xref: /linux/drivers/usb/core/usb.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/smp_lock.h>
35 #include <linux/usb.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 
39 #include <asm/io.h>
40 #include <asm/scatterlist.h>
41 #include <linux/mm.h>
42 #include <linux/dma-mapping.h>
43 
44 #include "hcd.h"
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static int nousb;	/* Disable USB when built into kernel image */
51 
52 struct workqueue_struct *ksuspend_usb_wq;	/* For autosuspend */
53 
54 #ifdef	CONFIG_USB_SUSPEND
55 static int usb_autosuspend_delay = 2;		/* Default delay value,
56 						 * in seconds */
57 module_param_named(autosuspend, usb_autosuspend_delay, uint, 0644);
58 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
59 
60 #else
61 #define usb_autosuspend_delay		0
62 #endif
63 
64 
65 /**
66  * usb_ifnum_to_if - get the interface object with a given interface number
67  * @dev: the device whose current configuration is considered
68  * @ifnum: the desired interface
69  *
70  * This walks the device descriptor for the currently active configuration
71  * and returns a pointer to the interface with that particular interface
72  * number, or null.
73  *
74  * Note that configuration descriptors are not required to assign interface
75  * numbers sequentially, so that it would be incorrect to assume that
76  * the first interface in that descriptor corresponds to interface zero.
77  * This routine helps device drivers avoid such mistakes.
78  * However, you should make sure that you do the right thing with any
79  * alternate settings available for this interfaces.
80  *
81  * Don't call this function unless you are bound to one of the interfaces
82  * on this device or you have locked the device!
83  */
84 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
85 				      unsigned ifnum)
86 {
87 	struct usb_host_config *config = dev->actconfig;
88 	int i;
89 
90 	if (!config)
91 		return NULL;
92 	for (i = 0; i < config->desc.bNumInterfaces; i++)
93 		if (config->interface[i]->altsetting[0]
94 				.desc.bInterfaceNumber == ifnum)
95 			return config->interface[i];
96 
97 	return NULL;
98 }
99 
100 /**
101  * usb_altnum_to_altsetting - get the altsetting structure with a given
102  *	alternate setting number.
103  * @intf: the interface containing the altsetting in question
104  * @altnum: the desired alternate setting number
105  *
106  * This searches the altsetting array of the specified interface for
107  * an entry with the correct bAlternateSetting value and returns a pointer
108  * to that entry, or null.
109  *
110  * Note that altsettings need not be stored sequentially by number, so
111  * it would be incorrect to assume that the first altsetting entry in
112  * the array corresponds to altsetting zero.  This routine helps device
113  * drivers avoid such mistakes.
114  *
115  * Don't call this function unless you are bound to the intf interface
116  * or you have locked the device!
117  */
118 struct usb_host_interface *usb_altnum_to_altsetting(const struct usb_interface *intf,
119 						    unsigned int altnum)
120 {
121 	int i;
122 
123 	for (i = 0; i < intf->num_altsetting; i++) {
124 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
125 			return &intf->altsetting[i];
126 	}
127 	return NULL;
128 }
129 
130 struct find_interface_arg {
131 	int minor;
132 	struct usb_interface *interface;
133 };
134 
135 static int __find_interface(struct device * dev, void * data)
136 {
137 	struct find_interface_arg *arg = data;
138 	struct usb_interface *intf;
139 
140 	/* can't look at usb devices, only interfaces */
141 	if (is_usb_device(dev))
142 		return 0;
143 
144 	intf = to_usb_interface(dev);
145 	if (intf->minor != -1 && intf->minor == arg->minor) {
146 		arg->interface = intf;
147 		return 1;
148 	}
149 	return 0;
150 }
151 
152 /**
153  * usb_find_interface - find usb_interface pointer for driver and device
154  * @drv: the driver whose current configuration is considered
155  * @minor: the minor number of the desired device
156  *
157  * This walks the driver device list and returns a pointer to the interface
158  * with the matching minor.  Note, this only works for devices that share the
159  * USB major number.
160  */
161 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
162 {
163 	struct find_interface_arg argb;
164 	int retval;
165 
166 	argb.minor = minor;
167 	argb.interface = NULL;
168 	/* eat the error, it will be in argb.interface */
169 	retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb,
170 					__find_interface);
171 	return argb.interface;
172 }
173 
174 /**
175  * usb_release_dev - free a usb device structure when all users of it are finished.
176  * @dev: device that's been disconnected
177  *
178  * Will be called only by the device core when all users of this usb device are
179  * done.
180  */
181 static void usb_release_dev(struct device *dev)
182 {
183 	struct usb_device *udev;
184 
185 	udev = to_usb_device(dev);
186 
187 #ifdef	CONFIG_USB_SUSPEND
188 	cancel_delayed_work(&udev->autosuspend);
189 	flush_workqueue(ksuspend_usb_wq);
190 #endif
191 	usb_destroy_configuration(udev);
192 	usb_put_hcd(bus_to_hcd(udev->bus));
193 	kfree(udev->product);
194 	kfree(udev->manufacturer);
195 	kfree(udev->serial);
196 	kfree(udev);
197 }
198 
199 #ifdef	CONFIG_PM
200 
201 static int ksuspend_usb_init(void)
202 {
203 	ksuspend_usb_wq = create_singlethread_workqueue("ksuspend_usbd");
204 	if (!ksuspend_usb_wq)
205 		return -ENOMEM;
206 	return 0;
207 }
208 
209 static void ksuspend_usb_cleanup(void)
210 {
211 	destroy_workqueue(ksuspend_usb_wq);
212 }
213 
214 #ifdef	CONFIG_USB_SUSPEND
215 
216 /* usb_autosuspend_work - callback routine to autosuspend a USB device */
217 static void usb_autosuspend_work(struct work_struct *work)
218 {
219 	struct usb_device *udev =
220 		container_of(work, struct usb_device, autosuspend.work);
221 
222 	usb_pm_lock(udev);
223 	udev->auto_pm = 1;
224 	usb_suspend_both(udev, PMSG_SUSPEND);
225 	usb_pm_unlock(udev);
226 }
227 
228 #else
229 
230 static void usb_autosuspend_work(struct work_struct *work)
231 {}
232 
233 #endif	/* CONFIG_USB_SUSPEND */
234 
235 #else
236 
237 #define ksuspend_usb_init()	0
238 #define ksuspend_usb_cleanup()	do {} while (0)
239 
240 #endif	/* CONFIG_PM */
241 
242 /**
243  * usb_alloc_dev - usb device constructor (usbcore-internal)
244  * @parent: hub to which device is connected; null to allocate a root hub
245  * @bus: bus used to access the device
246  * @port1: one-based index of port; ignored for root hubs
247  * Context: !in_interrupt()
248  *
249  * Only hub drivers (including virtual root hub drivers for host
250  * controllers) should ever call this.
251  *
252  * This call may not be used in a non-sleeping context.
253  */
254 struct usb_device *
255 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
256 {
257 	struct usb_device *dev;
258 
259 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
260 	if (!dev)
261 		return NULL;
262 
263 	if (!usb_get_hcd(bus_to_hcd(bus))) {
264 		kfree(dev);
265 		return NULL;
266 	}
267 
268 	device_initialize(&dev->dev);
269 	dev->dev.bus = &usb_bus_type;
270 	dev->dev.dma_mask = bus->controller->dma_mask;
271 	dev->dev.release = usb_release_dev;
272 	dev->state = USB_STATE_ATTACHED;
273 
274 	/* This magic assignment distinguishes devices from interfaces */
275 	dev->dev.platform_data = &usb_generic_driver;
276 
277 	INIT_LIST_HEAD(&dev->ep0.urb_list);
278 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
279 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
280 	/* ep0 maxpacket comes later, from device descriptor */
281 	dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
282 
283 	/* Save readable and stable topology id, distinguishing devices
284 	 * by location for diagnostics, tools, driver model, etc.  The
285 	 * string is a path along hub ports, from the root.  Each device's
286 	 * dev->devpath will be stable until USB is re-cabled, and hubs
287 	 * are often labeled with these port numbers.  The bus_id isn't
288 	 * as stable:  bus->busnum changes easily from modprobe order,
289 	 * cardbus or pci hotplugging, and so on.
290 	 */
291 	if (unlikely(!parent)) {
292 		dev->devpath[0] = '0';
293 
294 		dev->dev.parent = bus->controller;
295 		sprintf(&dev->dev.bus_id[0], "usb%d", bus->busnum);
296 	} else {
297 		/* match any labeling on the hubs; it's one-based */
298 		if (parent->devpath[0] == '0')
299 			snprintf(dev->devpath, sizeof dev->devpath,
300 				"%d", port1);
301 		else
302 			snprintf(dev->devpath, sizeof dev->devpath,
303 				"%s.%d", parent->devpath, port1);
304 
305 		dev->dev.parent = &parent->dev;
306 		sprintf(&dev->dev.bus_id[0], "%d-%s",
307 			bus->busnum, dev->devpath);
308 
309 		/* hub driver sets up TT records */
310 	}
311 
312 	dev->portnum = port1;
313 	dev->bus = bus;
314 	dev->parent = parent;
315 	INIT_LIST_HEAD(&dev->filelist);
316 
317 #ifdef	CONFIG_PM
318 	mutex_init(&dev->pm_mutex);
319 	INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work);
320 	dev->autosuspend_delay = usb_autosuspend_delay * HZ;
321 #endif
322 	return dev;
323 }
324 
325 /**
326  * usb_get_dev - increments the reference count of the usb device structure
327  * @dev: the device being referenced
328  *
329  * Each live reference to a device should be refcounted.
330  *
331  * Drivers for USB interfaces should normally record such references in
332  * their probe() methods, when they bind to an interface, and release
333  * them by calling usb_put_dev(), in their disconnect() methods.
334  *
335  * A pointer to the device with the incremented reference counter is returned.
336  */
337 struct usb_device *usb_get_dev(struct usb_device *dev)
338 {
339 	if (dev)
340 		get_device(&dev->dev);
341 	return dev;
342 }
343 
344 /**
345  * usb_put_dev - release a use of the usb device structure
346  * @dev: device that's been disconnected
347  *
348  * Must be called when a user of a device is finished with it.  When the last
349  * user of the device calls this function, the memory of the device is freed.
350  */
351 void usb_put_dev(struct usb_device *dev)
352 {
353 	if (dev)
354 		put_device(&dev->dev);
355 }
356 
357 /**
358  * usb_get_intf - increments the reference count of the usb interface structure
359  * @intf: the interface being referenced
360  *
361  * Each live reference to a interface must be refcounted.
362  *
363  * Drivers for USB interfaces should normally record such references in
364  * their probe() methods, when they bind to an interface, and release
365  * them by calling usb_put_intf(), in their disconnect() methods.
366  *
367  * A pointer to the interface with the incremented reference counter is
368  * returned.
369  */
370 struct usb_interface *usb_get_intf(struct usb_interface *intf)
371 {
372 	if (intf)
373 		get_device(&intf->dev);
374 	return intf;
375 }
376 
377 /**
378  * usb_put_intf - release a use of the usb interface structure
379  * @intf: interface that's been decremented
380  *
381  * Must be called when a user of an interface is finished with it.  When the
382  * last user of the interface calls this function, the memory of the interface
383  * is freed.
384  */
385 void usb_put_intf(struct usb_interface *intf)
386 {
387 	if (intf)
388 		put_device(&intf->dev);
389 }
390 
391 
392 /*			USB device locking
393  *
394  * USB devices and interfaces are locked using the semaphore in their
395  * embedded struct device.  The hub driver guarantees that whenever a
396  * device is connected or disconnected, drivers are called with the
397  * USB device locked as well as their particular interface.
398  *
399  * Complications arise when several devices are to be locked at the same
400  * time.  Only hub-aware drivers that are part of usbcore ever have to
401  * do this; nobody else needs to worry about it.  The rule for locking
402  * is simple:
403  *
404  *	When locking both a device and its parent, always lock the
405  *	the parent first.
406  */
407 
408 /**
409  * usb_lock_device_for_reset - cautiously acquire the lock for a
410  *	usb device structure
411  * @udev: device that's being locked
412  * @iface: interface bound to the driver making the request (optional)
413  *
414  * Attempts to acquire the device lock, but fails if the device is
415  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
416  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
417  * lock, the routine polls repeatedly.  This is to prevent deadlock with
418  * disconnect; in some drivers (such as usb-storage) the disconnect()
419  * or suspend() method will block waiting for a device reset to complete.
420  *
421  * Returns a negative error code for failure, otherwise 1 or 0 to indicate
422  * that the device will or will not have to be unlocked.  (0 can be
423  * returned when an interface is given and is BINDING, because in that
424  * case the driver already owns the device lock.)
425  */
426 int usb_lock_device_for_reset(struct usb_device *udev,
427 			      const struct usb_interface *iface)
428 {
429 	unsigned long jiffies_expire = jiffies + HZ;
430 
431 	if (udev->state == USB_STATE_NOTATTACHED)
432 		return -ENODEV;
433 	if (udev->state == USB_STATE_SUSPENDED)
434 		return -EHOSTUNREACH;
435 	if (iface) {
436 		switch (iface->condition) {
437 		  case USB_INTERFACE_BINDING:
438 			return 0;
439 		  case USB_INTERFACE_BOUND:
440 			break;
441 		  default:
442 			return -EINTR;
443 		}
444 	}
445 
446 	while (usb_trylock_device(udev) != 0) {
447 
448 		/* If we can't acquire the lock after waiting one second,
449 		 * we're probably deadlocked */
450 		if (time_after(jiffies, jiffies_expire))
451 			return -EBUSY;
452 
453 		msleep(15);
454 		if (udev->state == USB_STATE_NOTATTACHED)
455 			return -ENODEV;
456 		if (udev->state == USB_STATE_SUSPENDED)
457 			return -EHOSTUNREACH;
458 		if (iface && iface->condition != USB_INTERFACE_BOUND)
459 			return -EINTR;
460 	}
461 	return 1;
462 }
463 
464 
465 static struct usb_device *match_device(struct usb_device *dev,
466 				       u16 vendor_id, u16 product_id)
467 {
468 	struct usb_device *ret_dev = NULL;
469 	int child;
470 
471 	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
472 	    le16_to_cpu(dev->descriptor.idVendor),
473 	    le16_to_cpu(dev->descriptor.idProduct));
474 
475 	/* see if this device matches */
476 	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
477 	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
478 		dev_dbg(&dev->dev, "matched this device!\n");
479 		ret_dev = usb_get_dev(dev);
480 		goto exit;
481 	}
482 
483 	/* look through all of the children of this device */
484 	for (child = 0; child < dev->maxchild; ++child) {
485 		if (dev->children[child]) {
486 			usb_lock_device(dev->children[child]);
487 			ret_dev = match_device(dev->children[child],
488 					       vendor_id, product_id);
489 			usb_unlock_device(dev->children[child]);
490 			if (ret_dev)
491 				goto exit;
492 		}
493 	}
494 exit:
495 	return ret_dev;
496 }
497 
498 /**
499  * usb_find_device - find a specific usb device in the system
500  * @vendor_id: the vendor id of the device to find
501  * @product_id: the product id of the device to find
502  *
503  * Returns a pointer to a struct usb_device if such a specified usb
504  * device is present in the system currently.  The usage count of the
505  * device will be incremented if a device is found.  Make sure to call
506  * usb_put_dev() when the caller is finished with the device.
507  *
508  * If a device with the specified vendor and product id is not found,
509  * NULL is returned.
510  */
511 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
512 {
513 	struct list_head *buslist;
514 	struct usb_bus *bus;
515 	struct usb_device *dev = NULL;
516 
517 	mutex_lock(&usb_bus_list_lock);
518 	for (buslist = usb_bus_list.next;
519 	     buslist != &usb_bus_list;
520 	     buslist = buslist->next) {
521 		bus = container_of(buslist, struct usb_bus, bus_list);
522 		if (!bus->root_hub)
523 			continue;
524 		usb_lock_device(bus->root_hub);
525 		dev = match_device(bus->root_hub, vendor_id, product_id);
526 		usb_unlock_device(bus->root_hub);
527 		if (dev)
528 			goto exit;
529 	}
530 exit:
531 	mutex_unlock(&usb_bus_list_lock);
532 	return dev;
533 }
534 
535 /**
536  * usb_get_current_frame_number - return current bus frame number
537  * @dev: the device whose bus is being queried
538  *
539  * Returns the current frame number for the USB host controller
540  * used with the given USB device.  This can be used when scheduling
541  * isochronous requests.
542  *
543  * Note that different kinds of host controller have different
544  * "scheduling horizons".  While one type might support scheduling only
545  * 32 frames into the future, others could support scheduling up to
546  * 1024 frames into the future.
547  */
548 int usb_get_current_frame_number(struct usb_device *dev)
549 {
550 	return usb_hcd_get_frame_number(dev);
551 }
552 
553 /*-------------------------------------------------------------------*/
554 /*
555  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
556  * extra field of the interface and endpoint descriptor structs.
557  */
558 
559 int __usb_get_extra_descriptor(char *buffer, unsigned size,
560 	unsigned char type, void **ptr)
561 {
562 	struct usb_descriptor_header *header;
563 
564 	while (size >= sizeof(struct usb_descriptor_header)) {
565 		header = (struct usb_descriptor_header *)buffer;
566 
567 		if (header->bLength < 2) {
568 			printk(KERN_ERR
569 				"%s: bogus descriptor, type %d length %d\n",
570 				usbcore_name,
571 				header->bDescriptorType,
572 				header->bLength);
573 			return -1;
574 		}
575 
576 		if (header->bDescriptorType == type) {
577 			*ptr = header;
578 			return 0;
579 		}
580 
581 		buffer += header->bLength;
582 		size -= header->bLength;
583 	}
584 	return -1;
585 }
586 
587 /**
588  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
589  * @dev: device the buffer will be used with
590  * @size: requested buffer size
591  * @mem_flags: affect whether allocation may block
592  * @dma: used to return DMA address of buffer
593  *
594  * Return value is either null (indicating no buffer could be allocated), or
595  * the cpu-space pointer to a buffer that may be used to perform DMA to the
596  * specified device.  Such cpu-space buffers are returned along with the DMA
597  * address (through the pointer provided).
598  *
599  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
600  * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
601  * mapping hardware for long idle periods.  The implementation varies between
602  * platforms, depending on details of how DMA will work to this device.
603  * Using these buffers also helps prevent cacheline sharing problems on
604  * architectures where CPU caches are not DMA-coherent.
605  *
606  * When the buffer is no longer used, free it with usb_buffer_free().
607  */
608 void *usb_buffer_alloc(
609 	struct usb_device *dev,
610 	size_t size,
611 	gfp_t mem_flags,
612 	dma_addr_t *dma
613 )
614 {
615 	if (!dev || !dev->bus)
616 		return NULL;
617 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
618 }
619 
620 /**
621  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
622  * @dev: device the buffer was used with
623  * @size: requested buffer size
624  * @addr: CPU address of buffer
625  * @dma: DMA address of buffer
626  *
627  * This reclaims an I/O buffer, letting it be reused.  The memory must have
628  * been allocated using usb_buffer_alloc(), and the parameters must match
629  * those provided in that allocation request.
630  */
631 void usb_buffer_free(
632 	struct usb_device *dev,
633 	size_t size,
634 	void *addr,
635 	dma_addr_t dma
636 )
637 {
638 	if (!dev || !dev->bus)
639 		return;
640 	if (!addr)
641 		return;
642 	hcd_buffer_free(dev->bus, size, addr, dma);
643 }
644 
645 /**
646  * usb_buffer_map - create DMA mapping(s) for an urb
647  * @urb: urb whose transfer_buffer/setup_packet will be mapped
648  *
649  * Return value is either null (indicating no buffer could be mapped), or
650  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
651  * added to urb->transfer_flags if the operation succeeds.  If the device
652  * is connected to this system through a non-DMA controller, this operation
653  * always succeeds.
654  *
655  * This call would normally be used for an urb which is reused, perhaps
656  * as the target of a large periodic transfer, with usb_buffer_dmasync()
657  * calls to synchronize memory and dma state.
658  *
659  * Reverse the effect of this call with usb_buffer_unmap().
660  */
661 #if 0
662 struct urb *usb_buffer_map(struct urb *urb)
663 {
664 	struct usb_bus		*bus;
665 	struct device		*controller;
666 
667 	if (!urb
668 			|| !urb->dev
669 			|| !(bus = urb->dev->bus)
670 			|| !(controller = bus->controller))
671 		return NULL;
672 
673 	if (controller->dma_mask) {
674 		urb->transfer_dma = dma_map_single(controller,
675 			urb->transfer_buffer, urb->transfer_buffer_length,
676 			usb_pipein(urb->pipe)
677 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
678 		if (usb_pipecontrol(urb->pipe))
679 			urb->setup_dma = dma_map_single(controller,
680 					urb->setup_packet,
681 					sizeof(struct usb_ctrlrequest),
682 					DMA_TO_DEVICE);
683 	// FIXME generic api broken like pci, can't report errors
684 	// if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
685 	} else
686 		urb->transfer_dma = ~0;
687 	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
688 				| URB_NO_SETUP_DMA_MAP);
689 	return urb;
690 }
691 #endif  /*  0  */
692 
693 /* XXX DISABLED, no users currently.  If you wish to re-enable this
694  * XXX please determine whether the sync is to transfer ownership of
695  * XXX the buffer from device to cpu or vice verse, and thusly use the
696  * XXX appropriate _for_{cpu,device}() method.  -DaveM
697  */
698 #if 0
699 
700 /**
701  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
702  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
703  */
704 void usb_buffer_dmasync(struct urb *urb)
705 {
706 	struct usb_bus		*bus;
707 	struct device		*controller;
708 
709 	if (!urb
710 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
711 			|| !urb->dev
712 			|| !(bus = urb->dev->bus)
713 			|| !(controller = bus->controller))
714 		return;
715 
716 	if (controller->dma_mask) {
717 		dma_sync_single(controller,
718 			urb->transfer_dma, urb->transfer_buffer_length,
719 			usb_pipein(urb->pipe)
720 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
721 		if (usb_pipecontrol(urb->pipe))
722 			dma_sync_single(controller,
723 					urb->setup_dma,
724 					sizeof(struct usb_ctrlrequest),
725 					DMA_TO_DEVICE);
726 	}
727 }
728 #endif
729 
730 /**
731  * usb_buffer_unmap - free DMA mapping(s) for an urb
732  * @urb: urb whose transfer_buffer will be unmapped
733  *
734  * Reverses the effect of usb_buffer_map().
735  */
736 #if 0
737 void usb_buffer_unmap(struct urb *urb)
738 {
739 	struct usb_bus		*bus;
740 	struct device		*controller;
741 
742 	if (!urb
743 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
744 			|| !urb->dev
745 			|| !(bus = urb->dev->bus)
746 			|| !(controller = bus->controller))
747 		return;
748 
749 	if (controller->dma_mask) {
750 		dma_unmap_single(controller,
751 			urb->transfer_dma, urb->transfer_buffer_length,
752 			usb_pipein(urb->pipe)
753 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
754 		if (usb_pipecontrol(urb->pipe))
755 			dma_unmap_single(controller,
756 					urb->setup_dma,
757 					sizeof(struct usb_ctrlrequest),
758 					DMA_TO_DEVICE);
759 	}
760 	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
761 				| URB_NO_SETUP_DMA_MAP);
762 }
763 #endif  /*  0  */
764 
765 /**
766  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
767  * @dev: device to which the scatterlist will be mapped
768  * @pipe: endpoint defining the mapping direction
769  * @sg: the scatterlist to map
770  * @nents: the number of entries in the scatterlist
771  *
772  * Return value is either < 0 (indicating no buffers could be mapped), or
773  * the number of DMA mapping array entries in the scatterlist.
774  *
775  * The caller is responsible for placing the resulting DMA addresses from
776  * the scatterlist into URB transfer buffer pointers, and for setting the
777  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
778  *
779  * Top I/O rates come from queuing URBs, instead of waiting for each one
780  * to complete before starting the next I/O.   This is particularly easy
781  * to do with scatterlists.  Just allocate and submit one URB for each DMA
782  * mapping entry returned, stopping on the first error or when all succeed.
783  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
784  *
785  * This call would normally be used when translating scatterlist requests,
786  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
787  * may be able to coalesce mappings for improved I/O efficiency.
788  *
789  * Reverse the effect of this call with usb_buffer_unmap_sg().
790  */
791 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
792 		      struct scatterlist *sg, int nents)
793 {
794 	struct usb_bus		*bus;
795 	struct device		*controller;
796 
797 	if (!dev
798 			|| usb_pipecontrol(pipe)
799 			|| !(bus = dev->bus)
800 			|| !(controller = bus->controller)
801 			|| !controller->dma_mask)
802 		return -1;
803 
804 	// FIXME generic api broken like pci, can't report errors
805 	return dma_map_sg(controller, sg, nents,
806 			usb_pipein(pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
807 }
808 
809 /* XXX DISABLED, no users currently.  If you wish to re-enable this
810  * XXX please determine whether the sync is to transfer ownership of
811  * XXX the buffer from device to cpu or vice verse, and thusly use the
812  * XXX appropriate _for_{cpu,device}() method.  -DaveM
813  */
814 #if 0
815 
816 /**
817  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
818  * @dev: device to which the scatterlist will be mapped
819  * @pipe: endpoint defining the mapping direction
820  * @sg: the scatterlist to synchronize
821  * @n_hw_ents: the positive return value from usb_buffer_map_sg
822  *
823  * Use this when you are re-using a scatterlist's data buffers for
824  * another USB request.
825  */
826 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe,
827 			   struct scatterlist *sg, int n_hw_ents)
828 {
829 	struct usb_bus		*bus;
830 	struct device		*controller;
831 
832 	if (!dev
833 			|| !(bus = dev->bus)
834 			|| !(controller = bus->controller)
835 			|| !controller->dma_mask)
836 		return;
837 
838 	dma_sync_sg(controller, sg, n_hw_ents,
839 			usb_pipein(pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
840 }
841 #endif
842 
843 /**
844  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
845  * @dev: device to which the scatterlist will be mapped
846  * @pipe: endpoint defining the mapping direction
847  * @sg: the scatterlist to unmap
848  * @n_hw_ents: the positive return value from usb_buffer_map_sg
849  *
850  * Reverses the effect of usb_buffer_map_sg().
851  */
852 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
853 			 struct scatterlist *sg, int n_hw_ents)
854 {
855 	struct usb_bus		*bus;
856 	struct device		*controller;
857 
858 	if (!dev
859 			|| !(bus = dev->bus)
860 			|| !(controller = bus->controller)
861 			|| !controller->dma_mask)
862 		return;
863 
864 	dma_unmap_sg(controller, sg, n_hw_ents,
865 			usb_pipein(pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
866 }
867 
868 /* format to disable USB on kernel command line is: nousb */
869 __module_param_call("", nousb, param_set_bool, param_get_bool, &nousb, 0444);
870 
871 /*
872  * for external read access to <nousb>
873  */
874 int usb_disabled(void)
875 {
876 	return nousb;
877 }
878 
879 /*
880  * Init
881  */
882 static int __init usb_init(void)
883 {
884 	int retval;
885 	if (nousb) {
886 		pr_info("%s: USB support disabled\n", usbcore_name);
887 		return 0;
888 	}
889 
890 	retval = ksuspend_usb_init();
891 	if (retval)
892 		goto out;
893 	retval = bus_register(&usb_bus_type);
894 	if (retval)
895 		goto bus_register_failed;
896 	retval = usb_host_init();
897 	if (retval)
898 		goto host_init_failed;
899 	retval = usb_major_init();
900 	if (retval)
901 		goto major_init_failed;
902 	retval = usb_register(&usbfs_driver);
903 	if (retval)
904 		goto driver_register_failed;
905 	retval = usbdev_init();
906 	if (retval)
907 		goto usbdevice_init_failed;
908 	retval = usbfs_init();
909 	if (retval)
910 		goto fs_init_failed;
911 	retval = usb_hub_init();
912 	if (retval)
913 		goto hub_init_failed;
914 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
915 	if (!retval)
916 		goto out;
917 
918 	usb_hub_cleanup();
919 hub_init_failed:
920 	usbfs_cleanup();
921 fs_init_failed:
922 	usbdev_cleanup();
923 usbdevice_init_failed:
924 	usb_deregister(&usbfs_driver);
925 driver_register_failed:
926 	usb_major_cleanup();
927 major_init_failed:
928 	usb_host_cleanup();
929 host_init_failed:
930 	bus_unregister(&usb_bus_type);
931 bus_register_failed:
932 	ksuspend_usb_cleanup();
933 out:
934 	return retval;
935 }
936 
937 /*
938  * Cleanup
939  */
940 static void __exit usb_exit(void)
941 {
942 	/* This will matter if shutdown/reboot does exitcalls. */
943 	if (nousb)
944 		return;
945 
946 	usb_deregister_device_driver(&usb_generic_driver);
947 	usb_major_cleanup();
948 	usbfs_cleanup();
949 	usb_deregister(&usbfs_driver);
950 	usbdev_cleanup();
951 	usb_hub_cleanup();
952 	usb_host_cleanup();
953 	bus_unregister(&usb_bus_type);
954 	ksuspend_usb_cleanup();
955 }
956 
957 subsys_initcall(usb_init);
958 module_exit(usb_exit);
959 
960 /*
961  * USB may be built into the kernel or be built as modules.
962  * These symbols are exported for device (or host controller)
963  * driver modules to use.
964  */
965 
966 EXPORT_SYMBOL(usb_disabled);
967 
968 EXPORT_SYMBOL_GPL(usb_get_intf);
969 EXPORT_SYMBOL_GPL(usb_put_intf);
970 
971 EXPORT_SYMBOL(usb_put_dev);
972 EXPORT_SYMBOL(usb_get_dev);
973 EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
974 
975 EXPORT_SYMBOL(usb_lock_device_for_reset);
976 
977 EXPORT_SYMBOL(usb_find_interface);
978 EXPORT_SYMBOL(usb_ifnum_to_if);
979 EXPORT_SYMBOL(usb_altnum_to_altsetting);
980 
981 EXPORT_SYMBOL(__usb_get_extra_descriptor);
982 
983 EXPORT_SYMBOL(usb_find_device);
984 EXPORT_SYMBOL(usb_get_current_frame_number);
985 
986 EXPORT_SYMBOL(usb_buffer_alloc);
987 EXPORT_SYMBOL(usb_buffer_free);
988 
989 #if 0
990 EXPORT_SYMBOL(usb_buffer_map);
991 EXPORT_SYMBOL(usb_buffer_dmasync);
992 EXPORT_SYMBOL(usb_buffer_unmap);
993 #endif
994 
995 EXPORT_SYMBOL(usb_buffer_map_sg);
996 #if 0
997 EXPORT_SYMBOL(usb_buffer_dmasync_sg);
998 #endif
999 EXPORT_SYMBOL(usb_buffer_unmap_sg);
1000 
1001 MODULE_LICENSE("GPL");
1002