xref: /linux/drivers/usb/core/usb.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39 
40 #include <asm/io.h>
41 #include <linux/scatterlist.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44 
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static bool nousb;	/* Disable USB when built into kernel image */
51 
52 #ifdef	CONFIG_USB_SUSPEND
53 static int usb_autosuspend_delay = 2;		/* Default delay value,
54 						 * in seconds */
55 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
56 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
57 
58 #else
59 #define usb_autosuspend_delay		0
60 #endif
61 
62 
63 /**
64  * usb_find_alt_setting() - Given a configuration, find the alternate setting
65  * for the given interface.
66  * @config: the configuration to search (not necessarily the current config).
67  * @iface_num: interface number to search in
68  * @alt_num: alternate interface setting number to search for.
69  *
70  * Search the configuration's interface cache for the given alt setting.
71  */
72 struct usb_host_interface *usb_find_alt_setting(
73 		struct usb_host_config *config,
74 		unsigned int iface_num,
75 		unsigned int alt_num)
76 {
77 	struct usb_interface_cache *intf_cache = NULL;
78 	int i;
79 
80 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
81 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
82 				== iface_num) {
83 			intf_cache = config->intf_cache[i];
84 			break;
85 		}
86 	}
87 	if (!intf_cache)
88 		return NULL;
89 	for (i = 0; i < intf_cache->num_altsetting; i++)
90 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
91 			return &intf_cache->altsetting[i];
92 
93 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
94 			"config %u\n", alt_num, iface_num,
95 			config->desc.bConfigurationValue);
96 	return NULL;
97 }
98 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
99 
100 /**
101  * usb_ifnum_to_if - get the interface object with a given interface number
102  * @dev: the device whose current configuration is considered
103  * @ifnum: the desired interface
104  *
105  * This walks the device descriptor for the currently active configuration
106  * and returns a pointer to the interface with that particular interface
107  * number, or null.
108  *
109  * Note that configuration descriptors are not required to assign interface
110  * numbers sequentially, so that it would be incorrect to assume that
111  * the first interface in that descriptor corresponds to interface zero.
112  * This routine helps device drivers avoid such mistakes.
113  * However, you should make sure that you do the right thing with any
114  * alternate settings available for this interfaces.
115  *
116  * Don't call this function unless you are bound to one of the interfaces
117  * on this device or you have locked the device!
118  */
119 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
120 				      unsigned ifnum)
121 {
122 	struct usb_host_config *config = dev->actconfig;
123 	int i;
124 
125 	if (!config)
126 		return NULL;
127 	for (i = 0; i < config->desc.bNumInterfaces; i++)
128 		if (config->interface[i]->altsetting[0]
129 				.desc.bInterfaceNumber == ifnum)
130 			return config->interface[i];
131 
132 	return NULL;
133 }
134 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
135 
136 /**
137  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
138  * @intf: the interface containing the altsetting in question
139  * @altnum: the desired alternate setting number
140  *
141  * This searches the altsetting array of the specified interface for
142  * an entry with the correct bAlternateSetting value and returns a pointer
143  * to that entry, or null.
144  *
145  * Note that altsettings need not be stored sequentially by number, so
146  * it would be incorrect to assume that the first altsetting entry in
147  * the array corresponds to altsetting zero.  This routine helps device
148  * drivers avoid such mistakes.
149  *
150  * Don't call this function unless you are bound to the intf interface
151  * or you have locked the device!
152  */
153 struct usb_host_interface *usb_altnum_to_altsetting(
154 					const struct usb_interface *intf,
155 					unsigned int altnum)
156 {
157 	int i;
158 
159 	for (i = 0; i < intf->num_altsetting; i++) {
160 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
161 			return &intf->altsetting[i];
162 	}
163 	return NULL;
164 }
165 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
166 
167 struct find_interface_arg {
168 	int minor;
169 	struct device_driver *drv;
170 };
171 
172 static int __find_interface(struct device *dev, void *data)
173 {
174 	struct find_interface_arg *arg = data;
175 	struct usb_interface *intf;
176 
177 	if (!is_usb_interface(dev))
178 		return 0;
179 
180 	if (dev->driver != arg->drv)
181 		return 0;
182 	intf = to_usb_interface(dev);
183 	return intf->minor == arg->minor;
184 }
185 
186 /**
187  * usb_find_interface - find usb_interface pointer for driver and device
188  * @drv: the driver whose current configuration is considered
189  * @minor: the minor number of the desired device
190  *
191  * This walks the bus device list and returns a pointer to the interface
192  * with the matching minor and driver.  Note, this only works for devices
193  * that share the USB major number.
194  */
195 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
196 {
197 	struct find_interface_arg argb;
198 	struct device *dev;
199 
200 	argb.minor = minor;
201 	argb.drv = &drv->drvwrap.driver;
202 
203 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
204 
205 	/* Drop reference count from bus_find_device */
206 	put_device(dev);
207 
208 	return dev ? to_usb_interface(dev) : NULL;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_interface);
211 
212 /**
213  * usb_release_dev - free a usb device structure when all users of it are finished.
214  * @dev: device that's been disconnected
215  *
216  * Will be called only by the device core when all users of this usb device are
217  * done.
218  */
219 static void usb_release_dev(struct device *dev)
220 {
221 	struct usb_device *udev;
222 	struct usb_hcd *hcd;
223 
224 	udev = to_usb_device(dev);
225 	hcd = bus_to_hcd(udev->bus);
226 
227 	usb_destroy_configuration(udev);
228 	usb_release_bos_descriptor(udev);
229 	usb_put_hcd(hcd);
230 	kfree(udev->product);
231 	kfree(udev->manufacturer);
232 	kfree(udev->serial);
233 	kfree(udev);
234 }
235 
236 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
237 {
238 	struct usb_device *usb_dev;
239 
240 	usb_dev = to_usb_device(dev);
241 
242 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
243 		return -ENOMEM;
244 
245 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
246 		return -ENOMEM;
247 
248 	return 0;
249 }
250 
251 #ifdef	CONFIG_PM
252 
253 /* USB device Power-Management thunks.
254  * There's no need to distinguish here between quiescing a USB device
255  * and powering it down; the generic_suspend() routine takes care of
256  * it by skipping the usb_port_suspend() call for a quiesce.  And for
257  * USB interfaces there's no difference at all.
258  */
259 
260 static int usb_dev_prepare(struct device *dev)
261 {
262 	return 0;		/* Implement eventually? */
263 }
264 
265 static void usb_dev_complete(struct device *dev)
266 {
267 	/* Currently used only for rebinding interfaces */
268 	usb_resume_complete(dev);
269 }
270 
271 static int usb_dev_suspend(struct device *dev)
272 {
273 	return usb_suspend(dev, PMSG_SUSPEND);
274 }
275 
276 static int usb_dev_resume(struct device *dev)
277 {
278 	return usb_resume(dev, PMSG_RESUME);
279 }
280 
281 static int usb_dev_freeze(struct device *dev)
282 {
283 	return usb_suspend(dev, PMSG_FREEZE);
284 }
285 
286 static int usb_dev_thaw(struct device *dev)
287 {
288 	return usb_resume(dev, PMSG_THAW);
289 }
290 
291 static int usb_dev_poweroff(struct device *dev)
292 {
293 	return usb_suspend(dev, PMSG_HIBERNATE);
294 }
295 
296 static int usb_dev_restore(struct device *dev)
297 {
298 	return usb_resume(dev, PMSG_RESTORE);
299 }
300 
301 static const struct dev_pm_ops usb_device_pm_ops = {
302 	.prepare =	usb_dev_prepare,
303 	.complete =	usb_dev_complete,
304 	.suspend =	usb_dev_suspend,
305 	.resume =	usb_dev_resume,
306 	.freeze =	usb_dev_freeze,
307 	.thaw =		usb_dev_thaw,
308 	.poweroff =	usb_dev_poweroff,
309 	.restore =	usb_dev_restore,
310 #ifdef CONFIG_USB_SUSPEND
311 	.runtime_suspend =	usb_runtime_suspend,
312 	.runtime_resume =	usb_runtime_resume,
313 	.runtime_idle =		usb_runtime_idle,
314 #endif
315 };
316 
317 #endif	/* CONFIG_PM */
318 
319 
320 static char *usb_devnode(struct device *dev, umode_t *mode)
321 {
322 	struct usb_device *usb_dev;
323 
324 	usb_dev = to_usb_device(dev);
325 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
326 			 usb_dev->bus->busnum, usb_dev->devnum);
327 }
328 
329 struct device_type usb_device_type = {
330 	.name =		"usb_device",
331 	.release =	usb_release_dev,
332 	.uevent =	usb_dev_uevent,
333 	.devnode = 	usb_devnode,
334 #ifdef CONFIG_PM
335 	.pm =		&usb_device_pm_ops,
336 #endif
337 };
338 
339 
340 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
341 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
342 {
343 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
344 	return hcd->wireless;
345 }
346 
347 
348 /**
349  * usb_alloc_dev - usb device constructor (usbcore-internal)
350  * @parent: hub to which device is connected; null to allocate a root hub
351  * @bus: bus used to access the device
352  * @port1: one-based index of port; ignored for root hubs
353  * Context: !in_interrupt()
354  *
355  * Only hub drivers (including virtual root hub drivers for host
356  * controllers) should ever call this.
357  *
358  * This call may not be used in a non-sleeping context.
359  */
360 struct usb_device *usb_alloc_dev(struct usb_device *parent,
361 				 struct usb_bus *bus, unsigned port1)
362 {
363 	struct usb_device *dev;
364 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
365 	unsigned root_hub = 0;
366 
367 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
368 	if (!dev)
369 		return NULL;
370 
371 	if (!usb_get_hcd(usb_hcd)) {
372 		kfree(dev);
373 		return NULL;
374 	}
375 	/* Root hubs aren't true devices, so don't allocate HCD resources */
376 	if (usb_hcd->driver->alloc_dev && parent &&
377 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
378 		usb_put_hcd(bus_to_hcd(bus));
379 		kfree(dev);
380 		return NULL;
381 	}
382 
383 	device_initialize(&dev->dev);
384 	dev->dev.bus = &usb_bus_type;
385 	dev->dev.type = &usb_device_type;
386 	dev->dev.groups = usb_device_groups;
387 	dev->dev.dma_mask = bus->controller->dma_mask;
388 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
389 	dev->state = USB_STATE_ATTACHED;
390 	dev->lpm_disable_count = 1;
391 	atomic_set(&dev->urbnum, 0);
392 
393 	INIT_LIST_HEAD(&dev->ep0.urb_list);
394 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
395 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
396 	/* ep0 maxpacket comes later, from device descriptor */
397 	usb_enable_endpoint(dev, &dev->ep0, false);
398 	dev->can_submit = 1;
399 
400 	/* Save readable and stable topology id, distinguishing devices
401 	 * by location for diagnostics, tools, driver model, etc.  The
402 	 * string is a path along hub ports, from the root.  Each device's
403 	 * dev->devpath will be stable until USB is re-cabled, and hubs
404 	 * are often labeled with these port numbers.  The name isn't
405 	 * as stable:  bus->busnum changes easily from modprobe order,
406 	 * cardbus or pci hotplugging, and so on.
407 	 */
408 	if (unlikely(!parent)) {
409 		dev->devpath[0] = '0';
410 		dev->route = 0;
411 
412 		dev->dev.parent = bus->controller;
413 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
414 		root_hub = 1;
415 	} else {
416 		/* match any labeling on the hubs; it's one-based */
417 		if (parent->devpath[0] == '0') {
418 			snprintf(dev->devpath, sizeof dev->devpath,
419 				"%d", port1);
420 			/* Root ports are not counted in route string */
421 			dev->route = 0;
422 		} else {
423 			snprintf(dev->devpath, sizeof dev->devpath,
424 				"%s.%d", parent->devpath, port1);
425 			/* Route string assumes hubs have less than 16 ports */
426 			if (port1 < 15)
427 				dev->route = parent->route +
428 					(port1 << ((parent->level - 1)*4));
429 			else
430 				dev->route = parent->route +
431 					(15 << ((parent->level - 1)*4));
432 		}
433 
434 		dev->dev.parent = &parent->dev;
435 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
436 
437 		/* hub driver sets up TT records */
438 	}
439 
440 	dev->portnum = port1;
441 	dev->bus = bus;
442 	dev->parent = parent;
443 	INIT_LIST_HEAD(&dev->filelist);
444 
445 #ifdef	CONFIG_PM
446 	pm_runtime_set_autosuspend_delay(&dev->dev,
447 			usb_autosuspend_delay * 1000);
448 	dev->connect_time = jiffies;
449 	dev->active_duration = -jiffies;
450 #endif
451 	if (root_hub)	/* Root hub always ok [and always wired] */
452 		dev->authorized = 1;
453 	else {
454 		dev->authorized = usb_hcd->authorized_default;
455 		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
456 	}
457 	return dev;
458 }
459 
460 /**
461  * usb_get_dev - increments the reference count of the usb device structure
462  * @dev: the device being referenced
463  *
464  * Each live reference to a device should be refcounted.
465  *
466  * Drivers for USB interfaces should normally record such references in
467  * their probe() methods, when they bind to an interface, and release
468  * them by calling usb_put_dev(), in their disconnect() methods.
469  *
470  * A pointer to the device with the incremented reference counter is returned.
471  */
472 struct usb_device *usb_get_dev(struct usb_device *dev)
473 {
474 	if (dev)
475 		get_device(&dev->dev);
476 	return dev;
477 }
478 EXPORT_SYMBOL_GPL(usb_get_dev);
479 
480 /**
481  * usb_put_dev - release a use of the usb device structure
482  * @dev: device that's been disconnected
483  *
484  * Must be called when a user of a device is finished with it.  When the last
485  * user of the device calls this function, the memory of the device is freed.
486  */
487 void usb_put_dev(struct usb_device *dev)
488 {
489 	if (dev)
490 		put_device(&dev->dev);
491 }
492 EXPORT_SYMBOL_GPL(usb_put_dev);
493 
494 /**
495  * usb_get_intf - increments the reference count of the usb interface structure
496  * @intf: the interface being referenced
497  *
498  * Each live reference to a interface must be refcounted.
499  *
500  * Drivers for USB interfaces should normally record such references in
501  * their probe() methods, when they bind to an interface, and release
502  * them by calling usb_put_intf(), in their disconnect() methods.
503  *
504  * A pointer to the interface with the incremented reference counter is
505  * returned.
506  */
507 struct usb_interface *usb_get_intf(struct usb_interface *intf)
508 {
509 	if (intf)
510 		get_device(&intf->dev);
511 	return intf;
512 }
513 EXPORT_SYMBOL_GPL(usb_get_intf);
514 
515 /**
516  * usb_put_intf - release a use of the usb interface structure
517  * @intf: interface that's been decremented
518  *
519  * Must be called when a user of an interface is finished with it.  When the
520  * last user of the interface calls this function, the memory of the interface
521  * is freed.
522  */
523 void usb_put_intf(struct usb_interface *intf)
524 {
525 	if (intf)
526 		put_device(&intf->dev);
527 }
528 EXPORT_SYMBOL_GPL(usb_put_intf);
529 
530 /*			USB device locking
531  *
532  * USB devices and interfaces are locked using the semaphore in their
533  * embedded struct device.  The hub driver guarantees that whenever a
534  * device is connected or disconnected, drivers are called with the
535  * USB device locked as well as their particular interface.
536  *
537  * Complications arise when several devices are to be locked at the same
538  * time.  Only hub-aware drivers that are part of usbcore ever have to
539  * do this; nobody else needs to worry about it.  The rule for locking
540  * is simple:
541  *
542  *	When locking both a device and its parent, always lock the
543  *	the parent first.
544  */
545 
546 /**
547  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
548  * @udev: device that's being locked
549  * @iface: interface bound to the driver making the request (optional)
550  *
551  * Attempts to acquire the device lock, but fails if the device is
552  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
553  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
554  * lock, the routine polls repeatedly.  This is to prevent deadlock with
555  * disconnect; in some drivers (such as usb-storage) the disconnect()
556  * or suspend() method will block waiting for a device reset to complete.
557  *
558  * Returns a negative error code for failure, otherwise 0.
559  */
560 int usb_lock_device_for_reset(struct usb_device *udev,
561 			      const struct usb_interface *iface)
562 {
563 	unsigned long jiffies_expire = jiffies + HZ;
564 
565 	if (udev->state == USB_STATE_NOTATTACHED)
566 		return -ENODEV;
567 	if (udev->state == USB_STATE_SUSPENDED)
568 		return -EHOSTUNREACH;
569 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
570 			iface->condition == USB_INTERFACE_UNBOUND))
571 		return -EINTR;
572 
573 	while (!usb_trylock_device(udev)) {
574 
575 		/* If we can't acquire the lock after waiting one second,
576 		 * we're probably deadlocked */
577 		if (time_after(jiffies, jiffies_expire))
578 			return -EBUSY;
579 
580 		msleep(15);
581 		if (udev->state == USB_STATE_NOTATTACHED)
582 			return -ENODEV;
583 		if (udev->state == USB_STATE_SUSPENDED)
584 			return -EHOSTUNREACH;
585 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
586 				iface->condition == USB_INTERFACE_UNBOUND))
587 			return -EINTR;
588 	}
589 	return 0;
590 }
591 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
592 
593 /**
594  * usb_get_current_frame_number - return current bus frame number
595  * @dev: the device whose bus is being queried
596  *
597  * Returns the current frame number for the USB host controller
598  * used with the given USB device.  This can be used when scheduling
599  * isochronous requests.
600  *
601  * Note that different kinds of host controller have different
602  * "scheduling horizons".  While one type might support scheduling only
603  * 32 frames into the future, others could support scheduling up to
604  * 1024 frames into the future.
605  */
606 int usb_get_current_frame_number(struct usb_device *dev)
607 {
608 	return usb_hcd_get_frame_number(dev);
609 }
610 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
611 
612 /*-------------------------------------------------------------------*/
613 /*
614  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
615  * extra field of the interface and endpoint descriptor structs.
616  */
617 
618 int __usb_get_extra_descriptor(char *buffer, unsigned size,
619 			       unsigned char type, void **ptr)
620 {
621 	struct usb_descriptor_header *header;
622 
623 	while (size >= sizeof(struct usb_descriptor_header)) {
624 		header = (struct usb_descriptor_header *)buffer;
625 
626 		if (header->bLength < 2) {
627 			printk(KERN_ERR
628 				"%s: bogus descriptor, type %d length %d\n",
629 				usbcore_name,
630 				header->bDescriptorType,
631 				header->bLength);
632 			return -1;
633 		}
634 
635 		if (header->bDescriptorType == type) {
636 			*ptr = header;
637 			return 0;
638 		}
639 
640 		buffer += header->bLength;
641 		size -= header->bLength;
642 	}
643 	return -1;
644 }
645 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
646 
647 /**
648  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
649  * @dev: device the buffer will be used with
650  * @size: requested buffer size
651  * @mem_flags: affect whether allocation may block
652  * @dma: used to return DMA address of buffer
653  *
654  * Return value is either null (indicating no buffer could be allocated), or
655  * the cpu-space pointer to a buffer that may be used to perform DMA to the
656  * specified device.  Such cpu-space buffers are returned along with the DMA
657  * address (through the pointer provided).
658  *
659  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
660  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
661  * hardware during URB completion/resubmit.  The implementation varies between
662  * platforms, depending on details of how DMA will work to this device.
663  * Using these buffers also eliminates cacheline sharing problems on
664  * architectures where CPU caches are not DMA-coherent.  On systems without
665  * bus-snooping caches, these buffers are uncached.
666  *
667  * When the buffer is no longer used, free it with usb_free_coherent().
668  */
669 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
670 			 dma_addr_t *dma)
671 {
672 	if (!dev || !dev->bus)
673 		return NULL;
674 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
675 }
676 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
677 
678 /**
679  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
680  * @dev: device the buffer was used with
681  * @size: requested buffer size
682  * @addr: CPU address of buffer
683  * @dma: DMA address of buffer
684  *
685  * This reclaims an I/O buffer, letting it be reused.  The memory must have
686  * been allocated using usb_alloc_coherent(), and the parameters must match
687  * those provided in that allocation request.
688  */
689 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
690 		       dma_addr_t dma)
691 {
692 	if (!dev || !dev->bus)
693 		return;
694 	if (!addr)
695 		return;
696 	hcd_buffer_free(dev->bus, size, addr, dma);
697 }
698 EXPORT_SYMBOL_GPL(usb_free_coherent);
699 
700 /**
701  * usb_buffer_map - create DMA mapping(s) for an urb
702  * @urb: urb whose transfer_buffer/setup_packet will be mapped
703  *
704  * Return value is either null (indicating no buffer could be mapped), or
705  * the parameter.  URB_NO_TRANSFER_DMA_MAP is
706  * added to urb->transfer_flags if the operation succeeds.  If the device
707  * is connected to this system through a non-DMA controller, this operation
708  * always succeeds.
709  *
710  * This call would normally be used for an urb which is reused, perhaps
711  * as the target of a large periodic transfer, with usb_buffer_dmasync()
712  * calls to synchronize memory and dma state.
713  *
714  * Reverse the effect of this call with usb_buffer_unmap().
715  */
716 #if 0
717 struct urb *usb_buffer_map(struct urb *urb)
718 {
719 	struct usb_bus		*bus;
720 	struct device		*controller;
721 
722 	if (!urb
723 			|| !urb->dev
724 			|| !(bus = urb->dev->bus)
725 			|| !(controller = bus->controller))
726 		return NULL;
727 
728 	if (controller->dma_mask) {
729 		urb->transfer_dma = dma_map_single(controller,
730 			urb->transfer_buffer, urb->transfer_buffer_length,
731 			usb_pipein(urb->pipe)
732 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
733 	/* FIXME generic api broken like pci, can't report errors */
734 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
735 	} else
736 		urb->transfer_dma = ~0;
737 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
738 	return urb;
739 }
740 EXPORT_SYMBOL_GPL(usb_buffer_map);
741 #endif  /*  0  */
742 
743 /* XXX DISABLED, no users currently.  If you wish to re-enable this
744  * XXX please determine whether the sync is to transfer ownership of
745  * XXX the buffer from device to cpu or vice verse, and thusly use the
746  * XXX appropriate _for_{cpu,device}() method.  -DaveM
747  */
748 #if 0
749 
750 /**
751  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
752  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
753  */
754 void usb_buffer_dmasync(struct urb *urb)
755 {
756 	struct usb_bus		*bus;
757 	struct device		*controller;
758 
759 	if (!urb
760 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
761 			|| !urb->dev
762 			|| !(bus = urb->dev->bus)
763 			|| !(controller = bus->controller))
764 		return;
765 
766 	if (controller->dma_mask) {
767 		dma_sync_single_for_cpu(controller,
768 			urb->transfer_dma, urb->transfer_buffer_length,
769 			usb_pipein(urb->pipe)
770 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
771 		if (usb_pipecontrol(urb->pipe))
772 			dma_sync_single_for_cpu(controller,
773 					urb->setup_dma,
774 					sizeof(struct usb_ctrlrequest),
775 					DMA_TO_DEVICE);
776 	}
777 }
778 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
779 #endif
780 
781 /**
782  * usb_buffer_unmap - free DMA mapping(s) for an urb
783  * @urb: urb whose transfer_buffer will be unmapped
784  *
785  * Reverses the effect of usb_buffer_map().
786  */
787 #if 0
788 void usb_buffer_unmap(struct urb *urb)
789 {
790 	struct usb_bus		*bus;
791 	struct device		*controller;
792 
793 	if (!urb
794 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
795 			|| !urb->dev
796 			|| !(bus = urb->dev->bus)
797 			|| !(controller = bus->controller))
798 		return;
799 
800 	if (controller->dma_mask) {
801 		dma_unmap_single(controller,
802 			urb->transfer_dma, urb->transfer_buffer_length,
803 			usb_pipein(urb->pipe)
804 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
805 	}
806 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
807 }
808 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
809 #endif  /*  0  */
810 
811 #if 0
812 /**
813  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
814  * @dev: device to which the scatterlist will be mapped
815  * @is_in: mapping transfer direction
816  * @sg: the scatterlist to map
817  * @nents: the number of entries in the scatterlist
818  *
819  * Return value is either < 0 (indicating no buffers could be mapped), or
820  * the number of DMA mapping array entries in the scatterlist.
821  *
822  * The caller is responsible for placing the resulting DMA addresses from
823  * the scatterlist into URB transfer buffer pointers, and for setting the
824  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
825  *
826  * Top I/O rates come from queuing URBs, instead of waiting for each one
827  * to complete before starting the next I/O.   This is particularly easy
828  * to do with scatterlists.  Just allocate and submit one URB for each DMA
829  * mapping entry returned, stopping on the first error or when all succeed.
830  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
831  *
832  * This call would normally be used when translating scatterlist requests,
833  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
834  * may be able to coalesce mappings for improved I/O efficiency.
835  *
836  * Reverse the effect of this call with usb_buffer_unmap_sg().
837  */
838 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
839 		      struct scatterlist *sg, int nents)
840 {
841 	struct usb_bus		*bus;
842 	struct device		*controller;
843 
844 	if (!dev
845 			|| !(bus = dev->bus)
846 			|| !(controller = bus->controller)
847 			|| !controller->dma_mask)
848 		return -EINVAL;
849 
850 	/* FIXME generic api broken like pci, can't report errors */
851 	return dma_map_sg(controller, sg, nents,
852 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
853 }
854 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
855 #endif
856 
857 /* XXX DISABLED, no users currently.  If you wish to re-enable this
858  * XXX please determine whether the sync is to transfer ownership of
859  * XXX the buffer from device to cpu or vice verse, and thusly use the
860  * XXX appropriate _for_{cpu,device}() method.  -DaveM
861  */
862 #if 0
863 
864 /**
865  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
866  * @dev: device to which the scatterlist will be mapped
867  * @is_in: mapping transfer direction
868  * @sg: the scatterlist to synchronize
869  * @n_hw_ents: the positive return value from usb_buffer_map_sg
870  *
871  * Use this when you are re-using a scatterlist's data buffers for
872  * another USB request.
873  */
874 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
875 			   struct scatterlist *sg, int n_hw_ents)
876 {
877 	struct usb_bus		*bus;
878 	struct device		*controller;
879 
880 	if (!dev
881 			|| !(bus = dev->bus)
882 			|| !(controller = bus->controller)
883 			|| !controller->dma_mask)
884 		return;
885 
886 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
887 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
888 }
889 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
890 #endif
891 
892 #if 0
893 /**
894  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
895  * @dev: device to which the scatterlist will be mapped
896  * @is_in: mapping transfer direction
897  * @sg: the scatterlist to unmap
898  * @n_hw_ents: the positive return value from usb_buffer_map_sg
899  *
900  * Reverses the effect of usb_buffer_map_sg().
901  */
902 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
903 			 struct scatterlist *sg, int n_hw_ents)
904 {
905 	struct usb_bus		*bus;
906 	struct device		*controller;
907 
908 	if (!dev
909 			|| !(bus = dev->bus)
910 			|| !(controller = bus->controller)
911 			|| !controller->dma_mask)
912 		return;
913 
914 	dma_unmap_sg(controller, sg, n_hw_ents,
915 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
916 }
917 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
918 #endif
919 
920 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
921 #ifdef MODULE
922 module_param(nousb, bool, 0444);
923 #else
924 core_param(nousb, nousb, bool, 0444);
925 #endif
926 
927 /*
928  * for external read access to <nousb>
929  */
930 int usb_disabled(void)
931 {
932 	return nousb;
933 }
934 EXPORT_SYMBOL_GPL(usb_disabled);
935 
936 /*
937  * Notifications of device and interface registration
938  */
939 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
940 		void *data)
941 {
942 	struct device *dev = data;
943 
944 	switch (action) {
945 	case BUS_NOTIFY_ADD_DEVICE:
946 		if (dev->type == &usb_device_type)
947 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
948 		else if (dev->type == &usb_if_device_type)
949 			usb_create_sysfs_intf_files(to_usb_interface(dev));
950 		break;
951 
952 	case BUS_NOTIFY_DEL_DEVICE:
953 		if (dev->type == &usb_device_type)
954 			usb_remove_sysfs_dev_files(to_usb_device(dev));
955 		else if (dev->type == &usb_if_device_type)
956 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
957 		break;
958 	}
959 	return 0;
960 }
961 
962 static struct notifier_block usb_bus_nb = {
963 	.notifier_call = usb_bus_notify,
964 };
965 
966 struct dentry *usb_debug_root;
967 EXPORT_SYMBOL_GPL(usb_debug_root);
968 
969 static struct dentry *usb_debug_devices;
970 
971 static int usb_debugfs_init(void)
972 {
973 	usb_debug_root = debugfs_create_dir("usb", NULL);
974 	if (!usb_debug_root)
975 		return -ENOENT;
976 
977 	usb_debug_devices = debugfs_create_file("devices", 0444,
978 						usb_debug_root, NULL,
979 						&usbfs_devices_fops);
980 	if (!usb_debug_devices) {
981 		debugfs_remove(usb_debug_root);
982 		usb_debug_root = NULL;
983 		return -ENOENT;
984 	}
985 
986 	return 0;
987 }
988 
989 static void usb_debugfs_cleanup(void)
990 {
991 	debugfs_remove(usb_debug_devices);
992 	debugfs_remove(usb_debug_root);
993 }
994 
995 /*
996  * Init
997  */
998 static int __init usb_init(void)
999 {
1000 	int retval;
1001 	if (nousb) {
1002 		pr_info("%s: USB support disabled\n", usbcore_name);
1003 		return 0;
1004 	}
1005 
1006 	retval = usb_debugfs_init();
1007 	if (retval)
1008 		goto out;
1009 
1010 	usb_acpi_register();
1011 	retval = bus_register(&usb_bus_type);
1012 	if (retval)
1013 		goto bus_register_failed;
1014 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1015 	if (retval)
1016 		goto bus_notifier_failed;
1017 	retval = usb_major_init();
1018 	if (retval)
1019 		goto major_init_failed;
1020 	retval = usb_register(&usbfs_driver);
1021 	if (retval)
1022 		goto driver_register_failed;
1023 	retval = usb_devio_init();
1024 	if (retval)
1025 		goto usb_devio_init_failed;
1026 	retval = usb_hub_init();
1027 	if (retval)
1028 		goto hub_init_failed;
1029 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1030 	if (!retval)
1031 		goto out;
1032 
1033 	usb_hub_cleanup();
1034 hub_init_failed:
1035 	usb_devio_cleanup();
1036 usb_devio_init_failed:
1037 	usb_deregister(&usbfs_driver);
1038 driver_register_failed:
1039 	usb_major_cleanup();
1040 major_init_failed:
1041 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1042 bus_notifier_failed:
1043 	bus_unregister(&usb_bus_type);
1044 bus_register_failed:
1045 	usb_acpi_unregister();
1046 	usb_debugfs_cleanup();
1047 out:
1048 	return retval;
1049 }
1050 
1051 /*
1052  * Cleanup
1053  */
1054 static void __exit usb_exit(void)
1055 {
1056 	/* This will matter if shutdown/reboot does exitcalls. */
1057 	if (nousb)
1058 		return;
1059 
1060 	usb_deregister_device_driver(&usb_generic_driver);
1061 	usb_major_cleanup();
1062 	usb_deregister(&usbfs_driver);
1063 	usb_devio_cleanup();
1064 	usb_hub_cleanup();
1065 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1066 	bus_unregister(&usb_bus_type);
1067 	usb_acpi_unregister();
1068 	usb_debugfs_cleanup();
1069 }
1070 
1071 subsys_initcall(usb_init);
1072 module_exit(usb_exit);
1073 MODULE_LICENSE("GPL");
1074