xref: /linux/drivers/usb/core/usb.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/mutex.h>
36 #include <linux/workqueue.h>
37 #include <linux/debugfs.h>
38 
39 #include <asm/io.h>
40 #include <linux/scatterlist.h>
41 #include <linux/mm.h>
42 #include <linux/dma-mapping.h>
43 
44 #include "hcd.h"
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static int nousb;	/* Disable USB when built into kernel image */
51 
52 /* Workqueue for autosuspend and for remote wakeup of root hubs */
53 struct workqueue_struct *ksuspend_usb_wq;
54 
55 #ifdef	CONFIG_USB_SUSPEND
56 static int usb_autosuspend_delay = 2;		/* Default delay value,
57 						 * in seconds */
58 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
59 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
60 
61 #else
62 #define usb_autosuspend_delay		0
63 #endif
64 
65 
66 /**
67  * usb_ifnum_to_if - get the interface object with a given interface number
68  * @dev: the device whose current configuration is considered
69  * @ifnum: the desired interface
70  *
71  * This walks the device descriptor for the currently active configuration
72  * and returns a pointer to the interface with that particular interface
73  * number, or null.
74  *
75  * Note that configuration descriptors are not required to assign interface
76  * numbers sequentially, so that it would be incorrect to assume that
77  * the first interface in that descriptor corresponds to interface zero.
78  * This routine helps device drivers avoid such mistakes.
79  * However, you should make sure that you do the right thing with any
80  * alternate settings available for this interfaces.
81  *
82  * Don't call this function unless you are bound to one of the interfaces
83  * on this device or you have locked the device!
84  */
85 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
86 				      unsigned ifnum)
87 {
88 	struct usb_host_config *config = dev->actconfig;
89 	int i;
90 
91 	if (!config)
92 		return NULL;
93 	for (i = 0; i < config->desc.bNumInterfaces; i++)
94 		if (config->interface[i]->altsetting[0]
95 				.desc.bInterfaceNumber == ifnum)
96 			return config->interface[i];
97 
98 	return NULL;
99 }
100 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
101 
102 /**
103  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
104  * @intf: the interface containing the altsetting in question
105  * @altnum: the desired alternate setting number
106  *
107  * This searches the altsetting array of the specified interface for
108  * an entry with the correct bAlternateSetting value and returns a pointer
109  * to that entry, or null.
110  *
111  * Note that altsettings need not be stored sequentially by number, so
112  * it would be incorrect to assume that the first altsetting entry in
113  * the array corresponds to altsetting zero.  This routine helps device
114  * drivers avoid such mistakes.
115  *
116  * Don't call this function unless you are bound to the intf interface
117  * or you have locked the device!
118  */
119 struct usb_host_interface *usb_altnum_to_altsetting(
120 					const struct usb_interface *intf,
121 					unsigned int altnum)
122 {
123 	int i;
124 
125 	for (i = 0; i < intf->num_altsetting; i++) {
126 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
127 			return &intf->altsetting[i];
128 	}
129 	return NULL;
130 }
131 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
132 
133 struct find_interface_arg {
134 	int minor;
135 	struct usb_interface *interface;
136 };
137 
138 static int __find_interface(struct device *dev, void *data)
139 {
140 	struct find_interface_arg *arg = data;
141 	struct usb_interface *intf;
142 
143 	/* can't look at usb devices, only interfaces */
144 	if (is_usb_device(dev))
145 		return 0;
146 
147 	intf = to_usb_interface(dev);
148 	if (intf->minor != -1 && intf->minor == arg->minor) {
149 		arg->interface = intf;
150 		return 1;
151 	}
152 	return 0;
153 }
154 
155 /**
156  * usb_find_interface - find usb_interface pointer for driver and device
157  * @drv: the driver whose current configuration is considered
158  * @minor: the minor number of the desired device
159  *
160  * This walks the driver device list and returns a pointer to the interface
161  * with the matching minor.  Note, this only works for devices that share the
162  * USB major number.
163  */
164 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
165 {
166 	struct find_interface_arg argb;
167 	int retval;
168 
169 	argb.minor = minor;
170 	argb.interface = NULL;
171 	/* eat the error, it will be in argb.interface */
172 	retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb,
173 					__find_interface);
174 	return argb.interface;
175 }
176 EXPORT_SYMBOL_GPL(usb_find_interface);
177 
178 /**
179  * usb_release_dev - free a usb device structure when all users of it are finished.
180  * @dev: device that's been disconnected
181  *
182  * Will be called only by the device core when all users of this usb device are
183  * done.
184  */
185 static void usb_release_dev(struct device *dev)
186 {
187 	struct usb_device *udev;
188 
189 	udev = to_usb_device(dev);
190 
191 	usb_destroy_configuration(udev);
192 	usb_put_hcd(bus_to_hcd(udev->bus));
193 	kfree(udev->product);
194 	kfree(udev->manufacturer);
195 	kfree(udev->serial);
196 	kfree(udev);
197 }
198 
199 #ifdef	CONFIG_HOTPLUG
200 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
201 {
202 	struct usb_device *usb_dev;
203 
204 	usb_dev = to_usb_device(dev);
205 
206 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
207 		return -ENOMEM;
208 
209 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
210 		return -ENOMEM;
211 
212 	return 0;
213 }
214 
215 #else
216 
217 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
218 {
219 	return -ENODEV;
220 }
221 #endif	/* CONFIG_HOTPLUG */
222 
223 #ifdef	CONFIG_PM
224 
225 static int ksuspend_usb_init(void)
226 {
227 	/* This workqueue is supposed to be both freezable and
228 	 * singlethreaded.  Its job doesn't justify running on more
229 	 * than one CPU.
230 	 */
231 	ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd");
232 	if (!ksuspend_usb_wq)
233 		return -ENOMEM;
234 	return 0;
235 }
236 
237 static void ksuspend_usb_cleanup(void)
238 {
239 	destroy_workqueue(ksuspend_usb_wq);
240 }
241 
242 /* USB device Power-Management thunks.
243  * There's no need to distinguish here between quiescing a USB device
244  * and powering it down; the generic_suspend() routine takes care of
245  * it by skipping the usb_port_suspend() call for a quiesce.  And for
246  * USB interfaces there's no difference at all.
247  */
248 
249 static int usb_dev_prepare(struct device *dev)
250 {
251 	return 0;		/* Implement eventually? */
252 }
253 
254 static void usb_dev_complete(struct device *dev)
255 {
256 	/* Currently used only for rebinding interfaces */
257 	usb_resume(dev, PMSG_RESUME);	/* Message event is meaningless */
258 }
259 
260 static int usb_dev_suspend(struct device *dev)
261 {
262 	return usb_suspend(dev, PMSG_SUSPEND);
263 }
264 
265 static int usb_dev_resume(struct device *dev)
266 {
267 	return usb_resume(dev, PMSG_RESUME);
268 }
269 
270 static int usb_dev_freeze(struct device *dev)
271 {
272 	return usb_suspend(dev, PMSG_FREEZE);
273 }
274 
275 static int usb_dev_thaw(struct device *dev)
276 {
277 	return usb_resume(dev, PMSG_THAW);
278 }
279 
280 static int usb_dev_poweroff(struct device *dev)
281 {
282 	return usb_suspend(dev, PMSG_HIBERNATE);
283 }
284 
285 static int usb_dev_restore(struct device *dev)
286 {
287 	return usb_resume(dev, PMSG_RESTORE);
288 }
289 
290 static struct dev_pm_ops usb_device_pm_ops = {
291 	.prepare =	usb_dev_prepare,
292 	.complete =	usb_dev_complete,
293 	.suspend =	usb_dev_suspend,
294 	.resume =	usb_dev_resume,
295 	.freeze =	usb_dev_freeze,
296 	.thaw =		usb_dev_thaw,
297 	.poweroff =	usb_dev_poweroff,
298 	.restore =	usb_dev_restore,
299 };
300 
301 #else
302 
303 #define ksuspend_usb_init()	0
304 #define ksuspend_usb_cleanup()	do {} while (0)
305 #define usb_device_pm_ops	(*(struct dev_pm_ops *)0)
306 
307 #endif	/* CONFIG_PM */
308 
309 struct device_type usb_device_type = {
310 	.name =		"usb_device",
311 	.release =	usb_release_dev,
312 	.uevent =	usb_dev_uevent,
313 	.pm =		&usb_device_pm_ops,
314 };
315 
316 
317 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
318 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
319 {
320 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
321 	return hcd->wireless;
322 }
323 
324 
325 /**
326  * usb_alloc_dev - usb device constructor (usbcore-internal)
327  * @parent: hub to which device is connected; null to allocate a root hub
328  * @bus: bus used to access the device
329  * @port1: one-based index of port; ignored for root hubs
330  * Context: !in_interrupt()
331  *
332  * Only hub drivers (including virtual root hub drivers for host
333  * controllers) should ever call this.
334  *
335  * This call may not be used in a non-sleeping context.
336  */
337 struct usb_device *usb_alloc_dev(struct usb_device *parent,
338 				 struct usb_bus *bus, unsigned port1)
339 {
340 	struct usb_device *dev;
341 	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
342 	unsigned root_hub = 0;
343 
344 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
345 	if (!dev)
346 		return NULL;
347 
348 	if (!usb_get_hcd(bus_to_hcd(bus))) {
349 		kfree(dev);
350 		return NULL;
351 	}
352 
353 	device_initialize(&dev->dev);
354 	dev->dev.bus = &usb_bus_type;
355 	dev->dev.type = &usb_device_type;
356 	dev->dev.groups = usb_device_groups;
357 	dev->dev.dma_mask = bus->controller->dma_mask;
358 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
359 	dev->state = USB_STATE_ATTACHED;
360 	atomic_set(&dev->urbnum, 0);
361 
362 	INIT_LIST_HEAD(&dev->ep0.urb_list);
363 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
364 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
365 	/* ep0 maxpacket comes later, from device descriptor */
366 	usb_enable_endpoint(dev, &dev->ep0, false);
367 	dev->can_submit = 1;
368 
369 	/* Save readable and stable topology id, distinguishing devices
370 	 * by location for diagnostics, tools, driver model, etc.  The
371 	 * string is a path along hub ports, from the root.  Each device's
372 	 * dev->devpath will be stable until USB is re-cabled, and hubs
373 	 * are often labeled with these port numbers.  The name isn't
374 	 * as stable:  bus->busnum changes easily from modprobe order,
375 	 * cardbus or pci hotplugging, and so on.
376 	 */
377 	if (unlikely(!parent)) {
378 		dev->devpath[0] = '0';
379 
380 		dev->dev.parent = bus->controller;
381 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
382 		root_hub = 1;
383 	} else {
384 		/* match any labeling on the hubs; it's one-based */
385 		if (parent->devpath[0] == '0')
386 			snprintf(dev->devpath, sizeof dev->devpath,
387 				"%d", port1);
388 		else
389 			snprintf(dev->devpath, sizeof dev->devpath,
390 				"%s.%d", parent->devpath, port1);
391 
392 		dev->dev.parent = &parent->dev;
393 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
394 
395 		/* hub driver sets up TT records */
396 	}
397 
398 	dev->portnum = port1;
399 	dev->bus = bus;
400 	dev->parent = parent;
401 	INIT_LIST_HEAD(&dev->filelist);
402 
403 #ifdef	CONFIG_PM
404 	mutex_init(&dev->pm_mutex);
405 	INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work);
406 	INIT_WORK(&dev->autoresume, usb_autoresume_work);
407 	dev->autosuspend_delay = usb_autosuspend_delay * HZ;
408 	dev->connect_time = jiffies;
409 	dev->active_duration = -jiffies;
410 #endif
411 	if (root_hub)	/* Root hub always ok [and always wired] */
412 		dev->authorized = 1;
413 	else {
414 		dev->authorized = usb_hcd->authorized_default;
415 		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
416 	}
417 	return dev;
418 }
419 
420 /**
421  * usb_get_dev - increments the reference count of the usb device structure
422  * @dev: the device being referenced
423  *
424  * Each live reference to a device should be refcounted.
425  *
426  * Drivers for USB interfaces should normally record such references in
427  * their probe() methods, when they bind to an interface, and release
428  * them by calling usb_put_dev(), in their disconnect() methods.
429  *
430  * A pointer to the device with the incremented reference counter is returned.
431  */
432 struct usb_device *usb_get_dev(struct usb_device *dev)
433 {
434 	if (dev)
435 		get_device(&dev->dev);
436 	return dev;
437 }
438 EXPORT_SYMBOL_GPL(usb_get_dev);
439 
440 /**
441  * usb_put_dev - release a use of the usb device structure
442  * @dev: device that's been disconnected
443  *
444  * Must be called when a user of a device is finished with it.  When the last
445  * user of the device calls this function, the memory of the device is freed.
446  */
447 void usb_put_dev(struct usb_device *dev)
448 {
449 	if (dev)
450 		put_device(&dev->dev);
451 }
452 EXPORT_SYMBOL_GPL(usb_put_dev);
453 
454 /**
455  * usb_get_intf - increments the reference count of the usb interface structure
456  * @intf: the interface being referenced
457  *
458  * Each live reference to a interface must be refcounted.
459  *
460  * Drivers for USB interfaces should normally record such references in
461  * their probe() methods, when they bind to an interface, and release
462  * them by calling usb_put_intf(), in their disconnect() methods.
463  *
464  * A pointer to the interface with the incremented reference counter is
465  * returned.
466  */
467 struct usb_interface *usb_get_intf(struct usb_interface *intf)
468 {
469 	if (intf)
470 		get_device(&intf->dev);
471 	return intf;
472 }
473 EXPORT_SYMBOL_GPL(usb_get_intf);
474 
475 /**
476  * usb_put_intf - release a use of the usb interface structure
477  * @intf: interface that's been decremented
478  *
479  * Must be called when a user of an interface is finished with it.  When the
480  * last user of the interface calls this function, the memory of the interface
481  * is freed.
482  */
483 void usb_put_intf(struct usb_interface *intf)
484 {
485 	if (intf)
486 		put_device(&intf->dev);
487 }
488 EXPORT_SYMBOL_GPL(usb_put_intf);
489 
490 /*			USB device locking
491  *
492  * USB devices and interfaces are locked using the semaphore in their
493  * embedded struct device.  The hub driver guarantees that whenever a
494  * device is connected or disconnected, drivers are called with the
495  * USB device locked as well as their particular interface.
496  *
497  * Complications arise when several devices are to be locked at the same
498  * time.  Only hub-aware drivers that are part of usbcore ever have to
499  * do this; nobody else needs to worry about it.  The rule for locking
500  * is simple:
501  *
502  *	When locking both a device and its parent, always lock the
503  *	the parent first.
504  */
505 
506 /**
507  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
508  * @udev: device that's being locked
509  * @iface: interface bound to the driver making the request (optional)
510  *
511  * Attempts to acquire the device lock, but fails if the device is
512  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
513  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
514  * lock, the routine polls repeatedly.  This is to prevent deadlock with
515  * disconnect; in some drivers (such as usb-storage) the disconnect()
516  * or suspend() method will block waiting for a device reset to complete.
517  *
518  * Returns a negative error code for failure, otherwise 0.
519  */
520 int usb_lock_device_for_reset(struct usb_device *udev,
521 			      const struct usb_interface *iface)
522 {
523 	unsigned long jiffies_expire = jiffies + HZ;
524 
525 	if (udev->state == USB_STATE_NOTATTACHED)
526 		return -ENODEV;
527 	if (udev->state == USB_STATE_SUSPENDED)
528 		return -EHOSTUNREACH;
529 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
530 			iface->condition == USB_INTERFACE_UNBOUND))
531 		return -EINTR;
532 
533 	while (usb_trylock_device(udev) != 0) {
534 
535 		/* If we can't acquire the lock after waiting one second,
536 		 * we're probably deadlocked */
537 		if (time_after(jiffies, jiffies_expire))
538 			return -EBUSY;
539 
540 		msleep(15);
541 		if (udev->state == USB_STATE_NOTATTACHED)
542 			return -ENODEV;
543 		if (udev->state == USB_STATE_SUSPENDED)
544 			return -EHOSTUNREACH;
545 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
546 				iface->condition == USB_INTERFACE_UNBOUND))
547 			return -EINTR;
548 	}
549 	return 0;
550 }
551 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
552 
553 static struct usb_device *match_device(struct usb_device *dev,
554 				       u16 vendor_id, u16 product_id)
555 {
556 	struct usb_device *ret_dev = NULL;
557 	int child;
558 
559 	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
560 	    le16_to_cpu(dev->descriptor.idVendor),
561 	    le16_to_cpu(dev->descriptor.idProduct));
562 
563 	/* see if this device matches */
564 	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
565 	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
566 		dev_dbg(&dev->dev, "matched this device!\n");
567 		ret_dev = usb_get_dev(dev);
568 		goto exit;
569 	}
570 
571 	/* look through all of the children of this device */
572 	for (child = 0; child < dev->maxchild; ++child) {
573 		if (dev->children[child]) {
574 			usb_lock_device(dev->children[child]);
575 			ret_dev = match_device(dev->children[child],
576 					       vendor_id, product_id);
577 			usb_unlock_device(dev->children[child]);
578 			if (ret_dev)
579 				goto exit;
580 		}
581 	}
582 exit:
583 	return ret_dev;
584 }
585 
586 /**
587  * usb_find_device - find a specific usb device in the system
588  * @vendor_id: the vendor id of the device to find
589  * @product_id: the product id of the device to find
590  *
591  * Returns a pointer to a struct usb_device if such a specified usb
592  * device is present in the system currently.  The usage count of the
593  * device will be incremented if a device is found.  Make sure to call
594  * usb_put_dev() when the caller is finished with the device.
595  *
596  * If a device with the specified vendor and product id is not found,
597  * NULL is returned.
598  */
599 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
600 {
601 	struct list_head *buslist;
602 	struct usb_bus *bus;
603 	struct usb_device *dev = NULL;
604 
605 	mutex_lock(&usb_bus_list_lock);
606 	for (buslist = usb_bus_list.next;
607 	     buslist != &usb_bus_list;
608 	     buslist = buslist->next) {
609 		bus = container_of(buslist, struct usb_bus, bus_list);
610 		if (!bus->root_hub)
611 			continue;
612 		usb_lock_device(bus->root_hub);
613 		dev = match_device(bus->root_hub, vendor_id, product_id);
614 		usb_unlock_device(bus->root_hub);
615 		if (dev)
616 			goto exit;
617 	}
618 exit:
619 	mutex_unlock(&usb_bus_list_lock);
620 	return dev;
621 }
622 
623 /**
624  * usb_get_current_frame_number - return current bus frame number
625  * @dev: the device whose bus is being queried
626  *
627  * Returns the current frame number for the USB host controller
628  * used with the given USB device.  This can be used when scheduling
629  * isochronous requests.
630  *
631  * Note that different kinds of host controller have different
632  * "scheduling horizons".  While one type might support scheduling only
633  * 32 frames into the future, others could support scheduling up to
634  * 1024 frames into the future.
635  */
636 int usb_get_current_frame_number(struct usb_device *dev)
637 {
638 	return usb_hcd_get_frame_number(dev);
639 }
640 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
641 
642 /*-------------------------------------------------------------------*/
643 /*
644  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
645  * extra field of the interface and endpoint descriptor structs.
646  */
647 
648 int __usb_get_extra_descriptor(char *buffer, unsigned size,
649 			       unsigned char type, void **ptr)
650 {
651 	struct usb_descriptor_header *header;
652 
653 	while (size >= sizeof(struct usb_descriptor_header)) {
654 		header = (struct usb_descriptor_header *)buffer;
655 
656 		if (header->bLength < 2) {
657 			printk(KERN_ERR
658 				"%s: bogus descriptor, type %d length %d\n",
659 				usbcore_name,
660 				header->bDescriptorType,
661 				header->bLength);
662 			return -1;
663 		}
664 
665 		if (header->bDescriptorType == type) {
666 			*ptr = header;
667 			return 0;
668 		}
669 
670 		buffer += header->bLength;
671 		size -= header->bLength;
672 	}
673 	return -1;
674 }
675 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
676 
677 /**
678  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
679  * @dev: device the buffer will be used with
680  * @size: requested buffer size
681  * @mem_flags: affect whether allocation may block
682  * @dma: used to return DMA address of buffer
683  *
684  * Return value is either null (indicating no buffer could be allocated), or
685  * the cpu-space pointer to a buffer that may be used to perform DMA to the
686  * specified device.  Such cpu-space buffers are returned along with the DMA
687  * address (through the pointer provided).
688  *
689  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
690  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
691  * hardware during URB completion/resubmit.  The implementation varies between
692  * platforms, depending on details of how DMA will work to this device.
693  * Using these buffers also eliminates cacheline sharing problems on
694  * architectures where CPU caches are not DMA-coherent.  On systems without
695  * bus-snooping caches, these buffers are uncached.
696  *
697  * When the buffer is no longer used, free it with usb_buffer_free().
698  */
699 void *usb_buffer_alloc(struct usb_device *dev, size_t size, gfp_t mem_flags,
700 		       dma_addr_t *dma)
701 {
702 	if (!dev || !dev->bus)
703 		return NULL;
704 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
705 }
706 EXPORT_SYMBOL_GPL(usb_buffer_alloc);
707 
708 /**
709  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
710  * @dev: device the buffer was used with
711  * @size: requested buffer size
712  * @addr: CPU address of buffer
713  * @dma: DMA address of buffer
714  *
715  * This reclaims an I/O buffer, letting it be reused.  The memory must have
716  * been allocated using usb_buffer_alloc(), and the parameters must match
717  * those provided in that allocation request.
718  */
719 void usb_buffer_free(struct usb_device *dev, size_t size, void *addr,
720 		     dma_addr_t dma)
721 {
722 	if (!dev || !dev->bus)
723 		return;
724 	if (!addr)
725 		return;
726 	hcd_buffer_free(dev->bus, size, addr, dma);
727 }
728 EXPORT_SYMBOL_GPL(usb_buffer_free);
729 
730 /**
731  * usb_buffer_map - create DMA mapping(s) for an urb
732  * @urb: urb whose transfer_buffer/setup_packet will be mapped
733  *
734  * Return value is either null (indicating no buffer could be mapped), or
735  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
736  * added to urb->transfer_flags if the operation succeeds.  If the device
737  * is connected to this system through a non-DMA controller, this operation
738  * always succeeds.
739  *
740  * This call would normally be used for an urb which is reused, perhaps
741  * as the target of a large periodic transfer, with usb_buffer_dmasync()
742  * calls to synchronize memory and dma state.
743  *
744  * Reverse the effect of this call with usb_buffer_unmap().
745  */
746 #if 0
747 struct urb *usb_buffer_map(struct urb *urb)
748 {
749 	struct usb_bus		*bus;
750 	struct device		*controller;
751 
752 	if (!urb
753 			|| !urb->dev
754 			|| !(bus = urb->dev->bus)
755 			|| !(controller = bus->controller))
756 		return NULL;
757 
758 	if (controller->dma_mask) {
759 		urb->transfer_dma = dma_map_single(controller,
760 			urb->transfer_buffer, urb->transfer_buffer_length,
761 			usb_pipein(urb->pipe)
762 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
763 		if (usb_pipecontrol(urb->pipe))
764 			urb->setup_dma = dma_map_single(controller,
765 					urb->setup_packet,
766 					sizeof(struct usb_ctrlrequest),
767 					DMA_TO_DEVICE);
768 	/* FIXME generic api broken like pci, can't report errors */
769 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
770 	} else
771 		urb->transfer_dma = ~0;
772 	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
773 				| URB_NO_SETUP_DMA_MAP);
774 	return urb;
775 }
776 EXPORT_SYMBOL_GPL(usb_buffer_map);
777 #endif  /*  0  */
778 
779 /* XXX DISABLED, no users currently.  If you wish to re-enable this
780  * XXX please determine whether the sync is to transfer ownership of
781  * XXX the buffer from device to cpu or vice verse, and thusly use the
782  * XXX appropriate _for_{cpu,device}() method.  -DaveM
783  */
784 #if 0
785 
786 /**
787  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
788  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
789  */
790 void usb_buffer_dmasync(struct urb *urb)
791 {
792 	struct usb_bus		*bus;
793 	struct device		*controller;
794 
795 	if (!urb
796 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
797 			|| !urb->dev
798 			|| !(bus = urb->dev->bus)
799 			|| !(controller = bus->controller))
800 		return;
801 
802 	if (controller->dma_mask) {
803 		dma_sync_single(controller,
804 			urb->transfer_dma, urb->transfer_buffer_length,
805 			usb_pipein(urb->pipe)
806 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
807 		if (usb_pipecontrol(urb->pipe))
808 			dma_sync_single(controller,
809 					urb->setup_dma,
810 					sizeof(struct usb_ctrlrequest),
811 					DMA_TO_DEVICE);
812 	}
813 }
814 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
815 #endif
816 
817 /**
818  * usb_buffer_unmap - free DMA mapping(s) for an urb
819  * @urb: urb whose transfer_buffer will be unmapped
820  *
821  * Reverses the effect of usb_buffer_map().
822  */
823 #if 0
824 void usb_buffer_unmap(struct urb *urb)
825 {
826 	struct usb_bus		*bus;
827 	struct device		*controller;
828 
829 	if (!urb
830 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
831 			|| !urb->dev
832 			|| !(bus = urb->dev->bus)
833 			|| !(controller = bus->controller))
834 		return;
835 
836 	if (controller->dma_mask) {
837 		dma_unmap_single(controller,
838 			urb->transfer_dma, urb->transfer_buffer_length,
839 			usb_pipein(urb->pipe)
840 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
841 		if (usb_pipecontrol(urb->pipe))
842 			dma_unmap_single(controller,
843 					urb->setup_dma,
844 					sizeof(struct usb_ctrlrequest),
845 					DMA_TO_DEVICE);
846 	}
847 	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
848 				| URB_NO_SETUP_DMA_MAP);
849 }
850 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
851 #endif  /*  0  */
852 
853 /**
854  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
855  * @dev: device to which the scatterlist will be mapped
856  * @is_in: mapping transfer direction
857  * @sg: the scatterlist to map
858  * @nents: the number of entries in the scatterlist
859  *
860  * Return value is either < 0 (indicating no buffers could be mapped), or
861  * the number of DMA mapping array entries in the scatterlist.
862  *
863  * The caller is responsible for placing the resulting DMA addresses from
864  * the scatterlist into URB transfer buffer pointers, and for setting the
865  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
866  *
867  * Top I/O rates come from queuing URBs, instead of waiting for each one
868  * to complete before starting the next I/O.   This is particularly easy
869  * to do with scatterlists.  Just allocate and submit one URB for each DMA
870  * mapping entry returned, stopping on the first error or when all succeed.
871  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
872  *
873  * This call would normally be used when translating scatterlist requests,
874  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
875  * may be able to coalesce mappings for improved I/O efficiency.
876  *
877  * Reverse the effect of this call with usb_buffer_unmap_sg().
878  */
879 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
880 		      struct scatterlist *sg, int nents)
881 {
882 	struct usb_bus		*bus;
883 	struct device		*controller;
884 
885 	if (!dev
886 			|| !(bus = dev->bus)
887 			|| !(controller = bus->controller)
888 			|| !controller->dma_mask)
889 		return -1;
890 
891 	/* FIXME generic api broken like pci, can't report errors */
892 	return dma_map_sg(controller, sg, nents,
893 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
894 }
895 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
896 
897 /* XXX DISABLED, no users currently.  If you wish to re-enable this
898  * XXX please determine whether the sync is to transfer ownership of
899  * XXX the buffer from device to cpu or vice verse, and thusly use the
900  * XXX appropriate _for_{cpu,device}() method.  -DaveM
901  */
902 #if 0
903 
904 /**
905  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
906  * @dev: device to which the scatterlist will be mapped
907  * @is_in: mapping transfer direction
908  * @sg: the scatterlist to synchronize
909  * @n_hw_ents: the positive return value from usb_buffer_map_sg
910  *
911  * Use this when you are re-using a scatterlist's data buffers for
912  * another USB request.
913  */
914 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
915 			   struct scatterlist *sg, int n_hw_ents)
916 {
917 	struct usb_bus		*bus;
918 	struct device		*controller;
919 
920 	if (!dev
921 			|| !(bus = dev->bus)
922 			|| !(controller = bus->controller)
923 			|| !controller->dma_mask)
924 		return;
925 
926 	dma_sync_sg(controller, sg, n_hw_ents,
927 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
928 }
929 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
930 #endif
931 
932 /**
933  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
934  * @dev: device to which the scatterlist will be mapped
935  * @is_in: mapping transfer direction
936  * @sg: the scatterlist to unmap
937  * @n_hw_ents: the positive return value from usb_buffer_map_sg
938  *
939  * Reverses the effect of usb_buffer_map_sg().
940  */
941 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
942 			 struct scatterlist *sg, int n_hw_ents)
943 {
944 	struct usb_bus		*bus;
945 	struct device		*controller;
946 
947 	if (!dev
948 			|| !(bus = dev->bus)
949 			|| !(controller = bus->controller)
950 			|| !controller->dma_mask)
951 		return;
952 
953 	dma_unmap_sg(controller, sg, n_hw_ents,
954 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
955 }
956 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
957 
958 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
959 #ifdef MODULE
960 module_param(nousb, bool, 0444);
961 #else
962 core_param(nousb, nousb, bool, 0444);
963 #endif
964 
965 /*
966  * for external read access to <nousb>
967  */
968 int usb_disabled(void)
969 {
970 	return nousb;
971 }
972 EXPORT_SYMBOL_GPL(usb_disabled);
973 
974 /*
975  * Notifications of device and interface registration
976  */
977 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
978 		void *data)
979 {
980 	struct device *dev = data;
981 
982 	switch (action) {
983 	case BUS_NOTIFY_ADD_DEVICE:
984 		if (dev->type == &usb_device_type)
985 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
986 		else if (dev->type == &usb_if_device_type)
987 			(void) usb_create_sysfs_intf_files(
988 					to_usb_interface(dev));
989 		break;
990 
991 	case BUS_NOTIFY_DEL_DEVICE:
992 		if (dev->type == &usb_device_type)
993 			usb_remove_sysfs_dev_files(to_usb_device(dev));
994 		else if (dev->type == &usb_if_device_type)
995 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
996 		break;
997 	}
998 	return 0;
999 }
1000 
1001 static struct notifier_block usb_bus_nb = {
1002 	.notifier_call = usb_bus_notify,
1003 };
1004 
1005 struct dentry *usb_debug_root;
1006 EXPORT_SYMBOL_GPL(usb_debug_root);
1007 
1008 struct dentry *usb_debug_devices;
1009 
1010 static int usb_debugfs_init(void)
1011 {
1012 	usb_debug_root = debugfs_create_dir("usb", NULL);
1013 	if (!usb_debug_root)
1014 		return -ENOENT;
1015 
1016 	usb_debug_devices = debugfs_create_file("devices", 0444,
1017 						usb_debug_root, NULL,
1018 						&usbfs_devices_fops);
1019 	if (!usb_debug_devices) {
1020 		debugfs_remove(usb_debug_root);
1021 		usb_debug_root = NULL;
1022 		return -ENOENT;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static void usb_debugfs_cleanup(void)
1029 {
1030 	debugfs_remove(usb_debug_devices);
1031 	debugfs_remove(usb_debug_root);
1032 }
1033 
1034 /*
1035  * Init
1036  */
1037 static int __init usb_init(void)
1038 {
1039 	int retval;
1040 	if (nousb) {
1041 		pr_info("%s: USB support disabled\n", usbcore_name);
1042 		return 0;
1043 	}
1044 
1045 	retval = usb_debugfs_init();
1046 	if (retval)
1047 		goto out;
1048 
1049 	retval = ksuspend_usb_init();
1050 	if (retval)
1051 		goto out;
1052 	retval = bus_register(&usb_bus_type);
1053 	if (retval)
1054 		goto bus_register_failed;
1055 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1056 	if (retval)
1057 		goto bus_notifier_failed;
1058 	retval = usb_host_init();
1059 	if (retval)
1060 		goto host_init_failed;
1061 	retval = usb_major_init();
1062 	if (retval)
1063 		goto major_init_failed;
1064 	retval = usb_register(&usbfs_driver);
1065 	if (retval)
1066 		goto driver_register_failed;
1067 	retval = usb_devio_init();
1068 	if (retval)
1069 		goto usb_devio_init_failed;
1070 	retval = usbfs_init();
1071 	if (retval)
1072 		goto fs_init_failed;
1073 	retval = usb_hub_init();
1074 	if (retval)
1075 		goto hub_init_failed;
1076 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1077 	if (!retval)
1078 		goto out;
1079 
1080 	usb_hub_cleanup();
1081 hub_init_failed:
1082 	usbfs_cleanup();
1083 fs_init_failed:
1084 	usb_devio_cleanup();
1085 usb_devio_init_failed:
1086 	usb_deregister(&usbfs_driver);
1087 driver_register_failed:
1088 	usb_major_cleanup();
1089 major_init_failed:
1090 	usb_host_cleanup();
1091 host_init_failed:
1092 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1093 bus_notifier_failed:
1094 	bus_unregister(&usb_bus_type);
1095 bus_register_failed:
1096 	ksuspend_usb_cleanup();
1097 out:
1098 	return retval;
1099 }
1100 
1101 /*
1102  * Cleanup
1103  */
1104 static void __exit usb_exit(void)
1105 {
1106 	/* This will matter if shutdown/reboot does exitcalls. */
1107 	if (nousb)
1108 		return;
1109 
1110 	usb_deregister_device_driver(&usb_generic_driver);
1111 	usb_major_cleanup();
1112 	usbfs_cleanup();
1113 	usb_deregister(&usbfs_driver);
1114 	usb_devio_cleanup();
1115 	usb_hub_cleanup();
1116 	usb_host_cleanup();
1117 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1118 	bus_unregister(&usb_bus_type);
1119 	ksuspend_usb_cleanup();
1120 	usb_debugfs_cleanup();
1121 }
1122 
1123 subsys_initcall(usb_init);
1124 module_exit(usb_exit);
1125 MODULE_LICENSE("GPL");
1126