xref: /linux/drivers/usb/core/usb.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /*
2  * drivers/usb/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/config.h>
25 
26 #ifdef CONFIG_USB_DEBUG
27 	#define DEBUG
28 #else
29 	#undef DEBUG
30 #endif
31 
32 #include <linux/module.h>
33 #include <linux/string.h>
34 #include <linux/bitops.h>
35 #include <linux/slab.h>
36 #include <linux/interrupt.h>  /* for in_interrupt() */
37 #include <linux/kmod.h>
38 #include <linux/init.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/smp_lock.h>
42 #include <linux/rwsem.h>
43 #include <linux/usb.h>
44 
45 #include <asm/io.h>
46 #include <asm/scatterlist.h>
47 #include <linux/mm.h>
48 #include <linux/dma-mapping.h>
49 
50 #include "hcd.h"
51 #include "usb.h"
52 
53 
54 const char *usbcore_name = "usbcore";
55 
56 static int nousb;	/* Disable USB when built into kernel image */
57 			/* Not honored on modular build */
58 
59 static DECLARE_RWSEM(usb_all_devices_rwsem);
60 
61 
62 static int generic_probe (struct device *dev)
63 {
64 	return 0;
65 }
66 static int generic_remove (struct device *dev)
67 {
68 	return 0;
69 }
70 
71 static struct device_driver usb_generic_driver = {
72 	.owner = THIS_MODULE,
73 	.name =	"usb",
74 	.bus = &usb_bus_type,
75 	.probe = generic_probe,
76 	.remove = generic_remove,
77 };
78 
79 static int usb_generic_driver_data;
80 
81 /* called from driver core with usb_bus_type.subsys writelock */
82 static int usb_probe_interface(struct device *dev)
83 {
84 	struct usb_interface * intf = to_usb_interface(dev);
85 	struct usb_driver * driver = to_usb_driver(dev->driver);
86 	const struct usb_device_id *id;
87 	int error = -ENODEV;
88 
89 	dev_dbg(dev, "%s\n", __FUNCTION__);
90 
91 	if (!driver->probe)
92 		return error;
93 	/* FIXME we'd much prefer to just resume it ... */
94 	if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED)
95 		return -EHOSTUNREACH;
96 
97 	id = usb_match_id (intf, driver->id_table);
98 	if (id) {
99 		dev_dbg (dev, "%s - got id\n", __FUNCTION__);
100 		intf->condition = USB_INTERFACE_BINDING;
101 		error = driver->probe (intf, id);
102 		intf->condition = error ? USB_INTERFACE_UNBOUND :
103 				USB_INTERFACE_BOUND;
104 	}
105 
106 	return error;
107 }
108 
109 /* called from driver core with usb_bus_type.subsys writelock */
110 static int usb_unbind_interface(struct device *dev)
111 {
112 	struct usb_interface *intf = to_usb_interface(dev);
113 	struct usb_driver *driver = to_usb_driver(intf->dev.driver);
114 
115 	intf->condition = USB_INTERFACE_UNBINDING;
116 
117 	/* release all urbs for this interface */
118 	usb_disable_interface(interface_to_usbdev(intf), intf);
119 
120 	if (driver && driver->disconnect)
121 		driver->disconnect(intf);
122 
123 	/* reset other interface state */
124 	usb_set_interface(interface_to_usbdev(intf),
125 			intf->altsetting[0].desc.bInterfaceNumber,
126 			0);
127 	usb_set_intfdata(intf, NULL);
128 	intf->condition = USB_INTERFACE_UNBOUND;
129 
130 	return 0;
131 }
132 
133 /**
134  * usb_register - register a USB driver
135  * @new_driver: USB operations for the driver
136  *
137  * Registers a USB driver with the USB core.  The list of unattached
138  * interfaces will be rescanned whenever a new driver is added, allowing
139  * the new driver to attach to any recognized devices.
140  * Returns a negative error code on failure and 0 on success.
141  *
142  * NOTE: if you want your driver to use the USB major number, you must call
143  * usb_register_dev() to enable that functionality.  This function no longer
144  * takes care of that.
145  */
146 int usb_register(struct usb_driver *new_driver)
147 {
148 	int retval = 0;
149 
150 	if (nousb)
151 		return -ENODEV;
152 
153 	new_driver->driver.name = (char *)new_driver->name;
154 	new_driver->driver.bus = &usb_bus_type;
155 	new_driver->driver.probe = usb_probe_interface;
156 	new_driver->driver.remove = usb_unbind_interface;
157 	new_driver->driver.owner = new_driver->owner;
158 
159 	usb_lock_all_devices();
160 	retval = driver_register(&new_driver->driver);
161 	usb_unlock_all_devices();
162 
163 	if (!retval) {
164 		pr_info("%s: registered new driver %s\n",
165 			usbcore_name, new_driver->name);
166 		usbfs_update_special();
167 	} else {
168 		printk(KERN_ERR "%s: error %d registering driver %s\n",
169 			usbcore_name, retval, new_driver->name);
170 	}
171 
172 	return retval;
173 }
174 
175 /**
176  * usb_deregister - unregister a USB driver
177  * @driver: USB operations of the driver to unregister
178  * Context: must be able to sleep
179  *
180  * Unlinks the specified driver from the internal USB driver list.
181  *
182  * NOTE: If you called usb_register_dev(), you still need to call
183  * usb_deregister_dev() to clean up your driver's allocated minor numbers,
184  * this * call will no longer do it for you.
185  */
186 void usb_deregister(struct usb_driver *driver)
187 {
188 	pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name);
189 
190 	usb_lock_all_devices();
191 	driver_unregister (&driver->driver);
192 	usb_unlock_all_devices();
193 
194 	usbfs_update_special();
195 }
196 
197 /**
198  * usb_ifnum_to_if - get the interface object with a given interface number
199  * @dev: the device whose current configuration is considered
200  * @ifnum: the desired interface
201  *
202  * This walks the device descriptor for the currently active configuration
203  * and returns a pointer to the interface with that particular interface
204  * number, or null.
205  *
206  * Note that configuration descriptors are not required to assign interface
207  * numbers sequentially, so that it would be incorrect to assume that
208  * the first interface in that descriptor corresponds to interface zero.
209  * This routine helps device drivers avoid such mistakes.
210  * However, you should make sure that you do the right thing with any
211  * alternate settings available for this interfaces.
212  *
213  * Don't call this function unless you are bound to one of the interfaces
214  * on this device or you have locked the device!
215  */
216 struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
217 {
218 	struct usb_host_config *config = dev->actconfig;
219 	int i;
220 
221 	if (!config)
222 		return NULL;
223 	for (i = 0; i < config->desc.bNumInterfaces; i++)
224 		if (config->interface[i]->altsetting[0]
225 				.desc.bInterfaceNumber == ifnum)
226 			return config->interface[i];
227 
228 	return NULL;
229 }
230 
231 /**
232  * usb_altnum_to_altsetting - get the altsetting structure with a given
233  *	alternate setting number.
234  * @intf: the interface containing the altsetting in question
235  * @altnum: the desired alternate setting number
236  *
237  * This searches the altsetting array of the specified interface for
238  * an entry with the correct bAlternateSetting value and returns a pointer
239  * to that entry, or null.
240  *
241  * Note that altsettings need not be stored sequentially by number, so
242  * it would be incorrect to assume that the first altsetting entry in
243  * the array corresponds to altsetting zero.  This routine helps device
244  * drivers avoid such mistakes.
245  *
246  * Don't call this function unless you are bound to the intf interface
247  * or you have locked the device!
248  */
249 struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
250 		unsigned int altnum)
251 {
252 	int i;
253 
254 	for (i = 0; i < intf->num_altsetting; i++) {
255 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
256 			return &intf->altsetting[i];
257 	}
258 	return NULL;
259 }
260 
261 /**
262  * usb_driver_claim_interface - bind a driver to an interface
263  * @driver: the driver to be bound
264  * @iface: the interface to which it will be bound; must be in the
265  *	usb device's active configuration
266  * @priv: driver data associated with that interface
267  *
268  * This is used by usb device drivers that need to claim more than one
269  * interface on a device when probing (audio and acm are current examples).
270  * No device driver should directly modify internal usb_interface or
271  * usb_device structure members.
272  *
273  * Few drivers should need to use this routine, since the most natural
274  * way to bind to an interface is to return the private data from
275  * the driver's probe() method.
276  *
277  * Callers must own the device lock and the driver model's usb_bus_type.subsys
278  * writelock.  So driver probe() entries don't need extra locking,
279  * but other call contexts may need to explicitly claim those locks.
280  */
281 int usb_driver_claim_interface(struct usb_driver *driver,
282 				struct usb_interface *iface, void* priv)
283 {
284 	struct device *dev = &iface->dev;
285 
286 	if (dev->driver)
287 		return -EBUSY;
288 
289 	dev->driver = &driver->driver;
290 	usb_set_intfdata(iface, priv);
291 	iface->condition = USB_INTERFACE_BOUND;
292 
293 	/* if interface was already added, bind now; else let
294 	 * the future device_add() bind it, bypassing probe()
295 	 */
296 	if (!list_empty (&dev->bus_list))
297 		device_bind_driver(dev);
298 
299 	return 0;
300 }
301 
302 /**
303  * usb_driver_release_interface - unbind a driver from an interface
304  * @driver: the driver to be unbound
305  * @iface: the interface from which it will be unbound
306  *
307  * This can be used by drivers to release an interface without waiting
308  * for their disconnect() methods to be called.  In typical cases this
309  * also causes the driver disconnect() method to be called.
310  *
311  * This call is synchronous, and may not be used in an interrupt context.
312  * Callers must own the device lock and the driver model's usb_bus_type.subsys
313  * writelock.  So driver disconnect() entries don't need extra locking,
314  * but other call contexts may need to explicitly claim those locks.
315  */
316 void usb_driver_release_interface(struct usb_driver *driver,
317 					struct usb_interface *iface)
318 {
319 	struct device *dev = &iface->dev;
320 
321 	/* this should never happen, don't release something that's not ours */
322 	if (!dev->driver || dev->driver != &driver->driver)
323 		return;
324 
325 	/* don't disconnect from disconnect(), or before dev_add() */
326 	if (!list_empty (&dev->driver_list) && !list_empty (&dev->bus_list))
327 		device_release_driver(dev);
328 
329 	dev->driver = NULL;
330 	usb_set_intfdata(iface, NULL);
331 	iface->condition = USB_INTERFACE_UNBOUND;
332 }
333 
334 /**
335  * usb_match_id - find first usb_device_id matching device or interface
336  * @interface: the interface of interest
337  * @id: array of usb_device_id structures, terminated by zero entry
338  *
339  * usb_match_id searches an array of usb_device_id's and returns
340  * the first one matching the device or interface, or null.
341  * This is used when binding (or rebinding) a driver to an interface.
342  * Most USB device drivers will use this indirectly, through the usb core,
343  * but some layered driver frameworks use it directly.
344  * These device tables are exported with MODULE_DEVICE_TABLE, through
345  * modutils and "modules.usbmap", to support the driver loading
346  * functionality of USB hotplugging.
347  *
348  * What Matches:
349  *
350  * The "match_flags" element in a usb_device_id controls which
351  * members are used.  If the corresponding bit is set, the
352  * value in the device_id must match its corresponding member
353  * in the device or interface descriptor, or else the device_id
354  * does not match.
355  *
356  * "driver_info" is normally used only by device drivers,
357  * but you can create a wildcard "matches anything" usb_device_id
358  * as a driver's "modules.usbmap" entry if you provide an id with
359  * only a nonzero "driver_info" field.  If you do this, the USB device
360  * driver's probe() routine should use additional intelligence to
361  * decide whether to bind to the specified interface.
362  *
363  * What Makes Good usb_device_id Tables:
364  *
365  * The match algorithm is very simple, so that intelligence in
366  * driver selection must come from smart driver id records.
367  * Unless you have good reasons to use another selection policy,
368  * provide match elements only in related groups, and order match
369  * specifiers from specific to general.  Use the macros provided
370  * for that purpose if you can.
371  *
372  * The most specific match specifiers use device descriptor
373  * data.  These are commonly used with product-specific matches;
374  * the USB_DEVICE macro lets you provide vendor and product IDs,
375  * and you can also match against ranges of product revisions.
376  * These are widely used for devices with application or vendor
377  * specific bDeviceClass values.
378  *
379  * Matches based on device class/subclass/protocol specifications
380  * are slightly more general; use the USB_DEVICE_INFO macro, or
381  * its siblings.  These are used with single-function devices
382  * where bDeviceClass doesn't specify that each interface has
383  * its own class.
384  *
385  * Matches based on interface class/subclass/protocol are the
386  * most general; they let drivers bind to any interface on a
387  * multiple-function device.  Use the USB_INTERFACE_INFO
388  * macro, or its siblings, to match class-per-interface style
389  * devices (as recorded in bDeviceClass).
390  *
391  * Within those groups, remember that not all combinations are
392  * meaningful.  For example, don't give a product version range
393  * without vendor and product IDs; or specify a protocol without
394  * its associated class and subclass.
395  */
396 const struct usb_device_id *
397 usb_match_id(struct usb_interface *interface, const struct usb_device_id *id)
398 {
399 	struct usb_host_interface *intf;
400 	struct usb_device *dev;
401 
402 	/* proc_connectinfo in devio.c may call us with id == NULL. */
403 	if (id == NULL)
404 		return NULL;
405 
406 	intf = interface->cur_altsetting;
407 	dev = interface_to_usbdev(interface);
408 
409 	/* It is important to check that id->driver_info is nonzero,
410 	   since an entry that is all zeroes except for a nonzero
411 	   id->driver_info is the way to create an entry that
412 	   indicates that the driver want to examine every
413 	   device and interface. */
414 	for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||
415 	       id->driver_info; id++) {
416 
417 		if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
418 		    id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
419 			continue;
420 
421 		if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
422 		    id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
423 			continue;
424 
425 		/* No need to test id->bcdDevice_lo != 0, since 0 is never
426 		   greater than any unsigned number. */
427 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
428 		    (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
429 			continue;
430 
431 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
432 		    (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
433 			continue;
434 
435 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
436 		    (id->bDeviceClass != dev->descriptor.bDeviceClass))
437 			continue;
438 
439 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
440 		    (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))
441 			continue;
442 
443 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
444 		    (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
445 			continue;
446 
447 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
448 		    (id->bInterfaceClass != intf->desc.bInterfaceClass))
449 			continue;
450 
451 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
452 		    (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
453 			continue;
454 
455 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
456 		    (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
457 			continue;
458 
459 		return id;
460 	}
461 
462 	return NULL;
463 }
464 
465 /**
466  * usb_find_interface - find usb_interface pointer for driver and device
467  * @drv: the driver whose current configuration is considered
468  * @minor: the minor number of the desired device
469  *
470  * This walks the driver device list and returns a pointer to the interface
471  * with the matching minor.  Note, this only works for devices that share the
472  * USB major number.
473  */
474 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
475 {
476 	struct list_head *entry;
477 	struct device *dev;
478 	struct usb_interface *intf;
479 
480 	list_for_each(entry, &drv->driver.devices) {
481 		dev = container_of(entry, struct device, driver_list);
482 
483 		/* can't look at usb devices, only interfaces */
484 		if (dev->driver == &usb_generic_driver)
485 			continue;
486 
487 		intf = to_usb_interface(dev);
488 		if (intf->minor == -1)
489 			continue;
490 		if (intf->minor == minor)
491 			return intf;
492 	}
493 
494 	/* no device found that matches */
495 	return NULL;
496 }
497 
498 static int usb_device_match (struct device *dev, struct device_driver *drv)
499 {
500 	struct usb_interface *intf;
501 	struct usb_driver *usb_drv;
502 	const struct usb_device_id *id;
503 
504 	/* check for generic driver, which we don't match any device with */
505 	if (drv == &usb_generic_driver)
506 		return 0;
507 
508 	intf = to_usb_interface(dev);
509 	usb_drv = to_usb_driver(drv);
510 
511 	id = usb_match_id (intf, usb_drv->id_table);
512 	if (id)
513 		return 1;
514 
515 	return 0;
516 }
517 
518 
519 #ifdef	CONFIG_HOTPLUG
520 
521 /*
522  * USB hotplugging invokes what /proc/sys/kernel/hotplug says
523  * (normally /sbin/hotplug) when USB devices get added or removed.
524  *
525  * This invokes a user mode policy agent, typically helping to load driver
526  * or other modules, configure the device, and more.  Drivers can provide
527  * a MODULE_DEVICE_TABLE to help with module loading subtasks.
528  *
529  * We're called either from khubd (the typical case) or from root hub
530  * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
531  * delays in event delivery.  Use sysfs (and DEVPATH) to make sure the
532  * device (and this configuration!) are still present.
533  */
534 static int usb_hotplug (struct device *dev, char **envp, int num_envp,
535 			char *buffer, int buffer_size)
536 {
537 	struct usb_interface *intf;
538 	struct usb_device *usb_dev;
539 	int i = 0;
540 	int length = 0;
541 
542 	if (!dev)
543 		return -ENODEV;
544 
545 	/* driver is often null here; dev_dbg() would oops */
546 	pr_debug ("usb %s: hotplug\n", dev->bus_id);
547 
548 	/* Must check driver_data here, as on remove driver is always NULL */
549 	if ((dev->driver == &usb_generic_driver) ||
550 	    (dev->driver_data == &usb_generic_driver_data))
551 		return 0;
552 
553 	intf = to_usb_interface(dev);
554 	usb_dev = interface_to_usbdev (intf);
555 
556 	if (usb_dev->devnum < 0) {
557 		pr_debug ("usb %s: already deleted?\n", dev->bus_id);
558 		return -ENODEV;
559 	}
560 	if (!usb_dev->bus) {
561 		pr_debug ("usb %s: bus removed?\n", dev->bus_id);
562 		return -ENODEV;
563 	}
564 
565 #ifdef	CONFIG_USB_DEVICEFS
566 	/* If this is available, userspace programs can directly read
567 	 * all the device descriptors we don't tell them about.  Or
568 	 * even act as usermode drivers.
569 	 *
570 	 * FIXME reduce hardwired intelligence here
571 	 */
572 	if (add_hotplug_env_var(envp, num_envp, &i,
573 				buffer, buffer_size, &length,
574 				"DEVICE=/proc/bus/usb/%03d/%03d",
575 				usb_dev->bus->busnum, usb_dev->devnum))
576 		return -ENOMEM;
577 #endif
578 
579 	/* per-device configurations are common */
580 	if (add_hotplug_env_var(envp, num_envp, &i,
581 				buffer, buffer_size, &length,
582 				"PRODUCT=%x/%x/%x",
583 				le16_to_cpu(usb_dev->descriptor.idVendor),
584 				le16_to_cpu(usb_dev->descriptor.idProduct),
585 				le16_to_cpu(usb_dev->descriptor.bcdDevice)))
586 		return -ENOMEM;
587 
588 	/* class-based driver binding models */
589 	if (add_hotplug_env_var(envp, num_envp, &i,
590 				buffer, buffer_size, &length,
591 				"TYPE=%d/%d/%d",
592 				usb_dev->descriptor.bDeviceClass,
593 				usb_dev->descriptor.bDeviceSubClass,
594 				usb_dev->descriptor.bDeviceProtocol))
595 		return -ENOMEM;
596 
597 	if (usb_dev->descriptor.bDeviceClass == 0) {
598 		struct usb_host_interface *alt = intf->cur_altsetting;
599 
600 		/* 2.4 only exposed interface zero.  in 2.5, hotplug
601 		 * agents are called for all interfaces, and can use
602 		 * $DEVPATH/bInterfaceNumber if necessary.
603 		 */
604 		if (add_hotplug_env_var(envp, num_envp, &i,
605 					buffer, buffer_size, &length,
606 					"INTERFACE=%d/%d/%d",
607 					alt->desc.bInterfaceClass,
608 					alt->desc.bInterfaceSubClass,
609 					alt->desc.bInterfaceProtocol))
610 			return -ENOMEM;
611 
612 		if (add_hotplug_env_var(envp, num_envp, &i,
613 					buffer, buffer_size, &length,
614 					"MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
615 					le16_to_cpu(usb_dev->descriptor.idVendor),
616 					le16_to_cpu(usb_dev->descriptor.idProduct),
617 					le16_to_cpu(usb_dev->descriptor.bcdDevice),
618 					usb_dev->descriptor.bDeviceClass,
619 					usb_dev->descriptor.bDeviceSubClass,
620 					usb_dev->descriptor.bDeviceProtocol,
621 					alt->desc.bInterfaceClass,
622 					alt->desc.bInterfaceSubClass,
623 					alt->desc.bInterfaceProtocol))
624 			return -ENOMEM;
625  	} else {
626 		if (add_hotplug_env_var(envp, num_envp, &i,
627 					buffer, buffer_size, &length,
628 					"MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic*isc*ip*",
629 					le16_to_cpu(usb_dev->descriptor.idVendor),
630 					le16_to_cpu(usb_dev->descriptor.idProduct),
631 					le16_to_cpu(usb_dev->descriptor.bcdDevice),
632 					usb_dev->descriptor.bDeviceClass,
633 					usb_dev->descriptor.bDeviceSubClass,
634 					usb_dev->descriptor.bDeviceProtocol))
635 			return -ENOMEM;
636 	}
637 
638 	envp[i] = NULL;
639 
640 	return 0;
641 }
642 
643 #else
644 
645 static int usb_hotplug (struct device *dev, char **envp,
646 			int num_envp, char *buffer, int buffer_size)
647 {
648 	return -ENODEV;
649 }
650 
651 #endif	/* CONFIG_HOTPLUG */
652 
653 /**
654  * usb_release_dev - free a usb device structure when all users of it are finished.
655  * @dev: device that's been disconnected
656  *
657  * Will be called only by the device core when all users of this usb device are
658  * done.
659  */
660 static void usb_release_dev(struct device *dev)
661 {
662 	struct usb_device *udev;
663 
664 	udev = to_usb_device(dev);
665 
666 	usb_destroy_configuration(udev);
667 	usb_bus_put(udev->bus);
668 	kfree(udev->product);
669 	kfree(udev->manufacturer);
670 	kfree(udev->serial);
671 	kfree(udev);
672 }
673 
674 /**
675  * usb_alloc_dev - usb device constructor (usbcore-internal)
676  * @parent: hub to which device is connected; null to allocate a root hub
677  * @bus: bus used to access the device
678  * @port1: one-based index of port; ignored for root hubs
679  * Context: !in_interrupt ()
680  *
681  * Only hub drivers (including virtual root hub drivers for host
682  * controllers) should ever call this.
683  *
684  * This call may not be used in a non-sleeping context.
685  */
686 struct usb_device *
687 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
688 {
689 	struct usb_device *dev;
690 
691 	dev = kmalloc(sizeof(*dev), GFP_KERNEL);
692 	if (!dev)
693 		return NULL;
694 
695 	memset(dev, 0, sizeof(*dev));
696 
697 	bus = usb_bus_get(bus);
698 	if (!bus) {
699 		kfree(dev);
700 		return NULL;
701 	}
702 
703 	device_initialize(&dev->dev);
704 	dev->dev.bus = &usb_bus_type;
705 	dev->dev.dma_mask = bus->controller->dma_mask;
706 	dev->dev.driver_data = &usb_generic_driver_data;
707 	dev->dev.driver = &usb_generic_driver;
708 	dev->dev.release = usb_release_dev;
709 	dev->state = USB_STATE_ATTACHED;
710 
711 	INIT_LIST_HEAD(&dev->ep0.urb_list);
712 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
713 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
714 	/* ep0 maxpacket comes later, from device descriptor */
715 	dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
716 
717 	/* Save readable and stable topology id, distinguishing devices
718 	 * by location for diagnostics, tools, driver model, etc.  The
719 	 * string is a path along hub ports, from the root.  Each device's
720 	 * dev->devpath will be stable until USB is re-cabled, and hubs
721 	 * are often labeled with these port numbers.  The bus_id isn't
722 	 * as stable:  bus->busnum changes easily from modprobe order,
723 	 * cardbus or pci hotplugging, and so on.
724 	 */
725 	if (unlikely (!parent)) {
726 		dev->devpath [0] = '0';
727 
728 		dev->dev.parent = bus->controller;
729 		sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
730 	} else {
731 		/* match any labeling on the hubs; it's one-based */
732 		if (parent->devpath [0] == '0')
733 			snprintf (dev->devpath, sizeof dev->devpath,
734 				"%d", port1);
735 		else
736 			snprintf (dev->devpath, sizeof dev->devpath,
737 				"%s.%d", parent->devpath, port1);
738 
739 		dev->dev.parent = &parent->dev;
740 		sprintf (&dev->dev.bus_id[0], "%d-%s",
741 			bus->busnum, dev->devpath);
742 
743 		/* hub driver sets up TT records */
744 	}
745 
746 	dev->bus = bus;
747 	dev->parent = parent;
748 	INIT_LIST_HEAD(&dev->filelist);
749 
750 	init_MUTEX(&dev->serialize);
751 
752 	return dev;
753 }
754 
755 /**
756  * usb_get_dev - increments the reference count of the usb device structure
757  * @dev: the device being referenced
758  *
759  * Each live reference to a device should be refcounted.
760  *
761  * Drivers for USB interfaces should normally record such references in
762  * their probe() methods, when they bind to an interface, and release
763  * them by calling usb_put_dev(), in their disconnect() methods.
764  *
765  * A pointer to the device with the incremented reference counter is returned.
766  */
767 struct usb_device *usb_get_dev(struct usb_device *dev)
768 {
769 	if (dev)
770 		get_device(&dev->dev);
771 	return dev;
772 }
773 
774 /**
775  * usb_put_dev - release a use of the usb device structure
776  * @dev: device that's been disconnected
777  *
778  * Must be called when a user of a device is finished with it.  When the last
779  * user of the device calls this function, the memory of the device is freed.
780  */
781 void usb_put_dev(struct usb_device *dev)
782 {
783 	if (dev)
784 		put_device(&dev->dev);
785 }
786 
787 /**
788  * usb_get_intf - increments the reference count of the usb interface structure
789  * @intf: the interface being referenced
790  *
791  * Each live reference to a interface must be refcounted.
792  *
793  * Drivers for USB interfaces should normally record such references in
794  * their probe() methods, when they bind to an interface, and release
795  * them by calling usb_put_intf(), in their disconnect() methods.
796  *
797  * A pointer to the interface with the incremented reference counter is
798  * returned.
799  */
800 struct usb_interface *usb_get_intf(struct usb_interface *intf)
801 {
802 	if (intf)
803 		get_device(&intf->dev);
804 	return intf;
805 }
806 
807 /**
808  * usb_put_intf - release a use of the usb interface structure
809  * @intf: interface that's been decremented
810  *
811  * Must be called when a user of an interface is finished with it.  When the
812  * last user of the interface calls this function, the memory of the interface
813  * is freed.
814  */
815 void usb_put_intf(struct usb_interface *intf)
816 {
817 	if (intf)
818 		put_device(&intf->dev);
819 }
820 
821 
822 /*			USB device locking
823  *
824  * Although locking USB devices should be straightforward, it is
825  * complicated by the way the driver-model core works.  When a new USB
826  * driver is registered or unregistered, the core will automatically
827  * probe or disconnect all matching interfaces on all USB devices while
828  * holding the USB subsystem writelock.  There's no good way for us to
829  * tell which devices will be used or to lock them beforehand; our only
830  * option is to effectively lock all the USB devices.
831  *
832  * We do that by using a private rw-semaphore, usb_all_devices_rwsem.
833  * When locking an individual device you must first acquire the rwsem's
834  * readlock.  When a driver is registered or unregistered the writelock
835  * must be held.  These actions are encapsulated in the subroutines
836  * below, so all a driver needs to do is call usb_lock_device() and
837  * usb_unlock_device().
838  *
839  * Complications arise when several devices are to be locked at the same
840  * time.  Only hub-aware drivers that are part of usbcore ever have to
841  * do this; nobody else needs to worry about it.  The problem is that
842  * usb_lock_device() must not be called to lock a second device since it
843  * would acquire the rwsem's readlock reentrantly, leading to deadlock if
844  * another thread was waiting for the writelock.  The solution is simple:
845  *
846  *	When locking more than one device, call usb_lock_device()
847  *	to lock the first one.  Lock the others by calling
848  *	down(&udev->serialize) directly.
849  *
850  *	When unlocking multiple devices, use up(&udev->serialize)
851  *	to unlock all but the last one.  Unlock the last one by
852  *	calling usb_unlock_device().
853  *
854  *	When locking both a device and its parent, always lock the
855  *	the parent first.
856  */
857 
858 /**
859  * usb_lock_device - acquire the lock for a usb device structure
860  * @udev: device that's being locked
861  *
862  * Use this routine when you don't hold any other device locks;
863  * to acquire nested inner locks call down(&udev->serialize) directly.
864  * This is necessary for proper interaction with usb_lock_all_devices().
865  */
866 void usb_lock_device(struct usb_device *udev)
867 {
868 	down_read(&usb_all_devices_rwsem);
869 	down(&udev->serialize);
870 }
871 
872 /**
873  * usb_trylock_device - attempt to acquire the lock for a usb device structure
874  * @udev: device that's being locked
875  *
876  * Don't use this routine if you already hold a device lock;
877  * use down_trylock(&udev->serialize) instead.
878  * This is necessary for proper interaction with usb_lock_all_devices().
879  *
880  * Returns 1 if successful, 0 if contention.
881  */
882 int usb_trylock_device(struct usb_device *udev)
883 {
884 	if (!down_read_trylock(&usb_all_devices_rwsem))
885 		return 0;
886 	if (down_trylock(&udev->serialize)) {
887 		up_read(&usb_all_devices_rwsem);
888 		return 0;
889 	}
890 	return 1;
891 }
892 
893 /**
894  * usb_lock_device_for_reset - cautiously acquire the lock for a
895  *	usb device structure
896  * @udev: device that's being locked
897  * @iface: interface bound to the driver making the request (optional)
898  *
899  * Attempts to acquire the device lock, but fails if the device is
900  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
901  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
902  * lock, the routine polls repeatedly.  This is to prevent deadlock with
903  * disconnect; in some drivers (such as usb-storage) the disconnect()
904  * callback will block waiting for a device reset to complete.
905  *
906  * Returns a negative error code for failure, otherwise 1 or 0 to indicate
907  * that the device will or will not have to be unlocked.  (0 can be
908  * returned when an interface is given and is BINDING, because in that
909  * case the driver already owns the device lock.)
910  */
911 int usb_lock_device_for_reset(struct usb_device *udev,
912 		struct usb_interface *iface)
913 {
914 	if (udev->state == USB_STATE_NOTATTACHED)
915 		return -ENODEV;
916 	if (udev->state == USB_STATE_SUSPENDED)
917 		return -EHOSTUNREACH;
918 	if (iface) {
919 		switch (iface->condition) {
920 		  case USB_INTERFACE_BINDING:
921 			return 0;
922 		  case USB_INTERFACE_BOUND:
923 			break;
924 		  default:
925 			return -EINTR;
926 		}
927 	}
928 
929 	while (!usb_trylock_device(udev)) {
930 		msleep(15);
931 		if (udev->state == USB_STATE_NOTATTACHED)
932 			return -ENODEV;
933 		if (udev->state == USB_STATE_SUSPENDED)
934 			return -EHOSTUNREACH;
935 		if (iface && iface->condition != USB_INTERFACE_BOUND)
936 			return -EINTR;
937 	}
938 	return 1;
939 }
940 
941 /**
942  * usb_unlock_device - release the lock for a usb device structure
943  * @udev: device that's being unlocked
944  *
945  * Use this routine when releasing the only device lock you hold;
946  * to release inner nested locks call up(&udev->serialize) directly.
947  * This is necessary for proper interaction with usb_lock_all_devices().
948  */
949 void usb_unlock_device(struct usb_device *udev)
950 {
951 	up(&udev->serialize);
952 	up_read(&usb_all_devices_rwsem);
953 }
954 
955 /**
956  * usb_lock_all_devices - acquire the lock for all usb device structures
957  *
958  * This is necessary when registering a new driver or probing a bus,
959  * since the driver-model core may try to use any usb_device.
960  */
961 void usb_lock_all_devices(void)
962 {
963 	down_write(&usb_all_devices_rwsem);
964 }
965 
966 /**
967  * usb_unlock_all_devices - release the lock for all usb device structures
968  */
969 void usb_unlock_all_devices(void)
970 {
971 	up_write(&usb_all_devices_rwsem);
972 }
973 
974 
975 static struct usb_device *match_device(struct usb_device *dev,
976 				       u16 vendor_id, u16 product_id)
977 {
978 	struct usb_device *ret_dev = NULL;
979 	int child;
980 
981 	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
982 	    le16_to_cpu(dev->descriptor.idVendor),
983 	    le16_to_cpu(dev->descriptor.idProduct));
984 
985 	/* see if this device matches */
986 	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
987 	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
988 		dev_dbg (&dev->dev, "matched this device!\n");
989 		ret_dev = usb_get_dev(dev);
990 		goto exit;
991 	}
992 
993 	/* look through all of the children of this device */
994 	for (child = 0; child < dev->maxchild; ++child) {
995 		if (dev->children[child]) {
996 			down(&dev->children[child]->serialize);
997 			ret_dev = match_device(dev->children[child],
998 					       vendor_id, product_id);
999 			up(&dev->children[child]->serialize);
1000 			if (ret_dev)
1001 				goto exit;
1002 		}
1003 	}
1004 exit:
1005 	return ret_dev;
1006 }
1007 
1008 /**
1009  * usb_find_device - find a specific usb device in the system
1010  * @vendor_id: the vendor id of the device to find
1011  * @product_id: the product id of the device to find
1012  *
1013  * Returns a pointer to a struct usb_device if such a specified usb
1014  * device is present in the system currently.  The usage count of the
1015  * device will be incremented if a device is found.  Make sure to call
1016  * usb_put_dev() when the caller is finished with the device.
1017  *
1018  * If a device with the specified vendor and product id is not found,
1019  * NULL is returned.
1020  */
1021 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
1022 {
1023 	struct list_head *buslist;
1024 	struct usb_bus *bus;
1025 	struct usb_device *dev = NULL;
1026 
1027 	down(&usb_bus_list_lock);
1028 	for (buslist = usb_bus_list.next;
1029 	     buslist != &usb_bus_list;
1030 	     buslist = buslist->next) {
1031 		bus = container_of(buslist, struct usb_bus, bus_list);
1032 		if (!bus->root_hub)
1033 			continue;
1034 		usb_lock_device(bus->root_hub);
1035 		dev = match_device(bus->root_hub, vendor_id, product_id);
1036 		usb_unlock_device(bus->root_hub);
1037 		if (dev)
1038 			goto exit;
1039 	}
1040 exit:
1041 	up(&usb_bus_list_lock);
1042 	return dev;
1043 }
1044 
1045 /**
1046  * usb_get_current_frame_number - return current bus frame number
1047  * @dev: the device whose bus is being queried
1048  *
1049  * Returns the current frame number for the USB host controller
1050  * used with the given USB device.  This can be used when scheduling
1051  * isochronous requests.
1052  *
1053  * Note that different kinds of host controller have different
1054  * "scheduling horizons".  While one type might support scheduling only
1055  * 32 frames into the future, others could support scheduling up to
1056  * 1024 frames into the future.
1057  */
1058 int usb_get_current_frame_number(struct usb_device *dev)
1059 {
1060 	return dev->bus->op->get_frame_number (dev);
1061 }
1062 
1063 /*-------------------------------------------------------------------*/
1064 /*
1065  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
1066  * extra field of the interface and endpoint descriptor structs.
1067  */
1068 
1069 int __usb_get_extra_descriptor(char *buffer, unsigned size,
1070 	unsigned char type, void **ptr)
1071 {
1072 	struct usb_descriptor_header *header;
1073 
1074 	while (size >= sizeof(struct usb_descriptor_header)) {
1075 		header = (struct usb_descriptor_header *)buffer;
1076 
1077 		if (header->bLength < 2) {
1078 			printk(KERN_ERR
1079 				"%s: bogus descriptor, type %d length %d\n",
1080 				usbcore_name,
1081 				header->bDescriptorType,
1082 				header->bLength);
1083 			return -1;
1084 		}
1085 
1086 		if (header->bDescriptorType == type) {
1087 			*ptr = header;
1088 			return 0;
1089 		}
1090 
1091 		buffer += header->bLength;
1092 		size -= header->bLength;
1093 	}
1094 	return -1;
1095 }
1096 
1097 /**
1098  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
1099  * @dev: device the buffer will be used with
1100  * @size: requested buffer size
1101  * @mem_flags: affect whether allocation may block
1102  * @dma: used to return DMA address of buffer
1103  *
1104  * Return value is either null (indicating no buffer could be allocated), or
1105  * the cpu-space pointer to a buffer that may be used to perform DMA to the
1106  * specified device.  Such cpu-space buffers are returned along with the DMA
1107  * address (through the pointer provided).
1108  *
1109  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
1110  * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
1111  * mapping hardware for long idle periods.  The implementation varies between
1112  * platforms, depending on details of how DMA will work to this device.
1113  * Using these buffers also helps prevent cacheline sharing problems on
1114  * architectures where CPU caches are not DMA-coherent.
1115  *
1116  * When the buffer is no longer used, free it with usb_buffer_free().
1117  */
1118 void *usb_buffer_alloc (
1119 	struct usb_device *dev,
1120 	size_t size,
1121 	int mem_flags,
1122 	dma_addr_t *dma
1123 )
1124 {
1125 	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
1126 		return NULL;
1127 	return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
1128 }
1129 
1130 /**
1131  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
1132  * @dev: device the buffer was used with
1133  * @size: requested buffer size
1134  * @addr: CPU address of buffer
1135  * @dma: DMA address of buffer
1136  *
1137  * This reclaims an I/O buffer, letting it be reused.  The memory must have
1138  * been allocated using usb_buffer_alloc(), and the parameters must match
1139  * those provided in that allocation request.
1140  */
1141 void usb_buffer_free (
1142 	struct usb_device *dev,
1143 	size_t size,
1144 	void *addr,
1145 	dma_addr_t dma
1146 )
1147 {
1148 	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
1149 	    	return;
1150 	dev->bus->op->buffer_free (dev->bus, size, addr, dma);
1151 }
1152 
1153 /**
1154  * usb_buffer_map - create DMA mapping(s) for an urb
1155  * @urb: urb whose transfer_buffer/setup_packet will be mapped
1156  *
1157  * Return value is either null (indicating no buffer could be mapped), or
1158  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
1159  * added to urb->transfer_flags if the operation succeeds.  If the device
1160  * is connected to this system through a non-DMA controller, this operation
1161  * always succeeds.
1162  *
1163  * This call would normally be used for an urb which is reused, perhaps
1164  * as the target of a large periodic transfer, with usb_buffer_dmasync()
1165  * calls to synchronize memory and dma state.
1166  *
1167  * Reverse the effect of this call with usb_buffer_unmap().
1168  */
1169 #if 0
1170 struct urb *usb_buffer_map (struct urb *urb)
1171 {
1172 	struct usb_bus		*bus;
1173 	struct device		*controller;
1174 
1175 	if (!urb
1176 			|| !urb->dev
1177 			|| !(bus = urb->dev->bus)
1178 			|| !(controller = bus->controller))
1179 		return NULL;
1180 
1181 	if (controller->dma_mask) {
1182 		urb->transfer_dma = dma_map_single (controller,
1183 			urb->transfer_buffer, urb->transfer_buffer_length,
1184 			usb_pipein (urb->pipe)
1185 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1186 		if (usb_pipecontrol (urb->pipe))
1187 			urb->setup_dma = dma_map_single (controller,
1188 					urb->setup_packet,
1189 					sizeof (struct usb_ctrlrequest),
1190 					DMA_TO_DEVICE);
1191 	// FIXME generic api broken like pci, can't report errors
1192 	// if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
1193 	} else
1194 		urb->transfer_dma = ~0;
1195 	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
1196 				| URB_NO_SETUP_DMA_MAP);
1197 	return urb;
1198 }
1199 #endif  /*  0  */
1200 
1201 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1202  * XXX please determine whether the sync is to transfer ownership of
1203  * XXX the buffer from device to cpu or vice verse, and thusly use the
1204  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1205  */
1206 #if 0
1207 
1208 /**
1209  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
1210  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
1211  */
1212 void usb_buffer_dmasync (struct urb *urb)
1213 {
1214 	struct usb_bus		*bus;
1215 	struct device		*controller;
1216 
1217 	if (!urb
1218 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1219 			|| !urb->dev
1220 			|| !(bus = urb->dev->bus)
1221 			|| !(controller = bus->controller))
1222 		return;
1223 
1224 	if (controller->dma_mask) {
1225 		dma_sync_single (controller,
1226 			urb->transfer_dma, urb->transfer_buffer_length,
1227 			usb_pipein (urb->pipe)
1228 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1229 		if (usb_pipecontrol (urb->pipe))
1230 			dma_sync_single (controller,
1231 					urb->setup_dma,
1232 					sizeof (struct usb_ctrlrequest),
1233 					DMA_TO_DEVICE);
1234 	}
1235 }
1236 #endif
1237 
1238 /**
1239  * usb_buffer_unmap - free DMA mapping(s) for an urb
1240  * @urb: urb whose transfer_buffer will be unmapped
1241  *
1242  * Reverses the effect of usb_buffer_map().
1243  */
1244 #if 0
1245 void usb_buffer_unmap (struct urb *urb)
1246 {
1247 	struct usb_bus		*bus;
1248 	struct device		*controller;
1249 
1250 	if (!urb
1251 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1252 			|| !urb->dev
1253 			|| !(bus = urb->dev->bus)
1254 			|| !(controller = bus->controller))
1255 		return;
1256 
1257 	if (controller->dma_mask) {
1258 		dma_unmap_single (controller,
1259 			urb->transfer_dma, urb->transfer_buffer_length,
1260 			usb_pipein (urb->pipe)
1261 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1262 		if (usb_pipecontrol (urb->pipe))
1263 			dma_unmap_single (controller,
1264 					urb->setup_dma,
1265 					sizeof (struct usb_ctrlrequest),
1266 					DMA_TO_DEVICE);
1267 	}
1268 	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
1269 				| URB_NO_SETUP_DMA_MAP);
1270 }
1271 #endif  /*  0  */
1272 
1273 /**
1274  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1275  * @dev: device to which the scatterlist will be mapped
1276  * @pipe: endpoint defining the mapping direction
1277  * @sg: the scatterlist to map
1278  * @nents: the number of entries in the scatterlist
1279  *
1280  * Return value is either < 0 (indicating no buffers could be mapped), or
1281  * the number of DMA mapping array entries in the scatterlist.
1282  *
1283  * The caller is responsible for placing the resulting DMA addresses from
1284  * the scatterlist into URB transfer buffer pointers, and for setting the
1285  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1286  *
1287  * Top I/O rates come from queuing URBs, instead of waiting for each one
1288  * to complete before starting the next I/O.   This is particularly easy
1289  * to do with scatterlists.  Just allocate and submit one URB for each DMA
1290  * mapping entry returned, stopping on the first error or when all succeed.
1291  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1292  *
1293  * This call would normally be used when translating scatterlist requests,
1294  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1295  * may be able to coalesce mappings for improved I/O efficiency.
1296  *
1297  * Reverse the effect of this call with usb_buffer_unmap_sg().
1298  */
1299 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1300 		struct scatterlist *sg, int nents)
1301 {
1302 	struct usb_bus		*bus;
1303 	struct device		*controller;
1304 
1305 	if (!dev
1306 			|| usb_pipecontrol (pipe)
1307 			|| !(bus = dev->bus)
1308 			|| !(controller = bus->controller)
1309 			|| !controller->dma_mask)
1310 		return -1;
1311 
1312 	// FIXME generic api broken like pci, can't report errors
1313 	return dma_map_sg (controller, sg, nents,
1314 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1315 }
1316 
1317 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1318  * XXX please determine whether the sync is to transfer ownership of
1319  * XXX the buffer from device to cpu or vice verse, and thusly use the
1320  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1321  */
1322 #if 0
1323 
1324 /**
1325  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1326  * @dev: device to which the scatterlist will be mapped
1327  * @pipe: endpoint defining the mapping direction
1328  * @sg: the scatterlist to synchronize
1329  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1330  *
1331  * Use this when you are re-using a scatterlist's data buffers for
1332  * another USB request.
1333  */
1334 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1335 		struct scatterlist *sg, int n_hw_ents)
1336 {
1337 	struct usb_bus		*bus;
1338 	struct device		*controller;
1339 
1340 	if (!dev
1341 			|| !(bus = dev->bus)
1342 			|| !(controller = bus->controller)
1343 			|| !controller->dma_mask)
1344 		return;
1345 
1346 	dma_sync_sg (controller, sg, n_hw_ents,
1347 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1348 }
1349 #endif
1350 
1351 /**
1352  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1353  * @dev: device to which the scatterlist will be mapped
1354  * @pipe: endpoint defining the mapping direction
1355  * @sg: the scatterlist to unmap
1356  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1357  *
1358  * Reverses the effect of usb_buffer_map_sg().
1359  */
1360 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1361 		struct scatterlist *sg, int n_hw_ents)
1362 {
1363 	struct usb_bus		*bus;
1364 	struct device		*controller;
1365 
1366 	if (!dev
1367 			|| !(bus = dev->bus)
1368 			|| !(controller = bus->controller)
1369 			|| !controller->dma_mask)
1370 		return;
1371 
1372 	dma_unmap_sg (controller, sg, n_hw_ents,
1373 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1374 }
1375 
1376 static int usb_generic_suspend(struct device *dev, pm_message_t message)
1377 {
1378 	struct usb_interface *intf;
1379 	struct usb_driver *driver;
1380 
1381 	if (dev->driver == &usb_generic_driver)
1382 		return usb_suspend_device (to_usb_device(dev), message);
1383 
1384 	if ((dev->driver == NULL) ||
1385 	    (dev->driver_data == &usb_generic_driver_data))
1386 		return 0;
1387 
1388 	intf = to_usb_interface(dev);
1389 	driver = to_usb_driver(dev->driver);
1390 
1391 	/* there's only one USB suspend state */
1392 	if (intf->dev.power.power_state)
1393 		return 0;
1394 
1395 	if (driver->suspend)
1396 		return driver->suspend(intf, message);
1397 	return 0;
1398 }
1399 
1400 static int usb_generic_resume(struct device *dev)
1401 {
1402 	struct usb_interface *intf;
1403 	struct usb_driver *driver;
1404 
1405 	/* devices resume through their hub */
1406 	if (dev->driver == &usb_generic_driver)
1407 		return usb_resume_device (to_usb_device(dev));
1408 
1409 	if ((dev->driver == NULL) ||
1410 	    (dev->driver_data == &usb_generic_driver_data))
1411 		return 0;
1412 
1413 	intf = to_usb_interface(dev);
1414 	driver = to_usb_driver(dev->driver);
1415 
1416 	if (driver->resume)
1417 		return driver->resume(intf);
1418 	return 0;
1419 }
1420 
1421 struct bus_type usb_bus_type = {
1422 	.name =		"usb",
1423 	.match =	usb_device_match,
1424 	.hotplug =	usb_hotplug,
1425 	.suspend =	usb_generic_suspend,
1426 	.resume =	usb_generic_resume,
1427 };
1428 
1429 #ifndef MODULE
1430 
1431 static int __init usb_setup_disable(char *str)
1432 {
1433 	nousb = 1;
1434 	return 1;
1435 }
1436 
1437 /* format to disable USB on kernel command line is: nousb */
1438 __setup("nousb", usb_setup_disable);
1439 
1440 #endif
1441 
1442 /*
1443  * for external read access to <nousb>
1444  */
1445 int usb_disabled(void)
1446 {
1447 	return nousb;
1448 }
1449 
1450 /*
1451  * Init
1452  */
1453 static int __init usb_init(void)
1454 {
1455 	int retval;
1456 	if (nousb) {
1457 		pr_info ("%s: USB support disabled\n", usbcore_name);
1458 		return 0;
1459 	}
1460 
1461 	retval = bus_register(&usb_bus_type);
1462 	if (retval)
1463 		goto out;
1464 	retval = usb_host_init();
1465 	if (retval)
1466 		goto host_init_failed;
1467 	retval = usb_major_init();
1468 	if (retval)
1469 		goto major_init_failed;
1470 	retval = usbfs_init();
1471 	if (retval)
1472 		goto fs_init_failed;
1473 	retval = usb_hub_init();
1474 	if (retval)
1475 		goto hub_init_failed;
1476 
1477 	retval = driver_register(&usb_generic_driver);
1478 	if (!retval)
1479 		goto out;
1480 
1481 	usb_hub_cleanup();
1482 hub_init_failed:
1483 	usbfs_cleanup();
1484 fs_init_failed:
1485 	usb_major_cleanup();
1486 major_init_failed:
1487 	usb_host_cleanup();
1488 host_init_failed:
1489 	bus_unregister(&usb_bus_type);
1490 out:
1491 	return retval;
1492 }
1493 
1494 /*
1495  * Cleanup
1496  */
1497 static void __exit usb_exit(void)
1498 {
1499 	/* This will matter if shutdown/reboot does exitcalls. */
1500 	if (nousb)
1501 		return;
1502 
1503 	driver_unregister(&usb_generic_driver);
1504 	usb_major_cleanup();
1505 	usbfs_cleanup();
1506 	usb_hub_cleanup();
1507 	usb_host_cleanup();
1508 	bus_unregister(&usb_bus_type);
1509 }
1510 
1511 subsys_initcall(usb_init);
1512 module_exit(usb_exit);
1513 
1514 /*
1515  * USB may be built into the kernel or be built as modules.
1516  * These symbols are exported for device (or host controller)
1517  * driver modules to use.
1518  */
1519 
1520 EXPORT_SYMBOL(usb_register);
1521 EXPORT_SYMBOL(usb_deregister);
1522 EXPORT_SYMBOL(usb_disabled);
1523 
1524 EXPORT_SYMBOL(usb_alloc_dev);
1525 EXPORT_SYMBOL(usb_put_dev);
1526 EXPORT_SYMBOL(usb_get_dev);
1527 EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1528 
1529 EXPORT_SYMBOL(usb_lock_device);
1530 EXPORT_SYMBOL(usb_trylock_device);
1531 EXPORT_SYMBOL(usb_lock_device_for_reset);
1532 EXPORT_SYMBOL(usb_unlock_device);
1533 
1534 EXPORT_SYMBOL(usb_driver_claim_interface);
1535 EXPORT_SYMBOL(usb_driver_release_interface);
1536 EXPORT_SYMBOL(usb_match_id);
1537 EXPORT_SYMBOL(usb_find_interface);
1538 EXPORT_SYMBOL(usb_ifnum_to_if);
1539 EXPORT_SYMBOL(usb_altnum_to_altsetting);
1540 
1541 EXPORT_SYMBOL(usb_reset_device);
1542 EXPORT_SYMBOL(usb_disconnect);
1543 
1544 EXPORT_SYMBOL(__usb_get_extra_descriptor);
1545 
1546 EXPORT_SYMBOL(usb_find_device);
1547 EXPORT_SYMBOL(usb_get_current_frame_number);
1548 
1549 EXPORT_SYMBOL (usb_buffer_alloc);
1550 EXPORT_SYMBOL (usb_buffer_free);
1551 
1552 #if 0
1553 EXPORT_SYMBOL (usb_buffer_map);
1554 EXPORT_SYMBOL (usb_buffer_dmasync);
1555 EXPORT_SYMBOL (usb_buffer_unmap);
1556 #endif
1557 
1558 EXPORT_SYMBOL (usb_buffer_map_sg);
1559 #if 0
1560 EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1561 #endif
1562 EXPORT_SYMBOL (usb_buffer_unmap_sg);
1563 
1564 MODULE_LICENSE("GPL");
1565