1 /* 2 * drivers/usb/core/usb.c 3 * 4 * (C) Copyright Linus Torvalds 1999 5 * (C) Copyright Johannes Erdfelt 1999-2001 6 * (C) Copyright Andreas Gal 1999 7 * (C) Copyright Gregory P. Smith 1999 8 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 9 * (C) Copyright Randy Dunlap 2000 10 * (C) Copyright David Brownell 2000-2004 11 * (C) Copyright Yggdrasil Computing, Inc. 2000 12 * (usb_device_id matching changes by Adam J. Richter) 13 * (C) Copyright Greg Kroah-Hartman 2002-2003 14 * 15 * NOTE! This is not actually a driver at all, rather this is 16 * just a collection of helper routines that implement the 17 * generic USB things that the real drivers can use.. 18 * 19 * Think of this as a "USB library" rather than anything else. 20 * It should be considered a slave, with no callbacks. Callbacks 21 * are evil. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/string.h> 26 #include <linux/bitops.h> 27 #include <linux/slab.h> 28 #include <linux/interrupt.h> /* for in_interrupt() */ 29 #include <linux/kmod.h> 30 #include <linux/init.h> 31 #include <linux/spinlock.h> 32 #include <linux/errno.h> 33 #include <linux/smp_lock.h> 34 #include <linux/usb.h> 35 #include <linux/mutex.h> 36 #include <linux/workqueue.h> 37 38 #include <asm/io.h> 39 #include <asm/scatterlist.h> 40 #include <linux/mm.h> 41 #include <linux/dma-mapping.h> 42 43 #include "hcd.h" 44 #include "usb.h" 45 46 47 const char *usbcore_name = "usbcore"; 48 49 static int nousb; /* Disable USB when built into kernel image */ 50 51 struct workqueue_struct *ksuspend_usb_wq; /* For autosuspend */ 52 53 54 /** 55 * usb_ifnum_to_if - get the interface object with a given interface number 56 * @dev: the device whose current configuration is considered 57 * @ifnum: the desired interface 58 * 59 * This walks the device descriptor for the currently active configuration 60 * and returns a pointer to the interface with that particular interface 61 * number, or null. 62 * 63 * Note that configuration descriptors are not required to assign interface 64 * numbers sequentially, so that it would be incorrect to assume that 65 * the first interface in that descriptor corresponds to interface zero. 66 * This routine helps device drivers avoid such mistakes. 67 * However, you should make sure that you do the right thing with any 68 * alternate settings available for this interfaces. 69 * 70 * Don't call this function unless you are bound to one of the interfaces 71 * on this device or you have locked the device! 72 */ 73 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 74 unsigned ifnum) 75 { 76 struct usb_host_config *config = dev->actconfig; 77 int i; 78 79 if (!config) 80 return NULL; 81 for (i = 0; i < config->desc.bNumInterfaces; i++) 82 if (config->interface[i]->altsetting[0] 83 .desc.bInterfaceNumber == ifnum) 84 return config->interface[i]; 85 86 return NULL; 87 } 88 89 /** 90 * usb_altnum_to_altsetting - get the altsetting structure with a given 91 * alternate setting number. 92 * @intf: the interface containing the altsetting in question 93 * @altnum: the desired alternate setting number 94 * 95 * This searches the altsetting array of the specified interface for 96 * an entry with the correct bAlternateSetting value and returns a pointer 97 * to that entry, or null. 98 * 99 * Note that altsettings need not be stored sequentially by number, so 100 * it would be incorrect to assume that the first altsetting entry in 101 * the array corresponds to altsetting zero. This routine helps device 102 * drivers avoid such mistakes. 103 * 104 * Don't call this function unless you are bound to the intf interface 105 * or you have locked the device! 106 */ 107 struct usb_host_interface *usb_altnum_to_altsetting(const struct usb_interface *intf, 108 unsigned int altnum) 109 { 110 int i; 111 112 for (i = 0; i < intf->num_altsetting; i++) { 113 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 114 return &intf->altsetting[i]; 115 } 116 return NULL; 117 } 118 119 struct find_interface_arg { 120 int minor; 121 struct usb_interface *interface; 122 }; 123 124 static int __find_interface(struct device * dev, void * data) 125 { 126 struct find_interface_arg *arg = data; 127 struct usb_interface *intf; 128 129 /* can't look at usb devices, only interfaces */ 130 if (is_usb_device(dev)) 131 return 0; 132 133 intf = to_usb_interface(dev); 134 if (intf->minor != -1 && intf->minor == arg->minor) { 135 arg->interface = intf; 136 return 1; 137 } 138 return 0; 139 } 140 141 /** 142 * usb_find_interface - find usb_interface pointer for driver and device 143 * @drv: the driver whose current configuration is considered 144 * @minor: the minor number of the desired device 145 * 146 * This walks the driver device list and returns a pointer to the interface 147 * with the matching minor. Note, this only works for devices that share the 148 * USB major number. 149 */ 150 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 151 { 152 struct find_interface_arg argb; 153 int retval; 154 155 argb.minor = minor; 156 argb.interface = NULL; 157 /* eat the error, it will be in argb.interface */ 158 retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb, 159 __find_interface); 160 return argb.interface; 161 } 162 163 /** 164 * usb_release_dev - free a usb device structure when all users of it are finished. 165 * @dev: device that's been disconnected 166 * 167 * Will be called only by the device core when all users of this usb device are 168 * done. 169 */ 170 static void usb_release_dev(struct device *dev) 171 { 172 struct usb_device *udev; 173 174 udev = to_usb_device(dev); 175 176 #ifdef CONFIG_USB_SUSPEND 177 cancel_delayed_work(&udev->autosuspend); 178 flush_workqueue(ksuspend_usb_wq); 179 #endif 180 usb_destroy_configuration(udev); 181 usb_put_hcd(bus_to_hcd(udev->bus)); 182 kfree(udev->product); 183 kfree(udev->manufacturer); 184 kfree(udev->serial); 185 kfree(udev); 186 } 187 188 #ifdef CONFIG_PM 189 190 static int ksuspend_usb_init(void) 191 { 192 ksuspend_usb_wq = create_singlethread_workqueue("ksuspend_usbd"); 193 if (!ksuspend_usb_wq) 194 return -ENOMEM; 195 return 0; 196 } 197 198 static void ksuspend_usb_cleanup(void) 199 { 200 destroy_workqueue(ksuspend_usb_wq); 201 } 202 203 #ifdef CONFIG_USB_SUSPEND 204 205 /* usb_autosuspend_work - callback routine to autosuspend a USB device */ 206 static void usb_autosuspend_work(struct work_struct *work) 207 { 208 struct usb_device *udev = 209 container_of(work, struct usb_device, autosuspend.work); 210 211 usb_pm_lock(udev); 212 udev->auto_pm = 1; 213 usb_suspend_both(udev, PMSG_SUSPEND); 214 usb_pm_unlock(udev); 215 } 216 217 #else 218 219 static void usb_autosuspend_work(struct work_struct *work) 220 {} 221 222 #endif /* CONFIG_USB_SUSPEND */ 223 224 #else 225 226 #define ksuspend_usb_init() 0 227 #define ksuspend_usb_cleanup() do {} while (0) 228 229 #endif /* CONFIG_PM */ 230 231 /** 232 * usb_alloc_dev - usb device constructor (usbcore-internal) 233 * @parent: hub to which device is connected; null to allocate a root hub 234 * @bus: bus used to access the device 235 * @port1: one-based index of port; ignored for root hubs 236 * Context: !in_interrupt() 237 * 238 * Only hub drivers (including virtual root hub drivers for host 239 * controllers) should ever call this. 240 * 241 * This call may not be used in a non-sleeping context. 242 */ 243 struct usb_device * 244 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1) 245 { 246 struct usb_device *dev; 247 248 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 249 if (!dev) 250 return NULL; 251 252 if (!usb_get_hcd(bus_to_hcd(bus))) { 253 kfree(dev); 254 return NULL; 255 } 256 257 device_initialize(&dev->dev); 258 dev->dev.bus = &usb_bus_type; 259 dev->dev.dma_mask = bus->controller->dma_mask; 260 dev->dev.release = usb_release_dev; 261 dev->state = USB_STATE_ATTACHED; 262 263 /* This magic assignment distinguishes devices from interfaces */ 264 dev->dev.platform_data = &usb_generic_driver; 265 266 INIT_LIST_HEAD(&dev->ep0.urb_list); 267 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 268 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 269 /* ep0 maxpacket comes later, from device descriptor */ 270 dev->ep_in[0] = dev->ep_out[0] = &dev->ep0; 271 272 /* Save readable and stable topology id, distinguishing devices 273 * by location for diagnostics, tools, driver model, etc. The 274 * string is a path along hub ports, from the root. Each device's 275 * dev->devpath will be stable until USB is re-cabled, and hubs 276 * are often labeled with these port numbers. The bus_id isn't 277 * as stable: bus->busnum changes easily from modprobe order, 278 * cardbus or pci hotplugging, and so on. 279 */ 280 if (unlikely(!parent)) { 281 dev->devpath[0] = '0'; 282 283 dev->dev.parent = bus->controller; 284 sprintf(&dev->dev.bus_id[0], "usb%d", bus->busnum); 285 } else { 286 /* match any labeling on the hubs; it's one-based */ 287 if (parent->devpath[0] == '0') 288 snprintf(dev->devpath, sizeof dev->devpath, 289 "%d", port1); 290 else 291 snprintf(dev->devpath, sizeof dev->devpath, 292 "%s.%d", parent->devpath, port1); 293 294 dev->dev.parent = &parent->dev; 295 sprintf(&dev->dev.bus_id[0], "%d-%s", 296 bus->busnum, dev->devpath); 297 298 /* hub driver sets up TT records */ 299 } 300 301 dev->portnum = port1; 302 dev->bus = bus; 303 dev->parent = parent; 304 INIT_LIST_HEAD(&dev->filelist); 305 306 #ifdef CONFIG_PM 307 mutex_init(&dev->pm_mutex); 308 INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work); 309 #endif 310 return dev; 311 } 312 313 /** 314 * usb_get_dev - increments the reference count of the usb device structure 315 * @dev: the device being referenced 316 * 317 * Each live reference to a device should be refcounted. 318 * 319 * Drivers for USB interfaces should normally record such references in 320 * their probe() methods, when they bind to an interface, and release 321 * them by calling usb_put_dev(), in their disconnect() methods. 322 * 323 * A pointer to the device with the incremented reference counter is returned. 324 */ 325 struct usb_device *usb_get_dev(struct usb_device *dev) 326 { 327 if (dev) 328 get_device(&dev->dev); 329 return dev; 330 } 331 332 /** 333 * usb_put_dev - release a use of the usb device structure 334 * @dev: device that's been disconnected 335 * 336 * Must be called when a user of a device is finished with it. When the last 337 * user of the device calls this function, the memory of the device is freed. 338 */ 339 void usb_put_dev(struct usb_device *dev) 340 { 341 if (dev) 342 put_device(&dev->dev); 343 } 344 345 /** 346 * usb_get_intf - increments the reference count of the usb interface structure 347 * @intf: the interface being referenced 348 * 349 * Each live reference to a interface must be refcounted. 350 * 351 * Drivers for USB interfaces should normally record such references in 352 * their probe() methods, when they bind to an interface, and release 353 * them by calling usb_put_intf(), in their disconnect() methods. 354 * 355 * A pointer to the interface with the incremented reference counter is 356 * returned. 357 */ 358 struct usb_interface *usb_get_intf(struct usb_interface *intf) 359 { 360 if (intf) 361 get_device(&intf->dev); 362 return intf; 363 } 364 365 /** 366 * usb_put_intf - release a use of the usb interface structure 367 * @intf: interface that's been decremented 368 * 369 * Must be called when a user of an interface is finished with it. When the 370 * last user of the interface calls this function, the memory of the interface 371 * is freed. 372 */ 373 void usb_put_intf(struct usb_interface *intf) 374 { 375 if (intf) 376 put_device(&intf->dev); 377 } 378 379 380 /* USB device locking 381 * 382 * USB devices and interfaces are locked using the semaphore in their 383 * embedded struct device. The hub driver guarantees that whenever a 384 * device is connected or disconnected, drivers are called with the 385 * USB device locked as well as their particular interface. 386 * 387 * Complications arise when several devices are to be locked at the same 388 * time. Only hub-aware drivers that are part of usbcore ever have to 389 * do this; nobody else needs to worry about it. The rule for locking 390 * is simple: 391 * 392 * When locking both a device and its parent, always lock the 393 * the parent first. 394 */ 395 396 /** 397 * usb_lock_device_for_reset - cautiously acquire the lock for a 398 * usb device structure 399 * @udev: device that's being locked 400 * @iface: interface bound to the driver making the request (optional) 401 * 402 * Attempts to acquire the device lock, but fails if the device is 403 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 404 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 405 * lock, the routine polls repeatedly. This is to prevent deadlock with 406 * disconnect; in some drivers (such as usb-storage) the disconnect() 407 * or suspend() method will block waiting for a device reset to complete. 408 * 409 * Returns a negative error code for failure, otherwise 1 or 0 to indicate 410 * that the device will or will not have to be unlocked. (0 can be 411 * returned when an interface is given and is BINDING, because in that 412 * case the driver already owns the device lock.) 413 */ 414 int usb_lock_device_for_reset(struct usb_device *udev, 415 const struct usb_interface *iface) 416 { 417 unsigned long jiffies_expire = jiffies + HZ; 418 419 if (udev->state == USB_STATE_NOTATTACHED) 420 return -ENODEV; 421 if (udev->state == USB_STATE_SUSPENDED) 422 return -EHOSTUNREACH; 423 if (iface) { 424 switch (iface->condition) { 425 case USB_INTERFACE_BINDING: 426 return 0; 427 case USB_INTERFACE_BOUND: 428 break; 429 default: 430 return -EINTR; 431 } 432 } 433 434 while (usb_trylock_device(udev) != 0) { 435 436 /* If we can't acquire the lock after waiting one second, 437 * we're probably deadlocked */ 438 if (time_after(jiffies, jiffies_expire)) 439 return -EBUSY; 440 441 msleep(15); 442 if (udev->state == USB_STATE_NOTATTACHED) 443 return -ENODEV; 444 if (udev->state == USB_STATE_SUSPENDED) 445 return -EHOSTUNREACH; 446 if (iface && iface->condition != USB_INTERFACE_BOUND) 447 return -EINTR; 448 } 449 return 1; 450 } 451 452 453 static struct usb_device *match_device(struct usb_device *dev, 454 u16 vendor_id, u16 product_id) 455 { 456 struct usb_device *ret_dev = NULL; 457 int child; 458 459 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n", 460 le16_to_cpu(dev->descriptor.idVendor), 461 le16_to_cpu(dev->descriptor.idProduct)); 462 463 /* see if this device matches */ 464 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) && 465 (product_id == le16_to_cpu(dev->descriptor.idProduct))) { 466 dev_dbg(&dev->dev, "matched this device!\n"); 467 ret_dev = usb_get_dev(dev); 468 goto exit; 469 } 470 471 /* look through all of the children of this device */ 472 for (child = 0; child < dev->maxchild; ++child) { 473 if (dev->children[child]) { 474 usb_lock_device(dev->children[child]); 475 ret_dev = match_device(dev->children[child], 476 vendor_id, product_id); 477 usb_unlock_device(dev->children[child]); 478 if (ret_dev) 479 goto exit; 480 } 481 } 482 exit: 483 return ret_dev; 484 } 485 486 /** 487 * usb_find_device - find a specific usb device in the system 488 * @vendor_id: the vendor id of the device to find 489 * @product_id: the product id of the device to find 490 * 491 * Returns a pointer to a struct usb_device if such a specified usb 492 * device is present in the system currently. The usage count of the 493 * device will be incremented if a device is found. Make sure to call 494 * usb_put_dev() when the caller is finished with the device. 495 * 496 * If a device with the specified vendor and product id is not found, 497 * NULL is returned. 498 */ 499 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id) 500 { 501 struct list_head *buslist; 502 struct usb_bus *bus; 503 struct usb_device *dev = NULL; 504 505 mutex_lock(&usb_bus_list_lock); 506 for (buslist = usb_bus_list.next; 507 buslist != &usb_bus_list; 508 buslist = buslist->next) { 509 bus = container_of(buslist, struct usb_bus, bus_list); 510 if (!bus->root_hub) 511 continue; 512 usb_lock_device(bus->root_hub); 513 dev = match_device(bus->root_hub, vendor_id, product_id); 514 usb_unlock_device(bus->root_hub); 515 if (dev) 516 goto exit; 517 } 518 exit: 519 mutex_unlock(&usb_bus_list_lock); 520 return dev; 521 } 522 523 /** 524 * usb_get_current_frame_number - return current bus frame number 525 * @dev: the device whose bus is being queried 526 * 527 * Returns the current frame number for the USB host controller 528 * used with the given USB device. This can be used when scheduling 529 * isochronous requests. 530 * 531 * Note that different kinds of host controller have different 532 * "scheduling horizons". While one type might support scheduling only 533 * 32 frames into the future, others could support scheduling up to 534 * 1024 frames into the future. 535 */ 536 int usb_get_current_frame_number(struct usb_device *dev) 537 { 538 return usb_hcd_get_frame_number(dev); 539 } 540 541 /*-------------------------------------------------------------------*/ 542 /* 543 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 544 * extra field of the interface and endpoint descriptor structs. 545 */ 546 547 int __usb_get_extra_descriptor(char *buffer, unsigned size, 548 unsigned char type, void **ptr) 549 { 550 struct usb_descriptor_header *header; 551 552 while (size >= sizeof(struct usb_descriptor_header)) { 553 header = (struct usb_descriptor_header *)buffer; 554 555 if (header->bLength < 2) { 556 printk(KERN_ERR 557 "%s: bogus descriptor, type %d length %d\n", 558 usbcore_name, 559 header->bDescriptorType, 560 header->bLength); 561 return -1; 562 } 563 564 if (header->bDescriptorType == type) { 565 *ptr = header; 566 return 0; 567 } 568 569 buffer += header->bLength; 570 size -= header->bLength; 571 } 572 return -1; 573 } 574 575 /** 576 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 577 * @dev: device the buffer will be used with 578 * @size: requested buffer size 579 * @mem_flags: affect whether allocation may block 580 * @dma: used to return DMA address of buffer 581 * 582 * Return value is either null (indicating no buffer could be allocated), or 583 * the cpu-space pointer to a buffer that may be used to perform DMA to the 584 * specified device. Such cpu-space buffers are returned along with the DMA 585 * address (through the pointer provided). 586 * 587 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 588 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O 589 * mapping hardware for long idle periods. The implementation varies between 590 * platforms, depending on details of how DMA will work to this device. 591 * Using these buffers also helps prevent cacheline sharing problems on 592 * architectures where CPU caches are not DMA-coherent. 593 * 594 * When the buffer is no longer used, free it with usb_buffer_free(). 595 */ 596 void *usb_buffer_alloc( 597 struct usb_device *dev, 598 size_t size, 599 gfp_t mem_flags, 600 dma_addr_t *dma 601 ) 602 { 603 if (!dev || !dev->bus) 604 return NULL; 605 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 606 } 607 608 /** 609 * usb_buffer_free - free memory allocated with usb_buffer_alloc() 610 * @dev: device the buffer was used with 611 * @size: requested buffer size 612 * @addr: CPU address of buffer 613 * @dma: DMA address of buffer 614 * 615 * This reclaims an I/O buffer, letting it be reused. The memory must have 616 * been allocated using usb_buffer_alloc(), and the parameters must match 617 * those provided in that allocation request. 618 */ 619 void usb_buffer_free( 620 struct usb_device *dev, 621 size_t size, 622 void *addr, 623 dma_addr_t dma 624 ) 625 { 626 if (!dev || !dev->bus) 627 return; 628 if (!addr) 629 return; 630 hcd_buffer_free(dev->bus, size, addr, dma); 631 } 632 633 /** 634 * usb_buffer_map - create DMA mapping(s) for an urb 635 * @urb: urb whose transfer_buffer/setup_packet will be mapped 636 * 637 * Return value is either null (indicating no buffer could be mapped), or 638 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are 639 * added to urb->transfer_flags if the operation succeeds. If the device 640 * is connected to this system through a non-DMA controller, this operation 641 * always succeeds. 642 * 643 * This call would normally be used for an urb which is reused, perhaps 644 * as the target of a large periodic transfer, with usb_buffer_dmasync() 645 * calls to synchronize memory and dma state. 646 * 647 * Reverse the effect of this call with usb_buffer_unmap(). 648 */ 649 #if 0 650 struct urb *usb_buffer_map(struct urb *urb) 651 { 652 struct usb_bus *bus; 653 struct device *controller; 654 655 if (!urb 656 || !urb->dev 657 || !(bus = urb->dev->bus) 658 || !(controller = bus->controller)) 659 return NULL; 660 661 if (controller->dma_mask) { 662 urb->transfer_dma = dma_map_single(controller, 663 urb->transfer_buffer, urb->transfer_buffer_length, 664 usb_pipein(urb->pipe) 665 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 666 if (usb_pipecontrol(urb->pipe)) 667 urb->setup_dma = dma_map_single(controller, 668 urb->setup_packet, 669 sizeof(struct usb_ctrlrequest), 670 DMA_TO_DEVICE); 671 // FIXME generic api broken like pci, can't report errors 672 // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; 673 } else 674 urb->transfer_dma = ~0; 675 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP 676 | URB_NO_SETUP_DMA_MAP); 677 return urb; 678 } 679 #endif /* 0 */ 680 681 /* XXX DISABLED, no users currently. If you wish to re-enable this 682 * XXX please determine whether the sync is to transfer ownership of 683 * XXX the buffer from device to cpu or vice verse, and thusly use the 684 * XXX appropriate _for_{cpu,device}() method. -DaveM 685 */ 686 #if 0 687 688 /** 689 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s) 690 * @urb: urb whose transfer_buffer/setup_packet will be synchronized 691 */ 692 void usb_buffer_dmasync(struct urb *urb) 693 { 694 struct usb_bus *bus; 695 struct device *controller; 696 697 if (!urb 698 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 699 || !urb->dev 700 || !(bus = urb->dev->bus) 701 || !(controller = bus->controller)) 702 return; 703 704 if (controller->dma_mask) { 705 dma_sync_single(controller, 706 urb->transfer_dma, urb->transfer_buffer_length, 707 usb_pipein(urb->pipe) 708 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 709 if (usb_pipecontrol(urb->pipe)) 710 dma_sync_single(controller, 711 urb->setup_dma, 712 sizeof(struct usb_ctrlrequest), 713 DMA_TO_DEVICE); 714 } 715 } 716 #endif 717 718 /** 719 * usb_buffer_unmap - free DMA mapping(s) for an urb 720 * @urb: urb whose transfer_buffer will be unmapped 721 * 722 * Reverses the effect of usb_buffer_map(). 723 */ 724 #if 0 725 void usb_buffer_unmap(struct urb *urb) 726 { 727 struct usb_bus *bus; 728 struct device *controller; 729 730 if (!urb 731 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 732 || !urb->dev 733 || !(bus = urb->dev->bus) 734 || !(controller = bus->controller)) 735 return; 736 737 if (controller->dma_mask) { 738 dma_unmap_single(controller, 739 urb->transfer_dma, urb->transfer_buffer_length, 740 usb_pipein(urb->pipe) 741 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 742 if (usb_pipecontrol(urb->pipe)) 743 dma_unmap_single(controller, 744 urb->setup_dma, 745 sizeof(struct usb_ctrlrequest), 746 DMA_TO_DEVICE); 747 } 748 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP 749 | URB_NO_SETUP_DMA_MAP); 750 } 751 #endif /* 0 */ 752 753 /** 754 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint 755 * @dev: device to which the scatterlist will be mapped 756 * @pipe: endpoint defining the mapping direction 757 * @sg: the scatterlist to map 758 * @nents: the number of entries in the scatterlist 759 * 760 * Return value is either < 0 (indicating no buffers could be mapped), or 761 * the number of DMA mapping array entries in the scatterlist. 762 * 763 * The caller is responsible for placing the resulting DMA addresses from 764 * the scatterlist into URB transfer buffer pointers, and for setting the 765 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs. 766 * 767 * Top I/O rates come from queuing URBs, instead of waiting for each one 768 * to complete before starting the next I/O. This is particularly easy 769 * to do with scatterlists. Just allocate and submit one URB for each DMA 770 * mapping entry returned, stopping on the first error or when all succeed. 771 * Better yet, use the usb_sg_*() calls, which do that (and more) for you. 772 * 773 * This call would normally be used when translating scatterlist requests, 774 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it 775 * may be able to coalesce mappings for improved I/O efficiency. 776 * 777 * Reverse the effect of this call with usb_buffer_unmap_sg(). 778 */ 779 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe, 780 struct scatterlist *sg, int nents) 781 { 782 struct usb_bus *bus; 783 struct device *controller; 784 785 if (!dev 786 || usb_pipecontrol(pipe) 787 || !(bus = dev->bus) 788 || !(controller = bus->controller) 789 || !controller->dma_mask) 790 return -1; 791 792 // FIXME generic api broken like pci, can't report errors 793 return dma_map_sg(controller, sg, nents, 794 usb_pipein(pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 795 } 796 797 /* XXX DISABLED, no users currently. If you wish to re-enable this 798 * XXX please determine whether the sync is to transfer ownership of 799 * XXX the buffer from device to cpu or vice verse, and thusly use the 800 * XXX appropriate _for_{cpu,device}() method. -DaveM 801 */ 802 #if 0 803 804 /** 805 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s) 806 * @dev: device to which the scatterlist will be mapped 807 * @pipe: endpoint defining the mapping direction 808 * @sg: the scatterlist to synchronize 809 * @n_hw_ents: the positive return value from usb_buffer_map_sg 810 * 811 * Use this when you are re-using a scatterlist's data buffers for 812 * another USB request. 813 */ 814 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe, 815 struct scatterlist *sg, int n_hw_ents) 816 { 817 struct usb_bus *bus; 818 struct device *controller; 819 820 if (!dev 821 || !(bus = dev->bus) 822 || !(controller = bus->controller) 823 || !controller->dma_mask) 824 return; 825 826 dma_sync_sg(controller, sg, n_hw_ents, 827 usb_pipein(pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 828 } 829 #endif 830 831 /** 832 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist 833 * @dev: device to which the scatterlist will be mapped 834 * @pipe: endpoint defining the mapping direction 835 * @sg: the scatterlist to unmap 836 * @n_hw_ents: the positive return value from usb_buffer_map_sg 837 * 838 * Reverses the effect of usb_buffer_map_sg(). 839 */ 840 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe, 841 struct scatterlist *sg, int n_hw_ents) 842 { 843 struct usb_bus *bus; 844 struct device *controller; 845 846 if (!dev 847 || !(bus = dev->bus) 848 || !(controller = bus->controller) 849 || !controller->dma_mask) 850 return; 851 852 dma_unmap_sg(controller, sg, n_hw_ents, 853 usb_pipein(pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 854 } 855 856 /* format to disable USB on kernel command line is: nousb */ 857 __module_param_call("", nousb, param_set_bool, param_get_bool, &nousb, 0444); 858 859 /* 860 * for external read access to <nousb> 861 */ 862 int usb_disabled(void) 863 { 864 return nousb; 865 } 866 867 /* 868 * Init 869 */ 870 static int __init usb_init(void) 871 { 872 int retval; 873 if (nousb) { 874 pr_info("%s: USB support disabled\n", usbcore_name); 875 return 0; 876 } 877 878 retval = ksuspend_usb_init(); 879 if (retval) 880 goto out; 881 retval = bus_register(&usb_bus_type); 882 if (retval) 883 goto bus_register_failed; 884 retval = usb_host_init(); 885 if (retval) 886 goto host_init_failed; 887 retval = usb_major_init(); 888 if (retval) 889 goto major_init_failed; 890 retval = usb_register(&usbfs_driver); 891 if (retval) 892 goto driver_register_failed; 893 retval = usbdev_init(); 894 if (retval) 895 goto usbdevice_init_failed; 896 retval = usbfs_init(); 897 if (retval) 898 goto fs_init_failed; 899 retval = usb_hub_init(); 900 if (retval) 901 goto hub_init_failed; 902 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 903 if (!retval) 904 goto out; 905 906 usb_hub_cleanup(); 907 hub_init_failed: 908 usbfs_cleanup(); 909 fs_init_failed: 910 usbdev_cleanup(); 911 usbdevice_init_failed: 912 usb_deregister(&usbfs_driver); 913 driver_register_failed: 914 usb_major_cleanup(); 915 major_init_failed: 916 usb_host_cleanup(); 917 host_init_failed: 918 bus_unregister(&usb_bus_type); 919 bus_register_failed: 920 ksuspend_usb_cleanup(); 921 out: 922 return retval; 923 } 924 925 /* 926 * Cleanup 927 */ 928 static void __exit usb_exit(void) 929 { 930 /* This will matter if shutdown/reboot does exitcalls. */ 931 if (nousb) 932 return; 933 934 usb_deregister_device_driver(&usb_generic_driver); 935 usb_major_cleanup(); 936 usbfs_cleanup(); 937 usb_deregister(&usbfs_driver); 938 usbdev_cleanup(); 939 usb_hub_cleanup(); 940 usb_host_cleanup(); 941 bus_unregister(&usb_bus_type); 942 ksuspend_usb_cleanup(); 943 } 944 945 subsys_initcall(usb_init); 946 module_exit(usb_exit); 947 948 /* 949 * USB may be built into the kernel or be built as modules. 950 * These symbols are exported for device (or host controller) 951 * driver modules to use. 952 */ 953 954 EXPORT_SYMBOL(usb_disabled); 955 956 EXPORT_SYMBOL_GPL(usb_get_intf); 957 EXPORT_SYMBOL_GPL(usb_put_intf); 958 959 EXPORT_SYMBOL(usb_put_dev); 960 EXPORT_SYMBOL(usb_get_dev); 961 EXPORT_SYMBOL(usb_hub_tt_clear_buffer); 962 963 EXPORT_SYMBOL(usb_lock_device_for_reset); 964 965 EXPORT_SYMBOL(usb_find_interface); 966 EXPORT_SYMBOL(usb_ifnum_to_if); 967 EXPORT_SYMBOL(usb_altnum_to_altsetting); 968 969 EXPORT_SYMBOL(__usb_get_extra_descriptor); 970 971 EXPORT_SYMBOL(usb_find_device); 972 EXPORT_SYMBOL(usb_get_current_frame_number); 973 974 EXPORT_SYMBOL(usb_buffer_alloc); 975 EXPORT_SYMBOL(usb_buffer_free); 976 977 #if 0 978 EXPORT_SYMBOL(usb_buffer_map); 979 EXPORT_SYMBOL(usb_buffer_dmasync); 980 EXPORT_SYMBOL(usb_buffer_unmap); 981 #endif 982 983 EXPORT_SYMBOL(usb_buffer_map_sg); 984 #if 0 985 EXPORT_SYMBOL(usb_buffer_dmasync_sg); 986 #endif 987 EXPORT_SYMBOL(usb_buffer_unmap_sg); 988 989 MODULE_LICENSE("GPL"); 990