xref: /linux/drivers/usb/core/usb.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39 
40 #include <asm/io.h>
41 #include <linux/scatterlist.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44 
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static int nousb;	/* Disable USB when built into kernel image */
51 
52 #ifdef	CONFIG_USB_SUSPEND
53 static int usb_autosuspend_delay = 2;		/* Default delay value,
54 						 * in seconds */
55 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
56 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
57 
58 #else
59 #define usb_autosuspend_delay		0
60 #endif
61 
62 
63 /**
64  * usb_find_alt_setting() - Given a configuration, find the alternate setting
65  * for the given interface.
66  * @config: the configuration to search (not necessarily the current config).
67  * @iface_num: interface number to search in
68  * @alt_num: alternate interface setting number to search for.
69  *
70  * Search the configuration's interface cache for the given alt setting.
71  */
72 struct usb_host_interface *usb_find_alt_setting(
73 		struct usb_host_config *config,
74 		unsigned int iface_num,
75 		unsigned int alt_num)
76 {
77 	struct usb_interface_cache *intf_cache = NULL;
78 	int i;
79 
80 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
81 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
82 				== iface_num) {
83 			intf_cache = config->intf_cache[i];
84 			break;
85 		}
86 	}
87 	if (!intf_cache)
88 		return NULL;
89 	for (i = 0; i < intf_cache->num_altsetting; i++)
90 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
91 			return &intf_cache->altsetting[i];
92 
93 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
94 			"config %u\n", alt_num, iface_num,
95 			config->desc.bConfigurationValue);
96 	return NULL;
97 }
98 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
99 
100 /**
101  * usb_ifnum_to_if - get the interface object with a given interface number
102  * @dev: the device whose current configuration is considered
103  * @ifnum: the desired interface
104  *
105  * This walks the device descriptor for the currently active configuration
106  * and returns a pointer to the interface with that particular interface
107  * number, or null.
108  *
109  * Note that configuration descriptors are not required to assign interface
110  * numbers sequentially, so that it would be incorrect to assume that
111  * the first interface in that descriptor corresponds to interface zero.
112  * This routine helps device drivers avoid such mistakes.
113  * However, you should make sure that you do the right thing with any
114  * alternate settings available for this interfaces.
115  *
116  * Don't call this function unless you are bound to one of the interfaces
117  * on this device or you have locked the device!
118  */
119 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
120 				      unsigned ifnum)
121 {
122 	struct usb_host_config *config = dev->actconfig;
123 	int i;
124 
125 	if (!config)
126 		return NULL;
127 	for (i = 0; i < config->desc.bNumInterfaces; i++)
128 		if (config->interface[i]->altsetting[0]
129 				.desc.bInterfaceNumber == ifnum)
130 			return config->interface[i];
131 
132 	return NULL;
133 }
134 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
135 
136 /**
137  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
138  * @intf: the interface containing the altsetting in question
139  * @altnum: the desired alternate setting number
140  *
141  * This searches the altsetting array of the specified interface for
142  * an entry with the correct bAlternateSetting value and returns a pointer
143  * to that entry, or null.
144  *
145  * Note that altsettings need not be stored sequentially by number, so
146  * it would be incorrect to assume that the first altsetting entry in
147  * the array corresponds to altsetting zero.  This routine helps device
148  * drivers avoid such mistakes.
149  *
150  * Don't call this function unless you are bound to the intf interface
151  * or you have locked the device!
152  */
153 struct usb_host_interface *usb_altnum_to_altsetting(
154 					const struct usb_interface *intf,
155 					unsigned int altnum)
156 {
157 	int i;
158 
159 	for (i = 0; i < intf->num_altsetting; i++) {
160 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
161 			return &intf->altsetting[i];
162 	}
163 	return NULL;
164 }
165 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
166 
167 struct find_interface_arg {
168 	int minor;
169 	struct device_driver *drv;
170 };
171 
172 static int __find_interface(struct device *dev, void *data)
173 {
174 	struct find_interface_arg *arg = data;
175 	struct usb_interface *intf;
176 
177 	if (!is_usb_interface(dev))
178 		return 0;
179 
180 	if (dev->driver != arg->drv)
181 		return 0;
182 	intf = to_usb_interface(dev);
183 	return intf->minor == arg->minor;
184 }
185 
186 /**
187  * usb_find_interface - find usb_interface pointer for driver and device
188  * @drv: the driver whose current configuration is considered
189  * @minor: the minor number of the desired device
190  *
191  * This walks the bus device list and returns a pointer to the interface
192  * with the matching minor and driver.  Note, this only works for devices
193  * that share the USB major number.
194  */
195 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
196 {
197 	struct find_interface_arg argb;
198 	struct device *dev;
199 
200 	argb.minor = minor;
201 	argb.drv = &drv->drvwrap.driver;
202 
203 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
204 
205 	/* Drop reference count from bus_find_device */
206 	put_device(dev);
207 
208 	return dev ? to_usb_interface(dev) : NULL;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_interface);
211 
212 /**
213  * usb_release_dev - free a usb device structure when all users of it are finished.
214  * @dev: device that's been disconnected
215  *
216  * Will be called only by the device core when all users of this usb device are
217  * done.
218  */
219 static void usb_release_dev(struct device *dev)
220 {
221 	struct usb_device *udev;
222 	struct usb_hcd *hcd;
223 
224 	udev = to_usb_device(dev);
225 	hcd = bus_to_hcd(udev->bus);
226 
227 	usb_destroy_configuration(udev);
228 	usb_put_hcd(hcd);
229 	kfree(udev->product);
230 	kfree(udev->manufacturer);
231 	kfree(udev->serial);
232 	kfree(udev);
233 }
234 
235 #ifdef	CONFIG_HOTPLUG
236 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
237 {
238 	struct usb_device *usb_dev;
239 
240 	usb_dev = to_usb_device(dev);
241 
242 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
243 		return -ENOMEM;
244 
245 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
246 		return -ENOMEM;
247 
248 	return 0;
249 }
250 
251 #else
252 
253 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
254 {
255 	return -ENODEV;
256 }
257 #endif	/* CONFIG_HOTPLUG */
258 
259 #ifdef	CONFIG_PM
260 
261 /* USB device Power-Management thunks.
262  * There's no need to distinguish here between quiescing a USB device
263  * and powering it down; the generic_suspend() routine takes care of
264  * it by skipping the usb_port_suspend() call for a quiesce.  And for
265  * USB interfaces there's no difference at all.
266  */
267 
268 static int usb_dev_prepare(struct device *dev)
269 {
270 	return 0;		/* Implement eventually? */
271 }
272 
273 static void usb_dev_complete(struct device *dev)
274 {
275 	/* Currently used only for rebinding interfaces */
276 	usb_resume(dev, PMSG_ON);	/* FIXME: change to PMSG_COMPLETE */
277 }
278 
279 static int usb_dev_suspend(struct device *dev)
280 {
281 	return usb_suspend(dev, PMSG_SUSPEND);
282 }
283 
284 static int usb_dev_resume(struct device *dev)
285 {
286 	return usb_resume(dev, PMSG_RESUME);
287 }
288 
289 static int usb_dev_freeze(struct device *dev)
290 {
291 	return usb_suspend(dev, PMSG_FREEZE);
292 }
293 
294 static int usb_dev_thaw(struct device *dev)
295 {
296 	return usb_resume(dev, PMSG_THAW);
297 }
298 
299 static int usb_dev_poweroff(struct device *dev)
300 {
301 	return usb_suspend(dev, PMSG_HIBERNATE);
302 }
303 
304 static int usb_dev_restore(struct device *dev)
305 {
306 	return usb_resume(dev, PMSG_RESTORE);
307 }
308 
309 static const struct dev_pm_ops usb_device_pm_ops = {
310 	.prepare =	usb_dev_prepare,
311 	.complete =	usb_dev_complete,
312 	.suspend =	usb_dev_suspend,
313 	.resume =	usb_dev_resume,
314 	.freeze =	usb_dev_freeze,
315 	.thaw =		usb_dev_thaw,
316 	.poweroff =	usb_dev_poweroff,
317 	.restore =	usb_dev_restore,
318 #ifdef CONFIG_USB_SUSPEND
319 	.runtime_suspend =	usb_runtime_suspend,
320 	.runtime_resume =	usb_runtime_resume,
321 	.runtime_idle =		usb_runtime_idle,
322 #endif
323 };
324 
325 #endif	/* CONFIG_PM */
326 
327 
328 static char *usb_devnode(struct device *dev, mode_t *mode)
329 {
330 	struct usb_device *usb_dev;
331 
332 	usb_dev = to_usb_device(dev);
333 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
334 			 usb_dev->bus->busnum, usb_dev->devnum);
335 }
336 
337 struct device_type usb_device_type = {
338 	.name =		"usb_device",
339 	.release =	usb_release_dev,
340 	.uevent =	usb_dev_uevent,
341 	.devnode = 	usb_devnode,
342 #ifdef CONFIG_PM
343 	.pm =		&usb_device_pm_ops,
344 #endif
345 };
346 
347 
348 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
349 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
350 {
351 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
352 	return hcd->wireless;
353 }
354 
355 
356 /**
357  * usb_alloc_dev - usb device constructor (usbcore-internal)
358  * @parent: hub to which device is connected; null to allocate a root hub
359  * @bus: bus used to access the device
360  * @port1: one-based index of port; ignored for root hubs
361  * Context: !in_interrupt()
362  *
363  * Only hub drivers (including virtual root hub drivers for host
364  * controllers) should ever call this.
365  *
366  * This call may not be used in a non-sleeping context.
367  */
368 struct usb_device *usb_alloc_dev(struct usb_device *parent,
369 				 struct usb_bus *bus, unsigned port1)
370 {
371 	struct usb_device *dev;
372 	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
373 	unsigned root_hub = 0;
374 
375 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
376 	if (!dev)
377 		return NULL;
378 
379 	if (!usb_get_hcd(bus_to_hcd(bus))) {
380 		kfree(dev);
381 		return NULL;
382 	}
383 	/* Root hubs aren't true devices, so don't allocate HCD resources */
384 	if (usb_hcd->driver->alloc_dev && parent &&
385 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
386 		usb_put_hcd(bus_to_hcd(bus));
387 		kfree(dev);
388 		return NULL;
389 	}
390 
391 	device_initialize(&dev->dev);
392 	dev->dev.bus = &usb_bus_type;
393 	dev->dev.type = &usb_device_type;
394 	dev->dev.groups = usb_device_groups;
395 	dev->dev.dma_mask = bus->controller->dma_mask;
396 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
397 	dev->state = USB_STATE_ATTACHED;
398 	atomic_set(&dev->urbnum, 0);
399 
400 	INIT_LIST_HEAD(&dev->ep0.urb_list);
401 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
402 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
403 	/* ep0 maxpacket comes later, from device descriptor */
404 	usb_enable_endpoint(dev, &dev->ep0, false);
405 	dev->can_submit = 1;
406 
407 	/* Save readable and stable topology id, distinguishing devices
408 	 * by location for diagnostics, tools, driver model, etc.  The
409 	 * string is a path along hub ports, from the root.  Each device's
410 	 * dev->devpath will be stable until USB is re-cabled, and hubs
411 	 * are often labeled with these port numbers.  The name isn't
412 	 * as stable:  bus->busnum changes easily from modprobe order,
413 	 * cardbus or pci hotplugging, and so on.
414 	 */
415 	if (unlikely(!parent)) {
416 		dev->devpath[0] = '0';
417 		dev->route = 0;
418 
419 		dev->dev.parent = bus->controller;
420 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
421 		root_hub = 1;
422 	} else {
423 		/* match any labeling on the hubs; it's one-based */
424 		if (parent->devpath[0] == '0') {
425 			snprintf(dev->devpath, sizeof dev->devpath,
426 				"%d", port1);
427 			/* Root ports are not counted in route string */
428 			dev->route = 0;
429 		} else {
430 			snprintf(dev->devpath, sizeof dev->devpath,
431 				"%s.%d", parent->devpath, port1);
432 			/* Route string assumes hubs have less than 16 ports */
433 			if (port1 < 15)
434 				dev->route = parent->route +
435 					(port1 << ((parent->level - 1)*4));
436 			else
437 				dev->route = parent->route +
438 					(15 << ((parent->level - 1)*4));
439 		}
440 
441 		dev->dev.parent = &parent->dev;
442 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
443 
444 		/* hub driver sets up TT records */
445 	}
446 
447 	dev->portnum = port1;
448 	dev->bus = bus;
449 	dev->parent = parent;
450 	INIT_LIST_HEAD(&dev->filelist);
451 
452 #ifdef	CONFIG_PM
453 	pm_runtime_set_autosuspend_delay(&dev->dev,
454 			usb_autosuspend_delay * 1000);
455 	dev->connect_time = jiffies;
456 	dev->active_duration = -jiffies;
457 #endif
458 	if (root_hub)	/* Root hub always ok [and always wired] */
459 		dev->authorized = 1;
460 	else {
461 		dev->authorized = usb_hcd->authorized_default;
462 		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
463 	}
464 	return dev;
465 }
466 
467 /**
468  * usb_get_dev - increments the reference count of the usb device structure
469  * @dev: the device being referenced
470  *
471  * Each live reference to a device should be refcounted.
472  *
473  * Drivers for USB interfaces should normally record such references in
474  * their probe() methods, when they bind to an interface, and release
475  * them by calling usb_put_dev(), in their disconnect() methods.
476  *
477  * A pointer to the device with the incremented reference counter is returned.
478  */
479 struct usb_device *usb_get_dev(struct usb_device *dev)
480 {
481 	if (dev)
482 		get_device(&dev->dev);
483 	return dev;
484 }
485 EXPORT_SYMBOL_GPL(usb_get_dev);
486 
487 /**
488  * usb_put_dev - release a use of the usb device structure
489  * @dev: device that's been disconnected
490  *
491  * Must be called when a user of a device is finished with it.  When the last
492  * user of the device calls this function, the memory of the device is freed.
493  */
494 void usb_put_dev(struct usb_device *dev)
495 {
496 	if (dev)
497 		put_device(&dev->dev);
498 }
499 EXPORT_SYMBOL_GPL(usb_put_dev);
500 
501 /**
502  * usb_get_intf - increments the reference count of the usb interface structure
503  * @intf: the interface being referenced
504  *
505  * Each live reference to a interface must be refcounted.
506  *
507  * Drivers for USB interfaces should normally record such references in
508  * their probe() methods, when they bind to an interface, and release
509  * them by calling usb_put_intf(), in their disconnect() methods.
510  *
511  * A pointer to the interface with the incremented reference counter is
512  * returned.
513  */
514 struct usb_interface *usb_get_intf(struct usb_interface *intf)
515 {
516 	if (intf)
517 		get_device(&intf->dev);
518 	return intf;
519 }
520 EXPORT_SYMBOL_GPL(usb_get_intf);
521 
522 /**
523  * usb_put_intf - release a use of the usb interface structure
524  * @intf: interface that's been decremented
525  *
526  * Must be called when a user of an interface is finished with it.  When the
527  * last user of the interface calls this function, the memory of the interface
528  * is freed.
529  */
530 void usb_put_intf(struct usb_interface *intf)
531 {
532 	if (intf)
533 		put_device(&intf->dev);
534 }
535 EXPORT_SYMBOL_GPL(usb_put_intf);
536 
537 /*			USB device locking
538  *
539  * USB devices and interfaces are locked using the semaphore in their
540  * embedded struct device.  The hub driver guarantees that whenever a
541  * device is connected or disconnected, drivers are called with the
542  * USB device locked as well as their particular interface.
543  *
544  * Complications arise when several devices are to be locked at the same
545  * time.  Only hub-aware drivers that are part of usbcore ever have to
546  * do this; nobody else needs to worry about it.  The rule for locking
547  * is simple:
548  *
549  *	When locking both a device and its parent, always lock the
550  *	the parent first.
551  */
552 
553 /**
554  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
555  * @udev: device that's being locked
556  * @iface: interface bound to the driver making the request (optional)
557  *
558  * Attempts to acquire the device lock, but fails if the device is
559  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
560  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
561  * lock, the routine polls repeatedly.  This is to prevent deadlock with
562  * disconnect; in some drivers (such as usb-storage) the disconnect()
563  * or suspend() method will block waiting for a device reset to complete.
564  *
565  * Returns a negative error code for failure, otherwise 0.
566  */
567 int usb_lock_device_for_reset(struct usb_device *udev,
568 			      const struct usb_interface *iface)
569 {
570 	unsigned long jiffies_expire = jiffies + HZ;
571 
572 	if (udev->state == USB_STATE_NOTATTACHED)
573 		return -ENODEV;
574 	if (udev->state == USB_STATE_SUSPENDED)
575 		return -EHOSTUNREACH;
576 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
577 			iface->condition == USB_INTERFACE_UNBOUND))
578 		return -EINTR;
579 
580 	while (!usb_trylock_device(udev)) {
581 
582 		/* If we can't acquire the lock after waiting one second,
583 		 * we're probably deadlocked */
584 		if (time_after(jiffies, jiffies_expire))
585 			return -EBUSY;
586 
587 		msleep(15);
588 		if (udev->state == USB_STATE_NOTATTACHED)
589 			return -ENODEV;
590 		if (udev->state == USB_STATE_SUSPENDED)
591 			return -EHOSTUNREACH;
592 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
593 				iface->condition == USB_INTERFACE_UNBOUND))
594 			return -EINTR;
595 	}
596 	return 0;
597 }
598 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
599 
600 /**
601  * usb_get_current_frame_number - return current bus frame number
602  * @dev: the device whose bus is being queried
603  *
604  * Returns the current frame number for the USB host controller
605  * used with the given USB device.  This can be used when scheduling
606  * isochronous requests.
607  *
608  * Note that different kinds of host controller have different
609  * "scheduling horizons".  While one type might support scheduling only
610  * 32 frames into the future, others could support scheduling up to
611  * 1024 frames into the future.
612  */
613 int usb_get_current_frame_number(struct usb_device *dev)
614 {
615 	return usb_hcd_get_frame_number(dev);
616 }
617 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
618 
619 /*-------------------------------------------------------------------*/
620 /*
621  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
622  * extra field of the interface and endpoint descriptor structs.
623  */
624 
625 int __usb_get_extra_descriptor(char *buffer, unsigned size,
626 			       unsigned char type, void **ptr)
627 {
628 	struct usb_descriptor_header *header;
629 
630 	while (size >= sizeof(struct usb_descriptor_header)) {
631 		header = (struct usb_descriptor_header *)buffer;
632 
633 		if (header->bLength < 2) {
634 			printk(KERN_ERR
635 				"%s: bogus descriptor, type %d length %d\n",
636 				usbcore_name,
637 				header->bDescriptorType,
638 				header->bLength);
639 			return -1;
640 		}
641 
642 		if (header->bDescriptorType == type) {
643 			*ptr = header;
644 			return 0;
645 		}
646 
647 		buffer += header->bLength;
648 		size -= header->bLength;
649 	}
650 	return -1;
651 }
652 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
653 
654 /**
655  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
656  * @dev: device the buffer will be used with
657  * @size: requested buffer size
658  * @mem_flags: affect whether allocation may block
659  * @dma: used to return DMA address of buffer
660  *
661  * Return value is either null (indicating no buffer could be allocated), or
662  * the cpu-space pointer to a buffer that may be used to perform DMA to the
663  * specified device.  Such cpu-space buffers are returned along with the DMA
664  * address (through the pointer provided).
665  *
666  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
667  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
668  * hardware during URB completion/resubmit.  The implementation varies between
669  * platforms, depending on details of how DMA will work to this device.
670  * Using these buffers also eliminates cacheline sharing problems on
671  * architectures where CPU caches are not DMA-coherent.  On systems without
672  * bus-snooping caches, these buffers are uncached.
673  *
674  * When the buffer is no longer used, free it with usb_free_coherent().
675  */
676 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
677 			 dma_addr_t *dma)
678 {
679 	if (!dev || !dev->bus)
680 		return NULL;
681 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
682 }
683 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
684 
685 /**
686  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
687  * @dev: device the buffer was used with
688  * @size: requested buffer size
689  * @addr: CPU address of buffer
690  * @dma: DMA address of buffer
691  *
692  * This reclaims an I/O buffer, letting it be reused.  The memory must have
693  * been allocated using usb_alloc_coherent(), and the parameters must match
694  * those provided in that allocation request.
695  */
696 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
697 		       dma_addr_t dma)
698 {
699 	if (!dev || !dev->bus)
700 		return;
701 	if (!addr)
702 		return;
703 	hcd_buffer_free(dev->bus, size, addr, dma);
704 }
705 EXPORT_SYMBOL_GPL(usb_free_coherent);
706 
707 /**
708  * usb_buffer_map - create DMA mapping(s) for an urb
709  * @urb: urb whose transfer_buffer/setup_packet will be mapped
710  *
711  * Return value is either null (indicating no buffer could be mapped), or
712  * the parameter.  URB_NO_TRANSFER_DMA_MAP is
713  * added to urb->transfer_flags if the operation succeeds.  If the device
714  * is connected to this system through a non-DMA controller, this operation
715  * always succeeds.
716  *
717  * This call would normally be used for an urb which is reused, perhaps
718  * as the target of a large periodic transfer, with usb_buffer_dmasync()
719  * calls to synchronize memory and dma state.
720  *
721  * Reverse the effect of this call with usb_buffer_unmap().
722  */
723 #if 0
724 struct urb *usb_buffer_map(struct urb *urb)
725 {
726 	struct usb_bus		*bus;
727 	struct device		*controller;
728 
729 	if (!urb
730 			|| !urb->dev
731 			|| !(bus = urb->dev->bus)
732 			|| !(controller = bus->controller))
733 		return NULL;
734 
735 	if (controller->dma_mask) {
736 		urb->transfer_dma = dma_map_single(controller,
737 			urb->transfer_buffer, urb->transfer_buffer_length,
738 			usb_pipein(urb->pipe)
739 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
740 	/* FIXME generic api broken like pci, can't report errors */
741 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
742 	} else
743 		urb->transfer_dma = ~0;
744 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
745 	return urb;
746 }
747 EXPORT_SYMBOL_GPL(usb_buffer_map);
748 #endif  /*  0  */
749 
750 /* XXX DISABLED, no users currently.  If you wish to re-enable this
751  * XXX please determine whether the sync is to transfer ownership of
752  * XXX the buffer from device to cpu or vice verse, and thusly use the
753  * XXX appropriate _for_{cpu,device}() method.  -DaveM
754  */
755 #if 0
756 
757 /**
758  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
759  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
760  */
761 void usb_buffer_dmasync(struct urb *urb)
762 {
763 	struct usb_bus		*bus;
764 	struct device		*controller;
765 
766 	if (!urb
767 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
768 			|| !urb->dev
769 			|| !(bus = urb->dev->bus)
770 			|| !(controller = bus->controller))
771 		return;
772 
773 	if (controller->dma_mask) {
774 		dma_sync_single_for_cpu(controller,
775 			urb->transfer_dma, urb->transfer_buffer_length,
776 			usb_pipein(urb->pipe)
777 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
778 		if (usb_pipecontrol(urb->pipe))
779 			dma_sync_single_for_cpu(controller,
780 					urb->setup_dma,
781 					sizeof(struct usb_ctrlrequest),
782 					DMA_TO_DEVICE);
783 	}
784 }
785 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
786 #endif
787 
788 /**
789  * usb_buffer_unmap - free DMA mapping(s) for an urb
790  * @urb: urb whose transfer_buffer will be unmapped
791  *
792  * Reverses the effect of usb_buffer_map().
793  */
794 #if 0
795 void usb_buffer_unmap(struct urb *urb)
796 {
797 	struct usb_bus		*bus;
798 	struct device		*controller;
799 
800 	if (!urb
801 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
802 			|| !urb->dev
803 			|| !(bus = urb->dev->bus)
804 			|| !(controller = bus->controller))
805 		return;
806 
807 	if (controller->dma_mask) {
808 		dma_unmap_single(controller,
809 			urb->transfer_dma, urb->transfer_buffer_length,
810 			usb_pipein(urb->pipe)
811 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
812 	}
813 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
814 }
815 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
816 #endif  /*  0  */
817 
818 #if 0
819 /**
820  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
821  * @dev: device to which the scatterlist will be mapped
822  * @is_in: mapping transfer direction
823  * @sg: the scatterlist to map
824  * @nents: the number of entries in the scatterlist
825  *
826  * Return value is either < 0 (indicating no buffers could be mapped), or
827  * the number of DMA mapping array entries in the scatterlist.
828  *
829  * The caller is responsible for placing the resulting DMA addresses from
830  * the scatterlist into URB transfer buffer pointers, and for setting the
831  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
832  *
833  * Top I/O rates come from queuing URBs, instead of waiting for each one
834  * to complete before starting the next I/O.   This is particularly easy
835  * to do with scatterlists.  Just allocate and submit one URB for each DMA
836  * mapping entry returned, stopping on the first error or when all succeed.
837  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
838  *
839  * This call would normally be used when translating scatterlist requests,
840  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
841  * may be able to coalesce mappings for improved I/O efficiency.
842  *
843  * Reverse the effect of this call with usb_buffer_unmap_sg().
844  */
845 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
846 		      struct scatterlist *sg, int nents)
847 {
848 	struct usb_bus		*bus;
849 	struct device		*controller;
850 
851 	if (!dev
852 			|| !(bus = dev->bus)
853 			|| !(controller = bus->controller)
854 			|| !controller->dma_mask)
855 		return -EINVAL;
856 
857 	/* FIXME generic api broken like pci, can't report errors */
858 	return dma_map_sg(controller, sg, nents,
859 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
860 }
861 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
862 #endif
863 
864 /* XXX DISABLED, no users currently.  If you wish to re-enable this
865  * XXX please determine whether the sync is to transfer ownership of
866  * XXX the buffer from device to cpu or vice verse, and thusly use the
867  * XXX appropriate _for_{cpu,device}() method.  -DaveM
868  */
869 #if 0
870 
871 /**
872  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
873  * @dev: device to which the scatterlist will be mapped
874  * @is_in: mapping transfer direction
875  * @sg: the scatterlist to synchronize
876  * @n_hw_ents: the positive return value from usb_buffer_map_sg
877  *
878  * Use this when you are re-using a scatterlist's data buffers for
879  * another USB request.
880  */
881 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
882 			   struct scatterlist *sg, int n_hw_ents)
883 {
884 	struct usb_bus		*bus;
885 	struct device		*controller;
886 
887 	if (!dev
888 			|| !(bus = dev->bus)
889 			|| !(controller = bus->controller)
890 			|| !controller->dma_mask)
891 		return;
892 
893 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
894 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
895 }
896 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
897 #endif
898 
899 #if 0
900 /**
901  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
902  * @dev: device to which the scatterlist will be mapped
903  * @is_in: mapping transfer direction
904  * @sg: the scatterlist to unmap
905  * @n_hw_ents: the positive return value from usb_buffer_map_sg
906  *
907  * Reverses the effect of usb_buffer_map_sg().
908  */
909 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
910 			 struct scatterlist *sg, int n_hw_ents)
911 {
912 	struct usb_bus		*bus;
913 	struct device		*controller;
914 
915 	if (!dev
916 			|| !(bus = dev->bus)
917 			|| !(controller = bus->controller)
918 			|| !controller->dma_mask)
919 		return;
920 
921 	dma_unmap_sg(controller, sg, n_hw_ents,
922 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
923 }
924 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
925 #endif
926 
927 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
928 #ifdef MODULE
929 module_param(nousb, bool, 0444);
930 #else
931 core_param(nousb, nousb, bool, 0444);
932 #endif
933 
934 /*
935  * for external read access to <nousb>
936  */
937 int usb_disabled(void)
938 {
939 	return nousb;
940 }
941 EXPORT_SYMBOL_GPL(usb_disabled);
942 
943 /*
944  * Notifications of device and interface registration
945  */
946 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
947 		void *data)
948 {
949 	struct device *dev = data;
950 
951 	switch (action) {
952 	case BUS_NOTIFY_ADD_DEVICE:
953 		if (dev->type == &usb_device_type)
954 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
955 		else if (dev->type == &usb_if_device_type)
956 			usb_create_sysfs_intf_files(to_usb_interface(dev));
957 		break;
958 
959 	case BUS_NOTIFY_DEL_DEVICE:
960 		if (dev->type == &usb_device_type)
961 			usb_remove_sysfs_dev_files(to_usb_device(dev));
962 		else if (dev->type == &usb_if_device_type)
963 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
964 		break;
965 	}
966 	return 0;
967 }
968 
969 static struct notifier_block usb_bus_nb = {
970 	.notifier_call = usb_bus_notify,
971 };
972 
973 struct dentry *usb_debug_root;
974 EXPORT_SYMBOL_GPL(usb_debug_root);
975 
976 static struct dentry *usb_debug_devices;
977 
978 static int usb_debugfs_init(void)
979 {
980 	usb_debug_root = debugfs_create_dir("usb", NULL);
981 	if (!usb_debug_root)
982 		return -ENOENT;
983 
984 	usb_debug_devices = debugfs_create_file("devices", 0444,
985 						usb_debug_root, NULL,
986 						&usbfs_devices_fops);
987 	if (!usb_debug_devices) {
988 		debugfs_remove(usb_debug_root);
989 		usb_debug_root = NULL;
990 		return -ENOENT;
991 	}
992 
993 	return 0;
994 }
995 
996 static void usb_debugfs_cleanup(void)
997 {
998 	debugfs_remove(usb_debug_devices);
999 	debugfs_remove(usb_debug_root);
1000 }
1001 
1002 /*
1003  * Init
1004  */
1005 static int __init usb_init(void)
1006 {
1007 	int retval;
1008 	if (nousb) {
1009 		pr_info("%s: USB support disabled\n", usbcore_name);
1010 		return 0;
1011 	}
1012 
1013 	retval = usb_debugfs_init();
1014 	if (retval)
1015 		goto out;
1016 
1017 	retval = bus_register(&usb_bus_type);
1018 	if (retval)
1019 		goto bus_register_failed;
1020 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1021 	if (retval)
1022 		goto bus_notifier_failed;
1023 	retval = usb_major_init();
1024 	if (retval)
1025 		goto major_init_failed;
1026 	retval = usb_register(&usbfs_driver);
1027 	if (retval)
1028 		goto driver_register_failed;
1029 	retval = usb_devio_init();
1030 	if (retval)
1031 		goto usb_devio_init_failed;
1032 	retval = usbfs_init();
1033 	if (retval)
1034 		goto fs_init_failed;
1035 	retval = usb_hub_init();
1036 	if (retval)
1037 		goto hub_init_failed;
1038 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1039 	if (!retval)
1040 		goto out;
1041 
1042 	usb_hub_cleanup();
1043 hub_init_failed:
1044 	usbfs_cleanup();
1045 fs_init_failed:
1046 	usb_devio_cleanup();
1047 usb_devio_init_failed:
1048 	usb_deregister(&usbfs_driver);
1049 driver_register_failed:
1050 	usb_major_cleanup();
1051 major_init_failed:
1052 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1053 bus_notifier_failed:
1054 	bus_unregister(&usb_bus_type);
1055 bus_register_failed:
1056 	usb_debugfs_cleanup();
1057 out:
1058 	return retval;
1059 }
1060 
1061 /*
1062  * Cleanup
1063  */
1064 static void __exit usb_exit(void)
1065 {
1066 	/* This will matter if shutdown/reboot does exitcalls. */
1067 	if (nousb)
1068 		return;
1069 
1070 	usb_deregister_device_driver(&usb_generic_driver);
1071 	usb_major_cleanup();
1072 	usbfs_cleanup();
1073 	usb_deregister(&usbfs_driver);
1074 	usb_devio_cleanup();
1075 	usb_hub_cleanup();
1076 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1077 	bus_unregister(&usb_bus_type);
1078 	usb_debugfs_cleanup();
1079 }
1080 
1081 subsys_initcall(usb_init);
1082 module_exit(usb_exit);
1083 MODULE_LICENSE("GPL");
1084