1 /* 2 * drivers/usb/usb.c 3 * 4 * (C) Copyright Linus Torvalds 1999 5 * (C) Copyright Johannes Erdfelt 1999-2001 6 * (C) Copyright Andreas Gal 1999 7 * (C) Copyright Gregory P. Smith 1999 8 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 9 * (C) Copyright Randy Dunlap 2000 10 * (C) Copyright David Brownell 2000-2004 11 * (C) Copyright Yggdrasil Computing, Inc. 2000 12 * (usb_device_id matching changes by Adam J. Richter) 13 * (C) Copyright Greg Kroah-Hartman 2002-2003 14 * 15 * NOTE! This is not actually a driver at all, rather this is 16 * just a collection of helper routines that implement the 17 * generic USB things that the real drivers can use.. 18 * 19 * Think of this as a "USB library" rather than anything else. 20 * It should be considered a slave, with no callbacks. Callbacks 21 * are evil. 22 */ 23 24 #include <linux/config.h> 25 #include <linux/module.h> 26 #include <linux/string.h> 27 #include <linux/bitops.h> 28 #include <linux/slab.h> 29 #include <linux/interrupt.h> /* for in_interrupt() */ 30 #include <linux/kmod.h> 31 #include <linux/init.h> 32 #include <linux/spinlock.h> 33 #include <linux/errno.h> 34 #include <linux/smp_lock.h> 35 #include <linux/rwsem.h> 36 #include <linux/usb.h> 37 38 #include <asm/io.h> 39 #include <asm/scatterlist.h> 40 #include <linux/mm.h> 41 #include <linux/dma-mapping.h> 42 43 #include "hcd.h" 44 #include "usb.h" 45 46 47 const char *usbcore_name = "usbcore"; 48 49 static int nousb; /* Disable USB when built into kernel image */ 50 /* Not honored on modular build */ 51 52 static DECLARE_RWSEM(usb_all_devices_rwsem); 53 54 55 static int generic_probe (struct device *dev) 56 { 57 return 0; 58 } 59 static int generic_remove (struct device *dev) 60 { 61 struct usb_device *udev = to_usb_device(dev); 62 63 /* if this is only an unbind, not a physical disconnect, then 64 * unconfigure the device */ 65 if (udev->state == USB_STATE_CONFIGURED) 66 usb_set_configuration(udev, 0); 67 68 /* in case the call failed or the device was suspended */ 69 if (udev->state >= USB_STATE_CONFIGURED) 70 usb_disable_device(udev, 0); 71 return 0; 72 } 73 74 static struct device_driver usb_generic_driver = { 75 .owner = THIS_MODULE, 76 .name = "usb", 77 .bus = &usb_bus_type, 78 .probe = generic_probe, 79 .remove = generic_remove, 80 }; 81 82 static int usb_generic_driver_data; 83 84 /* called from driver core with usb_bus_type.subsys writelock */ 85 static int usb_probe_interface(struct device *dev) 86 { 87 struct usb_interface * intf = to_usb_interface(dev); 88 struct usb_driver * driver = to_usb_driver(dev->driver); 89 const struct usb_device_id *id; 90 int error = -ENODEV; 91 92 dev_dbg(dev, "%s\n", __FUNCTION__); 93 94 if (!driver->probe) 95 return error; 96 /* FIXME we'd much prefer to just resume it ... */ 97 if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED) 98 return -EHOSTUNREACH; 99 100 id = usb_match_id (intf, driver->id_table); 101 if (id) { 102 dev_dbg (dev, "%s - got id\n", __FUNCTION__); 103 104 /* Interface "power state" doesn't correspond to any hardware 105 * state whatsoever. We use it to record when it's bound to 106 * a driver that may start I/0: it's not frozen/quiesced. 107 */ 108 mark_active(intf); 109 intf->condition = USB_INTERFACE_BINDING; 110 error = driver->probe (intf, id); 111 if (error) { 112 mark_quiesced(intf); 113 intf->condition = USB_INTERFACE_UNBOUND; 114 } else 115 intf->condition = USB_INTERFACE_BOUND; 116 } 117 118 return error; 119 } 120 121 /* called from driver core with usb_bus_type.subsys writelock */ 122 static int usb_unbind_interface(struct device *dev) 123 { 124 struct usb_interface *intf = to_usb_interface(dev); 125 struct usb_driver *driver = to_usb_driver(intf->dev.driver); 126 127 intf->condition = USB_INTERFACE_UNBINDING; 128 129 /* release all urbs for this interface */ 130 usb_disable_interface(interface_to_usbdev(intf), intf); 131 132 if (driver && driver->disconnect) 133 driver->disconnect(intf); 134 135 /* reset other interface state */ 136 usb_set_interface(interface_to_usbdev(intf), 137 intf->altsetting[0].desc.bInterfaceNumber, 138 0); 139 usb_set_intfdata(intf, NULL); 140 intf->condition = USB_INTERFACE_UNBOUND; 141 mark_quiesced(intf); 142 143 return 0; 144 } 145 146 /** 147 * usb_register - register a USB driver 148 * @new_driver: USB operations for the driver 149 * 150 * Registers a USB driver with the USB core. The list of unattached 151 * interfaces will be rescanned whenever a new driver is added, allowing 152 * the new driver to attach to any recognized devices. 153 * Returns a negative error code on failure and 0 on success. 154 * 155 * NOTE: if you want your driver to use the USB major number, you must call 156 * usb_register_dev() to enable that functionality. This function no longer 157 * takes care of that. 158 */ 159 int usb_register(struct usb_driver *new_driver) 160 { 161 int retval = 0; 162 163 if (nousb) 164 return -ENODEV; 165 166 new_driver->driver.name = (char *)new_driver->name; 167 new_driver->driver.bus = &usb_bus_type; 168 new_driver->driver.probe = usb_probe_interface; 169 new_driver->driver.remove = usb_unbind_interface; 170 new_driver->driver.owner = new_driver->owner; 171 172 usb_lock_all_devices(); 173 retval = driver_register(&new_driver->driver); 174 usb_unlock_all_devices(); 175 176 if (!retval) { 177 pr_info("%s: registered new driver %s\n", 178 usbcore_name, new_driver->name); 179 usbfs_update_special(); 180 } else { 181 printk(KERN_ERR "%s: error %d registering driver %s\n", 182 usbcore_name, retval, new_driver->name); 183 } 184 185 return retval; 186 } 187 188 /** 189 * usb_deregister - unregister a USB driver 190 * @driver: USB operations of the driver to unregister 191 * Context: must be able to sleep 192 * 193 * Unlinks the specified driver from the internal USB driver list. 194 * 195 * NOTE: If you called usb_register_dev(), you still need to call 196 * usb_deregister_dev() to clean up your driver's allocated minor numbers, 197 * this * call will no longer do it for you. 198 */ 199 void usb_deregister(struct usb_driver *driver) 200 { 201 pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name); 202 203 usb_lock_all_devices(); 204 driver_unregister (&driver->driver); 205 usb_unlock_all_devices(); 206 207 usbfs_update_special(); 208 } 209 210 /** 211 * usb_ifnum_to_if - get the interface object with a given interface number 212 * @dev: the device whose current configuration is considered 213 * @ifnum: the desired interface 214 * 215 * This walks the device descriptor for the currently active configuration 216 * and returns a pointer to the interface with that particular interface 217 * number, or null. 218 * 219 * Note that configuration descriptors are not required to assign interface 220 * numbers sequentially, so that it would be incorrect to assume that 221 * the first interface in that descriptor corresponds to interface zero. 222 * This routine helps device drivers avoid such mistakes. 223 * However, you should make sure that you do the right thing with any 224 * alternate settings available for this interfaces. 225 * 226 * Don't call this function unless you are bound to one of the interfaces 227 * on this device or you have locked the device! 228 */ 229 struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum) 230 { 231 struct usb_host_config *config = dev->actconfig; 232 int i; 233 234 if (!config) 235 return NULL; 236 for (i = 0; i < config->desc.bNumInterfaces; i++) 237 if (config->interface[i]->altsetting[0] 238 .desc.bInterfaceNumber == ifnum) 239 return config->interface[i]; 240 241 return NULL; 242 } 243 244 /** 245 * usb_altnum_to_altsetting - get the altsetting structure with a given 246 * alternate setting number. 247 * @intf: the interface containing the altsetting in question 248 * @altnum: the desired alternate setting number 249 * 250 * This searches the altsetting array of the specified interface for 251 * an entry with the correct bAlternateSetting value and returns a pointer 252 * to that entry, or null. 253 * 254 * Note that altsettings need not be stored sequentially by number, so 255 * it would be incorrect to assume that the first altsetting entry in 256 * the array corresponds to altsetting zero. This routine helps device 257 * drivers avoid such mistakes. 258 * 259 * Don't call this function unless you are bound to the intf interface 260 * or you have locked the device! 261 */ 262 struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf, 263 unsigned int altnum) 264 { 265 int i; 266 267 for (i = 0; i < intf->num_altsetting; i++) { 268 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 269 return &intf->altsetting[i]; 270 } 271 return NULL; 272 } 273 274 /** 275 * usb_driver_claim_interface - bind a driver to an interface 276 * @driver: the driver to be bound 277 * @iface: the interface to which it will be bound; must be in the 278 * usb device's active configuration 279 * @priv: driver data associated with that interface 280 * 281 * This is used by usb device drivers that need to claim more than one 282 * interface on a device when probing (audio and acm are current examples). 283 * No device driver should directly modify internal usb_interface or 284 * usb_device structure members. 285 * 286 * Few drivers should need to use this routine, since the most natural 287 * way to bind to an interface is to return the private data from 288 * the driver's probe() method. 289 * 290 * Callers must own the device lock and the driver model's usb_bus_type.subsys 291 * writelock. So driver probe() entries don't need extra locking, 292 * but other call contexts may need to explicitly claim those locks. 293 */ 294 int usb_driver_claim_interface(struct usb_driver *driver, 295 struct usb_interface *iface, void* priv) 296 { 297 struct device *dev = &iface->dev; 298 299 if (dev->driver) 300 return -EBUSY; 301 302 dev->driver = &driver->driver; 303 usb_set_intfdata(iface, priv); 304 iface->condition = USB_INTERFACE_BOUND; 305 mark_active(iface); 306 307 /* if interface was already added, bind now; else let 308 * the future device_add() bind it, bypassing probe() 309 */ 310 if (device_is_registered(dev)) 311 device_bind_driver(dev); 312 313 return 0; 314 } 315 316 /** 317 * usb_driver_release_interface - unbind a driver from an interface 318 * @driver: the driver to be unbound 319 * @iface: the interface from which it will be unbound 320 * 321 * This can be used by drivers to release an interface without waiting 322 * for their disconnect() methods to be called. In typical cases this 323 * also causes the driver disconnect() method to be called. 324 * 325 * This call is synchronous, and may not be used in an interrupt context. 326 * Callers must own the device lock and the driver model's usb_bus_type.subsys 327 * writelock. So driver disconnect() entries don't need extra locking, 328 * but other call contexts may need to explicitly claim those locks. 329 */ 330 void usb_driver_release_interface(struct usb_driver *driver, 331 struct usb_interface *iface) 332 { 333 struct device *dev = &iface->dev; 334 335 /* this should never happen, don't release something that's not ours */ 336 if (!dev->driver || dev->driver != &driver->driver) 337 return; 338 339 /* don't release from within disconnect() */ 340 if (iface->condition != USB_INTERFACE_BOUND) 341 return; 342 343 /* don't release if the interface hasn't been added yet */ 344 if (device_is_registered(dev)) { 345 iface->condition = USB_INTERFACE_UNBINDING; 346 device_release_driver(dev); 347 } 348 349 dev->driver = NULL; 350 usb_set_intfdata(iface, NULL); 351 iface->condition = USB_INTERFACE_UNBOUND; 352 mark_quiesced(iface); 353 } 354 355 /** 356 * usb_match_id - find first usb_device_id matching device or interface 357 * @interface: the interface of interest 358 * @id: array of usb_device_id structures, terminated by zero entry 359 * 360 * usb_match_id searches an array of usb_device_id's and returns 361 * the first one matching the device or interface, or null. 362 * This is used when binding (or rebinding) a driver to an interface. 363 * Most USB device drivers will use this indirectly, through the usb core, 364 * but some layered driver frameworks use it directly. 365 * These device tables are exported with MODULE_DEVICE_TABLE, through 366 * modutils and "modules.usbmap", to support the driver loading 367 * functionality of USB hotplugging. 368 * 369 * What Matches: 370 * 371 * The "match_flags" element in a usb_device_id controls which 372 * members are used. If the corresponding bit is set, the 373 * value in the device_id must match its corresponding member 374 * in the device or interface descriptor, or else the device_id 375 * does not match. 376 * 377 * "driver_info" is normally used only by device drivers, 378 * but you can create a wildcard "matches anything" usb_device_id 379 * as a driver's "modules.usbmap" entry if you provide an id with 380 * only a nonzero "driver_info" field. If you do this, the USB device 381 * driver's probe() routine should use additional intelligence to 382 * decide whether to bind to the specified interface. 383 * 384 * What Makes Good usb_device_id Tables: 385 * 386 * The match algorithm is very simple, so that intelligence in 387 * driver selection must come from smart driver id records. 388 * Unless you have good reasons to use another selection policy, 389 * provide match elements only in related groups, and order match 390 * specifiers from specific to general. Use the macros provided 391 * for that purpose if you can. 392 * 393 * The most specific match specifiers use device descriptor 394 * data. These are commonly used with product-specific matches; 395 * the USB_DEVICE macro lets you provide vendor and product IDs, 396 * and you can also match against ranges of product revisions. 397 * These are widely used for devices with application or vendor 398 * specific bDeviceClass values. 399 * 400 * Matches based on device class/subclass/protocol specifications 401 * are slightly more general; use the USB_DEVICE_INFO macro, or 402 * its siblings. These are used with single-function devices 403 * where bDeviceClass doesn't specify that each interface has 404 * its own class. 405 * 406 * Matches based on interface class/subclass/protocol are the 407 * most general; they let drivers bind to any interface on a 408 * multiple-function device. Use the USB_INTERFACE_INFO 409 * macro, or its siblings, to match class-per-interface style 410 * devices (as recorded in bDeviceClass). 411 * 412 * Within those groups, remember that not all combinations are 413 * meaningful. For example, don't give a product version range 414 * without vendor and product IDs; or specify a protocol without 415 * its associated class and subclass. 416 */ 417 const struct usb_device_id * 418 usb_match_id(struct usb_interface *interface, const struct usb_device_id *id) 419 { 420 struct usb_host_interface *intf; 421 struct usb_device *dev; 422 423 /* proc_connectinfo in devio.c may call us with id == NULL. */ 424 if (id == NULL) 425 return NULL; 426 427 intf = interface->cur_altsetting; 428 dev = interface_to_usbdev(interface); 429 430 /* It is important to check that id->driver_info is nonzero, 431 since an entry that is all zeroes except for a nonzero 432 id->driver_info is the way to create an entry that 433 indicates that the driver want to examine every 434 device and interface. */ 435 for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass || 436 id->driver_info; id++) { 437 438 if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) && 439 id->idVendor != le16_to_cpu(dev->descriptor.idVendor)) 440 continue; 441 442 if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) && 443 id->idProduct != le16_to_cpu(dev->descriptor.idProduct)) 444 continue; 445 446 /* No need to test id->bcdDevice_lo != 0, since 0 is never 447 greater than any unsigned number. */ 448 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) && 449 (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice))) 450 continue; 451 452 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) && 453 (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice))) 454 continue; 455 456 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) && 457 (id->bDeviceClass != dev->descriptor.bDeviceClass)) 458 continue; 459 460 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) && 461 (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass)) 462 continue; 463 464 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) && 465 (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol)) 466 continue; 467 468 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) && 469 (id->bInterfaceClass != intf->desc.bInterfaceClass)) 470 continue; 471 472 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) && 473 (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass)) 474 continue; 475 476 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) && 477 (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol)) 478 continue; 479 480 return id; 481 } 482 483 return NULL; 484 } 485 486 487 static int __find_interface(struct device * dev, void * data) 488 { 489 struct usb_interface ** ret = (struct usb_interface **)data; 490 struct usb_interface * intf = *ret; 491 int *minor = (int *)data; 492 493 /* can't look at usb devices, only interfaces */ 494 if (dev->driver == &usb_generic_driver) 495 return 0; 496 497 intf = to_usb_interface(dev); 498 if (intf->minor != -1 && intf->minor == *minor) { 499 *ret = intf; 500 return 1; 501 } 502 return 0; 503 } 504 505 /** 506 * usb_find_interface - find usb_interface pointer for driver and device 507 * @drv: the driver whose current configuration is considered 508 * @minor: the minor number of the desired device 509 * 510 * This walks the driver device list and returns a pointer to the interface 511 * with the matching minor. Note, this only works for devices that share the 512 * USB major number. 513 */ 514 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 515 { 516 struct usb_interface *intf = (struct usb_interface *)(long)minor; 517 int ret; 518 519 ret = driver_for_each_device(&drv->driver, NULL, &intf, __find_interface); 520 521 return ret ? intf : NULL; 522 } 523 524 static int usb_device_match (struct device *dev, struct device_driver *drv) 525 { 526 struct usb_interface *intf; 527 struct usb_driver *usb_drv; 528 const struct usb_device_id *id; 529 530 /* check for generic driver, which we don't match any device with */ 531 if (drv == &usb_generic_driver) 532 return 0; 533 534 intf = to_usb_interface(dev); 535 usb_drv = to_usb_driver(drv); 536 537 id = usb_match_id (intf, usb_drv->id_table); 538 if (id) 539 return 1; 540 541 return 0; 542 } 543 544 545 #ifdef CONFIG_HOTPLUG 546 547 /* 548 * USB hotplugging invokes what /proc/sys/kernel/hotplug says 549 * (normally /sbin/hotplug) when USB devices get added or removed. 550 * 551 * This invokes a user mode policy agent, typically helping to load driver 552 * or other modules, configure the device, and more. Drivers can provide 553 * a MODULE_DEVICE_TABLE to help with module loading subtasks. 554 * 555 * We're called either from khubd (the typical case) or from root hub 556 * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle 557 * delays in event delivery. Use sysfs (and DEVPATH) to make sure the 558 * device (and this configuration!) are still present. 559 */ 560 static int usb_hotplug (struct device *dev, char **envp, int num_envp, 561 char *buffer, int buffer_size) 562 { 563 struct usb_interface *intf; 564 struct usb_device *usb_dev; 565 struct usb_host_interface *alt; 566 int i = 0; 567 int length = 0; 568 569 if (!dev) 570 return -ENODEV; 571 572 /* driver is often null here; dev_dbg() would oops */ 573 pr_debug ("usb %s: hotplug\n", dev->bus_id); 574 575 /* Must check driver_data here, as on remove driver is always NULL */ 576 if ((dev->driver == &usb_generic_driver) || 577 (dev->driver_data == &usb_generic_driver_data)) 578 return 0; 579 580 intf = to_usb_interface(dev); 581 usb_dev = interface_to_usbdev (intf); 582 alt = intf->cur_altsetting; 583 584 if (usb_dev->devnum < 0) { 585 pr_debug ("usb %s: already deleted?\n", dev->bus_id); 586 return -ENODEV; 587 } 588 if (!usb_dev->bus) { 589 pr_debug ("usb %s: bus removed?\n", dev->bus_id); 590 return -ENODEV; 591 } 592 593 #ifdef CONFIG_USB_DEVICEFS 594 /* If this is available, userspace programs can directly read 595 * all the device descriptors we don't tell them about. Or 596 * even act as usermode drivers. 597 * 598 * FIXME reduce hardwired intelligence here 599 */ 600 if (add_hotplug_env_var(envp, num_envp, &i, 601 buffer, buffer_size, &length, 602 "DEVICE=/proc/bus/usb/%03d/%03d", 603 usb_dev->bus->busnum, usb_dev->devnum)) 604 return -ENOMEM; 605 #endif 606 607 /* per-device configurations are common */ 608 if (add_hotplug_env_var(envp, num_envp, &i, 609 buffer, buffer_size, &length, 610 "PRODUCT=%x/%x/%x", 611 le16_to_cpu(usb_dev->descriptor.idVendor), 612 le16_to_cpu(usb_dev->descriptor.idProduct), 613 le16_to_cpu(usb_dev->descriptor.bcdDevice))) 614 return -ENOMEM; 615 616 /* class-based driver binding models */ 617 if (add_hotplug_env_var(envp, num_envp, &i, 618 buffer, buffer_size, &length, 619 "TYPE=%d/%d/%d", 620 usb_dev->descriptor.bDeviceClass, 621 usb_dev->descriptor.bDeviceSubClass, 622 usb_dev->descriptor.bDeviceProtocol)) 623 return -ENOMEM; 624 625 if (add_hotplug_env_var(envp, num_envp, &i, 626 buffer, buffer_size, &length, 627 "INTERFACE=%d/%d/%d", 628 alt->desc.bInterfaceClass, 629 alt->desc.bInterfaceSubClass, 630 alt->desc.bInterfaceProtocol)) 631 return -ENOMEM; 632 633 if (add_hotplug_env_var(envp, num_envp, &i, 634 buffer, buffer_size, &length, 635 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 636 le16_to_cpu(usb_dev->descriptor.idVendor), 637 le16_to_cpu(usb_dev->descriptor.idProduct), 638 le16_to_cpu(usb_dev->descriptor.bcdDevice), 639 usb_dev->descriptor.bDeviceClass, 640 usb_dev->descriptor.bDeviceSubClass, 641 usb_dev->descriptor.bDeviceProtocol, 642 alt->desc.bInterfaceClass, 643 alt->desc.bInterfaceSubClass, 644 alt->desc.bInterfaceProtocol)) 645 return -ENOMEM; 646 647 envp[i] = NULL; 648 649 return 0; 650 } 651 652 #else 653 654 static int usb_hotplug (struct device *dev, char **envp, 655 int num_envp, char *buffer, int buffer_size) 656 { 657 return -ENODEV; 658 } 659 660 #endif /* CONFIG_HOTPLUG */ 661 662 /** 663 * usb_release_dev - free a usb device structure when all users of it are finished. 664 * @dev: device that's been disconnected 665 * 666 * Will be called only by the device core when all users of this usb device are 667 * done. 668 */ 669 static void usb_release_dev(struct device *dev) 670 { 671 struct usb_device *udev; 672 673 udev = to_usb_device(dev); 674 675 usb_destroy_configuration(udev); 676 usb_bus_put(udev->bus); 677 kfree(udev->product); 678 kfree(udev->manufacturer); 679 kfree(udev->serial); 680 kfree(udev); 681 } 682 683 /** 684 * usb_alloc_dev - usb device constructor (usbcore-internal) 685 * @parent: hub to which device is connected; null to allocate a root hub 686 * @bus: bus used to access the device 687 * @port1: one-based index of port; ignored for root hubs 688 * Context: !in_interrupt () 689 * 690 * Only hub drivers (including virtual root hub drivers for host 691 * controllers) should ever call this. 692 * 693 * This call may not be used in a non-sleeping context. 694 */ 695 struct usb_device * 696 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1) 697 { 698 struct usb_device *dev; 699 700 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 701 if (!dev) 702 return NULL; 703 704 bus = usb_bus_get(bus); 705 if (!bus) { 706 kfree(dev); 707 return NULL; 708 } 709 710 device_initialize(&dev->dev); 711 dev->dev.bus = &usb_bus_type; 712 dev->dev.dma_mask = bus->controller->dma_mask; 713 dev->dev.driver_data = &usb_generic_driver_data; 714 dev->dev.driver = &usb_generic_driver; 715 dev->dev.release = usb_release_dev; 716 dev->state = USB_STATE_ATTACHED; 717 718 INIT_LIST_HEAD(&dev->ep0.urb_list); 719 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 720 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 721 /* ep0 maxpacket comes later, from device descriptor */ 722 dev->ep_in[0] = dev->ep_out[0] = &dev->ep0; 723 724 /* Save readable and stable topology id, distinguishing devices 725 * by location for diagnostics, tools, driver model, etc. The 726 * string is a path along hub ports, from the root. Each device's 727 * dev->devpath will be stable until USB is re-cabled, and hubs 728 * are often labeled with these port numbers. The bus_id isn't 729 * as stable: bus->busnum changes easily from modprobe order, 730 * cardbus or pci hotplugging, and so on. 731 */ 732 if (unlikely (!parent)) { 733 dev->devpath [0] = '0'; 734 735 dev->dev.parent = bus->controller; 736 sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum); 737 } else { 738 /* match any labeling on the hubs; it's one-based */ 739 if (parent->devpath [0] == '0') 740 snprintf (dev->devpath, sizeof dev->devpath, 741 "%d", port1); 742 else 743 snprintf (dev->devpath, sizeof dev->devpath, 744 "%s.%d", parent->devpath, port1); 745 746 dev->dev.parent = &parent->dev; 747 sprintf (&dev->dev.bus_id[0], "%d-%s", 748 bus->busnum, dev->devpath); 749 750 /* hub driver sets up TT records */ 751 } 752 753 dev->bus = bus; 754 dev->parent = parent; 755 INIT_LIST_HEAD(&dev->filelist); 756 757 init_MUTEX(&dev->serialize); 758 759 return dev; 760 } 761 762 /** 763 * usb_get_dev - increments the reference count of the usb device structure 764 * @dev: the device being referenced 765 * 766 * Each live reference to a device should be refcounted. 767 * 768 * Drivers for USB interfaces should normally record such references in 769 * their probe() methods, when they bind to an interface, and release 770 * them by calling usb_put_dev(), in their disconnect() methods. 771 * 772 * A pointer to the device with the incremented reference counter is returned. 773 */ 774 struct usb_device *usb_get_dev(struct usb_device *dev) 775 { 776 if (dev) 777 get_device(&dev->dev); 778 return dev; 779 } 780 781 /** 782 * usb_put_dev - release a use of the usb device structure 783 * @dev: device that's been disconnected 784 * 785 * Must be called when a user of a device is finished with it. When the last 786 * user of the device calls this function, the memory of the device is freed. 787 */ 788 void usb_put_dev(struct usb_device *dev) 789 { 790 if (dev) 791 put_device(&dev->dev); 792 } 793 794 /** 795 * usb_get_intf - increments the reference count of the usb interface structure 796 * @intf: the interface being referenced 797 * 798 * Each live reference to a interface must be refcounted. 799 * 800 * Drivers for USB interfaces should normally record such references in 801 * their probe() methods, when they bind to an interface, and release 802 * them by calling usb_put_intf(), in their disconnect() methods. 803 * 804 * A pointer to the interface with the incremented reference counter is 805 * returned. 806 */ 807 struct usb_interface *usb_get_intf(struct usb_interface *intf) 808 { 809 if (intf) 810 get_device(&intf->dev); 811 return intf; 812 } 813 814 /** 815 * usb_put_intf - release a use of the usb interface structure 816 * @intf: interface that's been decremented 817 * 818 * Must be called when a user of an interface is finished with it. When the 819 * last user of the interface calls this function, the memory of the interface 820 * is freed. 821 */ 822 void usb_put_intf(struct usb_interface *intf) 823 { 824 if (intf) 825 put_device(&intf->dev); 826 } 827 828 829 /* USB device locking 830 * 831 * Although locking USB devices should be straightforward, it is 832 * complicated by the way the driver-model core works. When a new USB 833 * driver is registered or unregistered, the core will automatically 834 * probe or disconnect all matching interfaces on all USB devices while 835 * holding the USB subsystem writelock. There's no good way for us to 836 * tell which devices will be used or to lock them beforehand; our only 837 * option is to effectively lock all the USB devices. 838 * 839 * We do that by using a private rw-semaphore, usb_all_devices_rwsem. 840 * When locking an individual device you must first acquire the rwsem's 841 * readlock. When a driver is registered or unregistered the writelock 842 * must be held. These actions are encapsulated in the subroutines 843 * below, so all a driver needs to do is call usb_lock_device() and 844 * usb_unlock_device(). 845 * 846 * Complications arise when several devices are to be locked at the same 847 * time. Only hub-aware drivers that are part of usbcore ever have to 848 * do this; nobody else needs to worry about it. The problem is that 849 * usb_lock_device() must not be called to lock a second device since it 850 * would acquire the rwsem's readlock reentrantly, leading to deadlock if 851 * another thread was waiting for the writelock. The solution is simple: 852 * 853 * When locking more than one device, call usb_lock_device() 854 * to lock the first one. Lock the others by calling 855 * down(&udev->serialize) directly. 856 * 857 * When unlocking multiple devices, use up(&udev->serialize) 858 * to unlock all but the last one. Unlock the last one by 859 * calling usb_unlock_device(). 860 * 861 * When locking both a device and its parent, always lock the 862 * the parent first. 863 */ 864 865 /** 866 * usb_lock_device - acquire the lock for a usb device structure 867 * @udev: device that's being locked 868 * 869 * Use this routine when you don't hold any other device locks; 870 * to acquire nested inner locks call down(&udev->serialize) directly. 871 * This is necessary for proper interaction with usb_lock_all_devices(). 872 */ 873 void usb_lock_device(struct usb_device *udev) 874 { 875 down_read(&usb_all_devices_rwsem); 876 down(&udev->serialize); 877 } 878 879 /** 880 * usb_trylock_device - attempt to acquire the lock for a usb device structure 881 * @udev: device that's being locked 882 * 883 * Don't use this routine if you already hold a device lock; 884 * use down_trylock(&udev->serialize) instead. 885 * This is necessary for proper interaction with usb_lock_all_devices(). 886 * 887 * Returns 1 if successful, 0 if contention. 888 */ 889 int usb_trylock_device(struct usb_device *udev) 890 { 891 if (!down_read_trylock(&usb_all_devices_rwsem)) 892 return 0; 893 if (down_trylock(&udev->serialize)) { 894 up_read(&usb_all_devices_rwsem); 895 return 0; 896 } 897 return 1; 898 } 899 900 /** 901 * usb_lock_device_for_reset - cautiously acquire the lock for a 902 * usb device structure 903 * @udev: device that's being locked 904 * @iface: interface bound to the driver making the request (optional) 905 * 906 * Attempts to acquire the device lock, but fails if the device is 907 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 908 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 909 * lock, the routine polls repeatedly. This is to prevent deadlock with 910 * disconnect; in some drivers (such as usb-storage) the disconnect() 911 * or suspend() method will block waiting for a device reset to complete. 912 * 913 * Returns a negative error code for failure, otherwise 1 or 0 to indicate 914 * that the device will or will not have to be unlocked. (0 can be 915 * returned when an interface is given and is BINDING, because in that 916 * case the driver already owns the device lock.) 917 */ 918 int usb_lock_device_for_reset(struct usb_device *udev, 919 struct usb_interface *iface) 920 { 921 unsigned long jiffies_expire = jiffies + HZ; 922 923 if (udev->state == USB_STATE_NOTATTACHED) 924 return -ENODEV; 925 if (udev->state == USB_STATE_SUSPENDED) 926 return -EHOSTUNREACH; 927 if (iface) { 928 switch (iface->condition) { 929 case USB_INTERFACE_BINDING: 930 return 0; 931 case USB_INTERFACE_BOUND: 932 break; 933 default: 934 return -EINTR; 935 } 936 } 937 938 while (!usb_trylock_device(udev)) { 939 940 /* If we can't acquire the lock after waiting one second, 941 * we're probably deadlocked */ 942 if (time_after(jiffies, jiffies_expire)) 943 return -EBUSY; 944 945 msleep(15); 946 if (udev->state == USB_STATE_NOTATTACHED) 947 return -ENODEV; 948 if (udev->state == USB_STATE_SUSPENDED) 949 return -EHOSTUNREACH; 950 if (iface && iface->condition != USB_INTERFACE_BOUND) 951 return -EINTR; 952 } 953 return 1; 954 } 955 956 /** 957 * usb_unlock_device - release the lock for a usb device structure 958 * @udev: device that's being unlocked 959 * 960 * Use this routine when releasing the only device lock you hold; 961 * to release inner nested locks call up(&udev->serialize) directly. 962 * This is necessary for proper interaction with usb_lock_all_devices(). 963 */ 964 void usb_unlock_device(struct usb_device *udev) 965 { 966 up(&udev->serialize); 967 up_read(&usb_all_devices_rwsem); 968 } 969 970 /** 971 * usb_lock_all_devices - acquire the lock for all usb device structures 972 * 973 * This is necessary when registering a new driver or probing a bus, 974 * since the driver-model core may try to use any usb_device. 975 */ 976 void usb_lock_all_devices(void) 977 { 978 down_write(&usb_all_devices_rwsem); 979 } 980 981 /** 982 * usb_unlock_all_devices - release the lock for all usb device structures 983 */ 984 void usb_unlock_all_devices(void) 985 { 986 up_write(&usb_all_devices_rwsem); 987 } 988 989 990 static struct usb_device *match_device(struct usb_device *dev, 991 u16 vendor_id, u16 product_id) 992 { 993 struct usb_device *ret_dev = NULL; 994 int child; 995 996 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n", 997 le16_to_cpu(dev->descriptor.idVendor), 998 le16_to_cpu(dev->descriptor.idProduct)); 999 1000 /* see if this device matches */ 1001 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) && 1002 (product_id == le16_to_cpu(dev->descriptor.idProduct))) { 1003 dev_dbg (&dev->dev, "matched this device!\n"); 1004 ret_dev = usb_get_dev(dev); 1005 goto exit; 1006 } 1007 1008 /* look through all of the children of this device */ 1009 for (child = 0; child < dev->maxchild; ++child) { 1010 if (dev->children[child]) { 1011 down(&dev->children[child]->serialize); 1012 ret_dev = match_device(dev->children[child], 1013 vendor_id, product_id); 1014 up(&dev->children[child]->serialize); 1015 if (ret_dev) 1016 goto exit; 1017 } 1018 } 1019 exit: 1020 return ret_dev; 1021 } 1022 1023 /** 1024 * usb_find_device - find a specific usb device in the system 1025 * @vendor_id: the vendor id of the device to find 1026 * @product_id: the product id of the device to find 1027 * 1028 * Returns a pointer to a struct usb_device if such a specified usb 1029 * device is present in the system currently. The usage count of the 1030 * device will be incremented if a device is found. Make sure to call 1031 * usb_put_dev() when the caller is finished with the device. 1032 * 1033 * If a device with the specified vendor and product id is not found, 1034 * NULL is returned. 1035 */ 1036 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id) 1037 { 1038 struct list_head *buslist; 1039 struct usb_bus *bus; 1040 struct usb_device *dev = NULL; 1041 1042 down(&usb_bus_list_lock); 1043 for (buslist = usb_bus_list.next; 1044 buslist != &usb_bus_list; 1045 buslist = buslist->next) { 1046 bus = container_of(buslist, struct usb_bus, bus_list); 1047 if (!bus->root_hub) 1048 continue; 1049 usb_lock_device(bus->root_hub); 1050 dev = match_device(bus->root_hub, vendor_id, product_id); 1051 usb_unlock_device(bus->root_hub); 1052 if (dev) 1053 goto exit; 1054 } 1055 exit: 1056 up(&usb_bus_list_lock); 1057 return dev; 1058 } 1059 1060 /** 1061 * usb_get_current_frame_number - return current bus frame number 1062 * @dev: the device whose bus is being queried 1063 * 1064 * Returns the current frame number for the USB host controller 1065 * used with the given USB device. This can be used when scheduling 1066 * isochronous requests. 1067 * 1068 * Note that different kinds of host controller have different 1069 * "scheduling horizons". While one type might support scheduling only 1070 * 32 frames into the future, others could support scheduling up to 1071 * 1024 frames into the future. 1072 */ 1073 int usb_get_current_frame_number(struct usb_device *dev) 1074 { 1075 return dev->bus->op->get_frame_number (dev); 1076 } 1077 1078 /*-------------------------------------------------------------------*/ 1079 /* 1080 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 1081 * extra field of the interface and endpoint descriptor structs. 1082 */ 1083 1084 int __usb_get_extra_descriptor(char *buffer, unsigned size, 1085 unsigned char type, void **ptr) 1086 { 1087 struct usb_descriptor_header *header; 1088 1089 while (size >= sizeof(struct usb_descriptor_header)) { 1090 header = (struct usb_descriptor_header *)buffer; 1091 1092 if (header->bLength < 2) { 1093 printk(KERN_ERR 1094 "%s: bogus descriptor, type %d length %d\n", 1095 usbcore_name, 1096 header->bDescriptorType, 1097 header->bLength); 1098 return -1; 1099 } 1100 1101 if (header->bDescriptorType == type) { 1102 *ptr = header; 1103 return 0; 1104 } 1105 1106 buffer += header->bLength; 1107 size -= header->bLength; 1108 } 1109 return -1; 1110 } 1111 1112 /** 1113 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 1114 * @dev: device the buffer will be used with 1115 * @size: requested buffer size 1116 * @mem_flags: affect whether allocation may block 1117 * @dma: used to return DMA address of buffer 1118 * 1119 * Return value is either null (indicating no buffer could be allocated), or 1120 * the cpu-space pointer to a buffer that may be used to perform DMA to the 1121 * specified device. Such cpu-space buffers are returned along with the DMA 1122 * address (through the pointer provided). 1123 * 1124 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 1125 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O 1126 * mapping hardware for long idle periods. The implementation varies between 1127 * platforms, depending on details of how DMA will work to this device. 1128 * Using these buffers also helps prevent cacheline sharing problems on 1129 * architectures where CPU caches are not DMA-coherent. 1130 * 1131 * When the buffer is no longer used, free it with usb_buffer_free(). 1132 */ 1133 void *usb_buffer_alloc ( 1134 struct usb_device *dev, 1135 size_t size, 1136 gfp_t mem_flags, 1137 dma_addr_t *dma 1138 ) 1139 { 1140 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc) 1141 return NULL; 1142 return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma); 1143 } 1144 1145 /** 1146 * usb_buffer_free - free memory allocated with usb_buffer_alloc() 1147 * @dev: device the buffer was used with 1148 * @size: requested buffer size 1149 * @addr: CPU address of buffer 1150 * @dma: DMA address of buffer 1151 * 1152 * This reclaims an I/O buffer, letting it be reused. The memory must have 1153 * been allocated using usb_buffer_alloc(), and the parameters must match 1154 * those provided in that allocation request. 1155 */ 1156 void usb_buffer_free ( 1157 struct usb_device *dev, 1158 size_t size, 1159 void *addr, 1160 dma_addr_t dma 1161 ) 1162 { 1163 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free) 1164 return; 1165 dev->bus->op->buffer_free (dev->bus, size, addr, dma); 1166 } 1167 1168 /** 1169 * usb_buffer_map - create DMA mapping(s) for an urb 1170 * @urb: urb whose transfer_buffer/setup_packet will be mapped 1171 * 1172 * Return value is either null (indicating no buffer could be mapped), or 1173 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are 1174 * added to urb->transfer_flags if the operation succeeds. If the device 1175 * is connected to this system through a non-DMA controller, this operation 1176 * always succeeds. 1177 * 1178 * This call would normally be used for an urb which is reused, perhaps 1179 * as the target of a large periodic transfer, with usb_buffer_dmasync() 1180 * calls to synchronize memory and dma state. 1181 * 1182 * Reverse the effect of this call with usb_buffer_unmap(). 1183 */ 1184 #if 0 1185 struct urb *usb_buffer_map (struct urb *urb) 1186 { 1187 struct usb_bus *bus; 1188 struct device *controller; 1189 1190 if (!urb 1191 || !urb->dev 1192 || !(bus = urb->dev->bus) 1193 || !(controller = bus->controller)) 1194 return NULL; 1195 1196 if (controller->dma_mask) { 1197 urb->transfer_dma = dma_map_single (controller, 1198 urb->transfer_buffer, urb->transfer_buffer_length, 1199 usb_pipein (urb->pipe) 1200 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1201 if (usb_pipecontrol (urb->pipe)) 1202 urb->setup_dma = dma_map_single (controller, 1203 urb->setup_packet, 1204 sizeof (struct usb_ctrlrequest), 1205 DMA_TO_DEVICE); 1206 // FIXME generic api broken like pci, can't report errors 1207 // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; 1208 } else 1209 urb->transfer_dma = ~0; 1210 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP 1211 | URB_NO_SETUP_DMA_MAP); 1212 return urb; 1213 } 1214 #endif /* 0 */ 1215 1216 /* XXX DISABLED, no users currently. If you wish to re-enable this 1217 * XXX please determine whether the sync is to transfer ownership of 1218 * XXX the buffer from device to cpu or vice verse, and thusly use the 1219 * XXX appropriate _for_{cpu,device}() method. -DaveM 1220 */ 1221 #if 0 1222 1223 /** 1224 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s) 1225 * @urb: urb whose transfer_buffer/setup_packet will be synchronized 1226 */ 1227 void usb_buffer_dmasync (struct urb *urb) 1228 { 1229 struct usb_bus *bus; 1230 struct device *controller; 1231 1232 if (!urb 1233 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 1234 || !urb->dev 1235 || !(bus = urb->dev->bus) 1236 || !(controller = bus->controller)) 1237 return; 1238 1239 if (controller->dma_mask) { 1240 dma_sync_single (controller, 1241 urb->transfer_dma, urb->transfer_buffer_length, 1242 usb_pipein (urb->pipe) 1243 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1244 if (usb_pipecontrol (urb->pipe)) 1245 dma_sync_single (controller, 1246 urb->setup_dma, 1247 sizeof (struct usb_ctrlrequest), 1248 DMA_TO_DEVICE); 1249 } 1250 } 1251 #endif 1252 1253 /** 1254 * usb_buffer_unmap - free DMA mapping(s) for an urb 1255 * @urb: urb whose transfer_buffer will be unmapped 1256 * 1257 * Reverses the effect of usb_buffer_map(). 1258 */ 1259 #if 0 1260 void usb_buffer_unmap (struct urb *urb) 1261 { 1262 struct usb_bus *bus; 1263 struct device *controller; 1264 1265 if (!urb 1266 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 1267 || !urb->dev 1268 || !(bus = urb->dev->bus) 1269 || !(controller = bus->controller)) 1270 return; 1271 1272 if (controller->dma_mask) { 1273 dma_unmap_single (controller, 1274 urb->transfer_dma, urb->transfer_buffer_length, 1275 usb_pipein (urb->pipe) 1276 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1277 if (usb_pipecontrol (urb->pipe)) 1278 dma_unmap_single (controller, 1279 urb->setup_dma, 1280 sizeof (struct usb_ctrlrequest), 1281 DMA_TO_DEVICE); 1282 } 1283 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP 1284 | URB_NO_SETUP_DMA_MAP); 1285 } 1286 #endif /* 0 */ 1287 1288 /** 1289 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint 1290 * @dev: device to which the scatterlist will be mapped 1291 * @pipe: endpoint defining the mapping direction 1292 * @sg: the scatterlist to map 1293 * @nents: the number of entries in the scatterlist 1294 * 1295 * Return value is either < 0 (indicating no buffers could be mapped), or 1296 * the number of DMA mapping array entries in the scatterlist. 1297 * 1298 * The caller is responsible for placing the resulting DMA addresses from 1299 * the scatterlist into URB transfer buffer pointers, and for setting the 1300 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs. 1301 * 1302 * Top I/O rates come from queuing URBs, instead of waiting for each one 1303 * to complete before starting the next I/O. This is particularly easy 1304 * to do with scatterlists. Just allocate and submit one URB for each DMA 1305 * mapping entry returned, stopping on the first error or when all succeed. 1306 * Better yet, use the usb_sg_*() calls, which do that (and more) for you. 1307 * 1308 * This call would normally be used when translating scatterlist requests, 1309 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it 1310 * may be able to coalesce mappings for improved I/O efficiency. 1311 * 1312 * Reverse the effect of this call with usb_buffer_unmap_sg(). 1313 */ 1314 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe, 1315 struct scatterlist *sg, int nents) 1316 { 1317 struct usb_bus *bus; 1318 struct device *controller; 1319 1320 if (!dev 1321 || usb_pipecontrol (pipe) 1322 || !(bus = dev->bus) 1323 || !(controller = bus->controller) 1324 || !controller->dma_mask) 1325 return -1; 1326 1327 // FIXME generic api broken like pci, can't report errors 1328 return dma_map_sg (controller, sg, nents, 1329 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1330 } 1331 1332 /* XXX DISABLED, no users currently. If you wish to re-enable this 1333 * XXX please determine whether the sync is to transfer ownership of 1334 * XXX the buffer from device to cpu or vice verse, and thusly use the 1335 * XXX appropriate _for_{cpu,device}() method. -DaveM 1336 */ 1337 #if 0 1338 1339 /** 1340 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s) 1341 * @dev: device to which the scatterlist will be mapped 1342 * @pipe: endpoint defining the mapping direction 1343 * @sg: the scatterlist to synchronize 1344 * @n_hw_ents: the positive return value from usb_buffer_map_sg 1345 * 1346 * Use this when you are re-using a scatterlist's data buffers for 1347 * another USB request. 1348 */ 1349 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe, 1350 struct scatterlist *sg, int n_hw_ents) 1351 { 1352 struct usb_bus *bus; 1353 struct device *controller; 1354 1355 if (!dev 1356 || !(bus = dev->bus) 1357 || !(controller = bus->controller) 1358 || !controller->dma_mask) 1359 return; 1360 1361 dma_sync_sg (controller, sg, n_hw_ents, 1362 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1363 } 1364 #endif 1365 1366 /** 1367 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist 1368 * @dev: device to which the scatterlist will be mapped 1369 * @pipe: endpoint defining the mapping direction 1370 * @sg: the scatterlist to unmap 1371 * @n_hw_ents: the positive return value from usb_buffer_map_sg 1372 * 1373 * Reverses the effect of usb_buffer_map_sg(). 1374 */ 1375 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe, 1376 struct scatterlist *sg, int n_hw_ents) 1377 { 1378 struct usb_bus *bus; 1379 struct device *controller; 1380 1381 if (!dev 1382 || !(bus = dev->bus) 1383 || !(controller = bus->controller) 1384 || !controller->dma_mask) 1385 return; 1386 1387 dma_unmap_sg (controller, sg, n_hw_ents, 1388 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1389 } 1390 1391 static int verify_suspended(struct device *dev, void *unused) 1392 { 1393 return (dev->power.power_state.event == PM_EVENT_ON) ? -EBUSY : 0; 1394 } 1395 1396 static int usb_generic_suspend(struct device *dev, pm_message_t message) 1397 { 1398 struct usb_interface *intf; 1399 struct usb_driver *driver; 1400 int status; 1401 1402 /* USB devices enter SUSPEND state through their hubs, but can be 1403 * marked for FREEZE as soon as their children are already idled. 1404 * But those semantics are useless, so we equate the two (sigh). 1405 */ 1406 if (dev->driver == &usb_generic_driver) { 1407 if (dev->power.power_state.event == message.event) 1408 return 0; 1409 /* we need to rule out bogus requests through sysfs */ 1410 status = device_for_each_child(dev, NULL, verify_suspended); 1411 if (status) 1412 return status; 1413 return usb_suspend_device (to_usb_device(dev)); 1414 } 1415 1416 if ((dev->driver == NULL) || 1417 (dev->driver_data == &usb_generic_driver_data)) 1418 return 0; 1419 1420 intf = to_usb_interface(dev); 1421 driver = to_usb_driver(dev->driver); 1422 1423 /* with no hardware, USB interfaces only use FREEZE and ON states */ 1424 if (!is_active(intf)) 1425 return 0; 1426 1427 if (driver->suspend && driver->resume) { 1428 status = driver->suspend(intf, message); 1429 if (status) 1430 dev_err(dev, "%s error %d\n", "suspend", status); 1431 else 1432 mark_quiesced(intf); 1433 } else { 1434 // FIXME else if there's no suspend method, disconnect... 1435 dev_warn(dev, "no %s?\n", "suspend"); 1436 status = 0; 1437 } 1438 return status; 1439 } 1440 1441 static int usb_generic_resume(struct device *dev) 1442 { 1443 struct usb_interface *intf; 1444 struct usb_driver *driver; 1445 struct usb_device *udev; 1446 int status; 1447 1448 if (dev->power.power_state.event == PM_EVENT_ON) 1449 return 0; 1450 1451 /* mark things as "on" immediately, no matter what errors crop up */ 1452 dev->power.power_state.event = PM_EVENT_ON; 1453 1454 /* devices resume through their hubs */ 1455 if (dev->driver == &usb_generic_driver) { 1456 udev = to_usb_device(dev); 1457 if (udev->state == USB_STATE_NOTATTACHED) 1458 return 0; 1459 return usb_resume_device (to_usb_device(dev)); 1460 } 1461 1462 if ((dev->driver == NULL) || 1463 (dev->driver_data == &usb_generic_driver_data)) 1464 return 0; 1465 1466 intf = to_usb_interface(dev); 1467 driver = to_usb_driver(dev->driver); 1468 1469 udev = interface_to_usbdev(intf); 1470 if (udev->state == USB_STATE_NOTATTACHED) 1471 return 0; 1472 1473 /* if driver was suspended, it has a resume method; 1474 * however, sysfs can wrongly mark things as suspended 1475 * (on the "no suspend method" FIXME path above) 1476 */ 1477 if (driver->resume) { 1478 status = driver->resume(intf); 1479 if (status) { 1480 dev_err(dev, "%s error %d\n", "resume", status); 1481 mark_quiesced(intf); 1482 } 1483 } else 1484 dev_warn(dev, "no %s?\n", "resume"); 1485 return 0; 1486 } 1487 1488 struct bus_type usb_bus_type = { 1489 .name = "usb", 1490 .match = usb_device_match, 1491 .hotplug = usb_hotplug, 1492 .suspend = usb_generic_suspend, 1493 .resume = usb_generic_resume, 1494 }; 1495 1496 #ifndef MODULE 1497 1498 static int __init usb_setup_disable(char *str) 1499 { 1500 nousb = 1; 1501 return 1; 1502 } 1503 1504 /* format to disable USB on kernel command line is: nousb */ 1505 __setup("nousb", usb_setup_disable); 1506 1507 #endif 1508 1509 /* 1510 * for external read access to <nousb> 1511 */ 1512 int usb_disabled(void) 1513 { 1514 return nousb; 1515 } 1516 1517 /* 1518 * Init 1519 */ 1520 static int __init usb_init(void) 1521 { 1522 int retval; 1523 if (nousb) { 1524 pr_info ("%s: USB support disabled\n", usbcore_name); 1525 return 0; 1526 } 1527 1528 retval = bus_register(&usb_bus_type); 1529 if (retval) 1530 goto out; 1531 retval = usb_host_init(); 1532 if (retval) 1533 goto host_init_failed; 1534 retval = usb_major_init(); 1535 if (retval) 1536 goto major_init_failed; 1537 retval = usb_register(&usbfs_driver); 1538 if (retval) 1539 goto driver_register_failed; 1540 retval = usbdev_init(); 1541 if (retval) 1542 goto usbdevice_init_failed; 1543 retval = usbfs_init(); 1544 if (retval) 1545 goto fs_init_failed; 1546 retval = usb_hub_init(); 1547 if (retval) 1548 goto hub_init_failed; 1549 retval = driver_register(&usb_generic_driver); 1550 if (!retval) 1551 goto out; 1552 1553 usb_hub_cleanup(); 1554 hub_init_failed: 1555 usbfs_cleanup(); 1556 fs_init_failed: 1557 usbdev_cleanup(); 1558 usbdevice_init_failed: 1559 usb_deregister(&usbfs_driver); 1560 driver_register_failed: 1561 usb_major_cleanup(); 1562 major_init_failed: 1563 usb_host_cleanup(); 1564 host_init_failed: 1565 bus_unregister(&usb_bus_type); 1566 out: 1567 return retval; 1568 } 1569 1570 /* 1571 * Cleanup 1572 */ 1573 static void __exit usb_exit(void) 1574 { 1575 /* This will matter if shutdown/reboot does exitcalls. */ 1576 if (nousb) 1577 return; 1578 1579 driver_unregister(&usb_generic_driver); 1580 usb_major_cleanup(); 1581 usbfs_cleanup(); 1582 usb_deregister(&usbfs_driver); 1583 usbdev_cleanup(); 1584 usb_hub_cleanup(); 1585 usb_host_cleanup(); 1586 bus_unregister(&usb_bus_type); 1587 } 1588 1589 subsys_initcall(usb_init); 1590 module_exit(usb_exit); 1591 1592 /* 1593 * USB may be built into the kernel or be built as modules. 1594 * These symbols are exported for device (or host controller) 1595 * driver modules to use. 1596 */ 1597 1598 EXPORT_SYMBOL(usb_register); 1599 EXPORT_SYMBOL(usb_deregister); 1600 EXPORT_SYMBOL(usb_disabled); 1601 1602 EXPORT_SYMBOL_GPL(usb_get_intf); 1603 EXPORT_SYMBOL_GPL(usb_put_intf); 1604 1605 EXPORT_SYMBOL(usb_alloc_dev); 1606 EXPORT_SYMBOL(usb_put_dev); 1607 EXPORT_SYMBOL(usb_get_dev); 1608 EXPORT_SYMBOL(usb_hub_tt_clear_buffer); 1609 1610 EXPORT_SYMBOL(usb_lock_device); 1611 EXPORT_SYMBOL(usb_trylock_device); 1612 EXPORT_SYMBOL(usb_lock_device_for_reset); 1613 EXPORT_SYMBOL(usb_unlock_device); 1614 1615 EXPORT_SYMBOL(usb_driver_claim_interface); 1616 EXPORT_SYMBOL(usb_driver_release_interface); 1617 EXPORT_SYMBOL(usb_match_id); 1618 EXPORT_SYMBOL(usb_find_interface); 1619 EXPORT_SYMBOL(usb_ifnum_to_if); 1620 EXPORT_SYMBOL(usb_altnum_to_altsetting); 1621 1622 EXPORT_SYMBOL(usb_reset_device); 1623 EXPORT_SYMBOL(usb_disconnect); 1624 1625 EXPORT_SYMBOL(__usb_get_extra_descriptor); 1626 1627 EXPORT_SYMBOL(usb_find_device); 1628 EXPORT_SYMBOL(usb_get_current_frame_number); 1629 1630 EXPORT_SYMBOL (usb_buffer_alloc); 1631 EXPORT_SYMBOL (usb_buffer_free); 1632 1633 #if 0 1634 EXPORT_SYMBOL (usb_buffer_map); 1635 EXPORT_SYMBOL (usb_buffer_dmasync); 1636 EXPORT_SYMBOL (usb_buffer_unmap); 1637 #endif 1638 1639 EXPORT_SYMBOL (usb_buffer_map_sg); 1640 #if 0 1641 EXPORT_SYMBOL (usb_buffer_dmasync_sg); 1642 #endif 1643 EXPORT_SYMBOL (usb_buffer_unmap_sg); 1644 1645 MODULE_LICENSE("GPL"); 1646