xref: /linux/drivers/usb/core/usb.c (revision d524dac9279b6a41ffdf7ff7958c577f2e387db6)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39 
40 #include <asm/io.h>
41 #include <linux/scatterlist.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44 
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static int nousb;	/* Disable USB when built into kernel image */
51 
52 #ifdef	CONFIG_USB_SUSPEND
53 static int usb_autosuspend_delay = 2;		/* Default delay value,
54 						 * in seconds */
55 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
56 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
57 
58 #else
59 #define usb_autosuspend_delay		0
60 #endif
61 
62 
63 /**
64  * usb_find_alt_setting() - Given a configuration, find the alternate setting
65  * for the given interface.
66  * @config: the configuration to search (not necessarily the current config).
67  * @iface_num: interface number to search in
68  * @alt_num: alternate interface setting number to search for.
69  *
70  * Search the configuration's interface cache for the given alt setting.
71  */
72 struct usb_host_interface *usb_find_alt_setting(
73 		struct usb_host_config *config,
74 		unsigned int iface_num,
75 		unsigned int alt_num)
76 {
77 	struct usb_interface_cache *intf_cache = NULL;
78 	int i;
79 
80 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
81 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
82 				== iface_num) {
83 			intf_cache = config->intf_cache[i];
84 			break;
85 		}
86 	}
87 	if (!intf_cache)
88 		return NULL;
89 	for (i = 0; i < intf_cache->num_altsetting; i++)
90 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
91 			return &intf_cache->altsetting[i];
92 
93 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
94 			"config %u\n", alt_num, iface_num,
95 			config->desc.bConfigurationValue);
96 	return NULL;
97 }
98 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
99 
100 /**
101  * usb_ifnum_to_if - get the interface object with a given interface number
102  * @dev: the device whose current configuration is considered
103  * @ifnum: the desired interface
104  *
105  * This walks the device descriptor for the currently active configuration
106  * and returns a pointer to the interface with that particular interface
107  * number, or null.
108  *
109  * Note that configuration descriptors are not required to assign interface
110  * numbers sequentially, so that it would be incorrect to assume that
111  * the first interface in that descriptor corresponds to interface zero.
112  * This routine helps device drivers avoid such mistakes.
113  * However, you should make sure that you do the right thing with any
114  * alternate settings available for this interfaces.
115  *
116  * Don't call this function unless you are bound to one of the interfaces
117  * on this device or you have locked the device!
118  */
119 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
120 				      unsigned ifnum)
121 {
122 	struct usb_host_config *config = dev->actconfig;
123 	int i;
124 
125 	if (!config)
126 		return NULL;
127 	for (i = 0; i < config->desc.bNumInterfaces; i++)
128 		if (config->interface[i]->altsetting[0]
129 				.desc.bInterfaceNumber == ifnum)
130 			return config->interface[i];
131 
132 	return NULL;
133 }
134 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
135 
136 /**
137  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
138  * @intf: the interface containing the altsetting in question
139  * @altnum: the desired alternate setting number
140  *
141  * This searches the altsetting array of the specified interface for
142  * an entry with the correct bAlternateSetting value and returns a pointer
143  * to that entry, or null.
144  *
145  * Note that altsettings need not be stored sequentially by number, so
146  * it would be incorrect to assume that the first altsetting entry in
147  * the array corresponds to altsetting zero.  This routine helps device
148  * drivers avoid such mistakes.
149  *
150  * Don't call this function unless you are bound to the intf interface
151  * or you have locked the device!
152  */
153 struct usb_host_interface *usb_altnum_to_altsetting(
154 					const struct usb_interface *intf,
155 					unsigned int altnum)
156 {
157 	int i;
158 
159 	for (i = 0; i < intf->num_altsetting; i++) {
160 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
161 			return &intf->altsetting[i];
162 	}
163 	return NULL;
164 }
165 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
166 
167 struct find_interface_arg {
168 	int minor;
169 	struct device_driver *drv;
170 };
171 
172 static int __find_interface(struct device *dev, void *data)
173 {
174 	struct find_interface_arg *arg = data;
175 	struct usb_interface *intf;
176 
177 	if (!is_usb_interface(dev))
178 		return 0;
179 
180 	if (dev->driver != arg->drv)
181 		return 0;
182 	intf = to_usb_interface(dev);
183 	return intf->minor == arg->minor;
184 }
185 
186 /**
187  * usb_find_interface - find usb_interface pointer for driver and device
188  * @drv: the driver whose current configuration is considered
189  * @minor: the minor number of the desired device
190  *
191  * This walks the bus device list and returns a pointer to the interface
192  * with the matching minor and driver.  Note, this only works for devices
193  * that share the USB major number.
194  */
195 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
196 {
197 	struct find_interface_arg argb;
198 	struct device *dev;
199 
200 	argb.minor = minor;
201 	argb.drv = &drv->drvwrap.driver;
202 
203 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
204 
205 	/* Drop reference count from bus_find_device */
206 	put_device(dev);
207 
208 	return dev ? to_usb_interface(dev) : NULL;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_interface);
211 
212 /**
213  * usb_release_dev - free a usb device structure when all users of it are finished.
214  * @dev: device that's been disconnected
215  *
216  * Will be called only by the device core when all users of this usb device are
217  * done.
218  */
219 static void usb_release_dev(struct device *dev)
220 {
221 	struct usb_device *udev;
222 	struct usb_hcd *hcd;
223 
224 	udev = to_usb_device(dev);
225 	hcd = bus_to_hcd(udev->bus);
226 
227 	usb_destroy_configuration(udev);
228 	usb_put_hcd(hcd);
229 	kfree(udev->product);
230 	kfree(udev->manufacturer);
231 	kfree(udev->serial);
232 	kfree(udev);
233 }
234 
235 #ifdef	CONFIG_HOTPLUG
236 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
237 {
238 	struct usb_device *usb_dev;
239 
240 	usb_dev = to_usb_device(dev);
241 
242 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
243 		return -ENOMEM;
244 
245 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
246 		return -ENOMEM;
247 
248 	return 0;
249 }
250 
251 #else
252 
253 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
254 {
255 	return -ENODEV;
256 }
257 #endif	/* CONFIG_HOTPLUG */
258 
259 #ifdef	CONFIG_PM
260 
261 /* USB device Power-Management thunks.
262  * There's no need to distinguish here between quiescing a USB device
263  * and powering it down; the generic_suspend() routine takes care of
264  * it by skipping the usb_port_suspend() call for a quiesce.  And for
265  * USB interfaces there's no difference at all.
266  */
267 
268 static int usb_dev_prepare(struct device *dev)
269 {
270 	return 0;		/* Implement eventually? */
271 }
272 
273 static void usb_dev_complete(struct device *dev)
274 {
275 	/* Currently used only for rebinding interfaces */
276 	usb_resume(dev, PMSG_ON);	/* FIXME: change to PMSG_COMPLETE */
277 }
278 
279 static int usb_dev_suspend(struct device *dev)
280 {
281 	return usb_suspend(dev, PMSG_SUSPEND);
282 }
283 
284 static int usb_dev_resume(struct device *dev)
285 {
286 	return usb_resume(dev, PMSG_RESUME);
287 }
288 
289 static int usb_dev_freeze(struct device *dev)
290 {
291 	return usb_suspend(dev, PMSG_FREEZE);
292 }
293 
294 static int usb_dev_thaw(struct device *dev)
295 {
296 	return usb_resume(dev, PMSG_THAW);
297 }
298 
299 static int usb_dev_poweroff(struct device *dev)
300 {
301 	return usb_suspend(dev, PMSG_HIBERNATE);
302 }
303 
304 static int usb_dev_restore(struct device *dev)
305 {
306 	return usb_resume(dev, PMSG_RESTORE);
307 }
308 
309 static const struct dev_pm_ops usb_device_pm_ops = {
310 	.prepare =	usb_dev_prepare,
311 	.complete =	usb_dev_complete,
312 	.suspend =	usb_dev_suspend,
313 	.resume =	usb_dev_resume,
314 	.freeze =	usb_dev_freeze,
315 	.thaw =		usb_dev_thaw,
316 	.poweroff =	usb_dev_poweroff,
317 	.restore =	usb_dev_restore,
318 };
319 
320 #endif	/* CONFIG_PM */
321 
322 
323 static char *usb_devnode(struct device *dev, mode_t *mode)
324 {
325 	struct usb_device *usb_dev;
326 
327 	usb_dev = to_usb_device(dev);
328 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
329 			 usb_dev->bus->busnum, usb_dev->devnum);
330 }
331 
332 struct device_type usb_device_type = {
333 	.name =		"usb_device",
334 	.release =	usb_release_dev,
335 	.uevent =	usb_dev_uevent,
336 	.devnode = 	usb_devnode,
337 #ifdef CONFIG_PM
338 	.pm =		&usb_device_pm_ops,
339 #endif
340 };
341 
342 
343 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
344 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
345 {
346 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
347 	return hcd->wireless;
348 }
349 
350 
351 /**
352  * usb_alloc_dev - usb device constructor (usbcore-internal)
353  * @parent: hub to which device is connected; null to allocate a root hub
354  * @bus: bus used to access the device
355  * @port1: one-based index of port; ignored for root hubs
356  * Context: !in_interrupt()
357  *
358  * Only hub drivers (including virtual root hub drivers for host
359  * controllers) should ever call this.
360  *
361  * This call may not be used in a non-sleeping context.
362  */
363 struct usb_device *usb_alloc_dev(struct usb_device *parent,
364 				 struct usb_bus *bus, unsigned port1)
365 {
366 	struct usb_device *dev;
367 	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
368 	unsigned root_hub = 0;
369 
370 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
371 	if (!dev)
372 		return NULL;
373 
374 	if (!usb_get_hcd(bus_to_hcd(bus))) {
375 		kfree(dev);
376 		return NULL;
377 	}
378 	/* Root hubs aren't true devices, so don't allocate HCD resources */
379 	if (usb_hcd->driver->alloc_dev && parent &&
380 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
381 		usb_put_hcd(bus_to_hcd(bus));
382 		kfree(dev);
383 		return NULL;
384 	}
385 
386 	device_initialize(&dev->dev);
387 	dev->dev.bus = &usb_bus_type;
388 	dev->dev.type = &usb_device_type;
389 	dev->dev.groups = usb_device_groups;
390 	dev->dev.dma_mask = bus->controller->dma_mask;
391 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
392 	dev->state = USB_STATE_ATTACHED;
393 	atomic_set(&dev->urbnum, 0);
394 
395 	INIT_LIST_HEAD(&dev->ep0.urb_list);
396 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
397 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
398 	/* ep0 maxpacket comes later, from device descriptor */
399 	usb_enable_endpoint(dev, &dev->ep0, false);
400 	dev->can_submit = 1;
401 
402 	/* Save readable and stable topology id, distinguishing devices
403 	 * by location for diagnostics, tools, driver model, etc.  The
404 	 * string is a path along hub ports, from the root.  Each device's
405 	 * dev->devpath will be stable until USB is re-cabled, and hubs
406 	 * are often labeled with these port numbers.  The name isn't
407 	 * as stable:  bus->busnum changes easily from modprobe order,
408 	 * cardbus or pci hotplugging, and so on.
409 	 */
410 	if (unlikely(!parent)) {
411 		dev->devpath[0] = '0';
412 		dev->route = 0;
413 
414 		dev->dev.parent = bus->controller;
415 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
416 		root_hub = 1;
417 	} else {
418 		/* match any labeling on the hubs; it's one-based */
419 		if (parent->devpath[0] == '0') {
420 			snprintf(dev->devpath, sizeof dev->devpath,
421 				"%d", port1);
422 			/* Root ports are not counted in route string */
423 			dev->route = 0;
424 		} else {
425 			snprintf(dev->devpath, sizeof dev->devpath,
426 				"%s.%d", parent->devpath, port1);
427 			/* Route string assumes hubs have less than 16 ports */
428 			if (port1 < 15)
429 				dev->route = parent->route +
430 					(port1 << ((parent->level - 1)*4));
431 			else
432 				dev->route = parent->route +
433 					(15 << ((parent->level - 1)*4));
434 		}
435 
436 		dev->dev.parent = &parent->dev;
437 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
438 
439 		/* hub driver sets up TT records */
440 	}
441 
442 	dev->portnum = port1;
443 	dev->bus = bus;
444 	dev->parent = parent;
445 	INIT_LIST_HEAD(&dev->filelist);
446 
447 #ifdef	CONFIG_PM
448 	pm_runtime_set_autosuspend_delay(&dev->dev,
449 			usb_autosuspend_delay * 1000);
450 	dev->connect_time = jiffies;
451 	dev->active_duration = -jiffies;
452 #endif
453 	if (root_hub)	/* Root hub always ok [and always wired] */
454 		dev->authorized = 1;
455 	else {
456 		dev->authorized = usb_hcd->authorized_default;
457 		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
458 	}
459 	return dev;
460 }
461 
462 /**
463  * usb_get_dev - increments the reference count of the usb device structure
464  * @dev: the device being referenced
465  *
466  * Each live reference to a device should be refcounted.
467  *
468  * Drivers for USB interfaces should normally record such references in
469  * their probe() methods, when they bind to an interface, and release
470  * them by calling usb_put_dev(), in their disconnect() methods.
471  *
472  * A pointer to the device with the incremented reference counter is returned.
473  */
474 struct usb_device *usb_get_dev(struct usb_device *dev)
475 {
476 	if (dev)
477 		get_device(&dev->dev);
478 	return dev;
479 }
480 EXPORT_SYMBOL_GPL(usb_get_dev);
481 
482 /**
483  * usb_put_dev - release a use of the usb device structure
484  * @dev: device that's been disconnected
485  *
486  * Must be called when a user of a device is finished with it.  When the last
487  * user of the device calls this function, the memory of the device is freed.
488  */
489 void usb_put_dev(struct usb_device *dev)
490 {
491 	if (dev)
492 		put_device(&dev->dev);
493 }
494 EXPORT_SYMBOL_GPL(usb_put_dev);
495 
496 /**
497  * usb_get_intf - increments the reference count of the usb interface structure
498  * @intf: the interface being referenced
499  *
500  * Each live reference to a interface must be refcounted.
501  *
502  * Drivers for USB interfaces should normally record such references in
503  * their probe() methods, when they bind to an interface, and release
504  * them by calling usb_put_intf(), in their disconnect() methods.
505  *
506  * A pointer to the interface with the incremented reference counter is
507  * returned.
508  */
509 struct usb_interface *usb_get_intf(struct usb_interface *intf)
510 {
511 	if (intf)
512 		get_device(&intf->dev);
513 	return intf;
514 }
515 EXPORT_SYMBOL_GPL(usb_get_intf);
516 
517 /**
518  * usb_put_intf - release a use of the usb interface structure
519  * @intf: interface that's been decremented
520  *
521  * Must be called when a user of an interface is finished with it.  When the
522  * last user of the interface calls this function, the memory of the interface
523  * is freed.
524  */
525 void usb_put_intf(struct usb_interface *intf)
526 {
527 	if (intf)
528 		put_device(&intf->dev);
529 }
530 EXPORT_SYMBOL_GPL(usb_put_intf);
531 
532 /*			USB device locking
533  *
534  * USB devices and interfaces are locked using the semaphore in their
535  * embedded struct device.  The hub driver guarantees that whenever a
536  * device is connected or disconnected, drivers are called with the
537  * USB device locked as well as their particular interface.
538  *
539  * Complications arise when several devices are to be locked at the same
540  * time.  Only hub-aware drivers that are part of usbcore ever have to
541  * do this; nobody else needs to worry about it.  The rule for locking
542  * is simple:
543  *
544  *	When locking both a device and its parent, always lock the
545  *	the parent first.
546  */
547 
548 /**
549  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
550  * @udev: device that's being locked
551  * @iface: interface bound to the driver making the request (optional)
552  *
553  * Attempts to acquire the device lock, but fails if the device is
554  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
555  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
556  * lock, the routine polls repeatedly.  This is to prevent deadlock with
557  * disconnect; in some drivers (such as usb-storage) the disconnect()
558  * or suspend() method will block waiting for a device reset to complete.
559  *
560  * Returns a negative error code for failure, otherwise 0.
561  */
562 int usb_lock_device_for_reset(struct usb_device *udev,
563 			      const struct usb_interface *iface)
564 {
565 	unsigned long jiffies_expire = jiffies + HZ;
566 
567 	if (udev->state == USB_STATE_NOTATTACHED)
568 		return -ENODEV;
569 	if (udev->state == USB_STATE_SUSPENDED)
570 		return -EHOSTUNREACH;
571 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
572 			iface->condition == USB_INTERFACE_UNBOUND))
573 		return -EINTR;
574 
575 	while (!usb_trylock_device(udev)) {
576 
577 		/* If we can't acquire the lock after waiting one second,
578 		 * we're probably deadlocked */
579 		if (time_after(jiffies, jiffies_expire))
580 			return -EBUSY;
581 
582 		msleep(15);
583 		if (udev->state == USB_STATE_NOTATTACHED)
584 			return -ENODEV;
585 		if (udev->state == USB_STATE_SUSPENDED)
586 			return -EHOSTUNREACH;
587 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
588 				iface->condition == USB_INTERFACE_UNBOUND))
589 			return -EINTR;
590 	}
591 	return 0;
592 }
593 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
594 
595 /**
596  * usb_get_current_frame_number - return current bus frame number
597  * @dev: the device whose bus is being queried
598  *
599  * Returns the current frame number for the USB host controller
600  * used with the given USB device.  This can be used when scheduling
601  * isochronous requests.
602  *
603  * Note that different kinds of host controller have different
604  * "scheduling horizons".  While one type might support scheduling only
605  * 32 frames into the future, others could support scheduling up to
606  * 1024 frames into the future.
607  */
608 int usb_get_current_frame_number(struct usb_device *dev)
609 {
610 	return usb_hcd_get_frame_number(dev);
611 }
612 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
613 
614 /*-------------------------------------------------------------------*/
615 /*
616  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
617  * extra field of the interface and endpoint descriptor structs.
618  */
619 
620 int __usb_get_extra_descriptor(char *buffer, unsigned size,
621 			       unsigned char type, void **ptr)
622 {
623 	struct usb_descriptor_header *header;
624 
625 	while (size >= sizeof(struct usb_descriptor_header)) {
626 		header = (struct usb_descriptor_header *)buffer;
627 
628 		if (header->bLength < 2) {
629 			printk(KERN_ERR
630 				"%s: bogus descriptor, type %d length %d\n",
631 				usbcore_name,
632 				header->bDescriptorType,
633 				header->bLength);
634 			return -1;
635 		}
636 
637 		if (header->bDescriptorType == type) {
638 			*ptr = header;
639 			return 0;
640 		}
641 
642 		buffer += header->bLength;
643 		size -= header->bLength;
644 	}
645 	return -1;
646 }
647 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
648 
649 /**
650  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
651  * @dev: device the buffer will be used with
652  * @size: requested buffer size
653  * @mem_flags: affect whether allocation may block
654  * @dma: used to return DMA address of buffer
655  *
656  * Return value is either null (indicating no buffer could be allocated), or
657  * the cpu-space pointer to a buffer that may be used to perform DMA to the
658  * specified device.  Such cpu-space buffers are returned along with the DMA
659  * address (through the pointer provided).
660  *
661  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
662  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
663  * hardware during URB completion/resubmit.  The implementation varies between
664  * platforms, depending on details of how DMA will work to this device.
665  * Using these buffers also eliminates cacheline sharing problems on
666  * architectures where CPU caches are not DMA-coherent.  On systems without
667  * bus-snooping caches, these buffers are uncached.
668  *
669  * When the buffer is no longer used, free it with usb_free_coherent().
670  */
671 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
672 			 dma_addr_t *dma)
673 {
674 	if (!dev || !dev->bus)
675 		return NULL;
676 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
677 }
678 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
679 
680 /**
681  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
682  * @dev: device the buffer was used with
683  * @size: requested buffer size
684  * @addr: CPU address of buffer
685  * @dma: DMA address of buffer
686  *
687  * This reclaims an I/O buffer, letting it be reused.  The memory must have
688  * been allocated using usb_alloc_coherent(), and the parameters must match
689  * those provided in that allocation request.
690  */
691 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
692 		       dma_addr_t dma)
693 {
694 	if (!dev || !dev->bus)
695 		return;
696 	if (!addr)
697 		return;
698 	hcd_buffer_free(dev->bus, size, addr, dma);
699 }
700 EXPORT_SYMBOL_GPL(usb_free_coherent);
701 
702 /**
703  * usb_buffer_map - create DMA mapping(s) for an urb
704  * @urb: urb whose transfer_buffer/setup_packet will be mapped
705  *
706  * Return value is either null (indicating no buffer could be mapped), or
707  * the parameter.  URB_NO_TRANSFER_DMA_MAP is
708  * added to urb->transfer_flags if the operation succeeds.  If the device
709  * is connected to this system through a non-DMA controller, this operation
710  * always succeeds.
711  *
712  * This call would normally be used for an urb which is reused, perhaps
713  * as the target of a large periodic transfer, with usb_buffer_dmasync()
714  * calls to synchronize memory and dma state.
715  *
716  * Reverse the effect of this call with usb_buffer_unmap().
717  */
718 #if 0
719 struct urb *usb_buffer_map(struct urb *urb)
720 {
721 	struct usb_bus		*bus;
722 	struct device		*controller;
723 
724 	if (!urb
725 			|| !urb->dev
726 			|| !(bus = urb->dev->bus)
727 			|| !(controller = bus->controller))
728 		return NULL;
729 
730 	if (controller->dma_mask) {
731 		urb->transfer_dma = dma_map_single(controller,
732 			urb->transfer_buffer, urb->transfer_buffer_length,
733 			usb_pipein(urb->pipe)
734 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
735 	/* FIXME generic api broken like pci, can't report errors */
736 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
737 	} else
738 		urb->transfer_dma = ~0;
739 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
740 	return urb;
741 }
742 EXPORT_SYMBOL_GPL(usb_buffer_map);
743 #endif  /*  0  */
744 
745 /* XXX DISABLED, no users currently.  If you wish to re-enable this
746  * XXX please determine whether the sync is to transfer ownership of
747  * XXX the buffer from device to cpu or vice verse, and thusly use the
748  * XXX appropriate _for_{cpu,device}() method.  -DaveM
749  */
750 #if 0
751 
752 /**
753  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
754  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
755  */
756 void usb_buffer_dmasync(struct urb *urb)
757 {
758 	struct usb_bus		*bus;
759 	struct device		*controller;
760 
761 	if (!urb
762 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
763 			|| !urb->dev
764 			|| !(bus = urb->dev->bus)
765 			|| !(controller = bus->controller))
766 		return;
767 
768 	if (controller->dma_mask) {
769 		dma_sync_single_for_cpu(controller,
770 			urb->transfer_dma, urb->transfer_buffer_length,
771 			usb_pipein(urb->pipe)
772 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
773 		if (usb_pipecontrol(urb->pipe))
774 			dma_sync_single_for_cpu(controller,
775 					urb->setup_dma,
776 					sizeof(struct usb_ctrlrequest),
777 					DMA_TO_DEVICE);
778 	}
779 }
780 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
781 #endif
782 
783 /**
784  * usb_buffer_unmap - free DMA mapping(s) for an urb
785  * @urb: urb whose transfer_buffer will be unmapped
786  *
787  * Reverses the effect of usb_buffer_map().
788  */
789 #if 0
790 void usb_buffer_unmap(struct urb *urb)
791 {
792 	struct usb_bus		*bus;
793 	struct device		*controller;
794 
795 	if (!urb
796 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
797 			|| !urb->dev
798 			|| !(bus = urb->dev->bus)
799 			|| !(controller = bus->controller))
800 		return;
801 
802 	if (controller->dma_mask) {
803 		dma_unmap_single(controller,
804 			urb->transfer_dma, urb->transfer_buffer_length,
805 			usb_pipein(urb->pipe)
806 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
807 	}
808 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
809 }
810 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
811 #endif  /*  0  */
812 
813 #if 0
814 /**
815  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
816  * @dev: device to which the scatterlist will be mapped
817  * @is_in: mapping transfer direction
818  * @sg: the scatterlist to map
819  * @nents: the number of entries in the scatterlist
820  *
821  * Return value is either < 0 (indicating no buffers could be mapped), or
822  * the number of DMA mapping array entries in the scatterlist.
823  *
824  * The caller is responsible for placing the resulting DMA addresses from
825  * the scatterlist into URB transfer buffer pointers, and for setting the
826  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
827  *
828  * Top I/O rates come from queuing URBs, instead of waiting for each one
829  * to complete before starting the next I/O.   This is particularly easy
830  * to do with scatterlists.  Just allocate and submit one URB for each DMA
831  * mapping entry returned, stopping on the first error or when all succeed.
832  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
833  *
834  * This call would normally be used when translating scatterlist requests,
835  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
836  * may be able to coalesce mappings for improved I/O efficiency.
837  *
838  * Reverse the effect of this call with usb_buffer_unmap_sg().
839  */
840 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
841 		      struct scatterlist *sg, int nents)
842 {
843 	struct usb_bus		*bus;
844 	struct device		*controller;
845 
846 	if (!dev
847 			|| !(bus = dev->bus)
848 			|| !(controller = bus->controller)
849 			|| !controller->dma_mask)
850 		return -EINVAL;
851 
852 	/* FIXME generic api broken like pci, can't report errors */
853 	return dma_map_sg(controller, sg, nents,
854 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
855 }
856 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
857 #endif
858 
859 /* XXX DISABLED, no users currently.  If you wish to re-enable this
860  * XXX please determine whether the sync is to transfer ownership of
861  * XXX the buffer from device to cpu or vice verse, and thusly use the
862  * XXX appropriate _for_{cpu,device}() method.  -DaveM
863  */
864 #if 0
865 
866 /**
867  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
868  * @dev: device to which the scatterlist will be mapped
869  * @is_in: mapping transfer direction
870  * @sg: the scatterlist to synchronize
871  * @n_hw_ents: the positive return value from usb_buffer_map_sg
872  *
873  * Use this when you are re-using a scatterlist's data buffers for
874  * another USB request.
875  */
876 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
877 			   struct scatterlist *sg, int n_hw_ents)
878 {
879 	struct usb_bus		*bus;
880 	struct device		*controller;
881 
882 	if (!dev
883 			|| !(bus = dev->bus)
884 			|| !(controller = bus->controller)
885 			|| !controller->dma_mask)
886 		return;
887 
888 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
889 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
890 }
891 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
892 #endif
893 
894 #if 0
895 /**
896  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
897  * @dev: device to which the scatterlist will be mapped
898  * @is_in: mapping transfer direction
899  * @sg: the scatterlist to unmap
900  * @n_hw_ents: the positive return value from usb_buffer_map_sg
901  *
902  * Reverses the effect of usb_buffer_map_sg().
903  */
904 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
905 			 struct scatterlist *sg, int n_hw_ents)
906 {
907 	struct usb_bus		*bus;
908 	struct device		*controller;
909 
910 	if (!dev
911 			|| !(bus = dev->bus)
912 			|| !(controller = bus->controller)
913 			|| !controller->dma_mask)
914 		return;
915 
916 	dma_unmap_sg(controller, sg, n_hw_ents,
917 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
918 }
919 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
920 #endif
921 
922 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
923 #ifdef MODULE
924 module_param(nousb, bool, 0444);
925 #else
926 core_param(nousb, nousb, bool, 0444);
927 #endif
928 
929 /*
930  * for external read access to <nousb>
931  */
932 int usb_disabled(void)
933 {
934 	return nousb;
935 }
936 EXPORT_SYMBOL_GPL(usb_disabled);
937 
938 /*
939  * Notifications of device and interface registration
940  */
941 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
942 		void *data)
943 {
944 	struct device *dev = data;
945 
946 	switch (action) {
947 	case BUS_NOTIFY_ADD_DEVICE:
948 		if (dev->type == &usb_device_type)
949 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
950 		else if (dev->type == &usb_if_device_type)
951 			(void) usb_create_sysfs_intf_files(
952 					to_usb_interface(dev));
953 		break;
954 
955 	case BUS_NOTIFY_DEL_DEVICE:
956 		if (dev->type == &usb_device_type)
957 			usb_remove_sysfs_dev_files(to_usb_device(dev));
958 		else if (dev->type == &usb_if_device_type)
959 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
960 		break;
961 	}
962 	return 0;
963 }
964 
965 static struct notifier_block usb_bus_nb = {
966 	.notifier_call = usb_bus_notify,
967 };
968 
969 struct dentry *usb_debug_root;
970 EXPORT_SYMBOL_GPL(usb_debug_root);
971 
972 static struct dentry *usb_debug_devices;
973 
974 static int usb_debugfs_init(void)
975 {
976 	usb_debug_root = debugfs_create_dir("usb", NULL);
977 	if (!usb_debug_root)
978 		return -ENOENT;
979 
980 	usb_debug_devices = debugfs_create_file("devices", 0444,
981 						usb_debug_root, NULL,
982 						&usbfs_devices_fops);
983 	if (!usb_debug_devices) {
984 		debugfs_remove(usb_debug_root);
985 		usb_debug_root = NULL;
986 		return -ENOENT;
987 	}
988 
989 	return 0;
990 }
991 
992 static void usb_debugfs_cleanup(void)
993 {
994 	debugfs_remove(usb_debug_devices);
995 	debugfs_remove(usb_debug_root);
996 }
997 
998 /*
999  * Init
1000  */
1001 static int __init usb_init(void)
1002 {
1003 	int retval;
1004 	if (nousb) {
1005 		pr_info("%s: USB support disabled\n", usbcore_name);
1006 		return 0;
1007 	}
1008 
1009 	retval = usb_debugfs_init();
1010 	if (retval)
1011 		goto out;
1012 
1013 	retval = bus_register(&usb_bus_type);
1014 	if (retval)
1015 		goto bus_register_failed;
1016 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1017 	if (retval)
1018 		goto bus_notifier_failed;
1019 	retval = usb_major_init();
1020 	if (retval)
1021 		goto major_init_failed;
1022 	retval = usb_register(&usbfs_driver);
1023 	if (retval)
1024 		goto driver_register_failed;
1025 	retval = usb_devio_init();
1026 	if (retval)
1027 		goto usb_devio_init_failed;
1028 	retval = usbfs_init();
1029 	if (retval)
1030 		goto fs_init_failed;
1031 	retval = usb_hub_init();
1032 	if (retval)
1033 		goto hub_init_failed;
1034 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1035 	if (!retval)
1036 		goto out;
1037 
1038 	usb_hub_cleanup();
1039 hub_init_failed:
1040 	usbfs_cleanup();
1041 fs_init_failed:
1042 	usb_devio_cleanup();
1043 usb_devio_init_failed:
1044 	usb_deregister(&usbfs_driver);
1045 driver_register_failed:
1046 	usb_major_cleanup();
1047 major_init_failed:
1048 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1049 bus_notifier_failed:
1050 	bus_unregister(&usb_bus_type);
1051 bus_register_failed:
1052 	usb_debugfs_cleanup();
1053 out:
1054 	return retval;
1055 }
1056 
1057 /*
1058  * Cleanup
1059  */
1060 static void __exit usb_exit(void)
1061 {
1062 	/* This will matter if shutdown/reboot does exitcalls. */
1063 	if (nousb)
1064 		return;
1065 
1066 	usb_deregister_device_driver(&usb_generic_driver);
1067 	usb_major_cleanup();
1068 	usbfs_cleanup();
1069 	usb_deregister(&usbfs_driver);
1070 	usb_devio_cleanup();
1071 	usb_hub_cleanup();
1072 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1073 	bus_unregister(&usb_bus_type);
1074 	usb_debugfs_cleanup();
1075 }
1076 
1077 subsys_initcall(usb_init);
1078 module_exit(usb_exit);
1079 MODULE_LICENSE("GPL");
1080