xref: /linux/drivers/usb/core/usb.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39 
40 #include <asm/io.h>
41 #include <linux/scatterlist.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44 
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static bool nousb;	/* Disable USB when built into kernel image */
51 
52 module_param(nousb, bool, 0444);
53 
54 /*
55  * for external read access to <nousb>
56  */
57 int usb_disabled(void)
58 {
59 	return nousb;
60 }
61 EXPORT_SYMBOL_GPL(usb_disabled);
62 
63 #ifdef	CONFIG_PM
64 static int usb_autosuspend_delay = 2;		/* Default delay value,
65 						 * in seconds */
66 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
67 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
68 
69 #else
70 #define usb_autosuspend_delay		0
71 #endif
72 
73 
74 /**
75  * usb_find_alt_setting() - Given a configuration, find the alternate setting
76  * for the given interface.
77  * @config: the configuration to search (not necessarily the current config).
78  * @iface_num: interface number to search in
79  * @alt_num: alternate interface setting number to search for.
80  *
81  * Search the configuration's interface cache for the given alt setting.
82  *
83  * Return: The alternate setting, if found. %NULL otherwise.
84  */
85 struct usb_host_interface *usb_find_alt_setting(
86 		struct usb_host_config *config,
87 		unsigned int iface_num,
88 		unsigned int alt_num)
89 {
90 	struct usb_interface_cache *intf_cache = NULL;
91 	int i;
92 
93 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
94 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
95 				== iface_num) {
96 			intf_cache = config->intf_cache[i];
97 			break;
98 		}
99 	}
100 	if (!intf_cache)
101 		return NULL;
102 	for (i = 0; i < intf_cache->num_altsetting; i++)
103 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
104 			return &intf_cache->altsetting[i];
105 
106 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
107 			"config %u\n", alt_num, iface_num,
108 			config->desc.bConfigurationValue);
109 	return NULL;
110 }
111 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
112 
113 /**
114  * usb_ifnum_to_if - get the interface object with a given interface number
115  * @dev: the device whose current configuration is considered
116  * @ifnum: the desired interface
117  *
118  * This walks the device descriptor for the currently active configuration
119  * to find the interface object with the particular interface number.
120  *
121  * Note that configuration descriptors are not required to assign interface
122  * numbers sequentially, so that it would be incorrect to assume that
123  * the first interface in that descriptor corresponds to interface zero.
124  * This routine helps device drivers avoid such mistakes.
125  * However, you should make sure that you do the right thing with any
126  * alternate settings available for this interfaces.
127  *
128  * Don't call this function unless you are bound to one of the interfaces
129  * on this device or you have locked the device!
130  *
131  * Return: A pointer to the interface that has @ifnum as interface number,
132  * if found. %NULL otherwise.
133  */
134 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
135 				      unsigned ifnum)
136 {
137 	struct usb_host_config *config = dev->actconfig;
138 	int i;
139 
140 	if (!config)
141 		return NULL;
142 	for (i = 0; i < config->desc.bNumInterfaces; i++)
143 		if (config->interface[i]->altsetting[0]
144 				.desc.bInterfaceNumber == ifnum)
145 			return config->interface[i];
146 
147 	return NULL;
148 }
149 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
150 
151 /**
152  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
153  * @intf: the interface containing the altsetting in question
154  * @altnum: the desired alternate setting number
155  *
156  * This searches the altsetting array of the specified interface for
157  * an entry with the correct bAlternateSetting value.
158  *
159  * Note that altsettings need not be stored sequentially by number, so
160  * it would be incorrect to assume that the first altsetting entry in
161  * the array corresponds to altsetting zero.  This routine helps device
162  * drivers avoid such mistakes.
163  *
164  * Don't call this function unless you are bound to the intf interface
165  * or you have locked the device!
166  *
167  * Return: A pointer to the entry of the altsetting array of @intf that
168  * has @altnum as the alternate setting number. %NULL if not found.
169  */
170 struct usb_host_interface *usb_altnum_to_altsetting(
171 					const struct usb_interface *intf,
172 					unsigned int altnum)
173 {
174 	int i;
175 
176 	for (i = 0; i < intf->num_altsetting; i++) {
177 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
178 			return &intf->altsetting[i];
179 	}
180 	return NULL;
181 }
182 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
183 
184 struct find_interface_arg {
185 	int minor;
186 	struct device_driver *drv;
187 };
188 
189 static int __find_interface(struct device *dev, void *data)
190 {
191 	struct find_interface_arg *arg = data;
192 	struct usb_interface *intf;
193 
194 	if (!is_usb_interface(dev))
195 		return 0;
196 
197 	if (dev->driver != arg->drv)
198 		return 0;
199 	intf = to_usb_interface(dev);
200 	return intf->minor == arg->minor;
201 }
202 
203 /**
204  * usb_find_interface - find usb_interface pointer for driver and device
205  * @drv: the driver whose current configuration is considered
206  * @minor: the minor number of the desired device
207  *
208  * This walks the bus device list and returns a pointer to the interface
209  * with the matching minor and driver.  Note, this only works for devices
210  * that share the USB major number.
211  *
212  * Return: A pointer to the interface with the matching major and @minor.
213  */
214 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
215 {
216 	struct find_interface_arg argb;
217 	struct device *dev;
218 
219 	argb.minor = minor;
220 	argb.drv = &drv->drvwrap.driver;
221 
222 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
223 
224 	/* Drop reference count from bus_find_device */
225 	put_device(dev);
226 
227 	return dev ? to_usb_interface(dev) : NULL;
228 }
229 EXPORT_SYMBOL_GPL(usb_find_interface);
230 
231 struct each_dev_arg {
232 	void *data;
233 	int (*fn)(struct usb_device *, void *);
234 };
235 
236 static int __each_dev(struct device *dev, void *data)
237 {
238 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
239 
240 	/* There are struct usb_interface on the same bus, filter them out */
241 	if (!is_usb_device(dev))
242 		return 0;
243 
244 	return arg->fn(container_of(dev, struct usb_device, dev), arg->data);
245 }
246 
247 /**
248  * usb_for_each_dev - iterate over all USB devices in the system
249  * @data: data pointer that will be handed to the callback function
250  * @fn: callback function to be called for each USB device
251  *
252  * Iterate over all USB devices and call @fn for each, passing it @data. If it
253  * returns anything other than 0, we break the iteration prematurely and return
254  * that value.
255  */
256 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
257 {
258 	struct each_dev_arg arg = {data, fn};
259 
260 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
261 }
262 EXPORT_SYMBOL_GPL(usb_for_each_dev);
263 
264 /**
265  * usb_release_dev - free a usb device structure when all users of it are finished.
266  * @dev: device that's been disconnected
267  *
268  * Will be called only by the device core when all users of this usb device are
269  * done.
270  */
271 static void usb_release_dev(struct device *dev)
272 {
273 	struct usb_device *udev;
274 	struct usb_hcd *hcd;
275 
276 	udev = to_usb_device(dev);
277 	hcd = bus_to_hcd(udev->bus);
278 
279 	usb_destroy_configuration(udev);
280 	usb_release_bos_descriptor(udev);
281 	usb_put_hcd(hcd);
282 	kfree(udev->product);
283 	kfree(udev->manufacturer);
284 	kfree(udev->serial);
285 	kfree(udev);
286 }
287 
288 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
289 {
290 	struct usb_device *usb_dev;
291 
292 	usb_dev = to_usb_device(dev);
293 
294 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
295 		return -ENOMEM;
296 
297 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
298 		return -ENOMEM;
299 
300 	return 0;
301 }
302 
303 #ifdef	CONFIG_PM
304 
305 /* USB device Power-Management thunks.
306  * There's no need to distinguish here between quiescing a USB device
307  * and powering it down; the generic_suspend() routine takes care of
308  * it by skipping the usb_port_suspend() call for a quiesce.  And for
309  * USB interfaces there's no difference at all.
310  */
311 
312 static int usb_dev_prepare(struct device *dev)
313 {
314 	struct usb_device *udev = to_usb_device(dev);
315 
316 	/* Return 0 if the current wakeup setting is wrong, otherwise 1 */
317 	if (udev->do_remote_wakeup != device_may_wakeup(dev))
318 		return 0;
319 
320 	return 1;
321 }
322 
323 static void usb_dev_complete(struct device *dev)
324 {
325 	/* Currently used only for rebinding interfaces */
326 	usb_resume_complete(dev);
327 }
328 
329 static int usb_dev_suspend(struct device *dev)
330 {
331 	return usb_suspend(dev, PMSG_SUSPEND);
332 }
333 
334 static int usb_dev_resume(struct device *dev)
335 {
336 	return usb_resume(dev, PMSG_RESUME);
337 }
338 
339 static int usb_dev_freeze(struct device *dev)
340 {
341 	return usb_suspend(dev, PMSG_FREEZE);
342 }
343 
344 static int usb_dev_thaw(struct device *dev)
345 {
346 	return usb_resume(dev, PMSG_THAW);
347 }
348 
349 static int usb_dev_poweroff(struct device *dev)
350 {
351 	return usb_suspend(dev, PMSG_HIBERNATE);
352 }
353 
354 static int usb_dev_restore(struct device *dev)
355 {
356 	return usb_resume(dev, PMSG_RESTORE);
357 }
358 
359 static const struct dev_pm_ops usb_device_pm_ops = {
360 	.prepare =	usb_dev_prepare,
361 	.complete =	usb_dev_complete,
362 	.suspend =	usb_dev_suspend,
363 	.resume =	usb_dev_resume,
364 	.freeze =	usb_dev_freeze,
365 	.thaw =		usb_dev_thaw,
366 	.poweroff =	usb_dev_poweroff,
367 	.restore =	usb_dev_restore,
368 	.runtime_suspend =	usb_runtime_suspend,
369 	.runtime_resume =	usb_runtime_resume,
370 	.runtime_idle =		usb_runtime_idle,
371 };
372 
373 #endif	/* CONFIG_PM */
374 
375 
376 static char *usb_devnode(struct device *dev,
377 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
378 {
379 	struct usb_device *usb_dev;
380 
381 	usb_dev = to_usb_device(dev);
382 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
383 			 usb_dev->bus->busnum, usb_dev->devnum);
384 }
385 
386 struct device_type usb_device_type = {
387 	.name =		"usb_device",
388 	.release =	usb_release_dev,
389 	.uevent =	usb_dev_uevent,
390 	.devnode = 	usb_devnode,
391 #ifdef CONFIG_PM
392 	.pm =		&usb_device_pm_ops,
393 #endif
394 };
395 
396 
397 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
398 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
399 {
400 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
401 	return hcd->wireless;
402 }
403 
404 
405 /**
406  * usb_alloc_dev - usb device constructor (usbcore-internal)
407  * @parent: hub to which device is connected; null to allocate a root hub
408  * @bus: bus used to access the device
409  * @port1: one-based index of port; ignored for root hubs
410  * Context: !in_interrupt()
411  *
412  * Only hub drivers (including virtual root hub drivers for host
413  * controllers) should ever call this.
414  *
415  * This call may not be used in a non-sleeping context.
416  *
417  * Return: On success, a pointer to the allocated usb device. %NULL on
418  * failure.
419  */
420 struct usb_device *usb_alloc_dev(struct usb_device *parent,
421 				 struct usb_bus *bus, unsigned port1)
422 {
423 	struct usb_device *dev;
424 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
425 	unsigned root_hub = 0;
426 
427 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
428 	if (!dev)
429 		return NULL;
430 
431 	if (!usb_get_hcd(usb_hcd)) {
432 		kfree(dev);
433 		return NULL;
434 	}
435 	/* Root hubs aren't true devices, so don't allocate HCD resources */
436 	if (usb_hcd->driver->alloc_dev && parent &&
437 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
438 		usb_put_hcd(bus_to_hcd(bus));
439 		kfree(dev);
440 		return NULL;
441 	}
442 
443 	device_initialize(&dev->dev);
444 	dev->dev.bus = &usb_bus_type;
445 	dev->dev.type = &usb_device_type;
446 	dev->dev.groups = usb_device_groups;
447 	dev->dev.dma_mask = bus->controller->dma_mask;
448 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
449 	dev->state = USB_STATE_ATTACHED;
450 	dev->lpm_disable_count = 1;
451 	atomic_set(&dev->urbnum, 0);
452 
453 	INIT_LIST_HEAD(&dev->ep0.urb_list);
454 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
455 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
456 	/* ep0 maxpacket comes later, from device descriptor */
457 	usb_enable_endpoint(dev, &dev->ep0, false);
458 	dev->can_submit = 1;
459 
460 	/* Save readable and stable topology id, distinguishing devices
461 	 * by location for diagnostics, tools, driver model, etc.  The
462 	 * string is a path along hub ports, from the root.  Each device's
463 	 * dev->devpath will be stable until USB is re-cabled, and hubs
464 	 * are often labeled with these port numbers.  The name isn't
465 	 * as stable:  bus->busnum changes easily from modprobe order,
466 	 * cardbus or pci hotplugging, and so on.
467 	 */
468 	if (unlikely(!parent)) {
469 		dev->devpath[0] = '0';
470 		dev->route = 0;
471 
472 		dev->dev.parent = bus->controller;
473 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
474 		root_hub = 1;
475 	} else {
476 		/* match any labeling on the hubs; it's one-based */
477 		if (parent->devpath[0] == '0') {
478 			snprintf(dev->devpath, sizeof dev->devpath,
479 				"%d", port1);
480 			/* Root ports are not counted in route string */
481 			dev->route = 0;
482 		} else {
483 			snprintf(dev->devpath, sizeof dev->devpath,
484 				"%s.%d", parent->devpath, port1);
485 			/* Route string assumes hubs have less than 16 ports */
486 			if (port1 < 15)
487 				dev->route = parent->route +
488 					(port1 << ((parent->level - 1)*4));
489 			else
490 				dev->route = parent->route +
491 					(15 << ((parent->level - 1)*4));
492 		}
493 
494 		dev->dev.parent = &parent->dev;
495 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
496 
497 		/* hub driver sets up TT records */
498 	}
499 
500 	dev->portnum = port1;
501 	dev->bus = bus;
502 	dev->parent = parent;
503 	INIT_LIST_HEAD(&dev->filelist);
504 
505 #ifdef	CONFIG_PM
506 	pm_runtime_set_autosuspend_delay(&dev->dev,
507 			usb_autosuspend_delay * 1000);
508 	dev->connect_time = jiffies;
509 	dev->active_duration = -jiffies;
510 #endif
511 	if (root_hub)	/* Root hub always ok [and always wired] */
512 		dev->authorized = 1;
513 	else {
514 		dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
515 		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
516 	}
517 	return dev;
518 }
519 EXPORT_SYMBOL_GPL(usb_alloc_dev);
520 
521 /**
522  * usb_get_dev - increments the reference count of the usb device structure
523  * @dev: the device being referenced
524  *
525  * Each live reference to a device should be refcounted.
526  *
527  * Drivers for USB interfaces should normally record such references in
528  * their probe() methods, when they bind to an interface, and release
529  * them by calling usb_put_dev(), in their disconnect() methods.
530  *
531  * Return: A pointer to the device with the incremented reference counter.
532  */
533 struct usb_device *usb_get_dev(struct usb_device *dev)
534 {
535 	if (dev)
536 		get_device(&dev->dev);
537 	return dev;
538 }
539 EXPORT_SYMBOL_GPL(usb_get_dev);
540 
541 /**
542  * usb_put_dev - release a use of the usb device structure
543  * @dev: device that's been disconnected
544  *
545  * Must be called when a user of a device is finished with it.  When the last
546  * user of the device calls this function, the memory of the device is freed.
547  */
548 void usb_put_dev(struct usb_device *dev)
549 {
550 	if (dev)
551 		put_device(&dev->dev);
552 }
553 EXPORT_SYMBOL_GPL(usb_put_dev);
554 
555 /**
556  * usb_get_intf - increments the reference count of the usb interface structure
557  * @intf: the interface being referenced
558  *
559  * Each live reference to a interface must be refcounted.
560  *
561  * Drivers for USB interfaces should normally record such references in
562  * their probe() methods, when they bind to an interface, and release
563  * them by calling usb_put_intf(), in their disconnect() methods.
564  *
565  * Return: A pointer to the interface with the incremented reference counter.
566  */
567 struct usb_interface *usb_get_intf(struct usb_interface *intf)
568 {
569 	if (intf)
570 		get_device(&intf->dev);
571 	return intf;
572 }
573 EXPORT_SYMBOL_GPL(usb_get_intf);
574 
575 /**
576  * usb_put_intf - release a use of the usb interface structure
577  * @intf: interface that's been decremented
578  *
579  * Must be called when a user of an interface is finished with it.  When the
580  * last user of the interface calls this function, the memory of the interface
581  * is freed.
582  */
583 void usb_put_intf(struct usb_interface *intf)
584 {
585 	if (intf)
586 		put_device(&intf->dev);
587 }
588 EXPORT_SYMBOL_GPL(usb_put_intf);
589 
590 /*			USB device locking
591  *
592  * USB devices and interfaces are locked using the semaphore in their
593  * embedded struct device.  The hub driver guarantees that whenever a
594  * device is connected or disconnected, drivers are called with the
595  * USB device locked as well as their particular interface.
596  *
597  * Complications arise when several devices are to be locked at the same
598  * time.  Only hub-aware drivers that are part of usbcore ever have to
599  * do this; nobody else needs to worry about it.  The rule for locking
600  * is simple:
601  *
602  *	When locking both a device and its parent, always lock the
603  *	the parent first.
604  */
605 
606 /**
607  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
608  * @udev: device that's being locked
609  * @iface: interface bound to the driver making the request (optional)
610  *
611  * Attempts to acquire the device lock, but fails if the device is
612  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
613  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
614  * lock, the routine polls repeatedly.  This is to prevent deadlock with
615  * disconnect; in some drivers (such as usb-storage) the disconnect()
616  * or suspend() method will block waiting for a device reset to complete.
617  *
618  * Return: A negative error code for failure, otherwise 0.
619  */
620 int usb_lock_device_for_reset(struct usb_device *udev,
621 			      const struct usb_interface *iface)
622 {
623 	unsigned long jiffies_expire = jiffies + HZ;
624 
625 	if (udev->state == USB_STATE_NOTATTACHED)
626 		return -ENODEV;
627 	if (udev->state == USB_STATE_SUSPENDED)
628 		return -EHOSTUNREACH;
629 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
630 			iface->condition == USB_INTERFACE_UNBOUND))
631 		return -EINTR;
632 
633 	while (!usb_trylock_device(udev)) {
634 
635 		/* If we can't acquire the lock after waiting one second,
636 		 * we're probably deadlocked */
637 		if (time_after(jiffies, jiffies_expire))
638 			return -EBUSY;
639 
640 		msleep(15);
641 		if (udev->state == USB_STATE_NOTATTACHED)
642 			return -ENODEV;
643 		if (udev->state == USB_STATE_SUSPENDED)
644 			return -EHOSTUNREACH;
645 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
646 				iface->condition == USB_INTERFACE_UNBOUND))
647 			return -EINTR;
648 	}
649 	return 0;
650 }
651 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
652 
653 /**
654  * usb_get_current_frame_number - return current bus frame number
655  * @dev: the device whose bus is being queried
656  *
657  * Return: The current frame number for the USB host controller used
658  * with the given USB device. This can be used when scheduling
659  * isochronous requests.
660  *
661  * Note: Different kinds of host controller have different "scheduling
662  * horizons". While one type might support scheduling only 32 frames
663  * into the future, others could support scheduling up to 1024 frames
664  * into the future.
665  *
666  */
667 int usb_get_current_frame_number(struct usb_device *dev)
668 {
669 	return usb_hcd_get_frame_number(dev);
670 }
671 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
672 
673 /*-------------------------------------------------------------------*/
674 /*
675  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
676  * extra field of the interface and endpoint descriptor structs.
677  */
678 
679 int __usb_get_extra_descriptor(char *buffer, unsigned size,
680 			       unsigned char type, void **ptr)
681 {
682 	struct usb_descriptor_header *header;
683 
684 	while (size >= sizeof(struct usb_descriptor_header)) {
685 		header = (struct usb_descriptor_header *)buffer;
686 
687 		if (header->bLength < 2) {
688 			printk(KERN_ERR
689 				"%s: bogus descriptor, type %d length %d\n",
690 				usbcore_name,
691 				header->bDescriptorType,
692 				header->bLength);
693 			return -1;
694 		}
695 
696 		if (header->bDescriptorType == type) {
697 			*ptr = header;
698 			return 0;
699 		}
700 
701 		buffer += header->bLength;
702 		size -= header->bLength;
703 	}
704 	return -1;
705 }
706 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
707 
708 /**
709  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
710  * @dev: device the buffer will be used with
711  * @size: requested buffer size
712  * @mem_flags: affect whether allocation may block
713  * @dma: used to return DMA address of buffer
714  *
715  * Return: Either null (indicating no buffer could be allocated), or the
716  * cpu-space pointer to a buffer that may be used to perform DMA to the
717  * specified device.  Such cpu-space buffers are returned along with the DMA
718  * address (through the pointer provided).
719  *
720  * Note:
721  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
722  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
723  * hardware during URB completion/resubmit.  The implementation varies between
724  * platforms, depending on details of how DMA will work to this device.
725  * Using these buffers also eliminates cacheline sharing problems on
726  * architectures where CPU caches are not DMA-coherent.  On systems without
727  * bus-snooping caches, these buffers are uncached.
728  *
729  * When the buffer is no longer used, free it with usb_free_coherent().
730  */
731 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
732 			 dma_addr_t *dma)
733 {
734 	if (!dev || !dev->bus)
735 		return NULL;
736 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
737 }
738 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
739 
740 /**
741  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
742  * @dev: device the buffer was used with
743  * @size: requested buffer size
744  * @addr: CPU address of buffer
745  * @dma: DMA address of buffer
746  *
747  * This reclaims an I/O buffer, letting it be reused.  The memory must have
748  * been allocated using usb_alloc_coherent(), and the parameters must match
749  * those provided in that allocation request.
750  */
751 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
752 		       dma_addr_t dma)
753 {
754 	if (!dev || !dev->bus)
755 		return;
756 	if (!addr)
757 		return;
758 	hcd_buffer_free(dev->bus, size, addr, dma);
759 }
760 EXPORT_SYMBOL_GPL(usb_free_coherent);
761 
762 /**
763  * usb_buffer_map - create DMA mapping(s) for an urb
764  * @urb: urb whose transfer_buffer/setup_packet will be mapped
765  *
766  * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
767  * succeeds. If the device is connected to this system through a non-DMA
768  * controller, this operation always succeeds.
769  *
770  * This call would normally be used for an urb which is reused, perhaps
771  * as the target of a large periodic transfer, with usb_buffer_dmasync()
772  * calls to synchronize memory and dma state.
773  *
774  * Reverse the effect of this call with usb_buffer_unmap().
775  *
776  * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
777  *
778  */
779 #if 0
780 struct urb *usb_buffer_map(struct urb *urb)
781 {
782 	struct usb_bus		*bus;
783 	struct device		*controller;
784 
785 	if (!urb
786 			|| !urb->dev
787 			|| !(bus = urb->dev->bus)
788 			|| !(controller = bus->controller))
789 		return NULL;
790 
791 	if (controller->dma_mask) {
792 		urb->transfer_dma = dma_map_single(controller,
793 			urb->transfer_buffer, urb->transfer_buffer_length,
794 			usb_pipein(urb->pipe)
795 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
796 	/* FIXME generic api broken like pci, can't report errors */
797 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
798 	} else
799 		urb->transfer_dma = ~0;
800 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
801 	return urb;
802 }
803 EXPORT_SYMBOL_GPL(usb_buffer_map);
804 #endif  /*  0  */
805 
806 /* XXX DISABLED, no users currently.  If you wish to re-enable this
807  * XXX please determine whether the sync is to transfer ownership of
808  * XXX the buffer from device to cpu or vice verse, and thusly use the
809  * XXX appropriate _for_{cpu,device}() method.  -DaveM
810  */
811 #if 0
812 
813 /**
814  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
815  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
816  */
817 void usb_buffer_dmasync(struct urb *urb)
818 {
819 	struct usb_bus		*bus;
820 	struct device		*controller;
821 
822 	if (!urb
823 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
824 			|| !urb->dev
825 			|| !(bus = urb->dev->bus)
826 			|| !(controller = bus->controller))
827 		return;
828 
829 	if (controller->dma_mask) {
830 		dma_sync_single_for_cpu(controller,
831 			urb->transfer_dma, urb->transfer_buffer_length,
832 			usb_pipein(urb->pipe)
833 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
834 		if (usb_pipecontrol(urb->pipe))
835 			dma_sync_single_for_cpu(controller,
836 					urb->setup_dma,
837 					sizeof(struct usb_ctrlrequest),
838 					DMA_TO_DEVICE);
839 	}
840 }
841 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
842 #endif
843 
844 /**
845  * usb_buffer_unmap - free DMA mapping(s) for an urb
846  * @urb: urb whose transfer_buffer will be unmapped
847  *
848  * Reverses the effect of usb_buffer_map().
849  */
850 #if 0
851 void usb_buffer_unmap(struct urb *urb)
852 {
853 	struct usb_bus		*bus;
854 	struct device		*controller;
855 
856 	if (!urb
857 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
858 			|| !urb->dev
859 			|| !(bus = urb->dev->bus)
860 			|| !(controller = bus->controller))
861 		return;
862 
863 	if (controller->dma_mask) {
864 		dma_unmap_single(controller,
865 			urb->transfer_dma, urb->transfer_buffer_length,
866 			usb_pipein(urb->pipe)
867 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
868 	}
869 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
870 }
871 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
872 #endif  /*  0  */
873 
874 #if 0
875 /**
876  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
877  * @dev: device to which the scatterlist will be mapped
878  * @is_in: mapping transfer direction
879  * @sg: the scatterlist to map
880  * @nents: the number of entries in the scatterlist
881  *
882  * Return: Either < 0 (indicating no buffers could be mapped), or the
883  * number of DMA mapping array entries in the scatterlist.
884  *
885  * Note:
886  * The caller is responsible for placing the resulting DMA addresses from
887  * the scatterlist into URB transfer buffer pointers, and for setting the
888  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
889  *
890  * Top I/O rates come from queuing URBs, instead of waiting for each one
891  * to complete before starting the next I/O.   This is particularly easy
892  * to do with scatterlists.  Just allocate and submit one URB for each DMA
893  * mapping entry returned, stopping on the first error or when all succeed.
894  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
895  *
896  * This call would normally be used when translating scatterlist requests,
897  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
898  * may be able to coalesce mappings for improved I/O efficiency.
899  *
900  * Reverse the effect of this call with usb_buffer_unmap_sg().
901  */
902 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
903 		      struct scatterlist *sg, int nents)
904 {
905 	struct usb_bus		*bus;
906 	struct device		*controller;
907 
908 	if (!dev
909 			|| !(bus = dev->bus)
910 			|| !(controller = bus->controller)
911 			|| !controller->dma_mask)
912 		return -EINVAL;
913 
914 	/* FIXME generic api broken like pci, can't report errors */
915 	return dma_map_sg(controller, sg, nents,
916 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
917 }
918 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
919 #endif
920 
921 /* XXX DISABLED, no users currently.  If you wish to re-enable this
922  * XXX please determine whether the sync is to transfer ownership of
923  * XXX the buffer from device to cpu or vice verse, and thusly use the
924  * XXX appropriate _for_{cpu,device}() method.  -DaveM
925  */
926 #if 0
927 
928 /**
929  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
930  * @dev: device to which the scatterlist will be mapped
931  * @is_in: mapping transfer direction
932  * @sg: the scatterlist to synchronize
933  * @n_hw_ents: the positive return value from usb_buffer_map_sg
934  *
935  * Use this when you are re-using a scatterlist's data buffers for
936  * another USB request.
937  */
938 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
939 			   struct scatterlist *sg, int n_hw_ents)
940 {
941 	struct usb_bus		*bus;
942 	struct device		*controller;
943 
944 	if (!dev
945 			|| !(bus = dev->bus)
946 			|| !(controller = bus->controller)
947 			|| !controller->dma_mask)
948 		return;
949 
950 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
951 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
952 }
953 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
954 #endif
955 
956 #if 0
957 /**
958  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
959  * @dev: device to which the scatterlist will be mapped
960  * @is_in: mapping transfer direction
961  * @sg: the scatterlist to unmap
962  * @n_hw_ents: the positive return value from usb_buffer_map_sg
963  *
964  * Reverses the effect of usb_buffer_map_sg().
965  */
966 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
967 			 struct scatterlist *sg, int n_hw_ents)
968 {
969 	struct usb_bus		*bus;
970 	struct device		*controller;
971 
972 	if (!dev
973 			|| !(bus = dev->bus)
974 			|| !(controller = bus->controller)
975 			|| !controller->dma_mask)
976 		return;
977 
978 	dma_unmap_sg(controller, sg, n_hw_ents,
979 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
980 }
981 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
982 #endif
983 
984 /*
985  * Notifications of device and interface registration
986  */
987 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
988 		void *data)
989 {
990 	struct device *dev = data;
991 
992 	switch (action) {
993 	case BUS_NOTIFY_ADD_DEVICE:
994 		if (dev->type == &usb_device_type)
995 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
996 		else if (dev->type == &usb_if_device_type)
997 			usb_create_sysfs_intf_files(to_usb_interface(dev));
998 		break;
999 
1000 	case BUS_NOTIFY_DEL_DEVICE:
1001 		if (dev->type == &usb_device_type)
1002 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1003 		else if (dev->type == &usb_if_device_type)
1004 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1005 		break;
1006 	}
1007 	return 0;
1008 }
1009 
1010 static struct notifier_block usb_bus_nb = {
1011 	.notifier_call = usb_bus_notify,
1012 };
1013 
1014 struct dentry *usb_debug_root;
1015 EXPORT_SYMBOL_GPL(usb_debug_root);
1016 
1017 static struct dentry *usb_debug_devices;
1018 
1019 static int usb_debugfs_init(void)
1020 {
1021 	usb_debug_root = debugfs_create_dir("usb", NULL);
1022 	if (!usb_debug_root)
1023 		return -ENOENT;
1024 
1025 	usb_debug_devices = debugfs_create_file("devices", 0444,
1026 						usb_debug_root, NULL,
1027 						&usbfs_devices_fops);
1028 	if (!usb_debug_devices) {
1029 		debugfs_remove(usb_debug_root);
1030 		usb_debug_root = NULL;
1031 		return -ENOENT;
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 static void usb_debugfs_cleanup(void)
1038 {
1039 	debugfs_remove(usb_debug_devices);
1040 	debugfs_remove(usb_debug_root);
1041 }
1042 
1043 /*
1044  * Init
1045  */
1046 static int __init usb_init(void)
1047 {
1048 	int retval;
1049 	if (usb_disabled()) {
1050 		pr_info("%s: USB support disabled\n", usbcore_name);
1051 		return 0;
1052 	}
1053 	usb_init_pool_max();
1054 
1055 	retval = usb_debugfs_init();
1056 	if (retval)
1057 		goto out;
1058 
1059 	usb_acpi_register();
1060 	retval = bus_register(&usb_bus_type);
1061 	if (retval)
1062 		goto bus_register_failed;
1063 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1064 	if (retval)
1065 		goto bus_notifier_failed;
1066 	retval = usb_major_init();
1067 	if (retval)
1068 		goto major_init_failed;
1069 	retval = usb_register(&usbfs_driver);
1070 	if (retval)
1071 		goto driver_register_failed;
1072 	retval = usb_devio_init();
1073 	if (retval)
1074 		goto usb_devio_init_failed;
1075 	retval = usb_hub_init();
1076 	if (retval)
1077 		goto hub_init_failed;
1078 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1079 	if (!retval)
1080 		goto out;
1081 
1082 	usb_hub_cleanup();
1083 hub_init_failed:
1084 	usb_devio_cleanup();
1085 usb_devio_init_failed:
1086 	usb_deregister(&usbfs_driver);
1087 driver_register_failed:
1088 	usb_major_cleanup();
1089 major_init_failed:
1090 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1091 bus_notifier_failed:
1092 	bus_unregister(&usb_bus_type);
1093 bus_register_failed:
1094 	usb_acpi_unregister();
1095 	usb_debugfs_cleanup();
1096 out:
1097 	return retval;
1098 }
1099 
1100 /*
1101  * Cleanup
1102  */
1103 static void __exit usb_exit(void)
1104 {
1105 	/* This will matter if shutdown/reboot does exitcalls. */
1106 	if (usb_disabled())
1107 		return;
1108 
1109 	usb_deregister_device_driver(&usb_generic_driver);
1110 	usb_major_cleanup();
1111 	usb_deregister(&usbfs_driver);
1112 	usb_devio_cleanup();
1113 	usb_hub_cleanup();
1114 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1115 	bus_unregister(&usb_bus_type);
1116 	usb_acpi_unregister();
1117 	usb_debugfs_cleanup();
1118 }
1119 
1120 subsys_initcall(usb_init);
1121 module_exit(usb_exit);
1122 MODULE_LICENSE("GPL");
1123