1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/usb/core/usb.c 4 * 5 * (C) Copyright Linus Torvalds 1999 6 * (C) Copyright Johannes Erdfelt 1999-2001 7 * (C) Copyright Andreas Gal 1999 8 * (C) Copyright Gregory P. Smith 1999 9 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 10 * (C) Copyright Randy Dunlap 2000 11 * (C) Copyright David Brownell 2000-2004 12 * (C) Copyright Yggdrasil Computing, Inc. 2000 13 * (usb_device_id matching changes by Adam J. Richter) 14 * (C) Copyright Greg Kroah-Hartman 2002-2003 15 * 16 * Released under the GPLv2 only. 17 * 18 * NOTE! This is not actually a driver at all, rather this is 19 * just a collection of helper routines that implement the 20 * generic USB things that the real drivers can use.. 21 * 22 * Think of this as a "USB library" rather than anything else, 23 * with no callbacks. Callbacks are evil. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/string.h> 29 #include <linux/bitops.h> 30 #include <linux/slab.h> 31 #include <linux/kmod.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/errno.h> 35 #include <linux/usb.h> 36 #include <linux/usb/hcd.h> 37 #include <linux/mutex.h> 38 #include <linux/workqueue.h> 39 #include <linux/debugfs.h> 40 #include <linux/usb/of.h> 41 42 #include <asm/io.h> 43 #include <linux/scatterlist.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 47 #include "hub.h" 48 49 const char *usbcore_name = "usbcore"; 50 51 static bool nousb; /* Disable USB when built into kernel image */ 52 53 module_param(nousb, bool, 0444); 54 55 /* 56 * for external read access to <nousb> 57 */ 58 int usb_disabled(void) 59 { 60 return nousb; 61 } 62 EXPORT_SYMBOL_GPL(usb_disabled); 63 64 #ifdef CONFIG_PM 65 /* Default delay value, in seconds */ 66 static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY; 67 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); 68 MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); 69 70 #else 71 #define usb_autosuspend_delay 0 72 #endif 73 74 static bool match_endpoint(struct usb_endpoint_descriptor *epd, 75 struct usb_endpoint_descriptor **bulk_in, 76 struct usb_endpoint_descriptor **bulk_out, 77 struct usb_endpoint_descriptor **int_in, 78 struct usb_endpoint_descriptor **int_out) 79 { 80 switch (usb_endpoint_type(epd)) { 81 case USB_ENDPOINT_XFER_BULK: 82 if (usb_endpoint_dir_in(epd)) { 83 if (bulk_in && !*bulk_in) { 84 *bulk_in = epd; 85 break; 86 } 87 } else { 88 if (bulk_out && !*bulk_out) { 89 *bulk_out = epd; 90 break; 91 } 92 } 93 94 return false; 95 case USB_ENDPOINT_XFER_INT: 96 if (usb_endpoint_dir_in(epd)) { 97 if (int_in && !*int_in) { 98 *int_in = epd; 99 break; 100 } 101 } else { 102 if (int_out && !*int_out) { 103 *int_out = epd; 104 break; 105 } 106 } 107 108 return false; 109 default: 110 return false; 111 } 112 113 return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) && 114 (!int_in || *int_in) && (!int_out || *int_out); 115 } 116 117 /** 118 * usb_find_common_endpoints() -- look up common endpoint descriptors 119 * @alt: alternate setting to search 120 * @bulk_in: pointer to descriptor pointer, or NULL 121 * @bulk_out: pointer to descriptor pointer, or NULL 122 * @int_in: pointer to descriptor pointer, or NULL 123 * @int_out: pointer to descriptor pointer, or NULL 124 * 125 * Search the alternate setting's endpoint descriptors for the first bulk-in, 126 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the 127 * provided pointers (unless they are NULL). 128 * 129 * If a requested endpoint is not found, the corresponding pointer is set to 130 * NULL. 131 * 132 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. 133 */ 134 int usb_find_common_endpoints(struct usb_host_interface *alt, 135 struct usb_endpoint_descriptor **bulk_in, 136 struct usb_endpoint_descriptor **bulk_out, 137 struct usb_endpoint_descriptor **int_in, 138 struct usb_endpoint_descriptor **int_out) 139 { 140 struct usb_endpoint_descriptor *epd; 141 int i; 142 143 if (bulk_in) 144 *bulk_in = NULL; 145 if (bulk_out) 146 *bulk_out = NULL; 147 if (int_in) 148 *int_in = NULL; 149 if (int_out) 150 *int_out = NULL; 151 152 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 153 epd = &alt->endpoint[i].desc; 154 155 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) 156 return 0; 157 } 158 159 return -ENXIO; 160 } 161 EXPORT_SYMBOL_GPL(usb_find_common_endpoints); 162 163 /** 164 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors 165 * @alt: alternate setting to search 166 * @bulk_in: pointer to descriptor pointer, or NULL 167 * @bulk_out: pointer to descriptor pointer, or NULL 168 * @int_in: pointer to descriptor pointer, or NULL 169 * @int_out: pointer to descriptor pointer, or NULL 170 * 171 * Search the alternate setting's endpoint descriptors for the last bulk-in, 172 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the 173 * provided pointers (unless they are NULL). 174 * 175 * If a requested endpoint is not found, the corresponding pointer is set to 176 * NULL. 177 * 178 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. 179 */ 180 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 181 struct usb_endpoint_descriptor **bulk_in, 182 struct usb_endpoint_descriptor **bulk_out, 183 struct usb_endpoint_descriptor **int_in, 184 struct usb_endpoint_descriptor **int_out) 185 { 186 struct usb_endpoint_descriptor *epd; 187 int i; 188 189 if (bulk_in) 190 *bulk_in = NULL; 191 if (bulk_out) 192 *bulk_out = NULL; 193 if (int_in) 194 *int_in = NULL; 195 if (int_out) 196 *int_out = NULL; 197 198 for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) { 199 epd = &alt->endpoint[i].desc; 200 201 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) 202 return 0; 203 } 204 205 return -ENXIO; 206 } 207 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse); 208 209 /** 210 * usb_find_alt_setting() - Given a configuration, find the alternate setting 211 * for the given interface. 212 * @config: the configuration to search (not necessarily the current config). 213 * @iface_num: interface number to search in 214 * @alt_num: alternate interface setting number to search for. 215 * 216 * Search the configuration's interface cache for the given alt setting. 217 * 218 * Return: The alternate setting, if found. %NULL otherwise. 219 */ 220 struct usb_host_interface *usb_find_alt_setting( 221 struct usb_host_config *config, 222 unsigned int iface_num, 223 unsigned int alt_num) 224 { 225 struct usb_interface_cache *intf_cache = NULL; 226 int i; 227 228 if (!config) 229 return NULL; 230 for (i = 0; i < config->desc.bNumInterfaces; i++) { 231 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber 232 == iface_num) { 233 intf_cache = config->intf_cache[i]; 234 break; 235 } 236 } 237 if (!intf_cache) 238 return NULL; 239 for (i = 0; i < intf_cache->num_altsetting; i++) 240 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num) 241 return &intf_cache->altsetting[i]; 242 243 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, " 244 "config %u\n", alt_num, iface_num, 245 config->desc.bConfigurationValue); 246 return NULL; 247 } 248 EXPORT_SYMBOL_GPL(usb_find_alt_setting); 249 250 /** 251 * usb_ifnum_to_if - get the interface object with a given interface number 252 * @dev: the device whose current configuration is considered 253 * @ifnum: the desired interface 254 * 255 * This walks the device descriptor for the currently active configuration 256 * to find the interface object with the particular interface number. 257 * 258 * Note that configuration descriptors are not required to assign interface 259 * numbers sequentially, so that it would be incorrect to assume that 260 * the first interface in that descriptor corresponds to interface zero. 261 * This routine helps device drivers avoid such mistakes. 262 * However, you should make sure that you do the right thing with any 263 * alternate settings available for this interfaces. 264 * 265 * Don't call this function unless you are bound to one of the interfaces 266 * on this device or you have locked the device! 267 * 268 * Return: A pointer to the interface that has @ifnum as interface number, 269 * if found. %NULL otherwise. 270 */ 271 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 272 unsigned ifnum) 273 { 274 struct usb_host_config *config = dev->actconfig; 275 int i; 276 277 if (!config) 278 return NULL; 279 for (i = 0; i < config->desc.bNumInterfaces; i++) 280 if (config->interface[i]->altsetting[0] 281 .desc.bInterfaceNumber == ifnum) 282 return config->interface[i]; 283 284 return NULL; 285 } 286 EXPORT_SYMBOL_GPL(usb_ifnum_to_if); 287 288 /** 289 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. 290 * @intf: the interface containing the altsetting in question 291 * @altnum: the desired alternate setting number 292 * 293 * This searches the altsetting array of the specified interface for 294 * an entry with the correct bAlternateSetting value. 295 * 296 * Note that altsettings need not be stored sequentially by number, so 297 * it would be incorrect to assume that the first altsetting entry in 298 * the array corresponds to altsetting zero. This routine helps device 299 * drivers avoid such mistakes. 300 * 301 * Don't call this function unless you are bound to the intf interface 302 * or you have locked the device! 303 * 304 * Return: A pointer to the entry of the altsetting array of @intf that 305 * has @altnum as the alternate setting number. %NULL if not found. 306 */ 307 struct usb_host_interface *usb_altnum_to_altsetting( 308 const struct usb_interface *intf, 309 unsigned int altnum) 310 { 311 int i; 312 313 for (i = 0; i < intf->num_altsetting; i++) { 314 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 315 return &intf->altsetting[i]; 316 } 317 return NULL; 318 } 319 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); 320 321 struct find_interface_arg { 322 int minor; 323 struct device_driver *drv; 324 }; 325 326 static int __find_interface(struct device *dev, const void *data) 327 { 328 const struct find_interface_arg *arg = data; 329 struct usb_interface *intf; 330 331 if (!is_usb_interface(dev)) 332 return 0; 333 334 if (dev->driver != arg->drv) 335 return 0; 336 intf = to_usb_interface(dev); 337 return intf->minor == arg->minor; 338 } 339 340 /** 341 * usb_find_interface - find usb_interface pointer for driver and device 342 * @drv: the driver whose current configuration is considered 343 * @minor: the minor number of the desired device 344 * 345 * This walks the bus device list and returns a pointer to the interface 346 * with the matching minor and driver. Note, this only works for devices 347 * that share the USB major number. 348 * 349 * Return: A pointer to the interface with the matching major and @minor. 350 */ 351 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 352 { 353 struct find_interface_arg argb; 354 struct device *dev; 355 356 argb.minor = minor; 357 argb.drv = &drv->drvwrap.driver; 358 359 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface); 360 361 /* Drop reference count from bus_find_device */ 362 put_device(dev); 363 364 return dev ? to_usb_interface(dev) : NULL; 365 } 366 EXPORT_SYMBOL_GPL(usb_find_interface); 367 368 struct each_dev_arg { 369 void *data; 370 int (*fn)(struct usb_device *, void *); 371 }; 372 373 static int __each_dev(struct device *dev, void *data) 374 { 375 struct each_dev_arg *arg = (struct each_dev_arg *)data; 376 377 /* There are struct usb_interface on the same bus, filter them out */ 378 if (!is_usb_device(dev)) 379 return 0; 380 381 return arg->fn(to_usb_device(dev), arg->data); 382 } 383 384 /** 385 * usb_for_each_dev - iterate over all USB devices in the system 386 * @data: data pointer that will be handed to the callback function 387 * @fn: callback function to be called for each USB device 388 * 389 * Iterate over all USB devices and call @fn for each, passing it @data. If it 390 * returns anything other than 0, we break the iteration prematurely and return 391 * that value. 392 */ 393 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)) 394 { 395 struct each_dev_arg arg = {data, fn}; 396 397 return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev); 398 } 399 EXPORT_SYMBOL_GPL(usb_for_each_dev); 400 401 /** 402 * usb_release_dev - free a usb device structure when all users of it are finished. 403 * @dev: device that's been disconnected 404 * 405 * Will be called only by the device core when all users of this usb device are 406 * done. 407 */ 408 static void usb_release_dev(struct device *dev) 409 { 410 struct usb_device *udev; 411 struct usb_hcd *hcd; 412 413 udev = to_usb_device(dev); 414 hcd = bus_to_hcd(udev->bus); 415 416 usb_destroy_configuration(udev); 417 usb_release_bos_descriptor(udev); 418 of_node_put(dev->of_node); 419 usb_put_hcd(hcd); 420 kfree(udev->product); 421 kfree(udev->manufacturer); 422 kfree(udev->serial); 423 kfree(udev); 424 } 425 426 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 427 { 428 struct usb_device *usb_dev; 429 430 usb_dev = to_usb_device(dev); 431 432 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) 433 return -ENOMEM; 434 435 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) 436 return -ENOMEM; 437 438 return 0; 439 } 440 441 #ifdef CONFIG_PM 442 443 /* USB device Power-Management thunks. 444 * There's no need to distinguish here between quiescing a USB device 445 * and powering it down; the generic_suspend() routine takes care of 446 * it by skipping the usb_port_suspend() call for a quiesce. And for 447 * USB interfaces there's no difference at all. 448 */ 449 450 static int usb_dev_prepare(struct device *dev) 451 { 452 return 0; /* Implement eventually? */ 453 } 454 455 static void usb_dev_complete(struct device *dev) 456 { 457 /* Currently used only for rebinding interfaces */ 458 usb_resume_complete(dev); 459 } 460 461 static int usb_dev_suspend(struct device *dev) 462 { 463 return usb_suspend(dev, PMSG_SUSPEND); 464 } 465 466 static int usb_dev_resume(struct device *dev) 467 { 468 return usb_resume(dev, PMSG_RESUME); 469 } 470 471 static int usb_dev_freeze(struct device *dev) 472 { 473 return usb_suspend(dev, PMSG_FREEZE); 474 } 475 476 static int usb_dev_thaw(struct device *dev) 477 { 478 return usb_resume(dev, PMSG_THAW); 479 } 480 481 static int usb_dev_poweroff(struct device *dev) 482 { 483 return usb_suspend(dev, PMSG_HIBERNATE); 484 } 485 486 static int usb_dev_restore(struct device *dev) 487 { 488 return usb_resume(dev, PMSG_RESTORE); 489 } 490 491 static const struct dev_pm_ops usb_device_pm_ops = { 492 .prepare = usb_dev_prepare, 493 .complete = usb_dev_complete, 494 .suspend = usb_dev_suspend, 495 .resume = usb_dev_resume, 496 .freeze = usb_dev_freeze, 497 .thaw = usb_dev_thaw, 498 .poweroff = usb_dev_poweroff, 499 .restore = usb_dev_restore, 500 .runtime_suspend = usb_runtime_suspend, 501 .runtime_resume = usb_runtime_resume, 502 .runtime_idle = usb_runtime_idle, 503 }; 504 505 #endif /* CONFIG_PM */ 506 507 508 static char *usb_devnode(struct device *dev, 509 umode_t *mode, kuid_t *uid, kgid_t *gid) 510 { 511 struct usb_device *usb_dev; 512 513 usb_dev = to_usb_device(dev); 514 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", 515 usb_dev->bus->busnum, usb_dev->devnum); 516 } 517 518 struct device_type usb_device_type = { 519 .name = "usb_device", 520 .release = usb_release_dev, 521 .uevent = usb_dev_uevent, 522 .devnode = usb_devnode, 523 #ifdef CONFIG_PM 524 .pm = &usb_device_pm_ops, 525 #endif 526 }; 527 528 529 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */ 530 static unsigned usb_bus_is_wusb(struct usb_bus *bus) 531 { 532 struct usb_hcd *hcd = bus_to_hcd(bus); 533 return hcd->wireless; 534 } 535 536 static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd) 537 { 538 struct usb_hub *hub; 539 540 if (!dev->parent) 541 return true; /* Root hub always ok [and always wired] */ 542 543 switch (hcd->dev_policy) { 544 case USB_DEVICE_AUTHORIZE_NONE: 545 default: 546 return false; 547 548 case USB_DEVICE_AUTHORIZE_ALL: 549 return true; 550 551 case USB_DEVICE_AUTHORIZE_INTERNAL: 552 hub = usb_hub_to_struct_hub(dev->parent); 553 return hub->ports[dev->portnum - 1]->connect_type == 554 USB_PORT_CONNECT_TYPE_HARD_WIRED; 555 } 556 } 557 558 /** 559 * usb_alloc_dev - usb device constructor (usbcore-internal) 560 * @parent: hub to which device is connected; null to allocate a root hub 561 * @bus: bus used to access the device 562 * @port1: one-based index of port; ignored for root hubs 563 * 564 * Context: task context, might sleep. 565 * 566 * Only hub drivers (including virtual root hub drivers for host 567 * controllers) should ever call this. 568 * 569 * This call may not be used in a non-sleeping context. 570 * 571 * Return: On success, a pointer to the allocated usb device. %NULL on 572 * failure. 573 */ 574 struct usb_device *usb_alloc_dev(struct usb_device *parent, 575 struct usb_bus *bus, unsigned port1) 576 { 577 struct usb_device *dev; 578 struct usb_hcd *usb_hcd = bus_to_hcd(bus); 579 unsigned root_hub = 0; 580 unsigned raw_port = port1; 581 582 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 583 if (!dev) 584 return NULL; 585 586 if (!usb_get_hcd(usb_hcd)) { 587 kfree(dev); 588 return NULL; 589 } 590 /* Root hubs aren't true devices, so don't allocate HCD resources */ 591 if (usb_hcd->driver->alloc_dev && parent && 592 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { 593 usb_put_hcd(bus_to_hcd(bus)); 594 kfree(dev); 595 return NULL; 596 } 597 598 device_initialize(&dev->dev); 599 dev->dev.bus = &usb_bus_type; 600 dev->dev.type = &usb_device_type; 601 dev->dev.groups = usb_device_groups; 602 set_dev_node(&dev->dev, dev_to_node(bus->sysdev)); 603 dev->state = USB_STATE_ATTACHED; 604 dev->lpm_disable_count = 1; 605 atomic_set(&dev->urbnum, 0); 606 607 INIT_LIST_HEAD(&dev->ep0.urb_list); 608 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 609 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 610 /* ep0 maxpacket comes later, from device descriptor */ 611 usb_enable_endpoint(dev, &dev->ep0, false); 612 dev->can_submit = 1; 613 614 /* Save readable and stable topology id, distinguishing devices 615 * by location for diagnostics, tools, driver model, etc. The 616 * string is a path along hub ports, from the root. Each device's 617 * dev->devpath will be stable until USB is re-cabled, and hubs 618 * are often labeled with these port numbers. The name isn't 619 * as stable: bus->busnum changes easily from modprobe order, 620 * cardbus or pci hotplugging, and so on. 621 */ 622 if (unlikely(!parent)) { 623 dev->devpath[0] = '0'; 624 dev->route = 0; 625 626 dev->dev.parent = bus->controller; 627 device_set_of_node_from_dev(&dev->dev, bus->sysdev); 628 dev_set_name(&dev->dev, "usb%d", bus->busnum); 629 root_hub = 1; 630 } else { 631 /* match any labeling on the hubs; it's one-based */ 632 if (parent->devpath[0] == '0') { 633 snprintf(dev->devpath, sizeof dev->devpath, 634 "%d", port1); 635 /* Root ports are not counted in route string */ 636 dev->route = 0; 637 } else { 638 snprintf(dev->devpath, sizeof dev->devpath, 639 "%s.%d", parent->devpath, port1); 640 /* Route string assumes hubs have less than 16 ports */ 641 if (port1 < 15) 642 dev->route = parent->route + 643 (port1 << ((parent->level - 1)*4)); 644 else 645 dev->route = parent->route + 646 (15 << ((parent->level - 1)*4)); 647 } 648 649 dev->dev.parent = &parent->dev; 650 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); 651 652 if (!parent->parent) { 653 /* device under root hub's port */ 654 raw_port = usb_hcd_find_raw_port_number(usb_hcd, 655 port1); 656 } 657 dev->dev.of_node = usb_of_get_device_node(parent, raw_port); 658 659 /* hub driver sets up TT records */ 660 } 661 662 dev->portnum = port1; 663 dev->bus = bus; 664 dev->parent = parent; 665 INIT_LIST_HEAD(&dev->filelist); 666 667 #ifdef CONFIG_PM 668 pm_runtime_set_autosuspend_delay(&dev->dev, 669 usb_autosuspend_delay * 1000); 670 dev->connect_time = jiffies; 671 dev->active_duration = -jiffies; 672 #endif 673 674 dev->authorized = usb_dev_authorized(dev, usb_hcd); 675 if (!root_hub) 676 dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0; 677 678 return dev; 679 } 680 EXPORT_SYMBOL_GPL(usb_alloc_dev); 681 682 /** 683 * usb_get_dev - increments the reference count of the usb device structure 684 * @dev: the device being referenced 685 * 686 * Each live reference to a device should be refcounted. 687 * 688 * Drivers for USB interfaces should normally record such references in 689 * their probe() methods, when they bind to an interface, and release 690 * them by calling usb_put_dev(), in their disconnect() methods. 691 * However, if a driver does not access the usb_device structure after 692 * its disconnect() method returns then refcounting is not necessary, 693 * because the USB core guarantees that a usb_device will not be 694 * deallocated until after all of its interface drivers have been unbound. 695 * 696 * Return: A pointer to the device with the incremented reference counter. 697 */ 698 struct usb_device *usb_get_dev(struct usb_device *dev) 699 { 700 if (dev) 701 get_device(&dev->dev); 702 return dev; 703 } 704 EXPORT_SYMBOL_GPL(usb_get_dev); 705 706 /** 707 * usb_put_dev - release a use of the usb device structure 708 * @dev: device that's been disconnected 709 * 710 * Must be called when a user of a device is finished with it. When the last 711 * user of the device calls this function, the memory of the device is freed. 712 */ 713 void usb_put_dev(struct usb_device *dev) 714 { 715 if (dev) 716 put_device(&dev->dev); 717 } 718 EXPORT_SYMBOL_GPL(usb_put_dev); 719 720 /** 721 * usb_get_intf - increments the reference count of the usb interface structure 722 * @intf: the interface being referenced 723 * 724 * Each live reference to a interface must be refcounted. 725 * 726 * Drivers for USB interfaces should normally record such references in 727 * their probe() methods, when they bind to an interface, and release 728 * them by calling usb_put_intf(), in their disconnect() methods. 729 * However, if a driver does not access the usb_interface structure after 730 * its disconnect() method returns then refcounting is not necessary, 731 * because the USB core guarantees that a usb_interface will not be 732 * deallocated until after its driver has been unbound. 733 * 734 * Return: A pointer to the interface with the incremented reference counter. 735 */ 736 struct usb_interface *usb_get_intf(struct usb_interface *intf) 737 { 738 if (intf) 739 get_device(&intf->dev); 740 return intf; 741 } 742 EXPORT_SYMBOL_GPL(usb_get_intf); 743 744 /** 745 * usb_put_intf - release a use of the usb interface structure 746 * @intf: interface that's been decremented 747 * 748 * Must be called when a user of an interface is finished with it. When the 749 * last user of the interface calls this function, the memory of the interface 750 * is freed. 751 */ 752 void usb_put_intf(struct usb_interface *intf) 753 { 754 if (intf) 755 put_device(&intf->dev); 756 } 757 EXPORT_SYMBOL_GPL(usb_put_intf); 758 759 /** 760 * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint 761 * @intf: the usb interface 762 * 763 * While a USB device cannot perform DMA operations by itself, many USB 764 * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint 765 * for the given USB interface, if any. The returned device structure must be 766 * released with put_device(). 767 * 768 * See also usb_get_dma_device(). 769 * 770 * Returns: A reference to the usb interface's DMA endpoint; or NULL if none 771 * exists. 772 */ 773 struct device *usb_intf_get_dma_device(struct usb_interface *intf) 774 { 775 struct usb_device *udev = interface_to_usbdev(intf); 776 struct device *dmadev; 777 778 if (!udev->bus) 779 return NULL; 780 781 dmadev = get_device(udev->bus->sysdev); 782 if (!dmadev || !dmadev->dma_mask) { 783 put_device(dmadev); 784 return NULL; 785 } 786 787 return dmadev; 788 } 789 EXPORT_SYMBOL_GPL(usb_intf_get_dma_device); 790 791 /* USB device locking 792 * 793 * USB devices and interfaces are locked using the semaphore in their 794 * embedded struct device. The hub driver guarantees that whenever a 795 * device is connected or disconnected, drivers are called with the 796 * USB device locked as well as their particular interface. 797 * 798 * Complications arise when several devices are to be locked at the same 799 * time. Only hub-aware drivers that are part of usbcore ever have to 800 * do this; nobody else needs to worry about it. The rule for locking 801 * is simple: 802 * 803 * When locking both a device and its parent, always lock the 804 * parent first. 805 */ 806 807 /** 808 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure 809 * @udev: device that's being locked 810 * @iface: interface bound to the driver making the request (optional) 811 * 812 * Attempts to acquire the device lock, but fails if the device is 813 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 814 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 815 * lock, the routine polls repeatedly. This is to prevent deadlock with 816 * disconnect; in some drivers (such as usb-storage) the disconnect() 817 * or suspend() method will block waiting for a device reset to complete. 818 * 819 * Return: A negative error code for failure, otherwise 0. 820 */ 821 int usb_lock_device_for_reset(struct usb_device *udev, 822 const struct usb_interface *iface) 823 { 824 unsigned long jiffies_expire = jiffies + HZ; 825 826 if (udev->state == USB_STATE_NOTATTACHED) 827 return -ENODEV; 828 if (udev->state == USB_STATE_SUSPENDED) 829 return -EHOSTUNREACH; 830 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 831 iface->condition == USB_INTERFACE_UNBOUND)) 832 return -EINTR; 833 834 while (!usb_trylock_device(udev)) { 835 836 /* If we can't acquire the lock after waiting one second, 837 * we're probably deadlocked */ 838 if (time_after(jiffies, jiffies_expire)) 839 return -EBUSY; 840 841 msleep(15); 842 if (udev->state == USB_STATE_NOTATTACHED) 843 return -ENODEV; 844 if (udev->state == USB_STATE_SUSPENDED) 845 return -EHOSTUNREACH; 846 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 847 iface->condition == USB_INTERFACE_UNBOUND)) 848 return -EINTR; 849 } 850 return 0; 851 } 852 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); 853 854 /** 855 * usb_get_current_frame_number - return current bus frame number 856 * @dev: the device whose bus is being queried 857 * 858 * Return: The current frame number for the USB host controller used 859 * with the given USB device. This can be used when scheduling 860 * isochronous requests. 861 * 862 * Note: Different kinds of host controller have different "scheduling 863 * horizons". While one type might support scheduling only 32 frames 864 * into the future, others could support scheduling up to 1024 frames 865 * into the future. 866 * 867 */ 868 int usb_get_current_frame_number(struct usb_device *dev) 869 { 870 return usb_hcd_get_frame_number(dev); 871 } 872 EXPORT_SYMBOL_GPL(usb_get_current_frame_number); 873 874 /*-------------------------------------------------------------------*/ 875 /* 876 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 877 * extra field of the interface and endpoint descriptor structs. 878 */ 879 880 int __usb_get_extra_descriptor(char *buffer, unsigned size, 881 unsigned char type, void **ptr, size_t minsize) 882 { 883 struct usb_descriptor_header *header; 884 885 while (size >= sizeof(struct usb_descriptor_header)) { 886 header = (struct usb_descriptor_header *)buffer; 887 888 if (header->bLength < 2 || header->bLength > size) { 889 printk(KERN_ERR 890 "%s: bogus descriptor, type %d length %d\n", 891 usbcore_name, 892 header->bDescriptorType, 893 header->bLength); 894 return -1; 895 } 896 897 if (header->bDescriptorType == type && header->bLength >= minsize) { 898 *ptr = header; 899 return 0; 900 } 901 902 buffer += header->bLength; 903 size -= header->bLength; 904 } 905 return -1; 906 } 907 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); 908 909 /** 910 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 911 * @dev: device the buffer will be used with 912 * @size: requested buffer size 913 * @mem_flags: affect whether allocation may block 914 * @dma: used to return DMA address of buffer 915 * 916 * Return: Either null (indicating no buffer could be allocated), or the 917 * cpu-space pointer to a buffer that may be used to perform DMA to the 918 * specified device. Such cpu-space buffers are returned along with the DMA 919 * address (through the pointer provided). 920 * 921 * Note: 922 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 923 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU 924 * hardware during URB completion/resubmit. The implementation varies between 925 * platforms, depending on details of how DMA will work to this device. 926 * Using these buffers also eliminates cacheline sharing problems on 927 * architectures where CPU caches are not DMA-coherent. On systems without 928 * bus-snooping caches, these buffers are uncached. 929 * 930 * When the buffer is no longer used, free it with usb_free_coherent(). 931 */ 932 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags, 933 dma_addr_t *dma) 934 { 935 if (!dev || !dev->bus) 936 return NULL; 937 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 938 } 939 EXPORT_SYMBOL_GPL(usb_alloc_coherent); 940 941 /** 942 * usb_free_coherent - free memory allocated with usb_alloc_coherent() 943 * @dev: device the buffer was used with 944 * @size: requested buffer size 945 * @addr: CPU address of buffer 946 * @dma: DMA address of buffer 947 * 948 * This reclaims an I/O buffer, letting it be reused. The memory must have 949 * been allocated using usb_alloc_coherent(), and the parameters must match 950 * those provided in that allocation request. 951 */ 952 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr, 953 dma_addr_t dma) 954 { 955 if (!dev || !dev->bus) 956 return; 957 if (!addr) 958 return; 959 hcd_buffer_free(dev->bus, size, addr, dma); 960 } 961 EXPORT_SYMBOL_GPL(usb_free_coherent); 962 963 /* 964 * Notifications of device and interface registration 965 */ 966 static int usb_bus_notify(struct notifier_block *nb, unsigned long action, 967 void *data) 968 { 969 struct device *dev = data; 970 971 switch (action) { 972 case BUS_NOTIFY_ADD_DEVICE: 973 if (dev->type == &usb_device_type) 974 (void) usb_create_sysfs_dev_files(to_usb_device(dev)); 975 else if (dev->type == &usb_if_device_type) 976 usb_create_sysfs_intf_files(to_usb_interface(dev)); 977 break; 978 979 case BUS_NOTIFY_DEL_DEVICE: 980 if (dev->type == &usb_device_type) 981 usb_remove_sysfs_dev_files(to_usb_device(dev)); 982 else if (dev->type == &usb_if_device_type) 983 usb_remove_sysfs_intf_files(to_usb_interface(dev)); 984 break; 985 } 986 return 0; 987 } 988 989 static struct notifier_block usb_bus_nb = { 990 .notifier_call = usb_bus_notify, 991 }; 992 993 static void usb_debugfs_init(void) 994 { 995 debugfs_create_file("devices", 0444, usb_debug_root, NULL, 996 &usbfs_devices_fops); 997 } 998 999 static void usb_debugfs_cleanup(void) 1000 { 1001 debugfs_remove(debugfs_lookup("devices", usb_debug_root)); 1002 } 1003 1004 /* 1005 * Init 1006 */ 1007 static int __init usb_init(void) 1008 { 1009 int retval; 1010 if (usb_disabled()) { 1011 pr_info("%s: USB support disabled\n", usbcore_name); 1012 return 0; 1013 } 1014 usb_init_pool_max(); 1015 1016 usb_debugfs_init(); 1017 1018 usb_acpi_register(); 1019 retval = bus_register(&usb_bus_type); 1020 if (retval) 1021 goto bus_register_failed; 1022 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); 1023 if (retval) 1024 goto bus_notifier_failed; 1025 retval = usb_major_init(); 1026 if (retval) 1027 goto major_init_failed; 1028 retval = usb_register(&usbfs_driver); 1029 if (retval) 1030 goto driver_register_failed; 1031 retval = usb_devio_init(); 1032 if (retval) 1033 goto usb_devio_init_failed; 1034 retval = usb_hub_init(); 1035 if (retval) 1036 goto hub_init_failed; 1037 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 1038 if (!retval) 1039 goto out; 1040 1041 usb_hub_cleanup(); 1042 hub_init_failed: 1043 usb_devio_cleanup(); 1044 usb_devio_init_failed: 1045 usb_deregister(&usbfs_driver); 1046 driver_register_failed: 1047 usb_major_cleanup(); 1048 major_init_failed: 1049 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1050 bus_notifier_failed: 1051 bus_unregister(&usb_bus_type); 1052 bus_register_failed: 1053 usb_acpi_unregister(); 1054 usb_debugfs_cleanup(); 1055 out: 1056 return retval; 1057 } 1058 1059 /* 1060 * Cleanup 1061 */ 1062 static void __exit usb_exit(void) 1063 { 1064 /* This will matter if shutdown/reboot does exitcalls. */ 1065 if (usb_disabled()) 1066 return; 1067 1068 usb_release_quirk_list(); 1069 usb_deregister_device_driver(&usb_generic_driver); 1070 usb_major_cleanup(); 1071 usb_deregister(&usbfs_driver); 1072 usb_devio_cleanup(); 1073 usb_hub_cleanup(); 1074 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1075 bus_unregister(&usb_bus_type); 1076 usb_acpi_unregister(); 1077 usb_debugfs_cleanup(); 1078 idr_destroy(&usb_bus_idr); 1079 } 1080 1081 subsys_initcall(usb_init); 1082 module_exit(usb_exit); 1083 MODULE_LICENSE("GPL"); 1084