xref: /linux/drivers/usb/core/usb.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  * drivers/usb/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/smp_lock.h>
35 #include <linux/rwsem.h>
36 #include <linux/usb.h>
37 
38 #include <asm/io.h>
39 #include <asm/scatterlist.h>
40 #include <linux/mm.h>
41 #include <linux/dma-mapping.h>
42 
43 #include "hcd.h"
44 #include "usb.h"
45 
46 
47 const char *usbcore_name = "usbcore";
48 
49 static int nousb;	/* Disable USB when built into kernel image */
50 			/* Not honored on modular build */
51 
52 static DECLARE_RWSEM(usb_all_devices_rwsem);
53 
54 
55 static int generic_probe (struct device *dev)
56 {
57 	return 0;
58 }
59 static int generic_remove (struct device *dev)
60 {
61 	struct usb_device *udev = to_usb_device(dev);
62 
63 	/* if this is only an unbind, not a physical disconnect, then
64 	 * unconfigure the device */
65 	if (udev->state == USB_STATE_CONFIGURED)
66 		usb_set_configuration(udev, 0);
67 
68 	/* in case the call failed or the device was suspended */
69 	if (udev->state >= USB_STATE_CONFIGURED)
70 		usb_disable_device(udev, 0);
71 	return 0;
72 }
73 
74 static struct device_driver usb_generic_driver = {
75 	.owner = THIS_MODULE,
76 	.name =	"usb",
77 	.bus = &usb_bus_type,
78 	.probe = generic_probe,
79 	.remove = generic_remove,
80 };
81 
82 static int usb_generic_driver_data;
83 
84 /* called from driver core with usb_bus_type.subsys writelock */
85 static int usb_probe_interface(struct device *dev)
86 {
87 	struct usb_interface * intf = to_usb_interface(dev);
88 	struct usb_driver * driver = to_usb_driver(dev->driver);
89 	const struct usb_device_id *id;
90 	int error = -ENODEV;
91 
92 	dev_dbg(dev, "%s\n", __FUNCTION__);
93 
94 	if (!driver->probe)
95 		return error;
96 	/* FIXME we'd much prefer to just resume it ... */
97 	if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED)
98 		return -EHOSTUNREACH;
99 
100 	id = usb_match_id (intf, driver->id_table);
101 	if (id) {
102 		dev_dbg (dev, "%s - got id\n", __FUNCTION__);
103 
104 		/* Interface "power state" doesn't correspond to any hardware
105 		 * state whatsoever.  We use it to record when it's bound to
106 		 * a driver that may start I/0:  it's not frozen/quiesced.
107 		 */
108 		mark_active(intf);
109 		intf->condition = USB_INTERFACE_BINDING;
110 		error = driver->probe (intf, id);
111 		if (error) {
112 			mark_quiesced(intf);
113 			intf->condition = USB_INTERFACE_UNBOUND;
114 		} else
115 			intf->condition = USB_INTERFACE_BOUND;
116 	}
117 
118 	return error;
119 }
120 
121 /* called from driver core with usb_bus_type.subsys writelock */
122 static int usb_unbind_interface(struct device *dev)
123 {
124 	struct usb_interface *intf = to_usb_interface(dev);
125 	struct usb_driver *driver = to_usb_driver(intf->dev.driver);
126 
127 	intf->condition = USB_INTERFACE_UNBINDING;
128 
129 	/* release all urbs for this interface */
130 	usb_disable_interface(interface_to_usbdev(intf), intf);
131 
132 	if (driver && driver->disconnect)
133 		driver->disconnect(intf);
134 
135 	/* reset other interface state */
136 	usb_set_interface(interface_to_usbdev(intf),
137 			intf->altsetting[0].desc.bInterfaceNumber,
138 			0);
139 	usb_set_intfdata(intf, NULL);
140 	intf->condition = USB_INTERFACE_UNBOUND;
141 	mark_quiesced(intf);
142 
143 	return 0;
144 }
145 
146 /**
147  * usb_register - register a USB driver
148  * @new_driver: USB operations for the driver
149  *
150  * Registers a USB driver with the USB core.  The list of unattached
151  * interfaces will be rescanned whenever a new driver is added, allowing
152  * the new driver to attach to any recognized devices.
153  * Returns a negative error code on failure and 0 on success.
154  *
155  * NOTE: if you want your driver to use the USB major number, you must call
156  * usb_register_dev() to enable that functionality.  This function no longer
157  * takes care of that.
158  */
159 int usb_register(struct usb_driver *new_driver)
160 {
161 	int retval = 0;
162 
163 	if (nousb)
164 		return -ENODEV;
165 
166 	new_driver->driver.name = (char *)new_driver->name;
167 	new_driver->driver.bus = &usb_bus_type;
168 	new_driver->driver.probe = usb_probe_interface;
169 	new_driver->driver.remove = usb_unbind_interface;
170 	new_driver->driver.owner = new_driver->owner;
171 
172 	usb_lock_all_devices();
173 	retval = driver_register(&new_driver->driver);
174 	usb_unlock_all_devices();
175 
176 	if (!retval) {
177 		pr_info("%s: registered new driver %s\n",
178 			usbcore_name, new_driver->name);
179 		usbfs_update_special();
180 	} else {
181 		printk(KERN_ERR "%s: error %d registering driver %s\n",
182 			usbcore_name, retval, new_driver->name);
183 	}
184 
185 	return retval;
186 }
187 
188 /**
189  * usb_deregister - unregister a USB driver
190  * @driver: USB operations of the driver to unregister
191  * Context: must be able to sleep
192  *
193  * Unlinks the specified driver from the internal USB driver list.
194  *
195  * NOTE: If you called usb_register_dev(), you still need to call
196  * usb_deregister_dev() to clean up your driver's allocated minor numbers,
197  * this * call will no longer do it for you.
198  */
199 void usb_deregister(struct usb_driver *driver)
200 {
201 	pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name);
202 
203 	usb_lock_all_devices();
204 	driver_unregister (&driver->driver);
205 	usb_unlock_all_devices();
206 
207 	usbfs_update_special();
208 }
209 
210 /**
211  * usb_ifnum_to_if - get the interface object with a given interface number
212  * @dev: the device whose current configuration is considered
213  * @ifnum: the desired interface
214  *
215  * This walks the device descriptor for the currently active configuration
216  * and returns a pointer to the interface with that particular interface
217  * number, or null.
218  *
219  * Note that configuration descriptors are not required to assign interface
220  * numbers sequentially, so that it would be incorrect to assume that
221  * the first interface in that descriptor corresponds to interface zero.
222  * This routine helps device drivers avoid such mistakes.
223  * However, you should make sure that you do the right thing with any
224  * alternate settings available for this interfaces.
225  *
226  * Don't call this function unless you are bound to one of the interfaces
227  * on this device or you have locked the device!
228  */
229 struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
230 {
231 	struct usb_host_config *config = dev->actconfig;
232 	int i;
233 
234 	if (!config)
235 		return NULL;
236 	for (i = 0; i < config->desc.bNumInterfaces; i++)
237 		if (config->interface[i]->altsetting[0]
238 				.desc.bInterfaceNumber == ifnum)
239 			return config->interface[i];
240 
241 	return NULL;
242 }
243 
244 /**
245  * usb_altnum_to_altsetting - get the altsetting structure with a given
246  *	alternate setting number.
247  * @intf: the interface containing the altsetting in question
248  * @altnum: the desired alternate setting number
249  *
250  * This searches the altsetting array of the specified interface for
251  * an entry with the correct bAlternateSetting value and returns a pointer
252  * to that entry, or null.
253  *
254  * Note that altsettings need not be stored sequentially by number, so
255  * it would be incorrect to assume that the first altsetting entry in
256  * the array corresponds to altsetting zero.  This routine helps device
257  * drivers avoid such mistakes.
258  *
259  * Don't call this function unless you are bound to the intf interface
260  * or you have locked the device!
261  */
262 struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
263 		unsigned int altnum)
264 {
265 	int i;
266 
267 	for (i = 0; i < intf->num_altsetting; i++) {
268 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
269 			return &intf->altsetting[i];
270 	}
271 	return NULL;
272 }
273 
274 /**
275  * usb_driver_claim_interface - bind a driver to an interface
276  * @driver: the driver to be bound
277  * @iface: the interface to which it will be bound; must be in the
278  *	usb device's active configuration
279  * @priv: driver data associated with that interface
280  *
281  * This is used by usb device drivers that need to claim more than one
282  * interface on a device when probing (audio and acm are current examples).
283  * No device driver should directly modify internal usb_interface or
284  * usb_device structure members.
285  *
286  * Few drivers should need to use this routine, since the most natural
287  * way to bind to an interface is to return the private data from
288  * the driver's probe() method.
289  *
290  * Callers must own the device lock and the driver model's usb_bus_type.subsys
291  * writelock.  So driver probe() entries don't need extra locking,
292  * but other call contexts may need to explicitly claim those locks.
293  */
294 int usb_driver_claim_interface(struct usb_driver *driver,
295 				struct usb_interface *iface, void* priv)
296 {
297 	struct device *dev = &iface->dev;
298 
299 	if (dev->driver)
300 		return -EBUSY;
301 
302 	dev->driver = &driver->driver;
303 	usb_set_intfdata(iface, priv);
304 	iface->condition = USB_INTERFACE_BOUND;
305 	mark_active(iface);
306 
307 	/* if interface was already added, bind now; else let
308 	 * the future device_add() bind it, bypassing probe()
309 	 */
310 	if (device_is_registered(dev))
311 		device_bind_driver(dev);
312 
313 	return 0;
314 }
315 
316 /**
317  * usb_driver_release_interface - unbind a driver from an interface
318  * @driver: the driver to be unbound
319  * @iface: the interface from which it will be unbound
320  *
321  * This can be used by drivers to release an interface without waiting
322  * for their disconnect() methods to be called.  In typical cases this
323  * also causes the driver disconnect() method to be called.
324  *
325  * This call is synchronous, and may not be used in an interrupt context.
326  * Callers must own the device lock and the driver model's usb_bus_type.subsys
327  * writelock.  So driver disconnect() entries don't need extra locking,
328  * but other call contexts may need to explicitly claim those locks.
329  */
330 void usb_driver_release_interface(struct usb_driver *driver,
331 					struct usb_interface *iface)
332 {
333 	struct device *dev = &iface->dev;
334 
335 	/* this should never happen, don't release something that's not ours */
336 	if (!dev->driver || dev->driver != &driver->driver)
337 		return;
338 
339 	/* don't release from within disconnect() */
340 	if (iface->condition != USB_INTERFACE_BOUND)
341 		return;
342 
343 	/* don't release if the interface hasn't been added yet */
344 	if (device_is_registered(dev)) {
345 		iface->condition = USB_INTERFACE_UNBINDING;
346 		device_release_driver(dev);
347 	}
348 
349 	dev->driver = NULL;
350 	usb_set_intfdata(iface, NULL);
351 	iface->condition = USB_INTERFACE_UNBOUND;
352 	mark_quiesced(iface);
353 }
354 
355 /**
356  * usb_match_id - find first usb_device_id matching device or interface
357  * @interface: the interface of interest
358  * @id: array of usb_device_id structures, terminated by zero entry
359  *
360  * usb_match_id searches an array of usb_device_id's and returns
361  * the first one matching the device or interface, or null.
362  * This is used when binding (or rebinding) a driver to an interface.
363  * Most USB device drivers will use this indirectly, through the usb core,
364  * but some layered driver frameworks use it directly.
365  * These device tables are exported with MODULE_DEVICE_TABLE, through
366  * modutils and "modules.usbmap", to support the driver loading
367  * functionality of USB hotplugging.
368  *
369  * What Matches:
370  *
371  * The "match_flags" element in a usb_device_id controls which
372  * members are used.  If the corresponding bit is set, the
373  * value in the device_id must match its corresponding member
374  * in the device or interface descriptor, or else the device_id
375  * does not match.
376  *
377  * "driver_info" is normally used only by device drivers,
378  * but you can create a wildcard "matches anything" usb_device_id
379  * as a driver's "modules.usbmap" entry if you provide an id with
380  * only a nonzero "driver_info" field.  If you do this, the USB device
381  * driver's probe() routine should use additional intelligence to
382  * decide whether to bind to the specified interface.
383  *
384  * What Makes Good usb_device_id Tables:
385  *
386  * The match algorithm is very simple, so that intelligence in
387  * driver selection must come from smart driver id records.
388  * Unless you have good reasons to use another selection policy,
389  * provide match elements only in related groups, and order match
390  * specifiers from specific to general.  Use the macros provided
391  * for that purpose if you can.
392  *
393  * The most specific match specifiers use device descriptor
394  * data.  These are commonly used with product-specific matches;
395  * the USB_DEVICE macro lets you provide vendor and product IDs,
396  * and you can also match against ranges of product revisions.
397  * These are widely used for devices with application or vendor
398  * specific bDeviceClass values.
399  *
400  * Matches based on device class/subclass/protocol specifications
401  * are slightly more general; use the USB_DEVICE_INFO macro, or
402  * its siblings.  These are used with single-function devices
403  * where bDeviceClass doesn't specify that each interface has
404  * its own class.
405  *
406  * Matches based on interface class/subclass/protocol are the
407  * most general; they let drivers bind to any interface on a
408  * multiple-function device.  Use the USB_INTERFACE_INFO
409  * macro, or its siblings, to match class-per-interface style
410  * devices (as recorded in bDeviceClass).
411  *
412  * Within those groups, remember that not all combinations are
413  * meaningful.  For example, don't give a product version range
414  * without vendor and product IDs; or specify a protocol without
415  * its associated class and subclass.
416  */
417 const struct usb_device_id *
418 usb_match_id(struct usb_interface *interface, const struct usb_device_id *id)
419 {
420 	struct usb_host_interface *intf;
421 	struct usb_device *dev;
422 
423 	/* proc_connectinfo in devio.c may call us with id == NULL. */
424 	if (id == NULL)
425 		return NULL;
426 
427 	intf = interface->cur_altsetting;
428 	dev = interface_to_usbdev(interface);
429 
430 	/* It is important to check that id->driver_info is nonzero,
431 	   since an entry that is all zeroes except for a nonzero
432 	   id->driver_info is the way to create an entry that
433 	   indicates that the driver want to examine every
434 	   device and interface. */
435 	for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||
436 	       id->driver_info; id++) {
437 
438 		if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
439 		    id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
440 			continue;
441 
442 		if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
443 		    id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
444 			continue;
445 
446 		/* No need to test id->bcdDevice_lo != 0, since 0 is never
447 		   greater than any unsigned number. */
448 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
449 		    (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
450 			continue;
451 
452 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
453 		    (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
454 			continue;
455 
456 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
457 		    (id->bDeviceClass != dev->descriptor.bDeviceClass))
458 			continue;
459 
460 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
461 		    (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))
462 			continue;
463 
464 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
465 		    (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
466 			continue;
467 
468 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
469 		    (id->bInterfaceClass != intf->desc.bInterfaceClass))
470 			continue;
471 
472 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
473 		    (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
474 			continue;
475 
476 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
477 		    (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
478 			continue;
479 
480 		return id;
481 	}
482 
483 	return NULL;
484 }
485 
486 
487 static int __find_interface(struct device * dev, void * data)
488 {
489 	struct usb_interface ** ret = (struct usb_interface **)data;
490 	struct usb_interface * intf = *ret;
491 	int *minor = (int *)data;
492 
493 	/* can't look at usb devices, only interfaces */
494 	if (dev->driver == &usb_generic_driver)
495 		return 0;
496 
497 	intf = to_usb_interface(dev);
498 	if (intf->minor != -1 && intf->minor == *minor) {
499 		*ret = intf;
500 		return 1;
501 	}
502 	return 0;
503 }
504 
505 /**
506  * usb_find_interface - find usb_interface pointer for driver and device
507  * @drv: the driver whose current configuration is considered
508  * @minor: the minor number of the desired device
509  *
510  * This walks the driver device list and returns a pointer to the interface
511  * with the matching minor.  Note, this only works for devices that share the
512  * USB major number.
513  */
514 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
515 {
516 	struct usb_interface *intf = (struct usb_interface *)(long)minor;
517 	int ret;
518 
519 	ret = driver_for_each_device(&drv->driver, NULL, &intf, __find_interface);
520 
521 	return ret ? intf : NULL;
522 }
523 
524 static int usb_device_match (struct device *dev, struct device_driver *drv)
525 {
526 	struct usb_interface *intf;
527 	struct usb_driver *usb_drv;
528 	const struct usb_device_id *id;
529 
530 	/* check for generic driver, which we don't match any device with */
531 	if (drv == &usb_generic_driver)
532 		return 0;
533 
534 	intf = to_usb_interface(dev);
535 	usb_drv = to_usb_driver(drv);
536 
537 	id = usb_match_id (intf, usb_drv->id_table);
538 	if (id)
539 		return 1;
540 
541 	return 0;
542 }
543 
544 
545 #ifdef	CONFIG_HOTPLUG
546 
547 /*
548  * USB hotplugging invokes what /proc/sys/kernel/hotplug says
549  * (normally /sbin/hotplug) when USB devices get added or removed.
550  *
551  * This invokes a user mode policy agent, typically helping to load driver
552  * or other modules, configure the device, and more.  Drivers can provide
553  * a MODULE_DEVICE_TABLE to help with module loading subtasks.
554  *
555  * We're called either from khubd (the typical case) or from root hub
556  * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
557  * delays in event delivery.  Use sysfs (and DEVPATH) to make sure the
558  * device (and this configuration!) are still present.
559  */
560 static int usb_hotplug (struct device *dev, char **envp, int num_envp,
561 			char *buffer, int buffer_size)
562 {
563 	struct usb_interface *intf;
564 	struct usb_device *usb_dev;
565 	struct usb_host_interface *alt;
566 	int i = 0;
567 	int length = 0;
568 
569 	if (!dev)
570 		return -ENODEV;
571 
572 	/* driver is often null here; dev_dbg() would oops */
573 	pr_debug ("usb %s: hotplug\n", dev->bus_id);
574 
575 	/* Must check driver_data here, as on remove driver is always NULL */
576 	if ((dev->driver == &usb_generic_driver) ||
577 	    (dev->driver_data == &usb_generic_driver_data))
578 		return 0;
579 
580 	intf = to_usb_interface(dev);
581 	usb_dev = interface_to_usbdev (intf);
582 	alt = intf->cur_altsetting;
583 
584 	if (usb_dev->devnum < 0) {
585 		pr_debug ("usb %s: already deleted?\n", dev->bus_id);
586 		return -ENODEV;
587 	}
588 	if (!usb_dev->bus) {
589 		pr_debug ("usb %s: bus removed?\n", dev->bus_id);
590 		return -ENODEV;
591 	}
592 
593 #ifdef	CONFIG_USB_DEVICEFS
594 	/* If this is available, userspace programs can directly read
595 	 * all the device descriptors we don't tell them about.  Or
596 	 * even act as usermode drivers.
597 	 *
598 	 * FIXME reduce hardwired intelligence here
599 	 */
600 	if (add_hotplug_env_var(envp, num_envp, &i,
601 				buffer, buffer_size, &length,
602 				"DEVICE=/proc/bus/usb/%03d/%03d",
603 				usb_dev->bus->busnum, usb_dev->devnum))
604 		return -ENOMEM;
605 #endif
606 
607 	/* per-device configurations are common */
608 	if (add_hotplug_env_var(envp, num_envp, &i,
609 				buffer, buffer_size, &length,
610 				"PRODUCT=%x/%x/%x",
611 				le16_to_cpu(usb_dev->descriptor.idVendor),
612 				le16_to_cpu(usb_dev->descriptor.idProduct),
613 				le16_to_cpu(usb_dev->descriptor.bcdDevice)))
614 		return -ENOMEM;
615 
616 	/* class-based driver binding models */
617 	if (add_hotplug_env_var(envp, num_envp, &i,
618 				buffer, buffer_size, &length,
619 				"TYPE=%d/%d/%d",
620 				usb_dev->descriptor.bDeviceClass,
621 				usb_dev->descriptor.bDeviceSubClass,
622 				usb_dev->descriptor.bDeviceProtocol))
623 		return -ENOMEM;
624 
625 	if (add_hotplug_env_var(envp, num_envp, &i,
626 				buffer, buffer_size, &length,
627 				"INTERFACE=%d/%d/%d",
628 				alt->desc.bInterfaceClass,
629 				alt->desc.bInterfaceSubClass,
630 				alt->desc.bInterfaceProtocol))
631 		return -ENOMEM;
632 
633 	if (add_hotplug_env_var(envp, num_envp, &i,
634 				buffer, buffer_size, &length,
635 				"MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
636 				le16_to_cpu(usb_dev->descriptor.idVendor),
637 				le16_to_cpu(usb_dev->descriptor.idProduct),
638 				le16_to_cpu(usb_dev->descriptor.bcdDevice),
639 				usb_dev->descriptor.bDeviceClass,
640 				usb_dev->descriptor.bDeviceSubClass,
641 				usb_dev->descriptor.bDeviceProtocol,
642 				alt->desc.bInterfaceClass,
643 				alt->desc.bInterfaceSubClass,
644 				alt->desc.bInterfaceProtocol))
645 		return -ENOMEM;
646 
647 	envp[i] = NULL;
648 
649 	return 0;
650 }
651 
652 #else
653 
654 static int usb_hotplug (struct device *dev, char **envp,
655 			int num_envp, char *buffer, int buffer_size)
656 {
657 	return -ENODEV;
658 }
659 
660 #endif	/* CONFIG_HOTPLUG */
661 
662 /**
663  * usb_release_dev - free a usb device structure when all users of it are finished.
664  * @dev: device that's been disconnected
665  *
666  * Will be called only by the device core when all users of this usb device are
667  * done.
668  */
669 static void usb_release_dev(struct device *dev)
670 {
671 	struct usb_device *udev;
672 
673 	udev = to_usb_device(dev);
674 
675 	usb_destroy_configuration(udev);
676 	usb_bus_put(udev->bus);
677 	kfree(udev->product);
678 	kfree(udev->manufacturer);
679 	kfree(udev->serial);
680 	kfree(udev);
681 }
682 
683 /**
684  * usb_alloc_dev - usb device constructor (usbcore-internal)
685  * @parent: hub to which device is connected; null to allocate a root hub
686  * @bus: bus used to access the device
687  * @port1: one-based index of port; ignored for root hubs
688  * Context: !in_interrupt ()
689  *
690  * Only hub drivers (including virtual root hub drivers for host
691  * controllers) should ever call this.
692  *
693  * This call may not be used in a non-sleeping context.
694  */
695 struct usb_device *
696 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
697 {
698 	struct usb_device *dev;
699 
700 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
701 	if (!dev)
702 		return NULL;
703 
704 	bus = usb_bus_get(bus);
705 	if (!bus) {
706 		kfree(dev);
707 		return NULL;
708 	}
709 
710 	device_initialize(&dev->dev);
711 	dev->dev.bus = &usb_bus_type;
712 	dev->dev.dma_mask = bus->controller->dma_mask;
713 	dev->dev.driver_data = &usb_generic_driver_data;
714 	dev->dev.driver = &usb_generic_driver;
715 	dev->dev.release = usb_release_dev;
716 	dev->state = USB_STATE_ATTACHED;
717 
718 	INIT_LIST_HEAD(&dev->ep0.urb_list);
719 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
720 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
721 	/* ep0 maxpacket comes later, from device descriptor */
722 	dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
723 
724 	/* Save readable and stable topology id, distinguishing devices
725 	 * by location for diagnostics, tools, driver model, etc.  The
726 	 * string is a path along hub ports, from the root.  Each device's
727 	 * dev->devpath will be stable until USB is re-cabled, and hubs
728 	 * are often labeled with these port numbers.  The bus_id isn't
729 	 * as stable:  bus->busnum changes easily from modprobe order,
730 	 * cardbus or pci hotplugging, and so on.
731 	 */
732 	if (unlikely (!parent)) {
733 		dev->devpath [0] = '0';
734 
735 		dev->dev.parent = bus->controller;
736 		sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
737 	} else {
738 		/* match any labeling on the hubs; it's one-based */
739 		if (parent->devpath [0] == '0')
740 			snprintf (dev->devpath, sizeof dev->devpath,
741 				"%d", port1);
742 		else
743 			snprintf (dev->devpath, sizeof dev->devpath,
744 				"%s.%d", parent->devpath, port1);
745 
746 		dev->dev.parent = &parent->dev;
747 		sprintf (&dev->dev.bus_id[0], "%d-%s",
748 			bus->busnum, dev->devpath);
749 
750 		/* hub driver sets up TT records */
751 	}
752 
753 	dev->bus = bus;
754 	dev->parent = parent;
755 	INIT_LIST_HEAD(&dev->filelist);
756 
757 	init_MUTEX(&dev->serialize);
758 
759 	return dev;
760 }
761 
762 /**
763  * usb_get_dev - increments the reference count of the usb device structure
764  * @dev: the device being referenced
765  *
766  * Each live reference to a device should be refcounted.
767  *
768  * Drivers for USB interfaces should normally record such references in
769  * their probe() methods, when they bind to an interface, and release
770  * them by calling usb_put_dev(), in their disconnect() methods.
771  *
772  * A pointer to the device with the incremented reference counter is returned.
773  */
774 struct usb_device *usb_get_dev(struct usb_device *dev)
775 {
776 	if (dev)
777 		get_device(&dev->dev);
778 	return dev;
779 }
780 
781 /**
782  * usb_put_dev - release a use of the usb device structure
783  * @dev: device that's been disconnected
784  *
785  * Must be called when a user of a device is finished with it.  When the last
786  * user of the device calls this function, the memory of the device is freed.
787  */
788 void usb_put_dev(struct usb_device *dev)
789 {
790 	if (dev)
791 		put_device(&dev->dev);
792 }
793 
794 /**
795  * usb_get_intf - increments the reference count of the usb interface structure
796  * @intf: the interface being referenced
797  *
798  * Each live reference to a interface must be refcounted.
799  *
800  * Drivers for USB interfaces should normally record such references in
801  * their probe() methods, when they bind to an interface, and release
802  * them by calling usb_put_intf(), in their disconnect() methods.
803  *
804  * A pointer to the interface with the incremented reference counter is
805  * returned.
806  */
807 struct usb_interface *usb_get_intf(struct usb_interface *intf)
808 {
809 	if (intf)
810 		get_device(&intf->dev);
811 	return intf;
812 }
813 
814 /**
815  * usb_put_intf - release a use of the usb interface structure
816  * @intf: interface that's been decremented
817  *
818  * Must be called when a user of an interface is finished with it.  When the
819  * last user of the interface calls this function, the memory of the interface
820  * is freed.
821  */
822 void usb_put_intf(struct usb_interface *intf)
823 {
824 	if (intf)
825 		put_device(&intf->dev);
826 }
827 
828 
829 /*			USB device locking
830  *
831  * Although locking USB devices should be straightforward, it is
832  * complicated by the way the driver-model core works.  When a new USB
833  * driver is registered or unregistered, the core will automatically
834  * probe or disconnect all matching interfaces on all USB devices while
835  * holding the USB subsystem writelock.  There's no good way for us to
836  * tell which devices will be used or to lock them beforehand; our only
837  * option is to effectively lock all the USB devices.
838  *
839  * We do that by using a private rw-semaphore, usb_all_devices_rwsem.
840  * When locking an individual device you must first acquire the rwsem's
841  * readlock.  When a driver is registered or unregistered the writelock
842  * must be held.  These actions are encapsulated in the subroutines
843  * below, so all a driver needs to do is call usb_lock_device() and
844  * usb_unlock_device().
845  *
846  * Complications arise when several devices are to be locked at the same
847  * time.  Only hub-aware drivers that are part of usbcore ever have to
848  * do this; nobody else needs to worry about it.  The problem is that
849  * usb_lock_device() must not be called to lock a second device since it
850  * would acquire the rwsem's readlock reentrantly, leading to deadlock if
851  * another thread was waiting for the writelock.  The solution is simple:
852  *
853  *	When locking more than one device, call usb_lock_device()
854  *	to lock the first one.  Lock the others by calling
855  *	down(&udev->serialize) directly.
856  *
857  *	When unlocking multiple devices, use up(&udev->serialize)
858  *	to unlock all but the last one.  Unlock the last one by
859  *	calling usb_unlock_device().
860  *
861  *	When locking both a device and its parent, always lock the
862  *	the parent first.
863  */
864 
865 /**
866  * usb_lock_device - acquire the lock for a usb device structure
867  * @udev: device that's being locked
868  *
869  * Use this routine when you don't hold any other device locks;
870  * to acquire nested inner locks call down(&udev->serialize) directly.
871  * This is necessary for proper interaction with usb_lock_all_devices().
872  */
873 void usb_lock_device(struct usb_device *udev)
874 {
875 	down_read(&usb_all_devices_rwsem);
876 	down(&udev->serialize);
877 }
878 
879 /**
880  * usb_trylock_device - attempt to acquire the lock for a usb device structure
881  * @udev: device that's being locked
882  *
883  * Don't use this routine if you already hold a device lock;
884  * use down_trylock(&udev->serialize) instead.
885  * This is necessary for proper interaction with usb_lock_all_devices().
886  *
887  * Returns 1 if successful, 0 if contention.
888  */
889 int usb_trylock_device(struct usb_device *udev)
890 {
891 	if (!down_read_trylock(&usb_all_devices_rwsem))
892 		return 0;
893 	if (down_trylock(&udev->serialize)) {
894 		up_read(&usb_all_devices_rwsem);
895 		return 0;
896 	}
897 	return 1;
898 }
899 
900 /**
901  * usb_lock_device_for_reset - cautiously acquire the lock for a
902  *	usb device structure
903  * @udev: device that's being locked
904  * @iface: interface bound to the driver making the request (optional)
905  *
906  * Attempts to acquire the device lock, but fails if the device is
907  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
908  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
909  * lock, the routine polls repeatedly.  This is to prevent deadlock with
910  * disconnect; in some drivers (such as usb-storage) the disconnect()
911  * or suspend() method will block waiting for a device reset to complete.
912  *
913  * Returns a negative error code for failure, otherwise 1 or 0 to indicate
914  * that the device will or will not have to be unlocked.  (0 can be
915  * returned when an interface is given and is BINDING, because in that
916  * case the driver already owns the device lock.)
917  */
918 int usb_lock_device_for_reset(struct usb_device *udev,
919 		struct usb_interface *iface)
920 {
921 	unsigned long jiffies_expire = jiffies + HZ;
922 
923 	if (udev->state == USB_STATE_NOTATTACHED)
924 		return -ENODEV;
925 	if (udev->state == USB_STATE_SUSPENDED)
926 		return -EHOSTUNREACH;
927 	if (iface) {
928 		switch (iface->condition) {
929 		  case USB_INTERFACE_BINDING:
930 			return 0;
931 		  case USB_INTERFACE_BOUND:
932 			break;
933 		  default:
934 			return -EINTR;
935 		}
936 	}
937 
938 	while (!usb_trylock_device(udev)) {
939 
940 		/* If we can't acquire the lock after waiting one second,
941 		 * we're probably deadlocked */
942 		if (time_after(jiffies, jiffies_expire))
943 			return -EBUSY;
944 
945 		msleep(15);
946 		if (udev->state == USB_STATE_NOTATTACHED)
947 			return -ENODEV;
948 		if (udev->state == USB_STATE_SUSPENDED)
949 			return -EHOSTUNREACH;
950 		if (iface && iface->condition != USB_INTERFACE_BOUND)
951 			return -EINTR;
952 	}
953 	return 1;
954 }
955 
956 /**
957  * usb_unlock_device - release the lock for a usb device structure
958  * @udev: device that's being unlocked
959  *
960  * Use this routine when releasing the only device lock you hold;
961  * to release inner nested locks call up(&udev->serialize) directly.
962  * This is necessary for proper interaction with usb_lock_all_devices().
963  */
964 void usb_unlock_device(struct usb_device *udev)
965 {
966 	up(&udev->serialize);
967 	up_read(&usb_all_devices_rwsem);
968 }
969 
970 /**
971  * usb_lock_all_devices - acquire the lock for all usb device structures
972  *
973  * This is necessary when registering a new driver or probing a bus,
974  * since the driver-model core may try to use any usb_device.
975  */
976 void usb_lock_all_devices(void)
977 {
978 	down_write(&usb_all_devices_rwsem);
979 }
980 
981 /**
982  * usb_unlock_all_devices - release the lock for all usb device structures
983  */
984 void usb_unlock_all_devices(void)
985 {
986 	up_write(&usb_all_devices_rwsem);
987 }
988 
989 
990 static struct usb_device *match_device(struct usb_device *dev,
991 				       u16 vendor_id, u16 product_id)
992 {
993 	struct usb_device *ret_dev = NULL;
994 	int child;
995 
996 	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
997 	    le16_to_cpu(dev->descriptor.idVendor),
998 	    le16_to_cpu(dev->descriptor.idProduct));
999 
1000 	/* see if this device matches */
1001 	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
1002 	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
1003 		dev_dbg (&dev->dev, "matched this device!\n");
1004 		ret_dev = usb_get_dev(dev);
1005 		goto exit;
1006 	}
1007 
1008 	/* look through all of the children of this device */
1009 	for (child = 0; child < dev->maxchild; ++child) {
1010 		if (dev->children[child]) {
1011 			down(&dev->children[child]->serialize);
1012 			ret_dev = match_device(dev->children[child],
1013 					       vendor_id, product_id);
1014 			up(&dev->children[child]->serialize);
1015 			if (ret_dev)
1016 				goto exit;
1017 		}
1018 	}
1019 exit:
1020 	return ret_dev;
1021 }
1022 
1023 /**
1024  * usb_find_device - find a specific usb device in the system
1025  * @vendor_id: the vendor id of the device to find
1026  * @product_id: the product id of the device to find
1027  *
1028  * Returns a pointer to a struct usb_device if such a specified usb
1029  * device is present in the system currently.  The usage count of the
1030  * device will be incremented if a device is found.  Make sure to call
1031  * usb_put_dev() when the caller is finished with the device.
1032  *
1033  * If a device with the specified vendor and product id is not found,
1034  * NULL is returned.
1035  */
1036 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
1037 {
1038 	struct list_head *buslist;
1039 	struct usb_bus *bus;
1040 	struct usb_device *dev = NULL;
1041 
1042 	down(&usb_bus_list_lock);
1043 	for (buslist = usb_bus_list.next;
1044 	     buslist != &usb_bus_list;
1045 	     buslist = buslist->next) {
1046 		bus = container_of(buslist, struct usb_bus, bus_list);
1047 		if (!bus->root_hub)
1048 			continue;
1049 		usb_lock_device(bus->root_hub);
1050 		dev = match_device(bus->root_hub, vendor_id, product_id);
1051 		usb_unlock_device(bus->root_hub);
1052 		if (dev)
1053 			goto exit;
1054 	}
1055 exit:
1056 	up(&usb_bus_list_lock);
1057 	return dev;
1058 }
1059 
1060 /**
1061  * usb_get_current_frame_number - return current bus frame number
1062  * @dev: the device whose bus is being queried
1063  *
1064  * Returns the current frame number for the USB host controller
1065  * used with the given USB device.  This can be used when scheduling
1066  * isochronous requests.
1067  *
1068  * Note that different kinds of host controller have different
1069  * "scheduling horizons".  While one type might support scheduling only
1070  * 32 frames into the future, others could support scheduling up to
1071  * 1024 frames into the future.
1072  */
1073 int usb_get_current_frame_number(struct usb_device *dev)
1074 {
1075 	return dev->bus->op->get_frame_number (dev);
1076 }
1077 
1078 /*-------------------------------------------------------------------*/
1079 /*
1080  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
1081  * extra field of the interface and endpoint descriptor structs.
1082  */
1083 
1084 int __usb_get_extra_descriptor(char *buffer, unsigned size,
1085 	unsigned char type, void **ptr)
1086 {
1087 	struct usb_descriptor_header *header;
1088 
1089 	while (size >= sizeof(struct usb_descriptor_header)) {
1090 		header = (struct usb_descriptor_header *)buffer;
1091 
1092 		if (header->bLength < 2) {
1093 			printk(KERN_ERR
1094 				"%s: bogus descriptor, type %d length %d\n",
1095 				usbcore_name,
1096 				header->bDescriptorType,
1097 				header->bLength);
1098 			return -1;
1099 		}
1100 
1101 		if (header->bDescriptorType == type) {
1102 			*ptr = header;
1103 			return 0;
1104 		}
1105 
1106 		buffer += header->bLength;
1107 		size -= header->bLength;
1108 	}
1109 	return -1;
1110 }
1111 
1112 /**
1113  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
1114  * @dev: device the buffer will be used with
1115  * @size: requested buffer size
1116  * @mem_flags: affect whether allocation may block
1117  * @dma: used to return DMA address of buffer
1118  *
1119  * Return value is either null (indicating no buffer could be allocated), or
1120  * the cpu-space pointer to a buffer that may be used to perform DMA to the
1121  * specified device.  Such cpu-space buffers are returned along with the DMA
1122  * address (through the pointer provided).
1123  *
1124  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
1125  * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
1126  * mapping hardware for long idle periods.  The implementation varies between
1127  * platforms, depending on details of how DMA will work to this device.
1128  * Using these buffers also helps prevent cacheline sharing problems on
1129  * architectures where CPU caches are not DMA-coherent.
1130  *
1131  * When the buffer is no longer used, free it with usb_buffer_free().
1132  */
1133 void *usb_buffer_alloc (
1134 	struct usb_device *dev,
1135 	size_t size,
1136 	gfp_t mem_flags,
1137 	dma_addr_t *dma
1138 )
1139 {
1140 	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
1141 		return NULL;
1142 	return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
1143 }
1144 
1145 /**
1146  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
1147  * @dev: device the buffer was used with
1148  * @size: requested buffer size
1149  * @addr: CPU address of buffer
1150  * @dma: DMA address of buffer
1151  *
1152  * This reclaims an I/O buffer, letting it be reused.  The memory must have
1153  * been allocated using usb_buffer_alloc(), and the parameters must match
1154  * those provided in that allocation request.
1155  */
1156 void usb_buffer_free (
1157 	struct usb_device *dev,
1158 	size_t size,
1159 	void *addr,
1160 	dma_addr_t dma
1161 )
1162 {
1163 	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
1164 	    	return;
1165 	dev->bus->op->buffer_free (dev->bus, size, addr, dma);
1166 }
1167 
1168 /**
1169  * usb_buffer_map - create DMA mapping(s) for an urb
1170  * @urb: urb whose transfer_buffer/setup_packet will be mapped
1171  *
1172  * Return value is either null (indicating no buffer could be mapped), or
1173  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
1174  * added to urb->transfer_flags if the operation succeeds.  If the device
1175  * is connected to this system through a non-DMA controller, this operation
1176  * always succeeds.
1177  *
1178  * This call would normally be used for an urb which is reused, perhaps
1179  * as the target of a large periodic transfer, with usb_buffer_dmasync()
1180  * calls to synchronize memory and dma state.
1181  *
1182  * Reverse the effect of this call with usb_buffer_unmap().
1183  */
1184 #if 0
1185 struct urb *usb_buffer_map (struct urb *urb)
1186 {
1187 	struct usb_bus		*bus;
1188 	struct device		*controller;
1189 
1190 	if (!urb
1191 			|| !urb->dev
1192 			|| !(bus = urb->dev->bus)
1193 			|| !(controller = bus->controller))
1194 		return NULL;
1195 
1196 	if (controller->dma_mask) {
1197 		urb->transfer_dma = dma_map_single (controller,
1198 			urb->transfer_buffer, urb->transfer_buffer_length,
1199 			usb_pipein (urb->pipe)
1200 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1201 		if (usb_pipecontrol (urb->pipe))
1202 			urb->setup_dma = dma_map_single (controller,
1203 					urb->setup_packet,
1204 					sizeof (struct usb_ctrlrequest),
1205 					DMA_TO_DEVICE);
1206 	// FIXME generic api broken like pci, can't report errors
1207 	// if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
1208 	} else
1209 		urb->transfer_dma = ~0;
1210 	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
1211 				| URB_NO_SETUP_DMA_MAP);
1212 	return urb;
1213 }
1214 #endif  /*  0  */
1215 
1216 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1217  * XXX please determine whether the sync is to transfer ownership of
1218  * XXX the buffer from device to cpu or vice verse, and thusly use the
1219  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1220  */
1221 #if 0
1222 
1223 /**
1224  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
1225  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
1226  */
1227 void usb_buffer_dmasync (struct urb *urb)
1228 {
1229 	struct usb_bus		*bus;
1230 	struct device		*controller;
1231 
1232 	if (!urb
1233 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1234 			|| !urb->dev
1235 			|| !(bus = urb->dev->bus)
1236 			|| !(controller = bus->controller))
1237 		return;
1238 
1239 	if (controller->dma_mask) {
1240 		dma_sync_single (controller,
1241 			urb->transfer_dma, urb->transfer_buffer_length,
1242 			usb_pipein (urb->pipe)
1243 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1244 		if (usb_pipecontrol (urb->pipe))
1245 			dma_sync_single (controller,
1246 					urb->setup_dma,
1247 					sizeof (struct usb_ctrlrequest),
1248 					DMA_TO_DEVICE);
1249 	}
1250 }
1251 #endif
1252 
1253 /**
1254  * usb_buffer_unmap - free DMA mapping(s) for an urb
1255  * @urb: urb whose transfer_buffer will be unmapped
1256  *
1257  * Reverses the effect of usb_buffer_map().
1258  */
1259 #if 0
1260 void usb_buffer_unmap (struct urb *urb)
1261 {
1262 	struct usb_bus		*bus;
1263 	struct device		*controller;
1264 
1265 	if (!urb
1266 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1267 			|| !urb->dev
1268 			|| !(bus = urb->dev->bus)
1269 			|| !(controller = bus->controller))
1270 		return;
1271 
1272 	if (controller->dma_mask) {
1273 		dma_unmap_single (controller,
1274 			urb->transfer_dma, urb->transfer_buffer_length,
1275 			usb_pipein (urb->pipe)
1276 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1277 		if (usb_pipecontrol (urb->pipe))
1278 			dma_unmap_single (controller,
1279 					urb->setup_dma,
1280 					sizeof (struct usb_ctrlrequest),
1281 					DMA_TO_DEVICE);
1282 	}
1283 	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
1284 				| URB_NO_SETUP_DMA_MAP);
1285 }
1286 #endif  /*  0  */
1287 
1288 /**
1289  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1290  * @dev: device to which the scatterlist will be mapped
1291  * @pipe: endpoint defining the mapping direction
1292  * @sg: the scatterlist to map
1293  * @nents: the number of entries in the scatterlist
1294  *
1295  * Return value is either < 0 (indicating no buffers could be mapped), or
1296  * the number of DMA mapping array entries in the scatterlist.
1297  *
1298  * The caller is responsible for placing the resulting DMA addresses from
1299  * the scatterlist into URB transfer buffer pointers, and for setting the
1300  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1301  *
1302  * Top I/O rates come from queuing URBs, instead of waiting for each one
1303  * to complete before starting the next I/O.   This is particularly easy
1304  * to do with scatterlists.  Just allocate and submit one URB for each DMA
1305  * mapping entry returned, stopping on the first error or when all succeed.
1306  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1307  *
1308  * This call would normally be used when translating scatterlist requests,
1309  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1310  * may be able to coalesce mappings for improved I/O efficiency.
1311  *
1312  * Reverse the effect of this call with usb_buffer_unmap_sg().
1313  */
1314 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1315 		struct scatterlist *sg, int nents)
1316 {
1317 	struct usb_bus		*bus;
1318 	struct device		*controller;
1319 
1320 	if (!dev
1321 			|| usb_pipecontrol (pipe)
1322 			|| !(bus = dev->bus)
1323 			|| !(controller = bus->controller)
1324 			|| !controller->dma_mask)
1325 		return -1;
1326 
1327 	// FIXME generic api broken like pci, can't report errors
1328 	return dma_map_sg (controller, sg, nents,
1329 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1330 }
1331 
1332 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1333  * XXX please determine whether the sync is to transfer ownership of
1334  * XXX the buffer from device to cpu or vice verse, and thusly use the
1335  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1336  */
1337 #if 0
1338 
1339 /**
1340  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1341  * @dev: device to which the scatterlist will be mapped
1342  * @pipe: endpoint defining the mapping direction
1343  * @sg: the scatterlist to synchronize
1344  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1345  *
1346  * Use this when you are re-using a scatterlist's data buffers for
1347  * another USB request.
1348  */
1349 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1350 		struct scatterlist *sg, int n_hw_ents)
1351 {
1352 	struct usb_bus		*bus;
1353 	struct device		*controller;
1354 
1355 	if (!dev
1356 			|| !(bus = dev->bus)
1357 			|| !(controller = bus->controller)
1358 			|| !controller->dma_mask)
1359 		return;
1360 
1361 	dma_sync_sg (controller, sg, n_hw_ents,
1362 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1363 }
1364 #endif
1365 
1366 /**
1367  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1368  * @dev: device to which the scatterlist will be mapped
1369  * @pipe: endpoint defining the mapping direction
1370  * @sg: the scatterlist to unmap
1371  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1372  *
1373  * Reverses the effect of usb_buffer_map_sg().
1374  */
1375 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1376 		struct scatterlist *sg, int n_hw_ents)
1377 {
1378 	struct usb_bus		*bus;
1379 	struct device		*controller;
1380 
1381 	if (!dev
1382 			|| !(bus = dev->bus)
1383 			|| !(controller = bus->controller)
1384 			|| !controller->dma_mask)
1385 		return;
1386 
1387 	dma_unmap_sg (controller, sg, n_hw_ents,
1388 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1389 }
1390 
1391 static int verify_suspended(struct device *dev, void *unused)
1392 {
1393 	return (dev->power.power_state.event == PM_EVENT_ON) ? -EBUSY : 0;
1394 }
1395 
1396 static int usb_generic_suspend(struct device *dev, pm_message_t message)
1397 {
1398 	struct usb_interface	*intf;
1399 	struct usb_driver	*driver;
1400 	int			status;
1401 
1402 	/* USB devices enter SUSPEND state through their hubs, but can be
1403 	 * marked for FREEZE as soon as their children are already idled.
1404 	 * But those semantics are useless, so we equate the two (sigh).
1405 	 */
1406 	if (dev->driver == &usb_generic_driver) {
1407 		if (dev->power.power_state.event == message.event)
1408 			return 0;
1409 		/* we need to rule out bogus requests through sysfs */
1410 		status = device_for_each_child(dev, NULL, verify_suspended);
1411 		if (status)
1412 			return status;
1413  		return usb_suspend_device (to_usb_device(dev));
1414 	}
1415 
1416 	if ((dev->driver == NULL) ||
1417 	    (dev->driver_data == &usb_generic_driver_data))
1418 		return 0;
1419 
1420 	intf = to_usb_interface(dev);
1421 	driver = to_usb_driver(dev->driver);
1422 
1423 	/* with no hardware, USB interfaces only use FREEZE and ON states */
1424 	if (!is_active(intf))
1425 		return 0;
1426 
1427 	if (driver->suspend && driver->resume) {
1428 		status = driver->suspend(intf, message);
1429 		if (status)
1430 			dev_err(dev, "%s error %d\n", "suspend", status);
1431 		else
1432 			mark_quiesced(intf);
1433 	} else {
1434 		// FIXME else if there's no suspend method, disconnect...
1435 		dev_warn(dev, "no %s?\n", "suspend");
1436 		status = 0;
1437 	}
1438 	return status;
1439 }
1440 
1441 static int usb_generic_resume(struct device *dev)
1442 {
1443 	struct usb_interface	*intf;
1444 	struct usb_driver	*driver;
1445 	struct usb_device	*udev;
1446 	int			status;
1447 
1448 	if (dev->power.power_state.event == PM_EVENT_ON)
1449 		return 0;
1450 
1451 	/* mark things as "on" immediately, no matter what errors crop up */
1452 	dev->power.power_state.event = PM_EVENT_ON;
1453 
1454 	/* devices resume through their hubs */
1455 	if (dev->driver == &usb_generic_driver) {
1456 		udev = to_usb_device(dev);
1457 		if (udev->state == USB_STATE_NOTATTACHED)
1458 			return 0;
1459 		return usb_resume_device (to_usb_device(dev));
1460 	}
1461 
1462 	if ((dev->driver == NULL) ||
1463 	    (dev->driver_data == &usb_generic_driver_data))
1464 		return 0;
1465 
1466 	intf = to_usb_interface(dev);
1467 	driver = to_usb_driver(dev->driver);
1468 
1469 	udev = interface_to_usbdev(intf);
1470 	if (udev->state == USB_STATE_NOTATTACHED)
1471 		return 0;
1472 
1473 	/* if driver was suspended, it has a resume method;
1474 	 * however, sysfs can wrongly mark things as suspended
1475 	 * (on the "no suspend method" FIXME path above)
1476 	 */
1477 	if (driver->resume) {
1478 		status = driver->resume(intf);
1479 		if (status) {
1480 			dev_err(dev, "%s error %d\n", "resume", status);
1481 			mark_quiesced(intf);
1482 		}
1483 	} else
1484 		dev_warn(dev, "no %s?\n", "resume");
1485 	return 0;
1486 }
1487 
1488 struct bus_type usb_bus_type = {
1489 	.name =		"usb",
1490 	.match =	usb_device_match,
1491 	.hotplug =	usb_hotplug,
1492 	.suspend =	usb_generic_suspend,
1493 	.resume =	usb_generic_resume,
1494 };
1495 
1496 #ifndef MODULE
1497 
1498 static int __init usb_setup_disable(char *str)
1499 {
1500 	nousb = 1;
1501 	return 1;
1502 }
1503 
1504 /* format to disable USB on kernel command line is: nousb */
1505 __setup("nousb", usb_setup_disable);
1506 
1507 #endif
1508 
1509 /*
1510  * for external read access to <nousb>
1511  */
1512 int usb_disabled(void)
1513 {
1514 	return nousb;
1515 }
1516 
1517 /*
1518  * Init
1519  */
1520 static int __init usb_init(void)
1521 {
1522 	int retval;
1523 	if (nousb) {
1524 		pr_info ("%s: USB support disabled\n", usbcore_name);
1525 		return 0;
1526 	}
1527 
1528 	retval = bus_register(&usb_bus_type);
1529 	if (retval)
1530 		goto out;
1531 	retval = usb_host_init();
1532 	if (retval)
1533 		goto host_init_failed;
1534 	retval = usb_major_init();
1535 	if (retval)
1536 		goto major_init_failed;
1537 	retval = usb_register(&usbfs_driver);
1538 	if (retval)
1539 		goto driver_register_failed;
1540 	retval = usbdev_init();
1541 	if (retval)
1542 		goto usbdevice_init_failed;
1543 	retval = usbfs_init();
1544 	if (retval)
1545 		goto fs_init_failed;
1546 	retval = usb_hub_init();
1547 	if (retval)
1548 		goto hub_init_failed;
1549 	retval = driver_register(&usb_generic_driver);
1550 	if (!retval)
1551 		goto out;
1552 
1553 	usb_hub_cleanup();
1554 hub_init_failed:
1555 	usbfs_cleanup();
1556 fs_init_failed:
1557 	usbdev_cleanup();
1558 usbdevice_init_failed:
1559 	usb_deregister(&usbfs_driver);
1560 driver_register_failed:
1561 	usb_major_cleanup();
1562 major_init_failed:
1563 	usb_host_cleanup();
1564 host_init_failed:
1565 	bus_unregister(&usb_bus_type);
1566 out:
1567 	return retval;
1568 }
1569 
1570 /*
1571  * Cleanup
1572  */
1573 static void __exit usb_exit(void)
1574 {
1575 	/* This will matter if shutdown/reboot does exitcalls. */
1576 	if (nousb)
1577 		return;
1578 
1579 	driver_unregister(&usb_generic_driver);
1580 	usb_major_cleanup();
1581 	usbfs_cleanup();
1582 	usb_deregister(&usbfs_driver);
1583 	usbdev_cleanup();
1584 	usb_hub_cleanup();
1585 	usb_host_cleanup();
1586 	bus_unregister(&usb_bus_type);
1587 }
1588 
1589 subsys_initcall(usb_init);
1590 module_exit(usb_exit);
1591 
1592 /*
1593  * USB may be built into the kernel or be built as modules.
1594  * These symbols are exported for device (or host controller)
1595  * driver modules to use.
1596  */
1597 
1598 EXPORT_SYMBOL(usb_register);
1599 EXPORT_SYMBOL(usb_deregister);
1600 EXPORT_SYMBOL(usb_disabled);
1601 
1602 EXPORT_SYMBOL_GPL(usb_get_intf);
1603 EXPORT_SYMBOL_GPL(usb_put_intf);
1604 
1605 EXPORT_SYMBOL(usb_alloc_dev);
1606 EXPORT_SYMBOL(usb_put_dev);
1607 EXPORT_SYMBOL(usb_get_dev);
1608 EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1609 
1610 EXPORT_SYMBOL(usb_lock_device);
1611 EXPORT_SYMBOL(usb_trylock_device);
1612 EXPORT_SYMBOL(usb_lock_device_for_reset);
1613 EXPORT_SYMBOL(usb_unlock_device);
1614 
1615 EXPORT_SYMBOL(usb_driver_claim_interface);
1616 EXPORT_SYMBOL(usb_driver_release_interface);
1617 EXPORT_SYMBOL(usb_match_id);
1618 EXPORT_SYMBOL(usb_find_interface);
1619 EXPORT_SYMBOL(usb_ifnum_to_if);
1620 EXPORT_SYMBOL(usb_altnum_to_altsetting);
1621 
1622 EXPORT_SYMBOL(usb_reset_device);
1623 EXPORT_SYMBOL(usb_disconnect);
1624 
1625 EXPORT_SYMBOL(__usb_get_extra_descriptor);
1626 
1627 EXPORT_SYMBOL(usb_find_device);
1628 EXPORT_SYMBOL(usb_get_current_frame_number);
1629 
1630 EXPORT_SYMBOL (usb_buffer_alloc);
1631 EXPORT_SYMBOL (usb_buffer_free);
1632 
1633 #if 0
1634 EXPORT_SYMBOL (usb_buffer_map);
1635 EXPORT_SYMBOL (usb_buffer_dmasync);
1636 EXPORT_SYMBOL (usb_buffer_unmap);
1637 #endif
1638 
1639 EXPORT_SYMBOL (usb_buffer_map_sg);
1640 #if 0
1641 EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1642 #endif
1643 EXPORT_SYMBOL (usb_buffer_unmap_sg);
1644 
1645 MODULE_LICENSE("GPL");
1646