1 /* 2 * drivers/usb/usb.c 3 * 4 * (C) Copyright Linus Torvalds 1999 5 * (C) Copyright Johannes Erdfelt 1999-2001 6 * (C) Copyright Andreas Gal 1999 7 * (C) Copyright Gregory P. Smith 1999 8 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 9 * (C) Copyright Randy Dunlap 2000 10 * (C) Copyright David Brownell 2000-2004 11 * (C) Copyright Yggdrasil Computing, Inc. 2000 12 * (usb_device_id matching changes by Adam J. Richter) 13 * (C) Copyright Greg Kroah-Hartman 2002-2003 14 * 15 * NOTE! This is not actually a driver at all, rather this is 16 * just a collection of helper routines that implement the 17 * generic USB things that the real drivers can use.. 18 * 19 * Think of this as a "USB library" rather than anything else. 20 * It should be considered a slave, with no callbacks. Callbacks 21 * are evil. 22 */ 23 24 #include <linux/config.h> 25 26 #ifdef CONFIG_USB_DEBUG 27 #define DEBUG 28 #else 29 #undef DEBUG 30 #endif 31 32 #include <linux/module.h> 33 #include <linux/string.h> 34 #include <linux/bitops.h> 35 #include <linux/slab.h> 36 #include <linux/interrupt.h> /* for in_interrupt() */ 37 #include <linux/kmod.h> 38 #include <linux/init.h> 39 #include <linux/spinlock.h> 40 #include <linux/errno.h> 41 #include <linux/smp_lock.h> 42 #include <linux/rwsem.h> 43 #include <linux/usb.h> 44 45 #include <asm/io.h> 46 #include <asm/scatterlist.h> 47 #include <linux/mm.h> 48 #include <linux/dma-mapping.h> 49 50 #include "hcd.h" 51 #include "usb.h" 52 53 54 const char *usbcore_name = "usbcore"; 55 56 static int nousb; /* Disable USB when built into kernel image */ 57 /* Not honored on modular build */ 58 59 static DECLARE_RWSEM(usb_all_devices_rwsem); 60 61 62 static int generic_probe (struct device *dev) 63 { 64 return 0; 65 } 66 static int generic_remove (struct device *dev) 67 { 68 return 0; 69 } 70 71 static struct device_driver usb_generic_driver = { 72 .owner = THIS_MODULE, 73 .name = "usb", 74 .bus = &usb_bus_type, 75 .probe = generic_probe, 76 .remove = generic_remove, 77 }; 78 79 static int usb_generic_driver_data; 80 81 /* called from driver core with usb_bus_type.subsys writelock */ 82 static int usb_probe_interface(struct device *dev) 83 { 84 struct usb_interface * intf = to_usb_interface(dev); 85 struct usb_driver * driver = to_usb_driver(dev->driver); 86 const struct usb_device_id *id; 87 int error = -ENODEV; 88 89 dev_dbg(dev, "%s\n", __FUNCTION__); 90 91 if (!driver->probe) 92 return error; 93 /* FIXME we'd much prefer to just resume it ... */ 94 if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED) 95 return -EHOSTUNREACH; 96 97 id = usb_match_id (intf, driver->id_table); 98 if (id) { 99 dev_dbg (dev, "%s - got id\n", __FUNCTION__); 100 intf->condition = USB_INTERFACE_BINDING; 101 error = driver->probe (intf, id); 102 intf->condition = error ? USB_INTERFACE_UNBOUND : 103 USB_INTERFACE_BOUND; 104 } 105 106 return error; 107 } 108 109 /* called from driver core with usb_bus_type.subsys writelock */ 110 static int usb_unbind_interface(struct device *dev) 111 { 112 struct usb_interface *intf = to_usb_interface(dev); 113 struct usb_driver *driver = to_usb_driver(intf->dev.driver); 114 115 intf->condition = USB_INTERFACE_UNBINDING; 116 117 /* release all urbs for this interface */ 118 usb_disable_interface(interface_to_usbdev(intf), intf); 119 120 if (driver && driver->disconnect) 121 driver->disconnect(intf); 122 123 /* reset other interface state */ 124 usb_set_interface(interface_to_usbdev(intf), 125 intf->altsetting[0].desc.bInterfaceNumber, 126 0); 127 usb_set_intfdata(intf, NULL); 128 intf->condition = USB_INTERFACE_UNBOUND; 129 130 return 0; 131 } 132 133 /** 134 * usb_register - register a USB driver 135 * @new_driver: USB operations for the driver 136 * 137 * Registers a USB driver with the USB core. The list of unattached 138 * interfaces will be rescanned whenever a new driver is added, allowing 139 * the new driver to attach to any recognized devices. 140 * Returns a negative error code on failure and 0 on success. 141 * 142 * NOTE: if you want your driver to use the USB major number, you must call 143 * usb_register_dev() to enable that functionality. This function no longer 144 * takes care of that. 145 */ 146 int usb_register(struct usb_driver *new_driver) 147 { 148 int retval = 0; 149 150 if (nousb) 151 return -ENODEV; 152 153 new_driver->driver.name = (char *)new_driver->name; 154 new_driver->driver.bus = &usb_bus_type; 155 new_driver->driver.probe = usb_probe_interface; 156 new_driver->driver.remove = usb_unbind_interface; 157 new_driver->driver.owner = new_driver->owner; 158 159 usb_lock_all_devices(); 160 retval = driver_register(&new_driver->driver); 161 usb_unlock_all_devices(); 162 163 if (!retval) { 164 pr_info("%s: registered new driver %s\n", 165 usbcore_name, new_driver->name); 166 usbfs_update_special(); 167 } else { 168 printk(KERN_ERR "%s: error %d registering driver %s\n", 169 usbcore_name, retval, new_driver->name); 170 } 171 172 return retval; 173 } 174 175 /** 176 * usb_deregister - unregister a USB driver 177 * @driver: USB operations of the driver to unregister 178 * Context: must be able to sleep 179 * 180 * Unlinks the specified driver from the internal USB driver list. 181 * 182 * NOTE: If you called usb_register_dev(), you still need to call 183 * usb_deregister_dev() to clean up your driver's allocated minor numbers, 184 * this * call will no longer do it for you. 185 */ 186 void usb_deregister(struct usb_driver *driver) 187 { 188 pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name); 189 190 usb_lock_all_devices(); 191 driver_unregister (&driver->driver); 192 usb_unlock_all_devices(); 193 194 usbfs_update_special(); 195 } 196 197 /** 198 * usb_ifnum_to_if - get the interface object with a given interface number 199 * @dev: the device whose current configuration is considered 200 * @ifnum: the desired interface 201 * 202 * This walks the device descriptor for the currently active configuration 203 * and returns a pointer to the interface with that particular interface 204 * number, or null. 205 * 206 * Note that configuration descriptors are not required to assign interface 207 * numbers sequentially, so that it would be incorrect to assume that 208 * the first interface in that descriptor corresponds to interface zero. 209 * This routine helps device drivers avoid such mistakes. 210 * However, you should make sure that you do the right thing with any 211 * alternate settings available for this interfaces. 212 * 213 * Don't call this function unless you are bound to one of the interfaces 214 * on this device or you have locked the device! 215 */ 216 struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum) 217 { 218 struct usb_host_config *config = dev->actconfig; 219 int i; 220 221 if (!config) 222 return NULL; 223 for (i = 0; i < config->desc.bNumInterfaces; i++) 224 if (config->interface[i]->altsetting[0] 225 .desc.bInterfaceNumber == ifnum) 226 return config->interface[i]; 227 228 return NULL; 229 } 230 231 /** 232 * usb_altnum_to_altsetting - get the altsetting structure with a given 233 * alternate setting number. 234 * @intf: the interface containing the altsetting in question 235 * @altnum: the desired alternate setting number 236 * 237 * This searches the altsetting array of the specified interface for 238 * an entry with the correct bAlternateSetting value and returns a pointer 239 * to that entry, or null. 240 * 241 * Note that altsettings need not be stored sequentially by number, so 242 * it would be incorrect to assume that the first altsetting entry in 243 * the array corresponds to altsetting zero. This routine helps device 244 * drivers avoid such mistakes. 245 * 246 * Don't call this function unless you are bound to the intf interface 247 * or you have locked the device! 248 */ 249 struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf, 250 unsigned int altnum) 251 { 252 int i; 253 254 for (i = 0; i < intf->num_altsetting; i++) { 255 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 256 return &intf->altsetting[i]; 257 } 258 return NULL; 259 } 260 261 /** 262 * usb_driver_claim_interface - bind a driver to an interface 263 * @driver: the driver to be bound 264 * @iface: the interface to which it will be bound; must be in the 265 * usb device's active configuration 266 * @priv: driver data associated with that interface 267 * 268 * This is used by usb device drivers that need to claim more than one 269 * interface on a device when probing (audio and acm are current examples). 270 * No device driver should directly modify internal usb_interface or 271 * usb_device structure members. 272 * 273 * Few drivers should need to use this routine, since the most natural 274 * way to bind to an interface is to return the private data from 275 * the driver's probe() method. 276 * 277 * Callers must own the device lock and the driver model's usb_bus_type.subsys 278 * writelock. So driver probe() entries don't need extra locking, 279 * but other call contexts may need to explicitly claim those locks. 280 */ 281 int usb_driver_claim_interface(struct usb_driver *driver, 282 struct usb_interface *iface, void* priv) 283 { 284 struct device *dev = &iface->dev; 285 286 if (dev->driver) 287 return -EBUSY; 288 289 dev->driver = &driver->driver; 290 usb_set_intfdata(iface, priv); 291 iface->condition = USB_INTERFACE_BOUND; 292 293 /* if interface was already added, bind now; else let 294 * the future device_add() bind it, bypassing probe() 295 */ 296 if (!list_empty (&dev->bus_list)) 297 device_bind_driver(dev); 298 299 return 0; 300 } 301 302 /** 303 * usb_driver_release_interface - unbind a driver from an interface 304 * @driver: the driver to be unbound 305 * @iface: the interface from which it will be unbound 306 * 307 * This can be used by drivers to release an interface without waiting 308 * for their disconnect() methods to be called. In typical cases this 309 * also causes the driver disconnect() method to be called. 310 * 311 * This call is synchronous, and may not be used in an interrupt context. 312 * Callers must own the device lock and the driver model's usb_bus_type.subsys 313 * writelock. So driver disconnect() entries don't need extra locking, 314 * but other call contexts may need to explicitly claim those locks. 315 */ 316 void usb_driver_release_interface(struct usb_driver *driver, 317 struct usb_interface *iface) 318 { 319 struct device *dev = &iface->dev; 320 321 /* this should never happen, don't release something that's not ours */ 322 if (!dev->driver || dev->driver != &driver->driver) 323 return; 324 325 /* don't disconnect from disconnect(), or before dev_add() */ 326 if (!list_empty (&dev->driver_list) && !list_empty (&dev->bus_list)) 327 device_release_driver(dev); 328 329 dev->driver = NULL; 330 usb_set_intfdata(iface, NULL); 331 iface->condition = USB_INTERFACE_UNBOUND; 332 } 333 334 /** 335 * usb_match_id - find first usb_device_id matching device or interface 336 * @interface: the interface of interest 337 * @id: array of usb_device_id structures, terminated by zero entry 338 * 339 * usb_match_id searches an array of usb_device_id's and returns 340 * the first one matching the device or interface, or null. 341 * This is used when binding (or rebinding) a driver to an interface. 342 * Most USB device drivers will use this indirectly, through the usb core, 343 * but some layered driver frameworks use it directly. 344 * These device tables are exported with MODULE_DEVICE_TABLE, through 345 * modutils and "modules.usbmap", to support the driver loading 346 * functionality of USB hotplugging. 347 * 348 * What Matches: 349 * 350 * The "match_flags" element in a usb_device_id controls which 351 * members are used. If the corresponding bit is set, the 352 * value in the device_id must match its corresponding member 353 * in the device or interface descriptor, or else the device_id 354 * does not match. 355 * 356 * "driver_info" is normally used only by device drivers, 357 * but you can create a wildcard "matches anything" usb_device_id 358 * as a driver's "modules.usbmap" entry if you provide an id with 359 * only a nonzero "driver_info" field. If you do this, the USB device 360 * driver's probe() routine should use additional intelligence to 361 * decide whether to bind to the specified interface. 362 * 363 * What Makes Good usb_device_id Tables: 364 * 365 * The match algorithm is very simple, so that intelligence in 366 * driver selection must come from smart driver id records. 367 * Unless you have good reasons to use another selection policy, 368 * provide match elements only in related groups, and order match 369 * specifiers from specific to general. Use the macros provided 370 * for that purpose if you can. 371 * 372 * The most specific match specifiers use device descriptor 373 * data. These are commonly used with product-specific matches; 374 * the USB_DEVICE macro lets you provide vendor and product IDs, 375 * and you can also match against ranges of product revisions. 376 * These are widely used for devices with application or vendor 377 * specific bDeviceClass values. 378 * 379 * Matches based on device class/subclass/protocol specifications 380 * are slightly more general; use the USB_DEVICE_INFO macro, or 381 * its siblings. These are used with single-function devices 382 * where bDeviceClass doesn't specify that each interface has 383 * its own class. 384 * 385 * Matches based on interface class/subclass/protocol are the 386 * most general; they let drivers bind to any interface on a 387 * multiple-function device. Use the USB_INTERFACE_INFO 388 * macro, or its siblings, to match class-per-interface style 389 * devices (as recorded in bDeviceClass). 390 * 391 * Within those groups, remember that not all combinations are 392 * meaningful. For example, don't give a product version range 393 * without vendor and product IDs; or specify a protocol without 394 * its associated class and subclass. 395 */ 396 const struct usb_device_id * 397 usb_match_id(struct usb_interface *interface, const struct usb_device_id *id) 398 { 399 struct usb_host_interface *intf; 400 struct usb_device *dev; 401 402 /* proc_connectinfo in devio.c may call us with id == NULL. */ 403 if (id == NULL) 404 return NULL; 405 406 intf = interface->cur_altsetting; 407 dev = interface_to_usbdev(interface); 408 409 /* It is important to check that id->driver_info is nonzero, 410 since an entry that is all zeroes except for a nonzero 411 id->driver_info is the way to create an entry that 412 indicates that the driver want to examine every 413 device and interface. */ 414 for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass || 415 id->driver_info; id++) { 416 417 if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) && 418 id->idVendor != le16_to_cpu(dev->descriptor.idVendor)) 419 continue; 420 421 if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) && 422 id->idProduct != le16_to_cpu(dev->descriptor.idProduct)) 423 continue; 424 425 /* No need to test id->bcdDevice_lo != 0, since 0 is never 426 greater than any unsigned number. */ 427 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) && 428 (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice))) 429 continue; 430 431 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) && 432 (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice))) 433 continue; 434 435 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) && 436 (id->bDeviceClass != dev->descriptor.bDeviceClass)) 437 continue; 438 439 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) && 440 (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass)) 441 continue; 442 443 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) && 444 (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol)) 445 continue; 446 447 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) && 448 (id->bInterfaceClass != intf->desc.bInterfaceClass)) 449 continue; 450 451 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) && 452 (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass)) 453 continue; 454 455 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) && 456 (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol)) 457 continue; 458 459 return id; 460 } 461 462 return NULL; 463 } 464 465 /** 466 * usb_find_interface - find usb_interface pointer for driver and device 467 * @drv: the driver whose current configuration is considered 468 * @minor: the minor number of the desired device 469 * 470 * This walks the driver device list and returns a pointer to the interface 471 * with the matching minor. Note, this only works for devices that share the 472 * USB major number. 473 */ 474 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 475 { 476 struct list_head *entry; 477 struct device *dev; 478 struct usb_interface *intf; 479 480 list_for_each(entry, &drv->driver.devices) { 481 dev = container_of(entry, struct device, driver_list); 482 483 /* can't look at usb devices, only interfaces */ 484 if (dev->driver == &usb_generic_driver) 485 continue; 486 487 intf = to_usb_interface(dev); 488 if (intf->minor == -1) 489 continue; 490 if (intf->minor == minor) 491 return intf; 492 } 493 494 /* no device found that matches */ 495 return NULL; 496 } 497 498 static int usb_device_match (struct device *dev, struct device_driver *drv) 499 { 500 struct usb_interface *intf; 501 struct usb_driver *usb_drv; 502 const struct usb_device_id *id; 503 504 /* check for generic driver, which we don't match any device with */ 505 if (drv == &usb_generic_driver) 506 return 0; 507 508 intf = to_usb_interface(dev); 509 usb_drv = to_usb_driver(drv); 510 511 id = usb_match_id (intf, usb_drv->id_table); 512 if (id) 513 return 1; 514 515 return 0; 516 } 517 518 519 #ifdef CONFIG_HOTPLUG 520 521 /* 522 * USB hotplugging invokes what /proc/sys/kernel/hotplug says 523 * (normally /sbin/hotplug) when USB devices get added or removed. 524 * 525 * This invokes a user mode policy agent, typically helping to load driver 526 * or other modules, configure the device, and more. Drivers can provide 527 * a MODULE_DEVICE_TABLE to help with module loading subtasks. 528 * 529 * We're called either from khubd (the typical case) or from root hub 530 * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle 531 * delays in event delivery. Use sysfs (and DEVPATH) to make sure the 532 * device (and this configuration!) are still present. 533 */ 534 static int usb_hotplug (struct device *dev, char **envp, int num_envp, 535 char *buffer, int buffer_size) 536 { 537 struct usb_interface *intf; 538 struct usb_device *usb_dev; 539 int i = 0; 540 int length = 0; 541 542 if (!dev) 543 return -ENODEV; 544 545 /* driver is often null here; dev_dbg() would oops */ 546 pr_debug ("usb %s: hotplug\n", dev->bus_id); 547 548 /* Must check driver_data here, as on remove driver is always NULL */ 549 if ((dev->driver == &usb_generic_driver) || 550 (dev->driver_data == &usb_generic_driver_data)) 551 return 0; 552 553 intf = to_usb_interface(dev); 554 usb_dev = interface_to_usbdev (intf); 555 556 if (usb_dev->devnum < 0) { 557 pr_debug ("usb %s: already deleted?\n", dev->bus_id); 558 return -ENODEV; 559 } 560 if (!usb_dev->bus) { 561 pr_debug ("usb %s: bus removed?\n", dev->bus_id); 562 return -ENODEV; 563 } 564 565 #ifdef CONFIG_USB_DEVICEFS 566 /* If this is available, userspace programs can directly read 567 * all the device descriptors we don't tell them about. Or 568 * even act as usermode drivers. 569 * 570 * FIXME reduce hardwired intelligence here 571 */ 572 if (add_hotplug_env_var(envp, num_envp, &i, 573 buffer, buffer_size, &length, 574 "DEVICE=/proc/bus/usb/%03d/%03d", 575 usb_dev->bus->busnum, usb_dev->devnum)) 576 return -ENOMEM; 577 #endif 578 579 /* per-device configurations are common */ 580 if (add_hotplug_env_var(envp, num_envp, &i, 581 buffer, buffer_size, &length, 582 "PRODUCT=%x/%x/%x", 583 le16_to_cpu(usb_dev->descriptor.idVendor), 584 le16_to_cpu(usb_dev->descriptor.idProduct), 585 le16_to_cpu(usb_dev->descriptor.bcdDevice))) 586 return -ENOMEM; 587 588 /* class-based driver binding models */ 589 if (add_hotplug_env_var(envp, num_envp, &i, 590 buffer, buffer_size, &length, 591 "TYPE=%d/%d/%d", 592 usb_dev->descriptor.bDeviceClass, 593 usb_dev->descriptor.bDeviceSubClass, 594 usb_dev->descriptor.bDeviceProtocol)) 595 return -ENOMEM; 596 597 if (usb_dev->descriptor.bDeviceClass == 0) { 598 struct usb_host_interface *alt = intf->cur_altsetting; 599 600 /* 2.4 only exposed interface zero. in 2.5, hotplug 601 * agents are called for all interfaces, and can use 602 * $DEVPATH/bInterfaceNumber if necessary. 603 */ 604 if (add_hotplug_env_var(envp, num_envp, &i, 605 buffer, buffer_size, &length, 606 "INTERFACE=%d/%d/%d", 607 alt->desc.bInterfaceClass, 608 alt->desc.bInterfaceSubClass, 609 alt->desc.bInterfaceProtocol)) 610 return -ENOMEM; 611 612 if (add_hotplug_env_var(envp, num_envp, &i, 613 buffer, buffer_size, &length, 614 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 615 le16_to_cpu(usb_dev->descriptor.idVendor), 616 le16_to_cpu(usb_dev->descriptor.idProduct), 617 le16_to_cpu(usb_dev->descriptor.bcdDevice), 618 usb_dev->descriptor.bDeviceClass, 619 usb_dev->descriptor.bDeviceSubClass, 620 usb_dev->descriptor.bDeviceProtocol, 621 alt->desc.bInterfaceClass, 622 alt->desc.bInterfaceSubClass, 623 alt->desc.bInterfaceProtocol)) 624 return -ENOMEM; 625 } else { 626 if (add_hotplug_env_var(envp, num_envp, &i, 627 buffer, buffer_size, &length, 628 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic*isc*ip*", 629 le16_to_cpu(usb_dev->descriptor.idVendor), 630 le16_to_cpu(usb_dev->descriptor.idProduct), 631 le16_to_cpu(usb_dev->descriptor.bcdDevice), 632 usb_dev->descriptor.bDeviceClass, 633 usb_dev->descriptor.bDeviceSubClass, 634 usb_dev->descriptor.bDeviceProtocol)) 635 return -ENOMEM; 636 } 637 638 envp[i] = NULL; 639 640 return 0; 641 } 642 643 #else 644 645 static int usb_hotplug (struct device *dev, char **envp, 646 int num_envp, char *buffer, int buffer_size) 647 { 648 return -ENODEV; 649 } 650 651 #endif /* CONFIG_HOTPLUG */ 652 653 /** 654 * usb_release_dev - free a usb device structure when all users of it are finished. 655 * @dev: device that's been disconnected 656 * 657 * Will be called only by the device core when all users of this usb device are 658 * done. 659 */ 660 static void usb_release_dev(struct device *dev) 661 { 662 struct usb_device *udev; 663 664 udev = to_usb_device(dev); 665 666 usb_destroy_configuration(udev); 667 usb_bus_put(udev->bus); 668 kfree(udev->product); 669 kfree(udev->manufacturer); 670 kfree(udev->serial); 671 kfree(udev); 672 } 673 674 /** 675 * usb_alloc_dev - usb device constructor (usbcore-internal) 676 * @parent: hub to which device is connected; null to allocate a root hub 677 * @bus: bus used to access the device 678 * @port1: one-based index of port; ignored for root hubs 679 * Context: !in_interrupt () 680 * 681 * Only hub drivers (including virtual root hub drivers for host 682 * controllers) should ever call this. 683 * 684 * This call may not be used in a non-sleeping context. 685 */ 686 struct usb_device * 687 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1) 688 { 689 struct usb_device *dev; 690 691 dev = kmalloc(sizeof(*dev), GFP_KERNEL); 692 if (!dev) 693 return NULL; 694 695 memset(dev, 0, sizeof(*dev)); 696 697 bus = usb_bus_get(bus); 698 if (!bus) { 699 kfree(dev); 700 return NULL; 701 } 702 703 device_initialize(&dev->dev); 704 dev->dev.bus = &usb_bus_type; 705 dev->dev.dma_mask = bus->controller->dma_mask; 706 dev->dev.driver_data = &usb_generic_driver_data; 707 dev->dev.driver = &usb_generic_driver; 708 dev->dev.release = usb_release_dev; 709 dev->state = USB_STATE_ATTACHED; 710 711 INIT_LIST_HEAD(&dev->ep0.urb_list); 712 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 713 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 714 /* ep0 maxpacket comes later, from device descriptor */ 715 dev->ep_in[0] = dev->ep_out[0] = &dev->ep0; 716 717 /* Save readable and stable topology id, distinguishing devices 718 * by location for diagnostics, tools, driver model, etc. The 719 * string is a path along hub ports, from the root. Each device's 720 * dev->devpath will be stable until USB is re-cabled, and hubs 721 * are often labeled with these port numbers. The bus_id isn't 722 * as stable: bus->busnum changes easily from modprobe order, 723 * cardbus or pci hotplugging, and so on. 724 */ 725 if (unlikely (!parent)) { 726 dev->devpath [0] = '0'; 727 728 dev->dev.parent = bus->controller; 729 sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum); 730 } else { 731 /* match any labeling on the hubs; it's one-based */ 732 if (parent->devpath [0] == '0') 733 snprintf (dev->devpath, sizeof dev->devpath, 734 "%d", port1); 735 else 736 snprintf (dev->devpath, sizeof dev->devpath, 737 "%s.%d", parent->devpath, port1); 738 739 dev->dev.parent = &parent->dev; 740 sprintf (&dev->dev.bus_id[0], "%d-%s", 741 bus->busnum, dev->devpath); 742 743 /* hub driver sets up TT records */ 744 } 745 746 dev->bus = bus; 747 dev->parent = parent; 748 INIT_LIST_HEAD(&dev->filelist); 749 750 init_MUTEX(&dev->serialize); 751 752 return dev; 753 } 754 755 /** 756 * usb_get_dev - increments the reference count of the usb device structure 757 * @dev: the device being referenced 758 * 759 * Each live reference to a device should be refcounted. 760 * 761 * Drivers for USB interfaces should normally record such references in 762 * their probe() methods, when they bind to an interface, and release 763 * them by calling usb_put_dev(), in their disconnect() methods. 764 * 765 * A pointer to the device with the incremented reference counter is returned. 766 */ 767 struct usb_device *usb_get_dev(struct usb_device *dev) 768 { 769 if (dev) 770 get_device(&dev->dev); 771 return dev; 772 } 773 774 /** 775 * usb_put_dev - release a use of the usb device structure 776 * @dev: device that's been disconnected 777 * 778 * Must be called when a user of a device is finished with it. When the last 779 * user of the device calls this function, the memory of the device is freed. 780 */ 781 void usb_put_dev(struct usb_device *dev) 782 { 783 if (dev) 784 put_device(&dev->dev); 785 } 786 787 /** 788 * usb_get_intf - increments the reference count of the usb interface structure 789 * @intf: the interface being referenced 790 * 791 * Each live reference to a interface must be refcounted. 792 * 793 * Drivers for USB interfaces should normally record such references in 794 * their probe() methods, when they bind to an interface, and release 795 * them by calling usb_put_intf(), in their disconnect() methods. 796 * 797 * A pointer to the interface with the incremented reference counter is 798 * returned. 799 */ 800 struct usb_interface *usb_get_intf(struct usb_interface *intf) 801 { 802 if (intf) 803 get_device(&intf->dev); 804 return intf; 805 } 806 807 /** 808 * usb_put_intf - release a use of the usb interface structure 809 * @intf: interface that's been decremented 810 * 811 * Must be called when a user of an interface is finished with it. When the 812 * last user of the interface calls this function, the memory of the interface 813 * is freed. 814 */ 815 void usb_put_intf(struct usb_interface *intf) 816 { 817 if (intf) 818 put_device(&intf->dev); 819 } 820 821 822 /* USB device locking 823 * 824 * Although locking USB devices should be straightforward, it is 825 * complicated by the way the driver-model core works. When a new USB 826 * driver is registered or unregistered, the core will automatically 827 * probe or disconnect all matching interfaces on all USB devices while 828 * holding the USB subsystem writelock. There's no good way for us to 829 * tell which devices will be used or to lock them beforehand; our only 830 * option is to effectively lock all the USB devices. 831 * 832 * We do that by using a private rw-semaphore, usb_all_devices_rwsem. 833 * When locking an individual device you must first acquire the rwsem's 834 * readlock. When a driver is registered or unregistered the writelock 835 * must be held. These actions are encapsulated in the subroutines 836 * below, so all a driver needs to do is call usb_lock_device() and 837 * usb_unlock_device(). 838 * 839 * Complications arise when several devices are to be locked at the same 840 * time. Only hub-aware drivers that are part of usbcore ever have to 841 * do this; nobody else needs to worry about it. The problem is that 842 * usb_lock_device() must not be called to lock a second device since it 843 * would acquire the rwsem's readlock reentrantly, leading to deadlock if 844 * another thread was waiting for the writelock. The solution is simple: 845 * 846 * When locking more than one device, call usb_lock_device() 847 * to lock the first one. Lock the others by calling 848 * down(&udev->serialize) directly. 849 * 850 * When unlocking multiple devices, use up(&udev->serialize) 851 * to unlock all but the last one. Unlock the last one by 852 * calling usb_unlock_device(). 853 * 854 * When locking both a device and its parent, always lock the 855 * the parent first. 856 */ 857 858 /** 859 * usb_lock_device - acquire the lock for a usb device structure 860 * @udev: device that's being locked 861 * 862 * Use this routine when you don't hold any other device locks; 863 * to acquire nested inner locks call down(&udev->serialize) directly. 864 * This is necessary for proper interaction with usb_lock_all_devices(). 865 */ 866 void usb_lock_device(struct usb_device *udev) 867 { 868 down_read(&usb_all_devices_rwsem); 869 down(&udev->serialize); 870 } 871 872 /** 873 * usb_trylock_device - attempt to acquire the lock for a usb device structure 874 * @udev: device that's being locked 875 * 876 * Don't use this routine if you already hold a device lock; 877 * use down_trylock(&udev->serialize) instead. 878 * This is necessary for proper interaction with usb_lock_all_devices(). 879 * 880 * Returns 1 if successful, 0 if contention. 881 */ 882 int usb_trylock_device(struct usb_device *udev) 883 { 884 if (!down_read_trylock(&usb_all_devices_rwsem)) 885 return 0; 886 if (down_trylock(&udev->serialize)) { 887 up_read(&usb_all_devices_rwsem); 888 return 0; 889 } 890 return 1; 891 } 892 893 /** 894 * usb_lock_device_for_reset - cautiously acquire the lock for a 895 * usb device structure 896 * @udev: device that's being locked 897 * @iface: interface bound to the driver making the request (optional) 898 * 899 * Attempts to acquire the device lock, but fails if the device is 900 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 901 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 902 * lock, the routine polls repeatedly. This is to prevent deadlock with 903 * disconnect; in some drivers (such as usb-storage) the disconnect() 904 * callback will block waiting for a device reset to complete. 905 * 906 * Returns a negative error code for failure, otherwise 1 or 0 to indicate 907 * that the device will or will not have to be unlocked. (0 can be 908 * returned when an interface is given and is BINDING, because in that 909 * case the driver already owns the device lock.) 910 */ 911 int usb_lock_device_for_reset(struct usb_device *udev, 912 struct usb_interface *iface) 913 { 914 if (udev->state == USB_STATE_NOTATTACHED) 915 return -ENODEV; 916 if (udev->state == USB_STATE_SUSPENDED) 917 return -EHOSTUNREACH; 918 if (iface) { 919 switch (iface->condition) { 920 case USB_INTERFACE_BINDING: 921 return 0; 922 case USB_INTERFACE_BOUND: 923 break; 924 default: 925 return -EINTR; 926 } 927 } 928 929 while (!usb_trylock_device(udev)) { 930 msleep(15); 931 if (udev->state == USB_STATE_NOTATTACHED) 932 return -ENODEV; 933 if (udev->state == USB_STATE_SUSPENDED) 934 return -EHOSTUNREACH; 935 if (iface && iface->condition != USB_INTERFACE_BOUND) 936 return -EINTR; 937 } 938 return 1; 939 } 940 941 /** 942 * usb_unlock_device - release the lock for a usb device structure 943 * @udev: device that's being unlocked 944 * 945 * Use this routine when releasing the only device lock you hold; 946 * to release inner nested locks call up(&udev->serialize) directly. 947 * This is necessary for proper interaction with usb_lock_all_devices(). 948 */ 949 void usb_unlock_device(struct usb_device *udev) 950 { 951 up(&udev->serialize); 952 up_read(&usb_all_devices_rwsem); 953 } 954 955 /** 956 * usb_lock_all_devices - acquire the lock for all usb device structures 957 * 958 * This is necessary when registering a new driver or probing a bus, 959 * since the driver-model core may try to use any usb_device. 960 */ 961 void usb_lock_all_devices(void) 962 { 963 down_write(&usb_all_devices_rwsem); 964 } 965 966 /** 967 * usb_unlock_all_devices - release the lock for all usb device structures 968 */ 969 void usb_unlock_all_devices(void) 970 { 971 up_write(&usb_all_devices_rwsem); 972 } 973 974 975 static struct usb_device *match_device(struct usb_device *dev, 976 u16 vendor_id, u16 product_id) 977 { 978 struct usb_device *ret_dev = NULL; 979 int child; 980 981 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n", 982 le16_to_cpu(dev->descriptor.idVendor), 983 le16_to_cpu(dev->descriptor.idProduct)); 984 985 /* see if this device matches */ 986 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) && 987 (product_id == le16_to_cpu(dev->descriptor.idProduct))) { 988 dev_dbg (&dev->dev, "matched this device!\n"); 989 ret_dev = usb_get_dev(dev); 990 goto exit; 991 } 992 993 /* look through all of the children of this device */ 994 for (child = 0; child < dev->maxchild; ++child) { 995 if (dev->children[child]) { 996 down(&dev->children[child]->serialize); 997 ret_dev = match_device(dev->children[child], 998 vendor_id, product_id); 999 up(&dev->children[child]->serialize); 1000 if (ret_dev) 1001 goto exit; 1002 } 1003 } 1004 exit: 1005 return ret_dev; 1006 } 1007 1008 /** 1009 * usb_find_device - find a specific usb device in the system 1010 * @vendor_id: the vendor id of the device to find 1011 * @product_id: the product id of the device to find 1012 * 1013 * Returns a pointer to a struct usb_device if such a specified usb 1014 * device is present in the system currently. The usage count of the 1015 * device will be incremented if a device is found. Make sure to call 1016 * usb_put_dev() when the caller is finished with the device. 1017 * 1018 * If a device with the specified vendor and product id is not found, 1019 * NULL is returned. 1020 */ 1021 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id) 1022 { 1023 struct list_head *buslist; 1024 struct usb_bus *bus; 1025 struct usb_device *dev = NULL; 1026 1027 down(&usb_bus_list_lock); 1028 for (buslist = usb_bus_list.next; 1029 buslist != &usb_bus_list; 1030 buslist = buslist->next) { 1031 bus = container_of(buslist, struct usb_bus, bus_list); 1032 if (!bus->root_hub) 1033 continue; 1034 usb_lock_device(bus->root_hub); 1035 dev = match_device(bus->root_hub, vendor_id, product_id); 1036 usb_unlock_device(bus->root_hub); 1037 if (dev) 1038 goto exit; 1039 } 1040 exit: 1041 up(&usb_bus_list_lock); 1042 return dev; 1043 } 1044 1045 /** 1046 * usb_get_current_frame_number - return current bus frame number 1047 * @dev: the device whose bus is being queried 1048 * 1049 * Returns the current frame number for the USB host controller 1050 * used with the given USB device. This can be used when scheduling 1051 * isochronous requests. 1052 * 1053 * Note that different kinds of host controller have different 1054 * "scheduling horizons". While one type might support scheduling only 1055 * 32 frames into the future, others could support scheduling up to 1056 * 1024 frames into the future. 1057 */ 1058 int usb_get_current_frame_number(struct usb_device *dev) 1059 { 1060 return dev->bus->op->get_frame_number (dev); 1061 } 1062 1063 /*-------------------------------------------------------------------*/ 1064 /* 1065 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 1066 * extra field of the interface and endpoint descriptor structs. 1067 */ 1068 1069 int __usb_get_extra_descriptor(char *buffer, unsigned size, 1070 unsigned char type, void **ptr) 1071 { 1072 struct usb_descriptor_header *header; 1073 1074 while (size >= sizeof(struct usb_descriptor_header)) { 1075 header = (struct usb_descriptor_header *)buffer; 1076 1077 if (header->bLength < 2) { 1078 printk(KERN_ERR 1079 "%s: bogus descriptor, type %d length %d\n", 1080 usbcore_name, 1081 header->bDescriptorType, 1082 header->bLength); 1083 return -1; 1084 } 1085 1086 if (header->bDescriptorType == type) { 1087 *ptr = header; 1088 return 0; 1089 } 1090 1091 buffer += header->bLength; 1092 size -= header->bLength; 1093 } 1094 return -1; 1095 } 1096 1097 /** 1098 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 1099 * @dev: device the buffer will be used with 1100 * @size: requested buffer size 1101 * @mem_flags: affect whether allocation may block 1102 * @dma: used to return DMA address of buffer 1103 * 1104 * Return value is either null (indicating no buffer could be allocated), or 1105 * the cpu-space pointer to a buffer that may be used to perform DMA to the 1106 * specified device. Such cpu-space buffers are returned along with the DMA 1107 * address (through the pointer provided). 1108 * 1109 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 1110 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O 1111 * mapping hardware for long idle periods. The implementation varies between 1112 * platforms, depending on details of how DMA will work to this device. 1113 * Using these buffers also helps prevent cacheline sharing problems on 1114 * architectures where CPU caches are not DMA-coherent. 1115 * 1116 * When the buffer is no longer used, free it with usb_buffer_free(). 1117 */ 1118 void *usb_buffer_alloc ( 1119 struct usb_device *dev, 1120 size_t size, 1121 int mem_flags, 1122 dma_addr_t *dma 1123 ) 1124 { 1125 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc) 1126 return NULL; 1127 return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma); 1128 } 1129 1130 /** 1131 * usb_buffer_free - free memory allocated with usb_buffer_alloc() 1132 * @dev: device the buffer was used with 1133 * @size: requested buffer size 1134 * @addr: CPU address of buffer 1135 * @dma: DMA address of buffer 1136 * 1137 * This reclaims an I/O buffer, letting it be reused. The memory must have 1138 * been allocated using usb_buffer_alloc(), and the parameters must match 1139 * those provided in that allocation request. 1140 */ 1141 void usb_buffer_free ( 1142 struct usb_device *dev, 1143 size_t size, 1144 void *addr, 1145 dma_addr_t dma 1146 ) 1147 { 1148 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free) 1149 return; 1150 dev->bus->op->buffer_free (dev->bus, size, addr, dma); 1151 } 1152 1153 /** 1154 * usb_buffer_map - create DMA mapping(s) for an urb 1155 * @urb: urb whose transfer_buffer/setup_packet will be mapped 1156 * 1157 * Return value is either null (indicating no buffer could be mapped), or 1158 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are 1159 * added to urb->transfer_flags if the operation succeeds. If the device 1160 * is connected to this system through a non-DMA controller, this operation 1161 * always succeeds. 1162 * 1163 * This call would normally be used for an urb which is reused, perhaps 1164 * as the target of a large periodic transfer, with usb_buffer_dmasync() 1165 * calls to synchronize memory and dma state. 1166 * 1167 * Reverse the effect of this call with usb_buffer_unmap(). 1168 */ 1169 #if 0 1170 struct urb *usb_buffer_map (struct urb *urb) 1171 { 1172 struct usb_bus *bus; 1173 struct device *controller; 1174 1175 if (!urb 1176 || !urb->dev 1177 || !(bus = urb->dev->bus) 1178 || !(controller = bus->controller)) 1179 return NULL; 1180 1181 if (controller->dma_mask) { 1182 urb->transfer_dma = dma_map_single (controller, 1183 urb->transfer_buffer, urb->transfer_buffer_length, 1184 usb_pipein (urb->pipe) 1185 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1186 if (usb_pipecontrol (urb->pipe)) 1187 urb->setup_dma = dma_map_single (controller, 1188 urb->setup_packet, 1189 sizeof (struct usb_ctrlrequest), 1190 DMA_TO_DEVICE); 1191 // FIXME generic api broken like pci, can't report errors 1192 // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; 1193 } else 1194 urb->transfer_dma = ~0; 1195 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP 1196 | URB_NO_SETUP_DMA_MAP); 1197 return urb; 1198 } 1199 #endif /* 0 */ 1200 1201 /* XXX DISABLED, no users currently. If you wish to re-enable this 1202 * XXX please determine whether the sync is to transfer ownership of 1203 * XXX the buffer from device to cpu or vice verse, and thusly use the 1204 * XXX appropriate _for_{cpu,device}() method. -DaveM 1205 */ 1206 #if 0 1207 1208 /** 1209 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s) 1210 * @urb: urb whose transfer_buffer/setup_packet will be synchronized 1211 */ 1212 void usb_buffer_dmasync (struct urb *urb) 1213 { 1214 struct usb_bus *bus; 1215 struct device *controller; 1216 1217 if (!urb 1218 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 1219 || !urb->dev 1220 || !(bus = urb->dev->bus) 1221 || !(controller = bus->controller)) 1222 return; 1223 1224 if (controller->dma_mask) { 1225 dma_sync_single (controller, 1226 urb->transfer_dma, urb->transfer_buffer_length, 1227 usb_pipein (urb->pipe) 1228 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1229 if (usb_pipecontrol (urb->pipe)) 1230 dma_sync_single (controller, 1231 urb->setup_dma, 1232 sizeof (struct usb_ctrlrequest), 1233 DMA_TO_DEVICE); 1234 } 1235 } 1236 #endif 1237 1238 /** 1239 * usb_buffer_unmap - free DMA mapping(s) for an urb 1240 * @urb: urb whose transfer_buffer will be unmapped 1241 * 1242 * Reverses the effect of usb_buffer_map(). 1243 */ 1244 #if 0 1245 void usb_buffer_unmap (struct urb *urb) 1246 { 1247 struct usb_bus *bus; 1248 struct device *controller; 1249 1250 if (!urb 1251 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 1252 || !urb->dev 1253 || !(bus = urb->dev->bus) 1254 || !(controller = bus->controller)) 1255 return; 1256 1257 if (controller->dma_mask) { 1258 dma_unmap_single (controller, 1259 urb->transfer_dma, urb->transfer_buffer_length, 1260 usb_pipein (urb->pipe) 1261 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1262 if (usb_pipecontrol (urb->pipe)) 1263 dma_unmap_single (controller, 1264 urb->setup_dma, 1265 sizeof (struct usb_ctrlrequest), 1266 DMA_TO_DEVICE); 1267 } 1268 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP 1269 | URB_NO_SETUP_DMA_MAP); 1270 } 1271 #endif /* 0 */ 1272 1273 /** 1274 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint 1275 * @dev: device to which the scatterlist will be mapped 1276 * @pipe: endpoint defining the mapping direction 1277 * @sg: the scatterlist to map 1278 * @nents: the number of entries in the scatterlist 1279 * 1280 * Return value is either < 0 (indicating no buffers could be mapped), or 1281 * the number of DMA mapping array entries in the scatterlist. 1282 * 1283 * The caller is responsible for placing the resulting DMA addresses from 1284 * the scatterlist into URB transfer buffer pointers, and for setting the 1285 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs. 1286 * 1287 * Top I/O rates come from queuing URBs, instead of waiting for each one 1288 * to complete before starting the next I/O. This is particularly easy 1289 * to do with scatterlists. Just allocate and submit one URB for each DMA 1290 * mapping entry returned, stopping on the first error or when all succeed. 1291 * Better yet, use the usb_sg_*() calls, which do that (and more) for you. 1292 * 1293 * This call would normally be used when translating scatterlist requests, 1294 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it 1295 * may be able to coalesce mappings for improved I/O efficiency. 1296 * 1297 * Reverse the effect of this call with usb_buffer_unmap_sg(). 1298 */ 1299 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe, 1300 struct scatterlist *sg, int nents) 1301 { 1302 struct usb_bus *bus; 1303 struct device *controller; 1304 1305 if (!dev 1306 || usb_pipecontrol (pipe) 1307 || !(bus = dev->bus) 1308 || !(controller = bus->controller) 1309 || !controller->dma_mask) 1310 return -1; 1311 1312 // FIXME generic api broken like pci, can't report errors 1313 return dma_map_sg (controller, sg, nents, 1314 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1315 } 1316 1317 /* XXX DISABLED, no users currently. If you wish to re-enable this 1318 * XXX please determine whether the sync is to transfer ownership of 1319 * XXX the buffer from device to cpu or vice verse, and thusly use the 1320 * XXX appropriate _for_{cpu,device}() method. -DaveM 1321 */ 1322 #if 0 1323 1324 /** 1325 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s) 1326 * @dev: device to which the scatterlist will be mapped 1327 * @pipe: endpoint defining the mapping direction 1328 * @sg: the scatterlist to synchronize 1329 * @n_hw_ents: the positive return value from usb_buffer_map_sg 1330 * 1331 * Use this when you are re-using a scatterlist's data buffers for 1332 * another USB request. 1333 */ 1334 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe, 1335 struct scatterlist *sg, int n_hw_ents) 1336 { 1337 struct usb_bus *bus; 1338 struct device *controller; 1339 1340 if (!dev 1341 || !(bus = dev->bus) 1342 || !(controller = bus->controller) 1343 || !controller->dma_mask) 1344 return; 1345 1346 dma_sync_sg (controller, sg, n_hw_ents, 1347 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1348 } 1349 #endif 1350 1351 /** 1352 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist 1353 * @dev: device to which the scatterlist will be mapped 1354 * @pipe: endpoint defining the mapping direction 1355 * @sg: the scatterlist to unmap 1356 * @n_hw_ents: the positive return value from usb_buffer_map_sg 1357 * 1358 * Reverses the effect of usb_buffer_map_sg(). 1359 */ 1360 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe, 1361 struct scatterlist *sg, int n_hw_ents) 1362 { 1363 struct usb_bus *bus; 1364 struct device *controller; 1365 1366 if (!dev 1367 || !(bus = dev->bus) 1368 || !(controller = bus->controller) 1369 || !controller->dma_mask) 1370 return; 1371 1372 dma_unmap_sg (controller, sg, n_hw_ents, 1373 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1374 } 1375 1376 static int usb_generic_suspend(struct device *dev, pm_message_t message) 1377 { 1378 struct usb_interface *intf; 1379 struct usb_driver *driver; 1380 1381 if (dev->driver == &usb_generic_driver) 1382 return usb_suspend_device (to_usb_device(dev), message); 1383 1384 if ((dev->driver == NULL) || 1385 (dev->driver_data == &usb_generic_driver_data)) 1386 return 0; 1387 1388 intf = to_usb_interface(dev); 1389 driver = to_usb_driver(dev->driver); 1390 1391 /* there's only one USB suspend state */ 1392 if (intf->dev.power.power_state) 1393 return 0; 1394 1395 if (driver->suspend) 1396 return driver->suspend(intf, message); 1397 return 0; 1398 } 1399 1400 static int usb_generic_resume(struct device *dev) 1401 { 1402 struct usb_interface *intf; 1403 struct usb_driver *driver; 1404 1405 /* devices resume through their hub */ 1406 if (dev->driver == &usb_generic_driver) 1407 return usb_resume_device (to_usb_device(dev)); 1408 1409 if ((dev->driver == NULL) || 1410 (dev->driver_data == &usb_generic_driver_data)) 1411 return 0; 1412 1413 intf = to_usb_interface(dev); 1414 driver = to_usb_driver(dev->driver); 1415 1416 if (driver->resume) 1417 return driver->resume(intf); 1418 return 0; 1419 } 1420 1421 struct bus_type usb_bus_type = { 1422 .name = "usb", 1423 .match = usb_device_match, 1424 .hotplug = usb_hotplug, 1425 .suspend = usb_generic_suspend, 1426 .resume = usb_generic_resume, 1427 }; 1428 1429 #ifndef MODULE 1430 1431 static int __init usb_setup_disable(char *str) 1432 { 1433 nousb = 1; 1434 return 1; 1435 } 1436 1437 /* format to disable USB on kernel command line is: nousb */ 1438 __setup("nousb", usb_setup_disable); 1439 1440 #endif 1441 1442 /* 1443 * for external read access to <nousb> 1444 */ 1445 int usb_disabled(void) 1446 { 1447 return nousb; 1448 } 1449 1450 /* 1451 * Init 1452 */ 1453 static int __init usb_init(void) 1454 { 1455 int retval; 1456 if (nousb) { 1457 pr_info ("%s: USB support disabled\n", usbcore_name); 1458 return 0; 1459 } 1460 1461 retval = bus_register(&usb_bus_type); 1462 if (retval) 1463 goto out; 1464 retval = usb_host_init(); 1465 if (retval) 1466 goto host_init_failed; 1467 retval = usb_major_init(); 1468 if (retval) 1469 goto major_init_failed; 1470 retval = usbfs_init(); 1471 if (retval) 1472 goto fs_init_failed; 1473 retval = usb_hub_init(); 1474 if (retval) 1475 goto hub_init_failed; 1476 1477 retval = driver_register(&usb_generic_driver); 1478 if (!retval) 1479 goto out; 1480 1481 usb_hub_cleanup(); 1482 hub_init_failed: 1483 usbfs_cleanup(); 1484 fs_init_failed: 1485 usb_major_cleanup(); 1486 major_init_failed: 1487 usb_host_cleanup(); 1488 host_init_failed: 1489 bus_unregister(&usb_bus_type); 1490 out: 1491 return retval; 1492 } 1493 1494 /* 1495 * Cleanup 1496 */ 1497 static void __exit usb_exit(void) 1498 { 1499 /* This will matter if shutdown/reboot does exitcalls. */ 1500 if (nousb) 1501 return; 1502 1503 driver_unregister(&usb_generic_driver); 1504 usb_major_cleanup(); 1505 usbfs_cleanup(); 1506 usb_hub_cleanup(); 1507 usb_host_cleanup(); 1508 bus_unregister(&usb_bus_type); 1509 } 1510 1511 subsys_initcall(usb_init); 1512 module_exit(usb_exit); 1513 1514 /* 1515 * USB may be built into the kernel or be built as modules. 1516 * These symbols are exported for device (or host controller) 1517 * driver modules to use. 1518 */ 1519 1520 EXPORT_SYMBOL(usb_register); 1521 EXPORT_SYMBOL(usb_deregister); 1522 EXPORT_SYMBOL(usb_disabled); 1523 1524 EXPORT_SYMBOL(usb_alloc_dev); 1525 EXPORT_SYMBOL(usb_put_dev); 1526 EXPORT_SYMBOL(usb_get_dev); 1527 EXPORT_SYMBOL(usb_hub_tt_clear_buffer); 1528 1529 EXPORT_SYMBOL(usb_lock_device); 1530 EXPORT_SYMBOL(usb_trylock_device); 1531 EXPORT_SYMBOL(usb_lock_device_for_reset); 1532 EXPORT_SYMBOL(usb_unlock_device); 1533 1534 EXPORT_SYMBOL(usb_driver_claim_interface); 1535 EXPORT_SYMBOL(usb_driver_release_interface); 1536 EXPORT_SYMBOL(usb_match_id); 1537 EXPORT_SYMBOL(usb_find_interface); 1538 EXPORT_SYMBOL(usb_ifnum_to_if); 1539 EXPORT_SYMBOL(usb_altnum_to_altsetting); 1540 1541 EXPORT_SYMBOL(usb_reset_device); 1542 EXPORT_SYMBOL(usb_disconnect); 1543 1544 EXPORT_SYMBOL(__usb_get_extra_descriptor); 1545 1546 EXPORT_SYMBOL(usb_find_device); 1547 EXPORT_SYMBOL(usb_get_current_frame_number); 1548 1549 EXPORT_SYMBOL (usb_buffer_alloc); 1550 EXPORT_SYMBOL (usb_buffer_free); 1551 1552 #if 0 1553 EXPORT_SYMBOL (usb_buffer_map); 1554 EXPORT_SYMBOL (usb_buffer_dmasync); 1555 EXPORT_SYMBOL (usb_buffer_unmap); 1556 #endif 1557 1558 EXPORT_SYMBOL (usb_buffer_map_sg); 1559 #if 0 1560 EXPORT_SYMBOL (usb_buffer_dmasync_sg); 1561 #endif 1562 EXPORT_SYMBOL (usb_buffer_unmap_sg); 1563 1564 MODULE_LICENSE("GPL"); 1565