1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/usb/core/usb.c 4 * 5 * (C) Copyright Linus Torvalds 1999 6 * (C) Copyright Johannes Erdfelt 1999-2001 7 * (C) Copyright Andreas Gal 1999 8 * (C) Copyright Gregory P. Smith 1999 9 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 10 * (C) Copyright Randy Dunlap 2000 11 * (C) Copyright David Brownell 2000-2004 12 * (C) Copyright Yggdrasil Computing, Inc. 2000 13 * (usb_device_id matching changes by Adam J. Richter) 14 * (C) Copyright Greg Kroah-Hartman 2002-2003 15 * 16 * Released under the GPLv2 only. 17 * 18 * NOTE! This is not actually a driver at all, rather this is 19 * just a collection of helper routines that implement the 20 * generic USB things that the real drivers can use.. 21 * 22 * Think of this as a "USB library" rather than anything else, 23 * with no callbacks. Callbacks are evil. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/of.h> 29 #include <linux/string.h> 30 #include <linux/bitops.h> 31 #include <linux/slab.h> 32 #include <linux/kmod.h> 33 #include <linux/init.h> 34 #include <linux/spinlock.h> 35 #include <linux/errno.h> 36 #include <linux/usb.h> 37 #include <linux/usb/hcd.h> 38 #include <linux/mutex.h> 39 #include <linux/workqueue.h> 40 #include <linux/debugfs.h> 41 #include <linux/usb/of.h> 42 43 #include <asm/io.h> 44 #include <linux/scatterlist.h> 45 #include <linux/mm.h> 46 #include <linux/dma-mapping.h> 47 48 #include "hub.h" 49 50 const char *usbcore_name = "usbcore"; 51 52 static bool nousb; /* Disable USB when built into kernel image */ 53 54 module_param(nousb, bool, 0444); 55 56 /* 57 * for external read access to <nousb> 58 */ 59 int usb_disabled(void) 60 { 61 return nousb; 62 } 63 EXPORT_SYMBOL_GPL(usb_disabled); 64 65 #ifdef CONFIG_PM 66 /* Default delay value, in seconds */ 67 static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY; 68 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); 69 MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); 70 71 #else 72 #define usb_autosuspend_delay 0 73 #endif 74 75 static bool match_endpoint(struct usb_endpoint_descriptor *epd, 76 struct usb_endpoint_descriptor **bulk_in, 77 struct usb_endpoint_descriptor **bulk_out, 78 struct usb_endpoint_descriptor **int_in, 79 struct usb_endpoint_descriptor **int_out) 80 { 81 switch (usb_endpoint_type(epd)) { 82 case USB_ENDPOINT_XFER_BULK: 83 if (usb_endpoint_dir_in(epd)) { 84 if (bulk_in && !*bulk_in) { 85 *bulk_in = epd; 86 break; 87 } 88 } else { 89 if (bulk_out && !*bulk_out) { 90 *bulk_out = epd; 91 break; 92 } 93 } 94 95 return false; 96 case USB_ENDPOINT_XFER_INT: 97 if (usb_endpoint_dir_in(epd)) { 98 if (int_in && !*int_in) { 99 *int_in = epd; 100 break; 101 } 102 } else { 103 if (int_out && !*int_out) { 104 *int_out = epd; 105 break; 106 } 107 } 108 109 return false; 110 default: 111 return false; 112 } 113 114 return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) && 115 (!int_in || *int_in) && (!int_out || *int_out); 116 } 117 118 /** 119 * usb_find_common_endpoints() -- look up common endpoint descriptors 120 * @alt: alternate setting to search 121 * @bulk_in: pointer to descriptor pointer, or NULL 122 * @bulk_out: pointer to descriptor pointer, or NULL 123 * @int_in: pointer to descriptor pointer, or NULL 124 * @int_out: pointer to descriptor pointer, or NULL 125 * 126 * Search the alternate setting's endpoint descriptors for the first bulk-in, 127 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the 128 * provided pointers (unless they are NULL). 129 * 130 * If a requested endpoint is not found, the corresponding pointer is set to 131 * NULL. 132 * 133 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. 134 */ 135 int usb_find_common_endpoints(struct usb_host_interface *alt, 136 struct usb_endpoint_descriptor **bulk_in, 137 struct usb_endpoint_descriptor **bulk_out, 138 struct usb_endpoint_descriptor **int_in, 139 struct usb_endpoint_descriptor **int_out) 140 { 141 struct usb_endpoint_descriptor *epd; 142 int i; 143 144 if (bulk_in) 145 *bulk_in = NULL; 146 if (bulk_out) 147 *bulk_out = NULL; 148 if (int_in) 149 *int_in = NULL; 150 if (int_out) 151 *int_out = NULL; 152 153 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 154 epd = &alt->endpoint[i].desc; 155 156 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) 157 return 0; 158 } 159 160 return -ENXIO; 161 } 162 EXPORT_SYMBOL_GPL(usb_find_common_endpoints); 163 164 /** 165 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors 166 * @alt: alternate setting to search 167 * @bulk_in: pointer to descriptor pointer, or NULL 168 * @bulk_out: pointer to descriptor pointer, or NULL 169 * @int_in: pointer to descriptor pointer, or NULL 170 * @int_out: pointer to descriptor pointer, or NULL 171 * 172 * Search the alternate setting's endpoint descriptors for the last bulk-in, 173 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the 174 * provided pointers (unless they are NULL). 175 * 176 * If a requested endpoint is not found, the corresponding pointer is set to 177 * NULL. 178 * 179 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. 180 */ 181 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 182 struct usb_endpoint_descriptor **bulk_in, 183 struct usb_endpoint_descriptor **bulk_out, 184 struct usb_endpoint_descriptor **int_in, 185 struct usb_endpoint_descriptor **int_out) 186 { 187 struct usb_endpoint_descriptor *epd; 188 int i; 189 190 if (bulk_in) 191 *bulk_in = NULL; 192 if (bulk_out) 193 *bulk_out = NULL; 194 if (int_in) 195 *int_in = NULL; 196 if (int_out) 197 *int_out = NULL; 198 199 for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) { 200 epd = &alt->endpoint[i].desc; 201 202 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) 203 return 0; 204 } 205 206 return -ENXIO; 207 } 208 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse); 209 210 /** 211 * usb_find_endpoint() - Given an endpoint address, search for the endpoint's 212 * usb_host_endpoint structure in an interface's current altsetting. 213 * @intf: the interface whose current altsetting should be searched 214 * @ep_addr: the endpoint address (number and direction) to find 215 * 216 * Search the altsetting's list of endpoints for one with the specified address. 217 * 218 * Return: Pointer to the usb_host_endpoint if found, %NULL otherwise. 219 */ 220 static const struct usb_host_endpoint *usb_find_endpoint( 221 const struct usb_interface *intf, unsigned int ep_addr) 222 { 223 int n; 224 const struct usb_host_endpoint *ep; 225 226 n = intf->cur_altsetting->desc.bNumEndpoints; 227 ep = intf->cur_altsetting->endpoint; 228 for (; n > 0; (--n, ++ep)) { 229 if (ep->desc.bEndpointAddress == ep_addr) 230 return ep; 231 } 232 return NULL; 233 } 234 235 /** 236 * usb_check_bulk_endpoints - Check whether an interface's current altsetting 237 * contains a set of bulk endpoints with the given addresses. 238 * @intf: the interface whose current altsetting should be searched 239 * @ep_addrs: 0-terminated array of the endpoint addresses (number and 240 * direction) to look for 241 * 242 * Search for endpoints with the specified addresses and check their types. 243 * 244 * Return: %true if all the endpoints are found and are bulk, %false otherwise. 245 */ 246 bool usb_check_bulk_endpoints( 247 const struct usb_interface *intf, const u8 *ep_addrs) 248 { 249 const struct usb_host_endpoint *ep; 250 251 for (; *ep_addrs; ++ep_addrs) { 252 ep = usb_find_endpoint(intf, *ep_addrs); 253 if (!ep || !usb_endpoint_xfer_bulk(&ep->desc)) 254 return false; 255 } 256 return true; 257 } 258 EXPORT_SYMBOL_GPL(usb_check_bulk_endpoints); 259 260 /** 261 * usb_check_int_endpoints - Check whether an interface's current altsetting 262 * contains a set of interrupt endpoints with the given addresses. 263 * @intf: the interface whose current altsetting should be searched 264 * @ep_addrs: 0-terminated array of the endpoint addresses (number and 265 * direction) to look for 266 * 267 * Search for endpoints with the specified addresses and check their types. 268 * 269 * Return: %true if all the endpoints are found and are interrupt, 270 * %false otherwise. 271 */ 272 bool usb_check_int_endpoints( 273 const struct usb_interface *intf, const u8 *ep_addrs) 274 { 275 const struct usb_host_endpoint *ep; 276 277 for (; *ep_addrs; ++ep_addrs) { 278 ep = usb_find_endpoint(intf, *ep_addrs); 279 if (!ep || !usb_endpoint_xfer_int(&ep->desc)) 280 return false; 281 } 282 return true; 283 } 284 EXPORT_SYMBOL_GPL(usb_check_int_endpoints); 285 286 /** 287 * usb_find_alt_setting() - Given a configuration, find the alternate setting 288 * for the given interface. 289 * @config: the configuration to search (not necessarily the current config). 290 * @iface_num: interface number to search in 291 * @alt_num: alternate interface setting number to search for. 292 * 293 * Search the configuration's interface cache for the given alt setting. 294 * 295 * Return: The alternate setting, if found. %NULL otherwise. 296 */ 297 struct usb_host_interface *usb_find_alt_setting( 298 struct usb_host_config *config, 299 unsigned int iface_num, 300 unsigned int alt_num) 301 { 302 struct usb_interface_cache *intf_cache = NULL; 303 int i; 304 305 if (!config) 306 return NULL; 307 for (i = 0; i < config->desc.bNumInterfaces; i++) { 308 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber 309 == iface_num) { 310 intf_cache = config->intf_cache[i]; 311 break; 312 } 313 } 314 if (!intf_cache) 315 return NULL; 316 for (i = 0; i < intf_cache->num_altsetting; i++) 317 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num) 318 return &intf_cache->altsetting[i]; 319 320 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, " 321 "config %u\n", alt_num, iface_num, 322 config->desc.bConfigurationValue); 323 return NULL; 324 } 325 EXPORT_SYMBOL_GPL(usb_find_alt_setting); 326 327 /** 328 * usb_ifnum_to_if - get the interface object with a given interface number 329 * @dev: the device whose current configuration is considered 330 * @ifnum: the desired interface 331 * 332 * This walks the device descriptor for the currently active configuration 333 * to find the interface object with the particular interface number. 334 * 335 * Note that configuration descriptors are not required to assign interface 336 * numbers sequentially, so that it would be incorrect to assume that 337 * the first interface in that descriptor corresponds to interface zero. 338 * This routine helps device drivers avoid such mistakes. 339 * However, you should make sure that you do the right thing with any 340 * alternate settings available for this interfaces. 341 * 342 * Don't call this function unless you are bound to one of the interfaces 343 * on this device or you have locked the device! 344 * 345 * Return: A pointer to the interface that has @ifnum as interface number, 346 * if found. %NULL otherwise. 347 */ 348 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 349 unsigned ifnum) 350 { 351 struct usb_host_config *config = dev->actconfig; 352 int i; 353 354 if (!config) 355 return NULL; 356 for (i = 0; i < config->desc.bNumInterfaces; i++) 357 if (config->interface[i]->altsetting[0] 358 .desc.bInterfaceNumber == ifnum) 359 return config->interface[i]; 360 361 return NULL; 362 } 363 EXPORT_SYMBOL_GPL(usb_ifnum_to_if); 364 365 /** 366 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. 367 * @intf: the interface containing the altsetting in question 368 * @altnum: the desired alternate setting number 369 * 370 * This searches the altsetting array of the specified interface for 371 * an entry with the correct bAlternateSetting value. 372 * 373 * Note that altsettings need not be stored sequentially by number, so 374 * it would be incorrect to assume that the first altsetting entry in 375 * the array corresponds to altsetting zero. This routine helps device 376 * drivers avoid such mistakes. 377 * 378 * Don't call this function unless you are bound to the intf interface 379 * or you have locked the device! 380 * 381 * Return: A pointer to the entry of the altsetting array of @intf that 382 * has @altnum as the alternate setting number. %NULL if not found. 383 */ 384 struct usb_host_interface *usb_altnum_to_altsetting( 385 const struct usb_interface *intf, 386 unsigned int altnum) 387 { 388 int i; 389 390 for (i = 0; i < intf->num_altsetting; i++) { 391 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 392 return &intf->altsetting[i]; 393 } 394 return NULL; 395 } 396 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); 397 398 struct find_interface_arg { 399 int minor; 400 struct device_driver *drv; 401 }; 402 403 static int __find_interface(struct device *dev, const void *data) 404 { 405 const struct find_interface_arg *arg = data; 406 struct usb_interface *intf; 407 408 if (!is_usb_interface(dev)) 409 return 0; 410 411 if (dev->driver != arg->drv) 412 return 0; 413 intf = to_usb_interface(dev); 414 return intf->minor == arg->minor; 415 } 416 417 /** 418 * usb_find_interface - find usb_interface pointer for driver and device 419 * @drv: the driver whose current configuration is considered 420 * @minor: the minor number of the desired device 421 * 422 * This walks the bus device list and returns a pointer to the interface 423 * with the matching minor and driver. Note, this only works for devices 424 * that share the USB major number. 425 * 426 * Return: A pointer to the interface with the matching major and @minor. 427 */ 428 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 429 { 430 struct find_interface_arg argb; 431 struct device *dev; 432 433 argb.minor = minor; 434 argb.drv = &drv->drvwrap.driver; 435 436 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface); 437 438 /* Drop reference count from bus_find_device */ 439 put_device(dev); 440 441 return dev ? to_usb_interface(dev) : NULL; 442 } 443 EXPORT_SYMBOL_GPL(usb_find_interface); 444 445 struct each_dev_arg { 446 void *data; 447 int (*fn)(struct usb_device *, void *); 448 }; 449 450 static int __each_dev(struct device *dev, void *data) 451 { 452 struct each_dev_arg *arg = (struct each_dev_arg *)data; 453 454 /* There are struct usb_interface on the same bus, filter them out */ 455 if (!is_usb_device(dev)) 456 return 0; 457 458 return arg->fn(to_usb_device(dev), arg->data); 459 } 460 461 /** 462 * usb_for_each_dev - iterate over all USB devices in the system 463 * @data: data pointer that will be handed to the callback function 464 * @fn: callback function to be called for each USB device 465 * 466 * Iterate over all USB devices and call @fn for each, passing it @data. If it 467 * returns anything other than 0, we break the iteration prematurely and return 468 * that value. 469 */ 470 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)) 471 { 472 struct each_dev_arg arg = {data, fn}; 473 474 return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev); 475 } 476 EXPORT_SYMBOL_GPL(usb_for_each_dev); 477 478 /** 479 * usb_release_dev - free a usb device structure when all users of it are finished. 480 * @dev: device that's been disconnected 481 * 482 * Will be called only by the device core when all users of this usb device are 483 * done. 484 */ 485 static void usb_release_dev(struct device *dev) 486 { 487 struct usb_device *udev; 488 struct usb_hcd *hcd; 489 490 udev = to_usb_device(dev); 491 hcd = bus_to_hcd(udev->bus); 492 493 usb_destroy_configuration(udev); 494 usb_release_bos_descriptor(udev); 495 of_node_put(dev->of_node); 496 usb_put_hcd(hcd); 497 kfree(udev->product); 498 kfree(udev->manufacturer); 499 kfree(udev->serial); 500 kfree(udev); 501 } 502 503 static int usb_dev_uevent(const struct device *dev, struct kobj_uevent_env *env) 504 { 505 const struct usb_device *usb_dev; 506 507 usb_dev = to_usb_device(dev); 508 509 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) 510 return -ENOMEM; 511 512 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) 513 return -ENOMEM; 514 515 return 0; 516 } 517 518 #ifdef CONFIG_PM 519 520 /* USB device Power-Management thunks. 521 * There's no need to distinguish here between quiescing a USB device 522 * and powering it down; the generic_suspend() routine takes care of 523 * it by skipping the usb_port_suspend() call for a quiesce. And for 524 * USB interfaces there's no difference at all. 525 */ 526 527 static int usb_dev_prepare(struct device *dev) 528 { 529 return 0; /* Implement eventually? */ 530 } 531 532 static void usb_dev_complete(struct device *dev) 533 { 534 /* Currently used only for rebinding interfaces */ 535 usb_resume_complete(dev); 536 } 537 538 static int usb_dev_suspend(struct device *dev) 539 { 540 return usb_suspend(dev, PMSG_SUSPEND); 541 } 542 543 static int usb_dev_resume(struct device *dev) 544 { 545 return usb_resume(dev, PMSG_RESUME); 546 } 547 548 static int usb_dev_freeze(struct device *dev) 549 { 550 return usb_suspend(dev, PMSG_FREEZE); 551 } 552 553 static int usb_dev_thaw(struct device *dev) 554 { 555 return usb_resume(dev, PMSG_THAW); 556 } 557 558 static int usb_dev_poweroff(struct device *dev) 559 { 560 return usb_suspend(dev, PMSG_HIBERNATE); 561 } 562 563 static int usb_dev_restore(struct device *dev) 564 { 565 return usb_resume(dev, PMSG_RESTORE); 566 } 567 568 static const struct dev_pm_ops usb_device_pm_ops = { 569 .prepare = usb_dev_prepare, 570 .complete = usb_dev_complete, 571 .suspend = usb_dev_suspend, 572 .resume = usb_dev_resume, 573 .freeze = usb_dev_freeze, 574 .thaw = usb_dev_thaw, 575 .poweroff = usb_dev_poweroff, 576 .restore = usb_dev_restore, 577 .runtime_suspend = usb_runtime_suspend, 578 .runtime_resume = usb_runtime_resume, 579 .runtime_idle = usb_runtime_idle, 580 }; 581 582 #endif /* CONFIG_PM */ 583 584 585 static char *usb_devnode(const struct device *dev, 586 umode_t *mode, kuid_t *uid, kgid_t *gid) 587 { 588 const struct usb_device *usb_dev; 589 590 usb_dev = to_usb_device(dev); 591 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", 592 usb_dev->bus->busnum, usb_dev->devnum); 593 } 594 595 struct device_type usb_device_type = { 596 .name = "usb_device", 597 .release = usb_release_dev, 598 .uevent = usb_dev_uevent, 599 .devnode = usb_devnode, 600 #ifdef CONFIG_PM 601 .pm = &usb_device_pm_ops, 602 #endif 603 }; 604 605 static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd) 606 { 607 struct usb_hub *hub; 608 609 if (!dev->parent) 610 return true; /* Root hub always ok [and always wired] */ 611 612 switch (hcd->dev_policy) { 613 case USB_DEVICE_AUTHORIZE_NONE: 614 default: 615 return false; 616 617 case USB_DEVICE_AUTHORIZE_ALL: 618 return true; 619 620 case USB_DEVICE_AUTHORIZE_INTERNAL: 621 hub = usb_hub_to_struct_hub(dev->parent); 622 return hub->ports[dev->portnum - 1]->connect_type == 623 USB_PORT_CONNECT_TYPE_HARD_WIRED; 624 } 625 } 626 627 /** 628 * usb_alloc_dev - usb device constructor (usbcore-internal) 629 * @parent: hub to which device is connected; null to allocate a root hub 630 * @bus: bus used to access the device 631 * @port1: one-based index of port; ignored for root hubs 632 * 633 * Context: task context, might sleep. 634 * 635 * Only hub drivers (including virtual root hub drivers for host 636 * controllers) should ever call this. 637 * 638 * This call may not be used in a non-sleeping context. 639 * 640 * Return: On success, a pointer to the allocated usb device. %NULL on 641 * failure. 642 */ 643 struct usb_device *usb_alloc_dev(struct usb_device *parent, 644 struct usb_bus *bus, unsigned port1) 645 { 646 struct usb_device *dev; 647 struct usb_hcd *usb_hcd = bus_to_hcd(bus); 648 unsigned raw_port = port1; 649 650 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 651 if (!dev) 652 return NULL; 653 654 if (!usb_get_hcd(usb_hcd)) { 655 kfree(dev); 656 return NULL; 657 } 658 /* Root hubs aren't true devices, so don't allocate HCD resources */ 659 if (usb_hcd->driver->alloc_dev && parent && 660 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { 661 usb_put_hcd(bus_to_hcd(bus)); 662 kfree(dev); 663 return NULL; 664 } 665 666 device_initialize(&dev->dev); 667 dev->dev.bus = &usb_bus_type; 668 dev->dev.type = &usb_device_type; 669 dev->dev.groups = usb_device_groups; 670 set_dev_node(&dev->dev, dev_to_node(bus->sysdev)); 671 dev->state = USB_STATE_ATTACHED; 672 dev->lpm_disable_count = 1; 673 atomic_set(&dev->urbnum, 0); 674 675 INIT_LIST_HEAD(&dev->ep0.urb_list); 676 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 677 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 678 /* ep0 maxpacket comes later, from device descriptor */ 679 usb_enable_endpoint(dev, &dev->ep0, false); 680 dev->can_submit = 1; 681 682 /* Save readable and stable topology id, distinguishing devices 683 * by location for diagnostics, tools, driver model, etc. The 684 * string is a path along hub ports, from the root. Each device's 685 * dev->devpath will be stable until USB is re-cabled, and hubs 686 * are often labeled with these port numbers. The name isn't 687 * as stable: bus->busnum changes easily from modprobe order, 688 * cardbus or pci hotplugging, and so on. 689 */ 690 if (unlikely(!parent)) { 691 dev->devpath[0] = '0'; 692 dev->route = 0; 693 694 dev->dev.parent = bus->controller; 695 device_set_of_node_from_dev(&dev->dev, bus->sysdev); 696 dev_set_name(&dev->dev, "usb%d", bus->busnum); 697 } else { 698 /* match any labeling on the hubs; it's one-based */ 699 if (parent->devpath[0] == '0') { 700 snprintf(dev->devpath, sizeof dev->devpath, 701 "%d", port1); 702 /* Root ports are not counted in route string */ 703 dev->route = 0; 704 } else { 705 snprintf(dev->devpath, sizeof dev->devpath, 706 "%s.%d", parent->devpath, port1); 707 /* Route string assumes hubs have less than 16 ports */ 708 if (port1 < 15) 709 dev->route = parent->route + 710 (port1 << ((parent->level - 1)*4)); 711 else 712 dev->route = parent->route + 713 (15 << ((parent->level - 1)*4)); 714 } 715 716 dev->dev.parent = &parent->dev; 717 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); 718 719 if (!parent->parent) { 720 /* device under root hub's port */ 721 raw_port = usb_hcd_find_raw_port_number(usb_hcd, 722 port1); 723 } 724 dev->dev.of_node = usb_of_get_device_node(parent, raw_port); 725 726 /* hub driver sets up TT records */ 727 } 728 729 dev->portnum = port1; 730 dev->bus = bus; 731 dev->parent = parent; 732 INIT_LIST_HEAD(&dev->filelist); 733 734 #ifdef CONFIG_PM 735 pm_runtime_set_autosuspend_delay(&dev->dev, 736 usb_autosuspend_delay * 1000); 737 dev->connect_time = jiffies; 738 dev->active_duration = -jiffies; 739 #endif 740 741 dev->authorized = usb_dev_authorized(dev, usb_hcd); 742 return dev; 743 } 744 EXPORT_SYMBOL_GPL(usb_alloc_dev); 745 746 /** 747 * usb_get_dev - increments the reference count of the usb device structure 748 * @dev: the device being referenced 749 * 750 * Each live reference to a device should be refcounted. 751 * 752 * Drivers for USB interfaces should normally record such references in 753 * their probe() methods, when they bind to an interface, and release 754 * them by calling usb_put_dev(), in their disconnect() methods. 755 * However, if a driver does not access the usb_device structure after 756 * its disconnect() method returns then refcounting is not necessary, 757 * because the USB core guarantees that a usb_device will not be 758 * deallocated until after all of its interface drivers have been unbound. 759 * 760 * Return: A pointer to the device with the incremented reference counter. 761 */ 762 struct usb_device *usb_get_dev(struct usb_device *dev) 763 { 764 if (dev) 765 get_device(&dev->dev); 766 return dev; 767 } 768 EXPORT_SYMBOL_GPL(usb_get_dev); 769 770 /** 771 * usb_put_dev - release a use of the usb device structure 772 * @dev: device that's been disconnected 773 * 774 * Must be called when a user of a device is finished with it. When the last 775 * user of the device calls this function, the memory of the device is freed. 776 */ 777 void usb_put_dev(struct usb_device *dev) 778 { 779 if (dev) 780 put_device(&dev->dev); 781 } 782 EXPORT_SYMBOL_GPL(usb_put_dev); 783 784 /** 785 * usb_get_intf - increments the reference count of the usb interface structure 786 * @intf: the interface being referenced 787 * 788 * Each live reference to a interface must be refcounted. 789 * 790 * Drivers for USB interfaces should normally record such references in 791 * their probe() methods, when they bind to an interface, and release 792 * them by calling usb_put_intf(), in their disconnect() methods. 793 * However, if a driver does not access the usb_interface structure after 794 * its disconnect() method returns then refcounting is not necessary, 795 * because the USB core guarantees that a usb_interface will not be 796 * deallocated until after its driver has been unbound. 797 * 798 * Return: A pointer to the interface with the incremented reference counter. 799 */ 800 struct usb_interface *usb_get_intf(struct usb_interface *intf) 801 { 802 if (intf) 803 get_device(&intf->dev); 804 return intf; 805 } 806 EXPORT_SYMBOL_GPL(usb_get_intf); 807 808 /** 809 * usb_put_intf - release a use of the usb interface structure 810 * @intf: interface that's been decremented 811 * 812 * Must be called when a user of an interface is finished with it. When the 813 * last user of the interface calls this function, the memory of the interface 814 * is freed. 815 */ 816 void usb_put_intf(struct usb_interface *intf) 817 { 818 if (intf) 819 put_device(&intf->dev); 820 } 821 EXPORT_SYMBOL_GPL(usb_put_intf); 822 823 /** 824 * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint 825 * @intf: the usb interface 826 * 827 * While a USB device cannot perform DMA operations by itself, many USB 828 * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint 829 * for the given USB interface, if any. The returned device structure must be 830 * released with put_device(). 831 * 832 * See also usb_get_dma_device(). 833 * 834 * Returns: A reference to the usb interface's DMA endpoint; or NULL if none 835 * exists. 836 */ 837 struct device *usb_intf_get_dma_device(struct usb_interface *intf) 838 { 839 struct usb_device *udev = interface_to_usbdev(intf); 840 struct device *dmadev; 841 842 if (!udev->bus) 843 return NULL; 844 845 dmadev = get_device(udev->bus->sysdev); 846 if (!dmadev || !dmadev->dma_mask) { 847 put_device(dmadev); 848 return NULL; 849 } 850 851 return dmadev; 852 } 853 EXPORT_SYMBOL_GPL(usb_intf_get_dma_device); 854 855 /* USB device locking 856 * 857 * USB devices and interfaces are locked using the semaphore in their 858 * embedded struct device. The hub driver guarantees that whenever a 859 * device is connected or disconnected, drivers are called with the 860 * USB device locked as well as their particular interface. 861 * 862 * Complications arise when several devices are to be locked at the same 863 * time. Only hub-aware drivers that are part of usbcore ever have to 864 * do this; nobody else needs to worry about it. The rule for locking 865 * is simple: 866 * 867 * When locking both a device and its parent, always lock the 868 * parent first. 869 */ 870 871 /** 872 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure 873 * @udev: device that's being locked 874 * @iface: interface bound to the driver making the request (optional) 875 * 876 * Attempts to acquire the device lock, but fails if the device is 877 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 878 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 879 * lock, the routine polls repeatedly. This is to prevent deadlock with 880 * disconnect; in some drivers (such as usb-storage) the disconnect() 881 * or suspend() method will block waiting for a device reset to complete. 882 * 883 * Return: A negative error code for failure, otherwise 0. 884 */ 885 int usb_lock_device_for_reset(struct usb_device *udev, 886 const struct usb_interface *iface) 887 { 888 unsigned long jiffies_expire = jiffies + HZ; 889 890 if (udev->state == USB_STATE_NOTATTACHED) 891 return -ENODEV; 892 if (udev->state == USB_STATE_SUSPENDED) 893 return -EHOSTUNREACH; 894 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 895 iface->condition == USB_INTERFACE_UNBOUND)) 896 return -EINTR; 897 898 while (!usb_trylock_device(udev)) { 899 900 /* If we can't acquire the lock after waiting one second, 901 * we're probably deadlocked */ 902 if (time_after(jiffies, jiffies_expire)) 903 return -EBUSY; 904 905 msleep(15); 906 if (udev->state == USB_STATE_NOTATTACHED) 907 return -ENODEV; 908 if (udev->state == USB_STATE_SUSPENDED) 909 return -EHOSTUNREACH; 910 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 911 iface->condition == USB_INTERFACE_UNBOUND)) 912 return -EINTR; 913 } 914 return 0; 915 } 916 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); 917 918 /** 919 * usb_get_current_frame_number - return current bus frame number 920 * @dev: the device whose bus is being queried 921 * 922 * Return: The current frame number for the USB host controller used 923 * with the given USB device. This can be used when scheduling 924 * isochronous requests. 925 * 926 * Note: Different kinds of host controller have different "scheduling 927 * horizons". While one type might support scheduling only 32 frames 928 * into the future, others could support scheduling up to 1024 frames 929 * into the future. 930 * 931 */ 932 int usb_get_current_frame_number(struct usb_device *dev) 933 { 934 return usb_hcd_get_frame_number(dev); 935 } 936 EXPORT_SYMBOL_GPL(usb_get_current_frame_number); 937 938 /*-------------------------------------------------------------------*/ 939 /* 940 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 941 * extra field of the interface and endpoint descriptor structs. 942 */ 943 944 int __usb_get_extra_descriptor(char *buffer, unsigned size, 945 unsigned char type, void **ptr, size_t minsize) 946 { 947 struct usb_descriptor_header *header; 948 949 while (size >= sizeof(struct usb_descriptor_header)) { 950 header = (struct usb_descriptor_header *)buffer; 951 952 if (header->bLength < 2 || header->bLength > size) { 953 printk(KERN_ERR 954 "%s: bogus descriptor, type %d length %d\n", 955 usbcore_name, 956 header->bDescriptorType, 957 header->bLength); 958 return -1; 959 } 960 961 if (header->bDescriptorType == type && header->bLength >= minsize) { 962 *ptr = header; 963 return 0; 964 } 965 966 buffer += header->bLength; 967 size -= header->bLength; 968 } 969 return -1; 970 } 971 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); 972 973 /** 974 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 975 * @dev: device the buffer will be used with 976 * @size: requested buffer size 977 * @mem_flags: affect whether allocation may block 978 * @dma: used to return DMA address of buffer 979 * 980 * Return: Either null (indicating no buffer could be allocated), or the 981 * cpu-space pointer to a buffer that may be used to perform DMA to the 982 * specified device. Such cpu-space buffers are returned along with the DMA 983 * address (through the pointer provided). 984 * 985 * Note: 986 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 987 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU 988 * hardware during URB completion/resubmit. The implementation varies between 989 * platforms, depending on details of how DMA will work to this device. 990 * Using these buffers also eliminates cacheline sharing problems on 991 * architectures where CPU caches are not DMA-coherent. On systems without 992 * bus-snooping caches, these buffers are uncached. 993 * 994 * When the buffer is no longer used, free it with usb_free_coherent(). 995 */ 996 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags, 997 dma_addr_t *dma) 998 { 999 if (!dev || !dev->bus) 1000 return NULL; 1001 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 1002 } 1003 EXPORT_SYMBOL_GPL(usb_alloc_coherent); 1004 1005 /** 1006 * usb_free_coherent - free memory allocated with usb_alloc_coherent() 1007 * @dev: device the buffer was used with 1008 * @size: requested buffer size 1009 * @addr: CPU address of buffer 1010 * @dma: DMA address of buffer 1011 * 1012 * This reclaims an I/O buffer, letting it be reused. The memory must have 1013 * been allocated using usb_alloc_coherent(), and the parameters must match 1014 * those provided in that allocation request. 1015 */ 1016 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr, 1017 dma_addr_t dma) 1018 { 1019 if (!dev || !dev->bus) 1020 return; 1021 if (!addr) 1022 return; 1023 hcd_buffer_free(dev->bus, size, addr, dma); 1024 } 1025 EXPORT_SYMBOL_GPL(usb_free_coherent); 1026 1027 /* 1028 * Notifications of device and interface registration 1029 */ 1030 static int usb_bus_notify(struct notifier_block *nb, unsigned long action, 1031 void *data) 1032 { 1033 struct device *dev = data; 1034 1035 switch (action) { 1036 case BUS_NOTIFY_ADD_DEVICE: 1037 if (dev->type == &usb_device_type) 1038 (void) usb_create_sysfs_dev_files(to_usb_device(dev)); 1039 else if (dev->type == &usb_if_device_type) 1040 usb_create_sysfs_intf_files(to_usb_interface(dev)); 1041 break; 1042 1043 case BUS_NOTIFY_DEL_DEVICE: 1044 if (dev->type == &usb_device_type) 1045 usb_remove_sysfs_dev_files(to_usb_device(dev)); 1046 else if (dev->type == &usb_if_device_type) 1047 usb_remove_sysfs_intf_files(to_usb_interface(dev)); 1048 break; 1049 } 1050 return 0; 1051 } 1052 1053 static struct notifier_block usb_bus_nb = { 1054 .notifier_call = usb_bus_notify, 1055 }; 1056 1057 static void usb_debugfs_init(void) 1058 { 1059 debugfs_create_file("devices", 0444, usb_debug_root, NULL, 1060 &usbfs_devices_fops); 1061 } 1062 1063 static void usb_debugfs_cleanup(void) 1064 { 1065 debugfs_lookup_and_remove("devices", usb_debug_root); 1066 } 1067 1068 /* 1069 * Init 1070 */ 1071 static int __init usb_init(void) 1072 { 1073 int retval; 1074 if (usb_disabled()) { 1075 pr_info("%s: USB support disabled\n", usbcore_name); 1076 return 0; 1077 } 1078 usb_init_pool_max(); 1079 1080 usb_debugfs_init(); 1081 1082 usb_acpi_register(); 1083 retval = bus_register(&usb_bus_type); 1084 if (retval) 1085 goto bus_register_failed; 1086 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); 1087 if (retval) 1088 goto bus_notifier_failed; 1089 retval = usb_major_init(); 1090 if (retval) 1091 goto major_init_failed; 1092 retval = class_register(&usbmisc_class); 1093 if (retval) 1094 goto class_register_failed; 1095 retval = usb_register(&usbfs_driver); 1096 if (retval) 1097 goto driver_register_failed; 1098 retval = usb_devio_init(); 1099 if (retval) 1100 goto usb_devio_init_failed; 1101 retval = usb_hub_init(); 1102 if (retval) 1103 goto hub_init_failed; 1104 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 1105 if (!retval) 1106 goto out; 1107 1108 usb_hub_cleanup(); 1109 hub_init_failed: 1110 usb_devio_cleanup(); 1111 usb_devio_init_failed: 1112 usb_deregister(&usbfs_driver); 1113 driver_register_failed: 1114 class_unregister(&usbmisc_class); 1115 class_register_failed: 1116 usb_major_cleanup(); 1117 major_init_failed: 1118 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1119 bus_notifier_failed: 1120 bus_unregister(&usb_bus_type); 1121 bus_register_failed: 1122 usb_acpi_unregister(); 1123 usb_debugfs_cleanup(); 1124 out: 1125 return retval; 1126 } 1127 1128 /* 1129 * Cleanup 1130 */ 1131 static void __exit usb_exit(void) 1132 { 1133 /* This will matter if shutdown/reboot does exitcalls. */ 1134 if (usb_disabled()) 1135 return; 1136 1137 usb_release_quirk_list(); 1138 usb_deregister_device_driver(&usb_generic_driver); 1139 usb_major_cleanup(); 1140 usb_deregister(&usbfs_driver); 1141 usb_devio_cleanup(); 1142 usb_hub_cleanup(); 1143 class_unregister(&usbmisc_class); 1144 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1145 bus_unregister(&usb_bus_type); 1146 usb_acpi_unregister(); 1147 usb_debugfs_cleanup(); 1148 idr_destroy(&usb_bus_idr); 1149 } 1150 1151 subsys_initcall(usb_init); 1152 module_exit(usb_exit); 1153 MODULE_LICENSE("GPL"); 1154