBOL_GPL(usb_free_coherent);
913 
914 /**
915  * usb_buffer_map - create DMA mapping(s) for an urb
916  * @urb: urb whose transfer_buffer/setup_packet will be mapped
917  *
918  * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
919  * succeeds. If the device is connected to this system through a non-DMA
920  * controller, this operation always succeeds.
921  *
922  * This call would normally be used for an urb which is reused, perhaps
923  * as the target of a large periodic transfer, with usb_buffer_dmasync()
924  * calls to synchronize memory and dma state.
925  *
926  * Reverse the effect of this call with usb_buffer_unmap().
927  *
928  * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
929  *
930  */
931 #if 0
932 struct urb *usb_buffer_map(struct urb *urb)
933 {
934 	struct usb_bus		*bus;
935 	struct device		*controller;
936 
937 	if (!urb
938 			|| !urb->dev
939 			|| !(bus = urb->dev->bus)
940 			|| !(controller = bus->sysdev))
941 		return NULL;
942 
943 	if (controller->dma_mask) {
944 		urb->transfer_dma = dma_map_single(controller,
945 			urb->transfer_buffer, urb->transfer_buffer_length,
946 			usb_pipein(urb->pipe)
947 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
948 	/* FIXME generic api broken like pci, can't report errors */
949 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
950 	} else
951 		urb->transfer_dma = ~0;
952 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
953 	return urb;
954 }
955 EXPORT_SYMBOL_GPL(usb_buffer_map);
956 #endif  /*  0  */
957 
958 /* XXX DISABLED, no users currently.  If you wish to re-enable this
959  * XXX please determine whether the sync is to transfer ownership of
960  * XXX the buffer from device to cpu or vice verse, and thusly use the
961  * XXX appropriate _for_{cpu,device}() method.  -DaveM
962  */
963 #if 0
964 
965 /**
966  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
967  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
968  */
969 void usb_buffer_dmasync(struct urb *urb)
970 {
971 	struct usb_bus		*bus;
972 	struct device		*controller;
973 
974 	if (!urb
975 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
976 			|| !urb->dev
977 			|| !(bus = urb->dev->bus)
978 			|| !(controller = bus->sysdev))
979 		return;
980 
981 	if (controller->dma_mask) {
982 		dma_sync_single_for_cpu(controller,
983 			urb->transfer_dma, urb->transfer_buffer_length,
984 			usb_pipein(urb->pipe)
985 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
986 		if (usb_pipecontrol(urb->pipe))
987 			dma_sync_single_for_cpu(controller,
988 					urb->setup_dma,
989 					sizeof(struct usb_ctrlrequest),
990 					DMA_TO_DEVICE);
991 	}
992 }
993 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
994 #endif
995 
996 /**
997  * usb_buffer_unmap - free DMA mapping(s) for an urb
998  * @urb: urb whose transfer_buffer will be unmapped
999  *
1000  * Reverses the effect of usb_buffer_map().
1001  */
1002 #if 0
1003 void usb_buffer_unmap(struct urb *urb)
1004 {
1005 	struct usb_bus		*bus;
1006 	struct device		*controller;
1007 
1008 	if (!urb
1009 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1010 			|| !urb->dev
1011 			|| !(bus = urb->dev->bus)
1012 			|| !(controller = bus->sysdev))
1013 		return;
1014 
1015 	if (controller->dma_mask) {
1016 		dma_unmap_single(controller,
1017 			urb->transfer_dma, urb->transfer_buffer_length,
1018 			usb_pipein(urb->pipe)
1019 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1020 	}
1021 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
1022 }
1023 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
1024 #endif  /*  0  */
1025 
1026 #if 0
1027 /**
1028  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1029  * @dev: device to which the scatterlist will be mapped
1030  * @is_in: mapping transfer direction
1031  * @sg: the scatterlist to map
1032  * @nents: the number of entries in the scatterlist
1033  *
1034  * Return: Either < 0 (indicating no buffers could be mapped), or the
1035  * number of DMA mapping array entries in the scatterlist.
1036  *
1037  * Note:
1038  * The caller is responsible for placing the resulting DMA addresses from
1039  * the scatterlist into URB transfer buffer pointers, and for setting the
1040  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1041  *
1042  * Top I/O rates come from queuing URBs, instead of waiting for each one
1043  * to complete before starting the next I/O.   This is particularly easy
1044  * to do with scatterlists.  Just allocate and submit one URB for each DMA
1045  * mapping entry returned, stopping on the first error or when all succeed.
1046  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1047  *
1048  * This call would normally be used when translating scatterlist requests,
1049  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1050  * may be able to coalesce mappings for improved I/O efficiency.
1051  *
1052  * Reverse the effect of this call with usb_buffer_unmap_sg().
1053  */
1054 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1055 		      struct scatterlist *sg, int nents)
1056 {
1057 	struct usb_bus		*bus;
1058 	struct device		*controller;
1059 
1060 	if (!dev
1061 			|| !(bus = dev->bus)
1062 			|| !(controller = bus->sysdev)
1063 			|| !controller->dma_mask)
1064 		return -EINVAL;
1065 
1066 	/* FIXME generic api broken like pci, can't report errors */
1067 	return dma_map_sg(controller, sg, nents,
1068 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
1069 }
1070 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
1071 #endif
1072 
1073 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1074  * XXX please determine whether the sync is to transfer ownership of
1075  * XXX the buffer from device to cpu or vice verse, and thusly use the
1076  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1077  */
1078 #if 0
1079 
1080 /**
1081  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1082  * @dev: device to which the scatterlist will be mapped
1083  * @is_in: mapping transfer direction
1084  * @sg: the scatterlist to synchronize
1085  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1086  *
1087  * Use this when you are re-using a scatterlist's data buffers for
1088  * another USB request.
1089  */
1090 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1091 			   struct scatterlist *sg, int n_hw_ents)
1092 {
1093 	struct usb_bus		*bus;
1094 	struct device		*controller;
1095 
1096 	if (!dev
1097 			|| !(bus = dev->bus)
1098 			|| !(controller = bus->sysdev)
1099 			|| !controller->dma_mask)
1100 		return;
1101 
1102 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
1103 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1104 }
1105 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
1106 #endif
1107 
1108 #if 0
1109 /**
1110  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1111  * @dev: device to which the scatterlist will be mapped
1112  * @is_in: mapping transfer direction
1113  * @sg: the scatterlist to unmap
1114  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1115  *
1116  * Reverses the effect of usb_buffer_map_sg().
1117  */
1118 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1119 			 struct scatterlist *sg, int n_hw_ents)
1120 {
1121 	struct usb_bus		*bus;
1122 	struct device		*controller;
1123 
1124 	if (!dev
1125 			|| !(bus = dev->bus)
1126 			|| !(controller = bus->sysdev)
1127 			|| !controller->dma_mask)
1128 		return;
1129 
1130 	dma_unmap_sg(controller, sg, n_hw_ents,
1131 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1132 }
1133 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
1134 #endif
1135 
1136 /*
1137  * Notifications of device and interface registration
1138  */
1139 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1140 		void *data)
1141 {
1142 	struct device *dev = data;
1143 
1144 	switch (action) {
1145 	case BUS_NOTIFY_ADD_DEVICE:
1146 		if (dev->type == &usb_device_type)
1147 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1148 		else if (dev->type == &usb_if_device_type)
1149 			usb_create_sysfs_intf_files(to_usb_interface(dev));
1150 		break;
1151 
1152 	case BUS_NOTIFY_DEL_DEVICE:
1153 		if (dev->type == &usb_device_type)
1154 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1155 		else if (dev->type == &usb_if_device_type)
1156 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1157 		break;
1158 	}
1159 	return 0;
1160 }
1161 
1162 static struct notifier_block usb_bus_nb = {
1163 	.notifier_call = usb_bus_notify,
1164 };
1165 
1166 struct dentry *usb_debug_root;
1167 EXPORT_SYMBOL_GPL(usb_debug_root);
1168 
1169 static struct dentry *usb_debug_devices;
1170 
1171 static int usb_debugfs_init(void)
1172 {
1173 	usb_debug_root = debugfs_create_dir("usb", NULL);
1174 	if (!usb_debug_root)
1175 		return -ENOENT;
1176 
1177 	usb_debug_devices = debugfs_create_file("devices", 0444,
1178 						usb_debug_root, NULL,
1179 						&usbfs_devices_fops);
1180 	if (!usb_debug_devices) {
1181 		debugfs_remove(usb_debug_root);
1182 		usb_debug_root = NULL;
1183 		return -ENOENT;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static void usb_debugfs_cleanup(void)
1190 {
1191 	debugfs_remove(usb_debug_devices);
1192 	debugfs_remove(usb_debug_root);
1193 }
1194 
1195 /*
1196  * Init
1197  */
1198 static int __init usb_init(void)
1199 {
1200 	int retval;
1201 	if (usb_disabled()) {
1202 		pr_info("%s: USB support disabled\n", usbcore_name);
1203 		return 0;
1204 	}
1205 	usb_init_pool_max();
1206 
1207 	retval = usb_debugfs_init();
1208 	if (retval)
1209 		goto out;
1210 
1211 	usb_acpi_register();
1212 	retval = bus_register(&usb_bus_type);
1213 	if (retval)
1214 		goto bus_register_failed;
1215 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1216 	if (retval)
1217 		goto bus_notifier_failed;
1218 	retval = usb_major_init();
1219 	if (retval)
1220 		goto major_init_failed;
1221 	retval = usb_register(&usbfs_driver);
1222 	if (retval)
1223 		goto driver_register_failed;
1224 	retval = usb_devio_init();
1225 	if (retval)
1226 		goto usb_devio_init_failed;
1227 	retval = usb_hub_init();
1228 	if (retval)
1229 		goto hub_init_failed;
1230 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1231 	if (!retval)
1232 		goto out;
1233 
1234 	usb_hub_cleanup();
1235 hub_init_failed:
1236 	usb_devio_cleanup();
1237 usb_devio_init_failed:
1238 	usb_deregister(&usbfs_driver);
1239 driver_register_failed:
1240 	usb_major_cleanup();
1241 major_init_failed:
1242 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1243 bus_notifier_failed:
1244 	bus_unregister(&usb_bus_type);
1245 bus_register_failed:
1246 	usb_acpi_unregister();
1247 	usb_debugfs_cleanup();
1248 out:
1249 	return retval;
1250 }
1251 
1252 /*
1253  * Cleanup
1254  */
1255 static void __exit usb_exit(void)
1256 {
1257 	/* This will matter if shutdown/reboot does exitcalls. */
1258 	if (usb_disabled())
1259 		return;
1260 
1261 	usb_deregister_device_driver(&usb_generic_driver);
1262 	usb_major_cleanup();
1263 	usb_deregister(&usbfs_driver);
1264 	usb_devio_cleanup();
1265 	usb_hub_cleanup();
1266 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1267 	bus_unregister(&usb_bus_type);
1268 	usb_acpi_unregister();
1269 	usb_debugfs_cleanup();
1270 	idr_destroy(&usb_bus_idr);
1271 }
1272 
1273 subsys_initcall(usb_init);
1274 module_exit(usb_exit);
1275 MODULE_LICENSE("GPL");
1276