xref: /linux/drivers/usb/core/usb.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/mutex.h>
36 #include <linux/workqueue.h>
37 #include <linux/debugfs.h>
38 
39 #include <asm/io.h>
40 #include <linux/scatterlist.h>
41 #include <linux/mm.h>
42 #include <linux/dma-mapping.h>
43 
44 #include "hcd.h"
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static int nousb;	/* Disable USB when built into kernel image */
51 
52 #ifdef	CONFIG_USB_SUSPEND
53 static int usb_autosuspend_delay = 2;		/* Default delay value,
54 						 * in seconds */
55 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
56 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
57 
58 #else
59 #define usb_autosuspend_delay		0
60 #endif
61 
62 
63 /**
64  * usb_find_alt_setting() - Given a configuration, find the alternate setting
65  * for the given interface.
66  * @config: the configuration to search (not necessarily the current config).
67  * @iface_num: interface number to search in
68  * @alt_num: alternate interface setting number to search for.
69  *
70  * Search the configuration's interface cache for the given alt setting.
71  */
72 struct usb_host_interface *usb_find_alt_setting(
73 		struct usb_host_config *config,
74 		unsigned int iface_num,
75 		unsigned int alt_num)
76 {
77 	struct usb_interface_cache *intf_cache = NULL;
78 	int i;
79 
80 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
81 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
82 				== iface_num) {
83 			intf_cache = config->intf_cache[i];
84 			break;
85 		}
86 	}
87 	if (!intf_cache)
88 		return NULL;
89 	for (i = 0; i < intf_cache->num_altsetting; i++)
90 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
91 			return &intf_cache->altsetting[i];
92 
93 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
94 			"config %u\n", alt_num, iface_num,
95 			config->desc.bConfigurationValue);
96 	return NULL;
97 }
98 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
99 
100 /**
101  * usb_ifnum_to_if - get the interface object with a given interface number
102  * @dev: the device whose current configuration is considered
103  * @ifnum: the desired interface
104  *
105  * This walks the device descriptor for the currently active configuration
106  * and returns a pointer to the interface with that particular interface
107  * number, or null.
108  *
109  * Note that configuration descriptors are not required to assign interface
110  * numbers sequentially, so that it would be incorrect to assume that
111  * the first interface in that descriptor corresponds to interface zero.
112  * This routine helps device drivers avoid such mistakes.
113  * However, you should make sure that you do the right thing with any
114  * alternate settings available for this interfaces.
115  *
116  * Don't call this function unless you are bound to one of the interfaces
117  * on this device or you have locked the device!
118  */
119 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
120 				      unsigned ifnum)
121 {
122 	struct usb_host_config *config = dev->actconfig;
123 	int i;
124 
125 	if (!config)
126 		return NULL;
127 	for (i = 0; i < config->desc.bNumInterfaces; i++)
128 		if (config->interface[i]->altsetting[0]
129 				.desc.bInterfaceNumber == ifnum)
130 			return config->interface[i];
131 
132 	return NULL;
133 }
134 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
135 
136 /**
137  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
138  * @intf: the interface containing the altsetting in question
139  * @altnum: the desired alternate setting number
140  *
141  * This searches the altsetting array of the specified interface for
142  * an entry with the correct bAlternateSetting value and returns a pointer
143  * to that entry, or null.
144  *
145  * Note that altsettings need not be stored sequentially by number, so
146  * it would be incorrect to assume that the first altsetting entry in
147  * the array corresponds to altsetting zero.  This routine helps device
148  * drivers avoid such mistakes.
149  *
150  * Don't call this function unless you are bound to the intf interface
151  * or you have locked the device!
152  */
153 struct usb_host_interface *usb_altnum_to_altsetting(
154 					const struct usb_interface *intf,
155 					unsigned int altnum)
156 {
157 	int i;
158 
159 	for (i = 0; i < intf->num_altsetting; i++) {
160 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
161 			return &intf->altsetting[i];
162 	}
163 	return NULL;
164 }
165 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
166 
167 struct find_interface_arg {
168 	int minor;
169 	struct device_driver *drv;
170 };
171 
172 static int __find_interface(struct device *dev, void *data)
173 {
174 	struct find_interface_arg *arg = data;
175 	struct usb_interface *intf;
176 
177 	if (!is_usb_interface(dev))
178 		return 0;
179 
180 	if (dev->driver != arg->drv)
181 		return 0;
182 	intf = to_usb_interface(dev);
183 	return intf->minor == arg->minor;
184 }
185 
186 /**
187  * usb_find_interface - find usb_interface pointer for driver and device
188  * @drv: the driver whose current configuration is considered
189  * @minor: the minor number of the desired device
190  *
191  * This walks the bus device list and returns a pointer to the interface
192  * with the matching minor and driver.  Note, this only works for devices
193  * that share the USB major number.
194  */
195 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
196 {
197 	struct find_interface_arg argb;
198 	struct device *dev;
199 
200 	argb.minor = minor;
201 	argb.drv = &drv->drvwrap.driver;
202 
203 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
204 
205 	/* Drop reference count from bus_find_device */
206 	put_device(dev);
207 
208 	return dev ? to_usb_interface(dev) : NULL;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_interface);
211 
212 /**
213  * usb_release_dev - free a usb device structure when all users of it are finished.
214  * @dev: device that's been disconnected
215  *
216  * Will be called only by the device core when all users of this usb device are
217  * done.
218  */
219 static void usb_release_dev(struct device *dev)
220 {
221 	struct usb_device *udev;
222 	struct usb_hcd *hcd;
223 
224 	udev = to_usb_device(dev);
225 	hcd = bus_to_hcd(udev->bus);
226 
227 	usb_destroy_configuration(udev);
228 	usb_put_hcd(hcd);
229 	kfree(udev->product);
230 	kfree(udev->manufacturer);
231 	kfree(udev->serial);
232 	kfree(udev);
233 }
234 
235 #ifdef	CONFIG_HOTPLUG
236 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
237 {
238 	struct usb_device *usb_dev;
239 
240 	usb_dev = to_usb_device(dev);
241 
242 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
243 		return -ENOMEM;
244 
245 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
246 		return -ENOMEM;
247 
248 	return 0;
249 }
250 
251 #else
252 
253 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
254 {
255 	return -ENODEV;
256 }
257 #endif	/* CONFIG_HOTPLUG */
258 
259 #ifdef	CONFIG_PM
260 
261 /* USB device Power-Management thunks.
262  * There's no need to distinguish here between quiescing a USB device
263  * and powering it down; the generic_suspend() routine takes care of
264  * it by skipping the usb_port_suspend() call for a quiesce.  And for
265  * USB interfaces there's no difference at all.
266  */
267 
268 static int usb_dev_prepare(struct device *dev)
269 {
270 	return 0;		/* Implement eventually? */
271 }
272 
273 static void usb_dev_complete(struct device *dev)
274 {
275 	/* Currently used only for rebinding interfaces */
276 	usb_resume(dev, PMSG_ON);	/* FIXME: change to PMSG_COMPLETE */
277 }
278 
279 static int usb_dev_suspend(struct device *dev)
280 {
281 	return usb_suspend(dev, PMSG_SUSPEND);
282 }
283 
284 static int usb_dev_resume(struct device *dev)
285 {
286 	return usb_resume(dev, PMSG_RESUME);
287 }
288 
289 static int usb_dev_freeze(struct device *dev)
290 {
291 	return usb_suspend(dev, PMSG_FREEZE);
292 }
293 
294 static int usb_dev_thaw(struct device *dev)
295 {
296 	return usb_resume(dev, PMSG_THAW);
297 }
298 
299 static int usb_dev_poweroff(struct device *dev)
300 {
301 	return usb_suspend(dev, PMSG_HIBERNATE);
302 }
303 
304 static int usb_dev_restore(struct device *dev)
305 {
306 	return usb_resume(dev, PMSG_RESTORE);
307 }
308 
309 static const struct dev_pm_ops usb_device_pm_ops = {
310 	.prepare =	usb_dev_prepare,
311 	.complete =	usb_dev_complete,
312 	.suspend =	usb_dev_suspend,
313 	.resume =	usb_dev_resume,
314 	.freeze =	usb_dev_freeze,
315 	.thaw =		usb_dev_thaw,
316 	.poweroff =	usb_dev_poweroff,
317 	.restore =	usb_dev_restore,
318 };
319 
320 #else
321 
322 #define usb_device_pm_ops	(*(struct dev_pm_ops *) NULL)
323 
324 #endif	/* CONFIG_PM */
325 
326 
327 static char *usb_devnode(struct device *dev, mode_t *mode)
328 {
329 	struct usb_device *usb_dev;
330 
331 	usb_dev = to_usb_device(dev);
332 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
333 			 usb_dev->bus->busnum, usb_dev->devnum);
334 }
335 
336 struct device_type usb_device_type = {
337 	.name =		"usb_device",
338 	.release =	usb_release_dev,
339 	.uevent =	usb_dev_uevent,
340 	.devnode = 	usb_devnode,
341 	.pm =		&usb_device_pm_ops,
342 };
343 
344 
345 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
346 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
347 {
348 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
349 	return hcd->wireless;
350 }
351 
352 
353 /**
354  * usb_alloc_dev - usb device constructor (usbcore-internal)
355  * @parent: hub to which device is connected; null to allocate a root hub
356  * @bus: bus used to access the device
357  * @port1: one-based index of port; ignored for root hubs
358  * Context: !in_interrupt()
359  *
360  * Only hub drivers (including virtual root hub drivers for host
361  * controllers) should ever call this.
362  *
363  * This call may not be used in a non-sleeping context.
364  */
365 struct usb_device *usb_alloc_dev(struct usb_device *parent,
366 				 struct usb_bus *bus, unsigned port1)
367 {
368 	struct usb_device *dev;
369 	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
370 	unsigned root_hub = 0;
371 
372 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
373 	if (!dev)
374 		return NULL;
375 
376 	if (!usb_get_hcd(bus_to_hcd(bus))) {
377 		kfree(dev);
378 		return NULL;
379 	}
380 	/* Root hubs aren't true devices, so don't allocate HCD resources */
381 	if (usb_hcd->driver->alloc_dev && parent &&
382 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
383 		usb_put_hcd(bus_to_hcd(bus));
384 		kfree(dev);
385 		return NULL;
386 	}
387 
388 	device_initialize(&dev->dev);
389 	dev->dev.bus = &usb_bus_type;
390 	dev->dev.type = &usb_device_type;
391 	dev->dev.groups = usb_device_groups;
392 	dev->dev.dma_mask = bus->controller->dma_mask;
393 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
394 	dev->state = USB_STATE_ATTACHED;
395 	atomic_set(&dev->urbnum, 0);
396 
397 	INIT_LIST_HEAD(&dev->ep0.urb_list);
398 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
399 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
400 	/* ep0 maxpacket comes later, from device descriptor */
401 	usb_enable_endpoint(dev, &dev->ep0, false);
402 	dev->can_submit = 1;
403 
404 	/* Save readable and stable topology id, distinguishing devices
405 	 * by location for diagnostics, tools, driver model, etc.  The
406 	 * string is a path along hub ports, from the root.  Each device's
407 	 * dev->devpath will be stable until USB is re-cabled, and hubs
408 	 * are often labeled with these port numbers.  The name isn't
409 	 * as stable:  bus->busnum changes easily from modprobe order,
410 	 * cardbus or pci hotplugging, and so on.
411 	 */
412 	if (unlikely(!parent)) {
413 		dev->devpath[0] = '0';
414 		dev->route = 0;
415 
416 		dev->dev.parent = bus->controller;
417 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
418 		root_hub = 1;
419 	} else {
420 		/* match any labeling on the hubs; it's one-based */
421 		if (parent->devpath[0] == '0') {
422 			snprintf(dev->devpath, sizeof dev->devpath,
423 				"%d", port1);
424 			/* Root ports are not counted in route string */
425 			dev->route = 0;
426 		} else {
427 			snprintf(dev->devpath, sizeof dev->devpath,
428 				"%s.%d", parent->devpath, port1);
429 			/* Route string assumes hubs have less than 16 ports */
430 			if (port1 < 15)
431 				dev->route = parent->route +
432 					(port1 << ((parent->level - 1)*4));
433 			else
434 				dev->route = parent->route +
435 					(15 << ((parent->level - 1)*4));
436 		}
437 
438 		dev->dev.parent = &parent->dev;
439 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
440 
441 		/* hub driver sets up TT records */
442 	}
443 
444 	dev->portnum = port1;
445 	dev->bus = bus;
446 	dev->parent = parent;
447 	INIT_LIST_HEAD(&dev->filelist);
448 
449 #ifdef	CONFIG_PM
450 	dev->autosuspend_delay = usb_autosuspend_delay * HZ;
451 	dev->connect_time = jiffies;
452 	dev->active_duration = -jiffies;
453 #endif
454 	if (root_hub)	/* Root hub always ok [and always wired] */
455 		dev->authorized = 1;
456 	else {
457 		dev->authorized = usb_hcd->authorized_default;
458 		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
459 	}
460 	return dev;
461 }
462 
463 /**
464  * usb_get_dev - increments the reference count of the usb device structure
465  * @dev: the device being referenced
466  *
467  * Each live reference to a device should be refcounted.
468  *
469  * Drivers for USB interfaces should normally record such references in
470  * their probe() methods, when they bind to an interface, and release
471  * them by calling usb_put_dev(), in their disconnect() methods.
472  *
473  * A pointer to the device with the incremented reference counter is returned.
474  */
475 struct usb_device *usb_get_dev(struct usb_device *dev)
476 {
477 	if (dev)
478 		get_device(&dev->dev);
479 	return dev;
480 }
481 EXPORT_SYMBOL_GPL(usb_get_dev);
482 
483 /**
484  * usb_put_dev - release a use of the usb device structure
485  * @dev: device that's been disconnected
486  *
487  * Must be called when a user of a device is finished with it.  When the last
488  * user of the device calls this function, the memory of the device is freed.
489  */
490 void usb_put_dev(struct usb_device *dev)
491 {
492 	if (dev)
493 		put_device(&dev->dev);
494 }
495 EXPORT_SYMBOL_GPL(usb_put_dev);
496 
497 /**
498  * usb_get_intf - increments the reference count of the usb interface structure
499  * @intf: the interface being referenced
500  *
501  * Each live reference to a interface must be refcounted.
502  *
503  * Drivers for USB interfaces should normally record such references in
504  * their probe() methods, when they bind to an interface, and release
505  * them by calling usb_put_intf(), in their disconnect() methods.
506  *
507  * A pointer to the interface with the incremented reference counter is
508  * returned.
509  */
510 struct usb_interface *usb_get_intf(struct usb_interface *intf)
511 {
512 	if (intf)
513 		get_device(&intf->dev);
514 	return intf;
515 }
516 EXPORT_SYMBOL_GPL(usb_get_intf);
517 
518 /**
519  * usb_put_intf - release a use of the usb interface structure
520  * @intf: interface that's been decremented
521  *
522  * Must be called when a user of an interface is finished with it.  When the
523  * last user of the interface calls this function, the memory of the interface
524  * is freed.
525  */
526 void usb_put_intf(struct usb_interface *intf)
527 {
528 	if (intf)
529 		put_device(&intf->dev);
530 }
531 EXPORT_SYMBOL_GPL(usb_put_intf);
532 
533 /*			USB device locking
534  *
535  * USB devices and interfaces are locked using the semaphore in their
536  * embedded struct device.  The hub driver guarantees that whenever a
537  * device is connected or disconnected, drivers are called with the
538  * USB device locked as well as their particular interface.
539  *
540  * Complications arise when several devices are to be locked at the same
541  * time.  Only hub-aware drivers that are part of usbcore ever have to
542  * do this; nobody else needs to worry about it.  The rule for locking
543  * is simple:
544  *
545  *	When locking both a device and its parent, always lock the
546  *	the parent first.
547  */
548 
549 /**
550  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
551  * @udev: device that's being locked
552  * @iface: interface bound to the driver making the request (optional)
553  *
554  * Attempts to acquire the device lock, but fails if the device is
555  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
556  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
557  * lock, the routine polls repeatedly.  This is to prevent deadlock with
558  * disconnect; in some drivers (such as usb-storage) the disconnect()
559  * or suspend() method will block waiting for a device reset to complete.
560  *
561  * Returns a negative error code for failure, otherwise 0.
562  */
563 int usb_lock_device_for_reset(struct usb_device *udev,
564 			      const struct usb_interface *iface)
565 {
566 	unsigned long jiffies_expire = jiffies + HZ;
567 
568 	if (udev->state == USB_STATE_NOTATTACHED)
569 		return -ENODEV;
570 	if (udev->state == USB_STATE_SUSPENDED)
571 		return -EHOSTUNREACH;
572 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
573 			iface->condition == USB_INTERFACE_UNBOUND))
574 		return -EINTR;
575 
576 	while (usb_trylock_device(udev) != 0) {
577 
578 		/* If we can't acquire the lock after waiting one second,
579 		 * we're probably deadlocked */
580 		if (time_after(jiffies, jiffies_expire))
581 			return -EBUSY;
582 
583 		msleep(15);
584 		if (udev->state == USB_STATE_NOTATTACHED)
585 			return -ENODEV;
586 		if (udev->state == USB_STATE_SUSPENDED)
587 			return -EHOSTUNREACH;
588 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
589 				iface->condition == USB_INTERFACE_UNBOUND))
590 			return -EINTR;
591 	}
592 	return 0;
593 }
594 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
595 
596 static struct usb_device *match_device(struct usb_device *dev,
597 				       u16 vendor_id, u16 product_id)
598 {
599 	struct usb_device *ret_dev = NULL;
600 	int child;
601 
602 	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
603 	    le16_to_cpu(dev->descriptor.idVendor),
604 	    le16_to_cpu(dev->descriptor.idProduct));
605 
606 	/* see if this device matches */
607 	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
608 	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
609 		dev_dbg(&dev->dev, "matched this device!\n");
610 		ret_dev = usb_get_dev(dev);
611 		goto exit;
612 	}
613 
614 	/* look through all of the children of this device */
615 	for (child = 0; child < dev->maxchild; ++child) {
616 		if (dev->children[child]) {
617 			usb_lock_device(dev->children[child]);
618 			ret_dev = match_device(dev->children[child],
619 					       vendor_id, product_id);
620 			usb_unlock_device(dev->children[child]);
621 			if (ret_dev)
622 				goto exit;
623 		}
624 	}
625 exit:
626 	return ret_dev;
627 }
628 
629 /**
630  * usb_find_device - find a specific usb device in the system
631  * @vendor_id: the vendor id of the device to find
632  * @product_id: the product id of the device to find
633  *
634  * Returns a pointer to a struct usb_device if such a specified usb
635  * device is present in the system currently.  The usage count of the
636  * device will be incremented if a device is found.  Make sure to call
637  * usb_put_dev() when the caller is finished with the device.
638  *
639  * If a device with the specified vendor and product id is not found,
640  * NULL is returned.
641  */
642 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
643 {
644 	struct list_head *buslist;
645 	struct usb_bus *bus;
646 	struct usb_device *dev = NULL;
647 
648 	mutex_lock(&usb_bus_list_lock);
649 	for (buslist = usb_bus_list.next;
650 	     buslist != &usb_bus_list;
651 	     buslist = buslist->next) {
652 		bus = container_of(buslist, struct usb_bus, bus_list);
653 		if (!bus->root_hub)
654 			continue;
655 		usb_lock_device(bus->root_hub);
656 		dev = match_device(bus->root_hub, vendor_id, product_id);
657 		usb_unlock_device(bus->root_hub);
658 		if (dev)
659 			goto exit;
660 	}
661 exit:
662 	mutex_unlock(&usb_bus_list_lock);
663 	return dev;
664 }
665 
666 /**
667  * usb_get_current_frame_number - return current bus frame number
668  * @dev: the device whose bus is being queried
669  *
670  * Returns the current frame number for the USB host controller
671  * used with the given USB device.  This can be used when scheduling
672  * isochronous requests.
673  *
674  * Note that different kinds of host controller have different
675  * "scheduling horizons".  While one type might support scheduling only
676  * 32 frames into the future, others could support scheduling up to
677  * 1024 frames into the future.
678  */
679 int usb_get_current_frame_number(struct usb_device *dev)
680 {
681 	return usb_hcd_get_frame_number(dev);
682 }
683 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
684 
685 /*-------------------------------------------------------------------*/
686 /*
687  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
688  * extra field of the interface and endpoint descriptor structs.
689  */
690 
691 int __usb_get_extra_descriptor(char *buffer, unsigned size,
692 			       unsigned char type, void **ptr)
693 {
694 	struct usb_descriptor_header *header;
695 
696 	while (size >= sizeof(struct usb_descriptor_header)) {
697 		header = (struct usb_descriptor_header *)buffer;
698 
699 		if (header->bLength < 2) {
700 			printk(KERN_ERR
701 				"%s: bogus descriptor, type %d length %d\n",
702 				usbcore_name,
703 				header->bDescriptorType,
704 				header->bLength);
705 			return -1;
706 		}
707 
708 		if (header->bDescriptorType == type) {
709 			*ptr = header;
710 			return 0;
711 		}
712 
713 		buffer += header->bLength;
714 		size -= header->bLength;
715 	}
716 	return -1;
717 }
718 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
719 
720 /**
721  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
722  * @dev: device the buffer will be used with
723  * @size: requested buffer size
724  * @mem_flags: affect whether allocation may block
725  * @dma: used to return DMA address of buffer
726  *
727  * Return value is either null (indicating no buffer could be allocated), or
728  * the cpu-space pointer to a buffer that may be used to perform DMA to the
729  * specified device.  Such cpu-space buffers are returned along with the DMA
730  * address (through the pointer provided).
731  *
732  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
733  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
734  * hardware during URB completion/resubmit.  The implementation varies between
735  * platforms, depending on details of how DMA will work to this device.
736  * Using these buffers also eliminates cacheline sharing problems on
737  * architectures where CPU caches are not DMA-coherent.  On systems without
738  * bus-snooping caches, these buffers are uncached.
739  *
740  * When the buffer is no longer used, free it with usb_buffer_free().
741  */
742 void *usb_buffer_alloc(struct usb_device *dev, size_t size, gfp_t mem_flags,
743 		       dma_addr_t *dma)
744 {
745 	if (!dev || !dev->bus)
746 		return NULL;
747 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
748 }
749 EXPORT_SYMBOL_GPL(usb_buffer_alloc);
750 
751 /**
752  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
753  * @dev: device the buffer was used with
754  * @size: requested buffer size
755  * @addr: CPU address of buffer
756  * @dma: DMA address of buffer
757  *
758  * This reclaims an I/O buffer, letting it be reused.  The memory must have
759  * been allocated using usb_buffer_alloc(), and the parameters must match
760  * those provided in that allocation request.
761  */
762 void usb_buffer_free(struct usb_device *dev, size_t size, void *addr,
763 		     dma_addr_t dma)
764 {
765 	if (!dev || !dev->bus)
766 		return;
767 	if (!addr)
768 		return;
769 	hcd_buffer_free(dev->bus, size, addr, dma);
770 }
771 EXPORT_SYMBOL_GPL(usb_buffer_free);
772 
773 /**
774  * usb_buffer_map - create DMA mapping(s) for an urb
775  * @urb: urb whose transfer_buffer/setup_packet will be mapped
776  *
777  * Return value is either null (indicating no buffer could be mapped), or
778  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
779  * added to urb->transfer_flags if the operation succeeds.  If the device
780  * is connected to this system through a non-DMA controller, this operation
781  * always succeeds.
782  *
783  * This call would normally be used for an urb which is reused, perhaps
784  * as the target of a large periodic transfer, with usb_buffer_dmasync()
785  * calls to synchronize memory and dma state.
786  *
787  * Reverse the effect of this call with usb_buffer_unmap().
788  */
789 #if 0
790 struct urb *usb_buffer_map(struct urb *urb)
791 {
792 	struct usb_bus		*bus;
793 	struct device		*controller;
794 
795 	if (!urb
796 			|| !urb->dev
797 			|| !(bus = urb->dev->bus)
798 			|| !(controller = bus->controller))
799 		return NULL;
800 
801 	if (controller->dma_mask) {
802 		urb->transfer_dma = dma_map_single(controller,
803 			urb->transfer_buffer, urb->transfer_buffer_length,
804 			usb_pipein(urb->pipe)
805 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
806 		if (usb_pipecontrol(urb->pipe))
807 			urb->setup_dma = dma_map_single(controller,
808 					urb->setup_packet,
809 					sizeof(struct usb_ctrlrequest),
810 					DMA_TO_DEVICE);
811 	/* FIXME generic api broken like pci, can't report errors */
812 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
813 	} else
814 		urb->transfer_dma = ~0;
815 	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
816 				| URB_NO_SETUP_DMA_MAP);
817 	return urb;
818 }
819 EXPORT_SYMBOL_GPL(usb_buffer_map);
820 #endif  /*  0  */
821 
822 /* XXX DISABLED, no users currently.  If you wish to re-enable this
823  * XXX please determine whether the sync is to transfer ownership of
824  * XXX the buffer from device to cpu or vice verse, and thusly use the
825  * XXX appropriate _for_{cpu,device}() method.  -DaveM
826  */
827 #if 0
828 
829 /**
830  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
831  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
832  */
833 void usb_buffer_dmasync(struct urb *urb)
834 {
835 	struct usb_bus		*bus;
836 	struct device		*controller;
837 
838 	if (!urb
839 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
840 			|| !urb->dev
841 			|| !(bus = urb->dev->bus)
842 			|| !(controller = bus->controller))
843 		return;
844 
845 	if (controller->dma_mask) {
846 		dma_sync_single_for_cpu(controller,
847 			urb->transfer_dma, urb->transfer_buffer_length,
848 			usb_pipein(urb->pipe)
849 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
850 		if (usb_pipecontrol(urb->pipe))
851 			dma_sync_single_for_cpu(controller,
852 					urb->setup_dma,
853 					sizeof(struct usb_ctrlrequest),
854 					DMA_TO_DEVICE);
855 	}
856 }
857 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
858 #endif
859 
860 /**
861  * usb_buffer_unmap - free DMA mapping(s) for an urb
862  * @urb: urb whose transfer_buffer will be unmapped
863  *
864  * Reverses the effect of usb_buffer_map().
865  */
866 #if 0
867 void usb_buffer_unmap(struct urb *urb)
868 {
869 	struct usb_bus		*bus;
870 	struct device		*controller;
871 
872 	if (!urb
873 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
874 			|| !urb->dev
875 			|| !(bus = urb->dev->bus)
876 			|| !(controller = bus->controller))
877 		return;
878 
879 	if (controller->dma_mask) {
880 		dma_unmap_single(controller,
881 			urb->transfer_dma, urb->transfer_buffer_length,
882 			usb_pipein(urb->pipe)
883 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
884 		if (usb_pipecontrol(urb->pipe))
885 			dma_unmap_single(controller,
886 					urb->setup_dma,
887 					sizeof(struct usb_ctrlrequest),
888 					DMA_TO_DEVICE);
889 	}
890 	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
891 				| URB_NO_SETUP_DMA_MAP);
892 }
893 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
894 #endif  /*  0  */
895 
896 /**
897  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
898  * @dev: device to which the scatterlist will be mapped
899  * @is_in: mapping transfer direction
900  * @sg: the scatterlist to map
901  * @nents: the number of entries in the scatterlist
902  *
903  * Return value is either < 0 (indicating no buffers could be mapped), or
904  * the number of DMA mapping array entries in the scatterlist.
905  *
906  * The caller is responsible for placing the resulting DMA addresses from
907  * the scatterlist into URB transfer buffer pointers, and for setting the
908  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
909  *
910  * Top I/O rates come from queuing URBs, instead of waiting for each one
911  * to complete before starting the next I/O.   This is particularly easy
912  * to do with scatterlists.  Just allocate and submit one URB for each DMA
913  * mapping entry returned, stopping on the first error or when all succeed.
914  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
915  *
916  * This call would normally be used when translating scatterlist requests,
917  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
918  * may be able to coalesce mappings for improved I/O efficiency.
919  *
920  * Reverse the effect of this call with usb_buffer_unmap_sg().
921  */
922 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
923 		      struct scatterlist *sg, int nents)
924 {
925 	struct usb_bus		*bus;
926 	struct device		*controller;
927 
928 	if (!dev
929 			|| !(bus = dev->bus)
930 			|| !(controller = bus->controller)
931 			|| !controller->dma_mask)
932 		return -EINVAL;
933 
934 	/* FIXME generic api broken like pci, can't report errors */
935 	return dma_map_sg(controller, sg, nents,
936 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
937 }
938 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
939 
940 /* XXX DISABLED, no users currently.  If you wish to re-enable this
941  * XXX please determine whether the sync is to transfer ownership of
942  * XXX the buffer from device to cpu or vice verse, and thusly use the
943  * XXX appropriate _for_{cpu,device}() method.  -DaveM
944  */
945 #if 0
946 
947 /**
948  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
949  * @dev: device to which the scatterlist will be mapped
950  * @is_in: mapping transfer direction
951  * @sg: the scatterlist to synchronize
952  * @n_hw_ents: the positive return value from usb_buffer_map_sg
953  *
954  * Use this when you are re-using a scatterlist's data buffers for
955  * another USB request.
956  */
957 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
958 			   struct scatterlist *sg, int n_hw_ents)
959 {
960 	struct usb_bus		*bus;
961 	struct device		*controller;
962 
963 	if (!dev
964 			|| !(bus = dev->bus)
965 			|| !(controller = bus->controller)
966 			|| !controller->dma_mask)
967 		return;
968 
969 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
970 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
971 }
972 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
973 #endif
974 
975 /**
976  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
977  * @dev: device to which the scatterlist will be mapped
978  * @is_in: mapping transfer direction
979  * @sg: the scatterlist to unmap
980  * @n_hw_ents: the positive return value from usb_buffer_map_sg
981  *
982  * Reverses the effect of usb_buffer_map_sg().
983  */
984 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
985 			 struct scatterlist *sg, int n_hw_ents)
986 {
987 	struct usb_bus		*bus;
988 	struct device		*controller;
989 
990 	if (!dev
991 			|| !(bus = dev->bus)
992 			|| !(controller = bus->controller)
993 			|| !controller->dma_mask)
994 		return;
995 
996 	dma_unmap_sg(controller, sg, n_hw_ents,
997 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
998 }
999 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
1000 
1001 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
1002 #ifdef MODULE
1003 module_param(nousb, bool, 0444);
1004 #else
1005 core_param(nousb, nousb, bool, 0444);
1006 #endif
1007 
1008 /*
1009  * for external read access to <nousb>
1010  */
1011 int usb_disabled(void)
1012 {
1013 	return nousb;
1014 }
1015 EXPORT_SYMBOL_GPL(usb_disabled);
1016 
1017 /*
1018  * Notifications of device and interface registration
1019  */
1020 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1021 		void *data)
1022 {
1023 	struct device *dev = data;
1024 
1025 	switch (action) {
1026 	case BUS_NOTIFY_ADD_DEVICE:
1027 		if (dev->type == &usb_device_type)
1028 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1029 		else if (dev->type == &usb_if_device_type)
1030 			(void) usb_create_sysfs_intf_files(
1031 					to_usb_interface(dev));
1032 		break;
1033 
1034 	case BUS_NOTIFY_DEL_DEVICE:
1035 		if (dev->type == &usb_device_type)
1036 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1037 		else if (dev->type == &usb_if_device_type)
1038 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1039 		break;
1040 	}
1041 	return 0;
1042 }
1043 
1044 static struct notifier_block usb_bus_nb = {
1045 	.notifier_call = usb_bus_notify,
1046 };
1047 
1048 struct dentry *usb_debug_root;
1049 EXPORT_SYMBOL_GPL(usb_debug_root);
1050 
1051 static struct dentry *usb_debug_devices;
1052 
1053 static int usb_debugfs_init(void)
1054 {
1055 	usb_debug_root = debugfs_create_dir("usb", NULL);
1056 	if (!usb_debug_root)
1057 		return -ENOENT;
1058 
1059 	usb_debug_devices = debugfs_create_file("devices", 0444,
1060 						usb_debug_root, NULL,
1061 						&usbfs_devices_fops);
1062 	if (!usb_debug_devices) {
1063 		debugfs_remove(usb_debug_root);
1064 		usb_debug_root = NULL;
1065 		return -ENOENT;
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 static void usb_debugfs_cleanup(void)
1072 {
1073 	debugfs_remove(usb_debug_devices);
1074 	debugfs_remove(usb_debug_root);
1075 }
1076 
1077 /*
1078  * Init
1079  */
1080 static int __init usb_init(void)
1081 {
1082 	int retval;
1083 	if (nousb) {
1084 		pr_info("%s: USB support disabled\n", usbcore_name);
1085 		return 0;
1086 	}
1087 
1088 	retval = usb_debugfs_init();
1089 	if (retval)
1090 		goto out;
1091 
1092 	retval = bus_register(&usb_bus_type);
1093 	if (retval)
1094 		goto bus_register_failed;
1095 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1096 	if (retval)
1097 		goto bus_notifier_failed;
1098 	retval = usb_major_init();
1099 	if (retval)
1100 		goto major_init_failed;
1101 	retval = usb_register(&usbfs_driver);
1102 	if (retval)
1103 		goto driver_register_failed;
1104 	retval = usb_devio_init();
1105 	if (retval)
1106 		goto usb_devio_init_failed;
1107 	retval = usbfs_init();
1108 	if (retval)
1109 		goto fs_init_failed;
1110 	retval = usb_hub_init();
1111 	if (retval)
1112 		goto hub_init_failed;
1113 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1114 	if (!retval)
1115 		goto out;
1116 
1117 	usb_hub_cleanup();
1118 hub_init_failed:
1119 	usbfs_cleanup();
1120 fs_init_failed:
1121 	usb_devio_cleanup();
1122 usb_devio_init_failed:
1123 	usb_deregister(&usbfs_driver);
1124 driver_register_failed:
1125 	usb_major_cleanup();
1126 major_init_failed:
1127 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1128 bus_notifier_failed:
1129 	bus_unregister(&usb_bus_type);
1130 bus_register_failed:
1131 	usb_debugfs_cleanup();
1132 out:
1133 	return retval;
1134 }
1135 
1136 /*
1137  * Cleanup
1138  */
1139 static void __exit usb_exit(void)
1140 {
1141 	/* This will matter if shutdown/reboot does exitcalls. */
1142 	if (nousb)
1143 		return;
1144 
1145 	usb_deregister_device_driver(&usb_generic_driver);
1146 	usb_major_cleanup();
1147 	usbfs_cleanup();
1148 	usb_deregister(&usbfs_driver);
1149 	usb_devio_cleanup();
1150 	usb_hub_cleanup();
1151 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1152 	bus_unregister(&usb_bus_type);
1153 	usb_debugfs_cleanup();
1154 }
1155 
1156 subsys_initcall(usb_init);
1157 module_exit(usb_exit);
1158 MODULE_LICENSE("GPL");
1159