xref: /linux/drivers/usb/core/usb.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  * drivers/usb/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/config.h>
25 
26 #ifdef CONFIG_USB_DEBUG
27 	#define DEBUG
28 #else
29 	#undef DEBUG
30 #endif
31 
32 #include <linux/module.h>
33 #include <linux/string.h>
34 #include <linux/bitops.h>
35 #include <linux/slab.h>
36 #include <linux/interrupt.h>  /* for in_interrupt() */
37 #include <linux/kmod.h>
38 #include <linux/init.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/smp_lock.h>
42 #include <linux/rwsem.h>
43 #include <linux/usb.h>
44 
45 #include <asm/io.h>
46 #include <asm/scatterlist.h>
47 #include <linux/mm.h>
48 #include <linux/dma-mapping.h>
49 
50 #include "hcd.h"
51 #include "usb.h"
52 
53 
54 const char *usbcore_name = "usbcore";
55 
56 static int nousb;	/* Disable USB when built into kernel image */
57 			/* Not honored on modular build */
58 
59 static DECLARE_RWSEM(usb_all_devices_rwsem);
60 
61 
62 static int generic_probe (struct device *dev)
63 {
64 	return 0;
65 }
66 static int generic_remove (struct device *dev)
67 {
68 	struct usb_device *udev = to_usb_device(dev);
69 
70 	/* if this is only an unbind, not a physical disconnect, then
71 	 * unconfigure the device */
72 	if (udev->state == USB_STATE_CONFIGURED)
73 		usb_set_configuration(udev, 0);
74 
75 	/* in case the call failed or the device was suspended */
76 	if (udev->state >= USB_STATE_CONFIGURED)
77 		usb_disable_device(udev, 0);
78 	return 0;
79 }
80 
81 static struct device_driver usb_generic_driver = {
82 	.owner = THIS_MODULE,
83 	.name =	"usb",
84 	.bus = &usb_bus_type,
85 	.probe = generic_probe,
86 	.remove = generic_remove,
87 };
88 
89 static int usb_generic_driver_data;
90 
91 /* called from driver core with usb_bus_type.subsys writelock */
92 static int usb_probe_interface(struct device *dev)
93 {
94 	struct usb_interface * intf = to_usb_interface(dev);
95 	struct usb_driver * driver = to_usb_driver(dev->driver);
96 	const struct usb_device_id *id;
97 	int error = -ENODEV;
98 
99 	dev_dbg(dev, "%s\n", __FUNCTION__);
100 
101 	if (!driver->probe)
102 		return error;
103 	/* FIXME we'd much prefer to just resume it ... */
104 	if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED)
105 		return -EHOSTUNREACH;
106 
107 	id = usb_match_id (intf, driver->id_table);
108 	if (id) {
109 		dev_dbg (dev, "%s - got id\n", __FUNCTION__);
110 		intf->condition = USB_INTERFACE_BINDING;
111 		error = driver->probe (intf, id);
112 		intf->condition = error ? USB_INTERFACE_UNBOUND :
113 				USB_INTERFACE_BOUND;
114 	}
115 
116 	return error;
117 }
118 
119 /* called from driver core with usb_bus_type.subsys writelock */
120 static int usb_unbind_interface(struct device *dev)
121 {
122 	struct usb_interface *intf = to_usb_interface(dev);
123 	struct usb_driver *driver = to_usb_driver(intf->dev.driver);
124 
125 	intf->condition = USB_INTERFACE_UNBINDING;
126 
127 	/* release all urbs for this interface */
128 	usb_disable_interface(interface_to_usbdev(intf), intf);
129 
130 	if (driver && driver->disconnect)
131 		driver->disconnect(intf);
132 
133 	/* reset other interface state */
134 	usb_set_interface(interface_to_usbdev(intf),
135 			intf->altsetting[0].desc.bInterfaceNumber,
136 			0);
137 	usb_set_intfdata(intf, NULL);
138 	intf->condition = USB_INTERFACE_UNBOUND;
139 
140 	return 0;
141 }
142 
143 /**
144  * usb_register - register a USB driver
145  * @new_driver: USB operations for the driver
146  *
147  * Registers a USB driver with the USB core.  The list of unattached
148  * interfaces will be rescanned whenever a new driver is added, allowing
149  * the new driver to attach to any recognized devices.
150  * Returns a negative error code on failure and 0 on success.
151  *
152  * NOTE: if you want your driver to use the USB major number, you must call
153  * usb_register_dev() to enable that functionality.  This function no longer
154  * takes care of that.
155  */
156 int usb_register(struct usb_driver *new_driver)
157 {
158 	int retval = 0;
159 
160 	if (nousb)
161 		return -ENODEV;
162 
163 	new_driver->driver.name = (char *)new_driver->name;
164 	new_driver->driver.bus = &usb_bus_type;
165 	new_driver->driver.probe = usb_probe_interface;
166 	new_driver->driver.remove = usb_unbind_interface;
167 	new_driver->driver.owner = new_driver->owner;
168 
169 	usb_lock_all_devices();
170 	retval = driver_register(&new_driver->driver);
171 	usb_unlock_all_devices();
172 
173 	if (!retval) {
174 		pr_info("%s: registered new driver %s\n",
175 			usbcore_name, new_driver->name);
176 		usbfs_update_special();
177 	} else {
178 		printk(KERN_ERR "%s: error %d registering driver %s\n",
179 			usbcore_name, retval, new_driver->name);
180 	}
181 
182 	return retval;
183 }
184 
185 /**
186  * usb_deregister - unregister a USB driver
187  * @driver: USB operations of the driver to unregister
188  * Context: must be able to sleep
189  *
190  * Unlinks the specified driver from the internal USB driver list.
191  *
192  * NOTE: If you called usb_register_dev(), you still need to call
193  * usb_deregister_dev() to clean up your driver's allocated minor numbers,
194  * this * call will no longer do it for you.
195  */
196 void usb_deregister(struct usb_driver *driver)
197 {
198 	pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name);
199 
200 	usb_lock_all_devices();
201 	driver_unregister (&driver->driver);
202 	usb_unlock_all_devices();
203 
204 	usbfs_update_special();
205 }
206 
207 /**
208  * usb_ifnum_to_if - get the interface object with a given interface number
209  * @dev: the device whose current configuration is considered
210  * @ifnum: the desired interface
211  *
212  * This walks the device descriptor for the currently active configuration
213  * and returns a pointer to the interface with that particular interface
214  * number, or null.
215  *
216  * Note that configuration descriptors are not required to assign interface
217  * numbers sequentially, so that it would be incorrect to assume that
218  * the first interface in that descriptor corresponds to interface zero.
219  * This routine helps device drivers avoid such mistakes.
220  * However, you should make sure that you do the right thing with any
221  * alternate settings available for this interfaces.
222  *
223  * Don't call this function unless you are bound to one of the interfaces
224  * on this device or you have locked the device!
225  */
226 struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
227 {
228 	struct usb_host_config *config = dev->actconfig;
229 	int i;
230 
231 	if (!config)
232 		return NULL;
233 	for (i = 0; i < config->desc.bNumInterfaces; i++)
234 		if (config->interface[i]->altsetting[0]
235 				.desc.bInterfaceNumber == ifnum)
236 			return config->interface[i];
237 
238 	return NULL;
239 }
240 
241 /**
242  * usb_altnum_to_altsetting - get the altsetting structure with a given
243  *	alternate setting number.
244  * @intf: the interface containing the altsetting in question
245  * @altnum: the desired alternate setting number
246  *
247  * This searches the altsetting array of the specified interface for
248  * an entry with the correct bAlternateSetting value and returns a pointer
249  * to that entry, or null.
250  *
251  * Note that altsettings need not be stored sequentially by number, so
252  * it would be incorrect to assume that the first altsetting entry in
253  * the array corresponds to altsetting zero.  This routine helps device
254  * drivers avoid such mistakes.
255  *
256  * Don't call this function unless you are bound to the intf interface
257  * or you have locked the device!
258  */
259 struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
260 		unsigned int altnum)
261 {
262 	int i;
263 
264 	for (i = 0; i < intf->num_altsetting; i++) {
265 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
266 			return &intf->altsetting[i];
267 	}
268 	return NULL;
269 }
270 
271 /**
272  * usb_driver_claim_interface - bind a driver to an interface
273  * @driver: the driver to be bound
274  * @iface: the interface to which it will be bound; must be in the
275  *	usb device's active configuration
276  * @priv: driver data associated with that interface
277  *
278  * This is used by usb device drivers that need to claim more than one
279  * interface on a device when probing (audio and acm are current examples).
280  * No device driver should directly modify internal usb_interface or
281  * usb_device structure members.
282  *
283  * Few drivers should need to use this routine, since the most natural
284  * way to bind to an interface is to return the private data from
285  * the driver's probe() method.
286  *
287  * Callers must own the device lock and the driver model's usb_bus_type.subsys
288  * writelock.  So driver probe() entries don't need extra locking,
289  * but other call contexts may need to explicitly claim those locks.
290  */
291 int usb_driver_claim_interface(struct usb_driver *driver,
292 				struct usb_interface *iface, void* priv)
293 {
294 	struct device *dev = &iface->dev;
295 
296 	if (dev->driver)
297 		return -EBUSY;
298 
299 	dev->driver = &driver->driver;
300 	usb_set_intfdata(iface, priv);
301 	iface->condition = USB_INTERFACE_BOUND;
302 
303 	/* if interface was already added, bind now; else let
304 	 * the future device_add() bind it, bypassing probe()
305 	 */
306 	if (device_is_registered(dev))
307 		device_bind_driver(dev);
308 
309 	return 0;
310 }
311 
312 /**
313  * usb_driver_release_interface - unbind a driver from an interface
314  * @driver: the driver to be unbound
315  * @iface: the interface from which it will be unbound
316  *
317  * This can be used by drivers to release an interface without waiting
318  * for their disconnect() methods to be called.  In typical cases this
319  * also causes the driver disconnect() method to be called.
320  *
321  * This call is synchronous, and may not be used in an interrupt context.
322  * Callers must own the device lock and the driver model's usb_bus_type.subsys
323  * writelock.  So driver disconnect() entries don't need extra locking,
324  * but other call contexts may need to explicitly claim those locks.
325  */
326 void usb_driver_release_interface(struct usb_driver *driver,
327 					struct usb_interface *iface)
328 {
329 	struct device *dev = &iface->dev;
330 
331 	/* this should never happen, don't release something that's not ours */
332 	if (!dev->driver || dev->driver != &driver->driver)
333 		return;
334 
335 	/* don't release from within disconnect() */
336 	if (iface->condition != USB_INTERFACE_BOUND)
337 		return;
338 
339 	/* don't release if the interface hasn't been added yet */
340 	if (device_is_registered(dev)) {
341 		iface->condition = USB_INTERFACE_UNBINDING;
342 		device_release_driver(dev);
343 	}
344 
345 	dev->driver = NULL;
346 	usb_set_intfdata(iface, NULL);
347 	iface->condition = USB_INTERFACE_UNBOUND;
348 }
349 
350 /**
351  * usb_match_id - find first usb_device_id matching device or interface
352  * @interface: the interface of interest
353  * @id: array of usb_device_id structures, terminated by zero entry
354  *
355  * usb_match_id searches an array of usb_device_id's and returns
356  * the first one matching the device or interface, or null.
357  * This is used when binding (or rebinding) a driver to an interface.
358  * Most USB device drivers will use this indirectly, through the usb core,
359  * but some layered driver frameworks use it directly.
360  * These device tables are exported with MODULE_DEVICE_TABLE, through
361  * modutils and "modules.usbmap", to support the driver loading
362  * functionality of USB hotplugging.
363  *
364  * What Matches:
365  *
366  * The "match_flags" element in a usb_device_id controls which
367  * members are used.  If the corresponding bit is set, the
368  * value in the device_id must match its corresponding member
369  * in the device or interface descriptor, or else the device_id
370  * does not match.
371  *
372  * "driver_info" is normally used only by device drivers,
373  * but you can create a wildcard "matches anything" usb_device_id
374  * as a driver's "modules.usbmap" entry if you provide an id with
375  * only a nonzero "driver_info" field.  If you do this, the USB device
376  * driver's probe() routine should use additional intelligence to
377  * decide whether to bind to the specified interface.
378  *
379  * What Makes Good usb_device_id Tables:
380  *
381  * The match algorithm is very simple, so that intelligence in
382  * driver selection must come from smart driver id records.
383  * Unless you have good reasons to use another selection policy,
384  * provide match elements only in related groups, and order match
385  * specifiers from specific to general.  Use the macros provided
386  * for that purpose if you can.
387  *
388  * The most specific match specifiers use device descriptor
389  * data.  These are commonly used with product-specific matches;
390  * the USB_DEVICE macro lets you provide vendor and product IDs,
391  * and you can also match against ranges of product revisions.
392  * These are widely used for devices with application or vendor
393  * specific bDeviceClass values.
394  *
395  * Matches based on device class/subclass/protocol specifications
396  * are slightly more general; use the USB_DEVICE_INFO macro, or
397  * its siblings.  These are used with single-function devices
398  * where bDeviceClass doesn't specify that each interface has
399  * its own class.
400  *
401  * Matches based on interface class/subclass/protocol are the
402  * most general; they let drivers bind to any interface on a
403  * multiple-function device.  Use the USB_INTERFACE_INFO
404  * macro, or its siblings, to match class-per-interface style
405  * devices (as recorded in bDeviceClass).
406  *
407  * Within those groups, remember that not all combinations are
408  * meaningful.  For example, don't give a product version range
409  * without vendor and product IDs; or specify a protocol without
410  * its associated class and subclass.
411  */
412 const struct usb_device_id *
413 usb_match_id(struct usb_interface *interface, const struct usb_device_id *id)
414 {
415 	struct usb_host_interface *intf;
416 	struct usb_device *dev;
417 
418 	/* proc_connectinfo in devio.c may call us with id == NULL. */
419 	if (id == NULL)
420 		return NULL;
421 
422 	intf = interface->cur_altsetting;
423 	dev = interface_to_usbdev(interface);
424 
425 	/* It is important to check that id->driver_info is nonzero,
426 	   since an entry that is all zeroes except for a nonzero
427 	   id->driver_info is the way to create an entry that
428 	   indicates that the driver want to examine every
429 	   device and interface. */
430 	for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||
431 	       id->driver_info; id++) {
432 
433 		if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
434 		    id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
435 			continue;
436 
437 		if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
438 		    id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
439 			continue;
440 
441 		/* No need to test id->bcdDevice_lo != 0, since 0 is never
442 		   greater than any unsigned number. */
443 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
444 		    (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
445 			continue;
446 
447 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
448 		    (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
449 			continue;
450 
451 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
452 		    (id->bDeviceClass != dev->descriptor.bDeviceClass))
453 			continue;
454 
455 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
456 		    (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))
457 			continue;
458 
459 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
460 		    (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
461 			continue;
462 
463 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
464 		    (id->bInterfaceClass != intf->desc.bInterfaceClass))
465 			continue;
466 
467 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
468 		    (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
469 			continue;
470 
471 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
472 		    (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
473 			continue;
474 
475 		return id;
476 	}
477 
478 	return NULL;
479 }
480 
481 
482 static int __find_interface(struct device * dev, void * data)
483 {
484 	struct usb_interface ** ret = (struct usb_interface **)data;
485 	struct usb_interface * intf = *ret;
486 	int *minor = (int *)data;
487 
488 	/* can't look at usb devices, only interfaces */
489 	if (dev->driver == &usb_generic_driver)
490 		return 0;
491 
492 	intf = to_usb_interface(dev);
493 	if (intf->minor != -1 && intf->minor == *minor) {
494 		*ret = intf;
495 		return 1;
496 	}
497 	return 0;
498 }
499 
500 /**
501  * usb_find_interface - find usb_interface pointer for driver and device
502  * @drv: the driver whose current configuration is considered
503  * @minor: the minor number of the desired device
504  *
505  * This walks the driver device list and returns a pointer to the interface
506  * with the matching minor.  Note, this only works for devices that share the
507  * USB major number.
508  */
509 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
510 {
511 	struct usb_interface *intf = (struct usb_interface *)(long)minor;
512 	int ret;
513 
514 	ret = driver_for_each_device(&drv->driver, NULL, &intf, __find_interface);
515 
516 	return ret ? intf : NULL;
517 }
518 
519 static int usb_device_match (struct device *dev, struct device_driver *drv)
520 {
521 	struct usb_interface *intf;
522 	struct usb_driver *usb_drv;
523 	const struct usb_device_id *id;
524 
525 	/* check for generic driver, which we don't match any device with */
526 	if (drv == &usb_generic_driver)
527 		return 0;
528 
529 	intf = to_usb_interface(dev);
530 	usb_drv = to_usb_driver(drv);
531 
532 	id = usb_match_id (intf, usb_drv->id_table);
533 	if (id)
534 		return 1;
535 
536 	return 0;
537 }
538 
539 
540 #ifdef	CONFIG_HOTPLUG
541 
542 /*
543  * USB hotplugging invokes what /proc/sys/kernel/hotplug says
544  * (normally /sbin/hotplug) when USB devices get added or removed.
545  *
546  * This invokes a user mode policy agent, typically helping to load driver
547  * or other modules, configure the device, and more.  Drivers can provide
548  * a MODULE_DEVICE_TABLE to help with module loading subtasks.
549  *
550  * We're called either from khubd (the typical case) or from root hub
551  * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
552  * delays in event delivery.  Use sysfs (and DEVPATH) to make sure the
553  * device (and this configuration!) are still present.
554  */
555 static int usb_hotplug (struct device *dev, char **envp, int num_envp,
556 			char *buffer, int buffer_size)
557 {
558 	struct usb_interface *intf;
559 	struct usb_device *usb_dev;
560 	int i = 0;
561 	int length = 0;
562 
563 	if (!dev)
564 		return -ENODEV;
565 
566 	/* driver is often null here; dev_dbg() would oops */
567 	pr_debug ("usb %s: hotplug\n", dev->bus_id);
568 
569 	/* Must check driver_data here, as on remove driver is always NULL */
570 	if ((dev->driver == &usb_generic_driver) ||
571 	    (dev->driver_data == &usb_generic_driver_data))
572 		return 0;
573 
574 	intf = to_usb_interface(dev);
575 	usb_dev = interface_to_usbdev (intf);
576 
577 	if (usb_dev->devnum < 0) {
578 		pr_debug ("usb %s: already deleted?\n", dev->bus_id);
579 		return -ENODEV;
580 	}
581 	if (!usb_dev->bus) {
582 		pr_debug ("usb %s: bus removed?\n", dev->bus_id);
583 		return -ENODEV;
584 	}
585 
586 #ifdef	CONFIG_USB_DEVICEFS
587 	/* If this is available, userspace programs can directly read
588 	 * all the device descriptors we don't tell them about.  Or
589 	 * even act as usermode drivers.
590 	 *
591 	 * FIXME reduce hardwired intelligence here
592 	 */
593 	if (add_hotplug_env_var(envp, num_envp, &i,
594 				buffer, buffer_size, &length,
595 				"DEVICE=/proc/bus/usb/%03d/%03d",
596 				usb_dev->bus->busnum, usb_dev->devnum))
597 		return -ENOMEM;
598 #endif
599 
600 	/* per-device configurations are common */
601 	if (add_hotplug_env_var(envp, num_envp, &i,
602 				buffer, buffer_size, &length,
603 				"PRODUCT=%x/%x/%x",
604 				le16_to_cpu(usb_dev->descriptor.idVendor),
605 				le16_to_cpu(usb_dev->descriptor.idProduct),
606 				le16_to_cpu(usb_dev->descriptor.bcdDevice)))
607 		return -ENOMEM;
608 
609 	/* class-based driver binding models */
610 	if (add_hotplug_env_var(envp, num_envp, &i,
611 				buffer, buffer_size, &length,
612 				"TYPE=%d/%d/%d",
613 				usb_dev->descriptor.bDeviceClass,
614 				usb_dev->descriptor.bDeviceSubClass,
615 				usb_dev->descriptor.bDeviceProtocol))
616 		return -ENOMEM;
617 
618 	if (usb_dev->descriptor.bDeviceClass == 0) {
619 		struct usb_host_interface *alt = intf->cur_altsetting;
620 
621 		/* 2.4 only exposed interface zero.  in 2.5, hotplug
622 		 * agents are called for all interfaces, and can use
623 		 * $DEVPATH/bInterfaceNumber if necessary.
624 		 */
625 		if (add_hotplug_env_var(envp, num_envp, &i,
626 					buffer, buffer_size, &length,
627 					"INTERFACE=%d/%d/%d",
628 					alt->desc.bInterfaceClass,
629 					alt->desc.bInterfaceSubClass,
630 					alt->desc.bInterfaceProtocol))
631 			return -ENOMEM;
632 
633 		if (add_hotplug_env_var(envp, num_envp, &i,
634 					buffer, buffer_size, &length,
635 					"MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
636 					le16_to_cpu(usb_dev->descriptor.idVendor),
637 					le16_to_cpu(usb_dev->descriptor.idProduct),
638 					le16_to_cpu(usb_dev->descriptor.bcdDevice),
639 					usb_dev->descriptor.bDeviceClass,
640 					usb_dev->descriptor.bDeviceSubClass,
641 					usb_dev->descriptor.bDeviceProtocol,
642 					alt->desc.bInterfaceClass,
643 					alt->desc.bInterfaceSubClass,
644 					alt->desc.bInterfaceProtocol))
645 			return -ENOMEM;
646  	} else {
647 		if (add_hotplug_env_var(envp, num_envp, &i,
648 					buffer, buffer_size, &length,
649 					"MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic*isc*ip*",
650 					le16_to_cpu(usb_dev->descriptor.idVendor),
651 					le16_to_cpu(usb_dev->descriptor.idProduct),
652 					le16_to_cpu(usb_dev->descriptor.bcdDevice),
653 					usb_dev->descriptor.bDeviceClass,
654 					usb_dev->descriptor.bDeviceSubClass,
655 					usb_dev->descriptor.bDeviceProtocol))
656 			return -ENOMEM;
657 	}
658 
659 	envp[i] = NULL;
660 
661 	return 0;
662 }
663 
664 #else
665 
666 static int usb_hotplug (struct device *dev, char **envp,
667 			int num_envp, char *buffer, int buffer_size)
668 {
669 	return -ENODEV;
670 }
671 
672 #endif	/* CONFIG_HOTPLUG */
673 
674 /**
675  * usb_release_dev - free a usb device structure when all users of it are finished.
676  * @dev: device that's been disconnected
677  *
678  * Will be called only by the device core when all users of this usb device are
679  * done.
680  */
681 static void usb_release_dev(struct device *dev)
682 {
683 	struct usb_device *udev;
684 
685 	udev = to_usb_device(dev);
686 
687 	usb_destroy_configuration(udev);
688 	usb_bus_put(udev->bus);
689 	kfree(udev->product);
690 	kfree(udev->manufacturer);
691 	kfree(udev->serial);
692 	kfree(udev);
693 }
694 
695 /**
696  * usb_alloc_dev - usb device constructor (usbcore-internal)
697  * @parent: hub to which device is connected; null to allocate a root hub
698  * @bus: bus used to access the device
699  * @port1: one-based index of port; ignored for root hubs
700  * Context: !in_interrupt ()
701  *
702  * Only hub drivers (including virtual root hub drivers for host
703  * controllers) should ever call this.
704  *
705  * This call may not be used in a non-sleeping context.
706  */
707 struct usb_device *
708 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
709 {
710 	struct usb_device *dev;
711 
712 	dev = kmalloc(sizeof(*dev), GFP_KERNEL);
713 	if (!dev)
714 		return NULL;
715 
716 	memset(dev, 0, sizeof(*dev));
717 
718 	bus = usb_bus_get(bus);
719 	if (!bus) {
720 		kfree(dev);
721 		return NULL;
722 	}
723 
724 	device_initialize(&dev->dev);
725 	dev->dev.bus = &usb_bus_type;
726 	dev->dev.dma_mask = bus->controller->dma_mask;
727 	dev->dev.driver_data = &usb_generic_driver_data;
728 	dev->dev.driver = &usb_generic_driver;
729 	dev->dev.release = usb_release_dev;
730 	dev->state = USB_STATE_ATTACHED;
731 
732 	INIT_LIST_HEAD(&dev->ep0.urb_list);
733 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
734 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
735 	/* ep0 maxpacket comes later, from device descriptor */
736 	dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
737 
738 	/* Save readable and stable topology id, distinguishing devices
739 	 * by location for diagnostics, tools, driver model, etc.  The
740 	 * string is a path along hub ports, from the root.  Each device's
741 	 * dev->devpath will be stable until USB is re-cabled, and hubs
742 	 * are often labeled with these port numbers.  The bus_id isn't
743 	 * as stable:  bus->busnum changes easily from modprobe order,
744 	 * cardbus or pci hotplugging, and so on.
745 	 */
746 	if (unlikely (!parent)) {
747 		dev->devpath [0] = '0';
748 
749 		dev->dev.parent = bus->controller;
750 		sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
751 	} else {
752 		/* match any labeling on the hubs; it's one-based */
753 		if (parent->devpath [0] == '0')
754 			snprintf (dev->devpath, sizeof dev->devpath,
755 				"%d", port1);
756 		else
757 			snprintf (dev->devpath, sizeof dev->devpath,
758 				"%s.%d", parent->devpath, port1);
759 
760 		dev->dev.parent = &parent->dev;
761 		sprintf (&dev->dev.bus_id[0], "%d-%s",
762 			bus->busnum, dev->devpath);
763 
764 		/* hub driver sets up TT records */
765 	}
766 
767 	dev->bus = bus;
768 	dev->parent = parent;
769 	INIT_LIST_HEAD(&dev->filelist);
770 
771 	init_MUTEX(&dev->serialize);
772 
773 	return dev;
774 }
775 
776 /**
777  * usb_get_dev - increments the reference count of the usb device structure
778  * @dev: the device being referenced
779  *
780  * Each live reference to a device should be refcounted.
781  *
782  * Drivers for USB interfaces should normally record such references in
783  * their probe() methods, when they bind to an interface, and release
784  * them by calling usb_put_dev(), in their disconnect() methods.
785  *
786  * A pointer to the device with the incremented reference counter is returned.
787  */
788 struct usb_device *usb_get_dev(struct usb_device *dev)
789 {
790 	if (dev)
791 		get_device(&dev->dev);
792 	return dev;
793 }
794 
795 /**
796  * usb_put_dev - release a use of the usb device structure
797  * @dev: device that's been disconnected
798  *
799  * Must be called when a user of a device is finished with it.  When the last
800  * user of the device calls this function, the memory of the device is freed.
801  */
802 void usb_put_dev(struct usb_device *dev)
803 {
804 	if (dev)
805 		put_device(&dev->dev);
806 }
807 
808 /**
809  * usb_get_intf - increments the reference count of the usb interface structure
810  * @intf: the interface being referenced
811  *
812  * Each live reference to a interface must be refcounted.
813  *
814  * Drivers for USB interfaces should normally record such references in
815  * their probe() methods, when they bind to an interface, and release
816  * them by calling usb_put_intf(), in their disconnect() methods.
817  *
818  * A pointer to the interface with the incremented reference counter is
819  * returned.
820  */
821 struct usb_interface *usb_get_intf(struct usb_interface *intf)
822 {
823 	if (intf)
824 		get_device(&intf->dev);
825 	return intf;
826 }
827 
828 /**
829  * usb_put_intf - release a use of the usb interface structure
830  * @intf: interface that's been decremented
831  *
832  * Must be called when a user of an interface is finished with it.  When the
833  * last user of the interface calls this function, the memory of the interface
834  * is freed.
835  */
836 void usb_put_intf(struct usb_interface *intf)
837 {
838 	if (intf)
839 		put_device(&intf->dev);
840 }
841 
842 
843 /*			USB device locking
844  *
845  * Although locking USB devices should be straightforward, it is
846  * complicated by the way the driver-model core works.  When a new USB
847  * driver is registered or unregistered, the core will automatically
848  * probe or disconnect all matching interfaces on all USB devices while
849  * holding the USB subsystem writelock.  There's no good way for us to
850  * tell which devices will be used or to lock them beforehand; our only
851  * option is to effectively lock all the USB devices.
852  *
853  * We do that by using a private rw-semaphore, usb_all_devices_rwsem.
854  * When locking an individual device you must first acquire the rwsem's
855  * readlock.  When a driver is registered or unregistered the writelock
856  * must be held.  These actions are encapsulated in the subroutines
857  * below, so all a driver needs to do is call usb_lock_device() and
858  * usb_unlock_device().
859  *
860  * Complications arise when several devices are to be locked at the same
861  * time.  Only hub-aware drivers that are part of usbcore ever have to
862  * do this; nobody else needs to worry about it.  The problem is that
863  * usb_lock_device() must not be called to lock a second device since it
864  * would acquire the rwsem's readlock reentrantly, leading to deadlock if
865  * another thread was waiting for the writelock.  The solution is simple:
866  *
867  *	When locking more than one device, call usb_lock_device()
868  *	to lock the first one.  Lock the others by calling
869  *	down(&udev->serialize) directly.
870  *
871  *	When unlocking multiple devices, use up(&udev->serialize)
872  *	to unlock all but the last one.  Unlock the last one by
873  *	calling usb_unlock_device().
874  *
875  *	When locking both a device and its parent, always lock the
876  *	the parent first.
877  */
878 
879 /**
880  * usb_lock_device - acquire the lock for a usb device structure
881  * @udev: device that's being locked
882  *
883  * Use this routine when you don't hold any other device locks;
884  * to acquire nested inner locks call down(&udev->serialize) directly.
885  * This is necessary for proper interaction with usb_lock_all_devices().
886  */
887 void usb_lock_device(struct usb_device *udev)
888 {
889 	down_read(&usb_all_devices_rwsem);
890 	down(&udev->serialize);
891 }
892 
893 /**
894  * usb_trylock_device - attempt to acquire the lock for a usb device structure
895  * @udev: device that's being locked
896  *
897  * Don't use this routine if you already hold a device lock;
898  * use down_trylock(&udev->serialize) instead.
899  * This is necessary for proper interaction with usb_lock_all_devices().
900  *
901  * Returns 1 if successful, 0 if contention.
902  */
903 int usb_trylock_device(struct usb_device *udev)
904 {
905 	if (!down_read_trylock(&usb_all_devices_rwsem))
906 		return 0;
907 	if (down_trylock(&udev->serialize)) {
908 		up_read(&usb_all_devices_rwsem);
909 		return 0;
910 	}
911 	return 1;
912 }
913 
914 /**
915  * usb_lock_device_for_reset - cautiously acquire the lock for a
916  *	usb device structure
917  * @udev: device that's being locked
918  * @iface: interface bound to the driver making the request (optional)
919  *
920  * Attempts to acquire the device lock, but fails if the device is
921  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
922  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
923  * lock, the routine polls repeatedly.  This is to prevent deadlock with
924  * disconnect; in some drivers (such as usb-storage) the disconnect()
925  * or suspend() method will block waiting for a device reset to complete.
926  *
927  * Returns a negative error code for failure, otherwise 1 or 0 to indicate
928  * that the device will or will not have to be unlocked.  (0 can be
929  * returned when an interface is given and is BINDING, because in that
930  * case the driver already owns the device lock.)
931  */
932 int usb_lock_device_for_reset(struct usb_device *udev,
933 		struct usb_interface *iface)
934 {
935 	unsigned long jiffies_expire = jiffies + HZ;
936 
937 	if (udev->state == USB_STATE_NOTATTACHED)
938 		return -ENODEV;
939 	if (udev->state == USB_STATE_SUSPENDED)
940 		return -EHOSTUNREACH;
941 	if (iface) {
942 		switch (iface->condition) {
943 		  case USB_INTERFACE_BINDING:
944 			return 0;
945 		  case USB_INTERFACE_BOUND:
946 			break;
947 		  default:
948 			return -EINTR;
949 		}
950 	}
951 
952 	while (!usb_trylock_device(udev)) {
953 
954 		/* If we can't acquire the lock after waiting one second,
955 		 * we're probably deadlocked */
956 		if (time_after(jiffies, jiffies_expire))
957 			return -EBUSY;
958 
959 		msleep(15);
960 		if (udev->state == USB_STATE_NOTATTACHED)
961 			return -ENODEV;
962 		if (udev->state == USB_STATE_SUSPENDED)
963 			return -EHOSTUNREACH;
964 		if (iface && iface->condition != USB_INTERFACE_BOUND)
965 			return -EINTR;
966 	}
967 	return 1;
968 }
969 
970 /**
971  * usb_unlock_device - release the lock for a usb device structure
972  * @udev: device that's being unlocked
973  *
974  * Use this routine when releasing the only device lock you hold;
975  * to release inner nested locks call up(&udev->serialize) directly.
976  * This is necessary for proper interaction with usb_lock_all_devices().
977  */
978 void usb_unlock_device(struct usb_device *udev)
979 {
980 	up(&udev->serialize);
981 	up_read(&usb_all_devices_rwsem);
982 }
983 
984 /**
985  * usb_lock_all_devices - acquire the lock for all usb device structures
986  *
987  * This is necessary when registering a new driver or probing a bus,
988  * since the driver-model core may try to use any usb_device.
989  */
990 void usb_lock_all_devices(void)
991 {
992 	down_write(&usb_all_devices_rwsem);
993 }
994 
995 /**
996  * usb_unlock_all_devices - release the lock for all usb device structures
997  */
998 void usb_unlock_all_devices(void)
999 {
1000 	up_write(&usb_all_devices_rwsem);
1001 }
1002 
1003 
1004 static struct usb_device *match_device(struct usb_device *dev,
1005 				       u16 vendor_id, u16 product_id)
1006 {
1007 	struct usb_device *ret_dev = NULL;
1008 	int child;
1009 
1010 	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
1011 	    le16_to_cpu(dev->descriptor.idVendor),
1012 	    le16_to_cpu(dev->descriptor.idProduct));
1013 
1014 	/* see if this device matches */
1015 	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
1016 	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
1017 		dev_dbg (&dev->dev, "matched this device!\n");
1018 		ret_dev = usb_get_dev(dev);
1019 		goto exit;
1020 	}
1021 
1022 	/* look through all of the children of this device */
1023 	for (child = 0; child < dev->maxchild; ++child) {
1024 		if (dev->children[child]) {
1025 			down(&dev->children[child]->serialize);
1026 			ret_dev = match_device(dev->children[child],
1027 					       vendor_id, product_id);
1028 			up(&dev->children[child]->serialize);
1029 			if (ret_dev)
1030 				goto exit;
1031 		}
1032 	}
1033 exit:
1034 	return ret_dev;
1035 }
1036 
1037 /**
1038  * usb_find_device - find a specific usb device in the system
1039  * @vendor_id: the vendor id of the device to find
1040  * @product_id: the product id of the device to find
1041  *
1042  * Returns a pointer to a struct usb_device if such a specified usb
1043  * device is present in the system currently.  The usage count of the
1044  * device will be incremented if a device is found.  Make sure to call
1045  * usb_put_dev() when the caller is finished with the device.
1046  *
1047  * If a device with the specified vendor and product id is not found,
1048  * NULL is returned.
1049  */
1050 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
1051 {
1052 	struct list_head *buslist;
1053 	struct usb_bus *bus;
1054 	struct usb_device *dev = NULL;
1055 
1056 	down(&usb_bus_list_lock);
1057 	for (buslist = usb_bus_list.next;
1058 	     buslist != &usb_bus_list;
1059 	     buslist = buslist->next) {
1060 		bus = container_of(buslist, struct usb_bus, bus_list);
1061 		if (!bus->root_hub)
1062 			continue;
1063 		usb_lock_device(bus->root_hub);
1064 		dev = match_device(bus->root_hub, vendor_id, product_id);
1065 		usb_unlock_device(bus->root_hub);
1066 		if (dev)
1067 			goto exit;
1068 	}
1069 exit:
1070 	up(&usb_bus_list_lock);
1071 	return dev;
1072 }
1073 
1074 /**
1075  * usb_get_current_frame_number - return current bus frame number
1076  * @dev: the device whose bus is being queried
1077  *
1078  * Returns the current frame number for the USB host controller
1079  * used with the given USB device.  This can be used when scheduling
1080  * isochronous requests.
1081  *
1082  * Note that different kinds of host controller have different
1083  * "scheduling horizons".  While one type might support scheduling only
1084  * 32 frames into the future, others could support scheduling up to
1085  * 1024 frames into the future.
1086  */
1087 int usb_get_current_frame_number(struct usb_device *dev)
1088 {
1089 	return dev->bus->op->get_frame_number (dev);
1090 }
1091 
1092 /*-------------------------------------------------------------------*/
1093 /*
1094  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
1095  * extra field of the interface and endpoint descriptor structs.
1096  */
1097 
1098 int __usb_get_extra_descriptor(char *buffer, unsigned size,
1099 	unsigned char type, void **ptr)
1100 {
1101 	struct usb_descriptor_header *header;
1102 
1103 	while (size >= sizeof(struct usb_descriptor_header)) {
1104 		header = (struct usb_descriptor_header *)buffer;
1105 
1106 		if (header->bLength < 2) {
1107 			printk(KERN_ERR
1108 				"%s: bogus descriptor, type %d length %d\n",
1109 				usbcore_name,
1110 				header->bDescriptorType,
1111 				header->bLength);
1112 			return -1;
1113 		}
1114 
1115 		if (header->bDescriptorType == type) {
1116 			*ptr = header;
1117 			return 0;
1118 		}
1119 
1120 		buffer += header->bLength;
1121 		size -= header->bLength;
1122 	}
1123 	return -1;
1124 }
1125 
1126 /**
1127  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
1128  * @dev: device the buffer will be used with
1129  * @size: requested buffer size
1130  * @mem_flags: affect whether allocation may block
1131  * @dma: used to return DMA address of buffer
1132  *
1133  * Return value is either null (indicating no buffer could be allocated), or
1134  * the cpu-space pointer to a buffer that may be used to perform DMA to the
1135  * specified device.  Such cpu-space buffers are returned along with the DMA
1136  * address (through the pointer provided).
1137  *
1138  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
1139  * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
1140  * mapping hardware for long idle periods.  The implementation varies between
1141  * platforms, depending on details of how DMA will work to this device.
1142  * Using these buffers also helps prevent cacheline sharing problems on
1143  * architectures where CPU caches are not DMA-coherent.
1144  *
1145  * When the buffer is no longer used, free it with usb_buffer_free().
1146  */
1147 void *usb_buffer_alloc (
1148 	struct usb_device *dev,
1149 	size_t size,
1150 	unsigned mem_flags,
1151 	dma_addr_t *dma
1152 )
1153 {
1154 	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
1155 		return NULL;
1156 	return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
1157 }
1158 
1159 /**
1160  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
1161  * @dev: device the buffer was used with
1162  * @size: requested buffer size
1163  * @addr: CPU address of buffer
1164  * @dma: DMA address of buffer
1165  *
1166  * This reclaims an I/O buffer, letting it be reused.  The memory must have
1167  * been allocated using usb_buffer_alloc(), and the parameters must match
1168  * those provided in that allocation request.
1169  */
1170 void usb_buffer_free (
1171 	struct usb_device *dev,
1172 	size_t size,
1173 	void *addr,
1174 	dma_addr_t dma
1175 )
1176 {
1177 	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
1178 	    	return;
1179 	dev->bus->op->buffer_free (dev->bus, size, addr, dma);
1180 }
1181 
1182 /**
1183  * usb_buffer_map - create DMA mapping(s) for an urb
1184  * @urb: urb whose transfer_buffer/setup_packet will be mapped
1185  *
1186  * Return value is either null (indicating no buffer could be mapped), or
1187  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
1188  * added to urb->transfer_flags if the operation succeeds.  If the device
1189  * is connected to this system through a non-DMA controller, this operation
1190  * always succeeds.
1191  *
1192  * This call would normally be used for an urb which is reused, perhaps
1193  * as the target of a large periodic transfer, with usb_buffer_dmasync()
1194  * calls to synchronize memory and dma state.
1195  *
1196  * Reverse the effect of this call with usb_buffer_unmap().
1197  */
1198 #if 0
1199 struct urb *usb_buffer_map (struct urb *urb)
1200 {
1201 	struct usb_bus		*bus;
1202 	struct device		*controller;
1203 
1204 	if (!urb
1205 			|| !urb->dev
1206 			|| !(bus = urb->dev->bus)
1207 			|| !(controller = bus->controller))
1208 		return NULL;
1209 
1210 	if (controller->dma_mask) {
1211 		urb->transfer_dma = dma_map_single (controller,
1212 			urb->transfer_buffer, urb->transfer_buffer_length,
1213 			usb_pipein (urb->pipe)
1214 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1215 		if (usb_pipecontrol (urb->pipe))
1216 			urb->setup_dma = dma_map_single (controller,
1217 					urb->setup_packet,
1218 					sizeof (struct usb_ctrlrequest),
1219 					DMA_TO_DEVICE);
1220 	// FIXME generic api broken like pci, can't report errors
1221 	// if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
1222 	} else
1223 		urb->transfer_dma = ~0;
1224 	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
1225 				| URB_NO_SETUP_DMA_MAP);
1226 	return urb;
1227 }
1228 #endif  /*  0  */
1229 
1230 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1231  * XXX please determine whether the sync is to transfer ownership of
1232  * XXX the buffer from device to cpu or vice verse, and thusly use the
1233  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1234  */
1235 #if 0
1236 
1237 /**
1238  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
1239  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
1240  */
1241 void usb_buffer_dmasync (struct urb *urb)
1242 {
1243 	struct usb_bus		*bus;
1244 	struct device		*controller;
1245 
1246 	if (!urb
1247 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1248 			|| !urb->dev
1249 			|| !(bus = urb->dev->bus)
1250 			|| !(controller = bus->controller))
1251 		return;
1252 
1253 	if (controller->dma_mask) {
1254 		dma_sync_single (controller,
1255 			urb->transfer_dma, urb->transfer_buffer_length,
1256 			usb_pipein (urb->pipe)
1257 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1258 		if (usb_pipecontrol (urb->pipe))
1259 			dma_sync_single (controller,
1260 					urb->setup_dma,
1261 					sizeof (struct usb_ctrlrequest),
1262 					DMA_TO_DEVICE);
1263 	}
1264 }
1265 #endif
1266 
1267 /**
1268  * usb_buffer_unmap - free DMA mapping(s) for an urb
1269  * @urb: urb whose transfer_buffer will be unmapped
1270  *
1271  * Reverses the effect of usb_buffer_map().
1272  */
1273 #if 0
1274 void usb_buffer_unmap (struct urb *urb)
1275 {
1276 	struct usb_bus		*bus;
1277 	struct device		*controller;
1278 
1279 	if (!urb
1280 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1281 			|| !urb->dev
1282 			|| !(bus = urb->dev->bus)
1283 			|| !(controller = bus->controller))
1284 		return;
1285 
1286 	if (controller->dma_mask) {
1287 		dma_unmap_single (controller,
1288 			urb->transfer_dma, urb->transfer_buffer_length,
1289 			usb_pipein (urb->pipe)
1290 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1291 		if (usb_pipecontrol (urb->pipe))
1292 			dma_unmap_single (controller,
1293 					urb->setup_dma,
1294 					sizeof (struct usb_ctrlrequest),
1295 					DMA_TO_DEVICE);
1296 	}
1297 	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
1298 				| URB_NO_SETUP_DMA_MAP);
1299 }
1300 #endif  /*  0  */
1301 
1302 /**
1303  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1304  * @dev: device to which the scatterlist will be mapped
1305  * @pipe: endpoint defining the mapping direction
1306  * @sg: the scatterlist to map
1307  * @nents: the number of entries in the scatterlist
1308  *
1309  * Return value is either < 0 (indicating no buffers could be mapped), or
1310  * the number of DMA mapping array entries in the scatterlist.
1311  *
1312  * The caller is responsible for placing the resulting DMA addresses from
1313  * the scatterlist into URB transfer buffer pointers, and for setting the
1314  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1315  *
1316  * Top I/O rates come from queuing URBs, instead of waiting for each one
1317  * to complete before starting the next I/O.   This is particularly easy
1318  * to do with scatterlists.  Just allocate and submit one URB for each DMA
1319  * mapping entry returned, stopping on the first error or when all succeed.
1320  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1321  *
1322  * This call would normally be used when translating scatterlist requests,
1323  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1324  * may be able to coalesce mappings for improved I/O efficiency.
1325  *
1326  * Reverse the effect of this call with usb_buffer_unmap_sg().
1327  */
1328 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1329 		struct scatterlist *sg, int nents)
1330 {
1331 	struct usb_bus		*bus;
1332 	struct device		*controller;
1333 
1334 	if (!dev
1335 			|| usb_pipecontrol (pipe)
1336 			|| !(bus = dev->bus)
1337 			|| !(controller = bus->controller)
1338 			|| !controller->dma_mask)
1339 		return -1;
1340 
1341 	// FIXME generic api broken like pci, can't report errors
1342 	return dma_map_sg (controller, sg, nents,
1343 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1344 }
1345 
1346 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1347  * XXX please determine whether the sync is to transfer ownership of
1348  * XXX the buffer from device to cpu or vice verse, and thusly use the
1349  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1350  */
1351 #if 0
1352 
1353 /**
1354  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1355  * @dev: device to which the scatterlist will be mapped
1356  * @pipe: endpoint defining the mapping direction
1357  * @sg: the scatterlist to synchronize
1358  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1359  *
1360  * Use this when you are re-using a scatterlist's data buffers for
1361  * another USB request.
1362  */
1363 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1364 		struct scatterlist *sg, int n_hw_ents)
1365 {
1366 	struct usb_bus		*bus;
1367 	struct device		*controller;
1368 
1369 	if (!dev
1370 			|| !(bus = dev->bus)
1371 			|| !(controller = bus->controller)
1372 			|| !controller->dma_mask)
1373 		return;
1374 
1375 	dma_sync_sg (controller, sg, n_hw_ents,
1376 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1377 }
1378 #endif
1379 
1380 /**
1381  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1382  * @dev: device to which the scatterlist will be mapped
1383  * @pipe: endpoint defining the mapping direction
1384  * @sg: the scatterlist to unmap
1385  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1386  *
1387  * Reverses the effect of usb_buffer_map_sg().
1388  */
1389 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1390 		struct scatterlist *sg, int n_hw_ents)
1391 {
1392 	struct usb_bus		*bus;
1393 	struct device		*controller;
1394 
1395 	if (!dev
1396 			|| !(bus = dev->bus)
1397 			|| !(controller = bus->controller)
1398 			|| !controller->dma_mask)
1399 		return;
1400 
1401 	dma_unmap_sg (controller, sg, n_hw_ents,
1402 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1403 }
1404 
1405 static int usb_generic_suspend(struct device *dev, pm_message_t message)
1406 {
1407 	struct usb_interface *intf;
1408 	struct usb_driver *driver;
1409 
1410 	if (dev->driver == &usb_generic_driver)
1411 		return usb_suspend_device (to_usb_device(dev), message);
1412 
1413 	if ((dev->driver == NULL) ||
1414 	    (dev->driver_data == &usb_generic_driver_data))
1415 		return 0;
1416 
1417 	intf = to_usb_interface(dev);
1418 	driver = to_usb_driver(dev->driver);
1419 
1420 	/* there's only one USB suspend state */
1421 	if (intf->dev.power.power_state.event)
1422 		return 0;
1423 
1424 	if (driver->suspend)
1425 		return driver->suspend(intf, message);
1426 	return 0;
1427 }
1428 
1429 static int usb_generic_resume(struct device *dev)
1430 {
1431 	struct usb_interface *intf;
1432 	struct usb_driver *driver;
1433 
1434 	/* devices resume through their hub */
1435 	if (dev->driver == &usb_generic_driver)
1436 		return usb_resume_device (to_usb_device(dev));
1437 
1438 	if ((dev->driver == NULL) ||
1439 	    (dev->driver_data == &usb_generic_driver_data))
1440 		return 0;
1441 
1442 	intf = to_usb_interface(dev);
1443 	driver = to_usb_driver(dev->driver);
1444 
1445 	if (driver->resume)
1446 		return driver->resume(intf);
1447 	return 0;
1448 }
1449 
1450 struct bus_type usb_bus_type = {
1451 	.name =		"usb",
1452 	.match =	usb_device_match,
1453 	.hotplug =	usb_hotplug,
1454 	.suspend =	usb_generic_suspend,
1455 	.resume =	usb_generic_resume,
1456 };
1457 
1458 #ifndef MODULE
1459 
1460 static int __init usb_setup_disable(char *str)
1461 {
1462 	nousb = 1;
1463 	return 1;
1464 }
1465 
1466 /* format to disable USB on kernel command line is: nousb */
1467 __setup("nousb", usb_setup_disable);
1468 
1469 #endif
1470 
1471 /*
1472  * for external read access to <nousb>
1473  */
1474 int usb_disabled(void)
1475 {
1476 	return nousb;
1477 }
1478 
1479 /*
1480  * Init
1481  */
1482 static int __init usb_init(void)
1483 {
1484 	int retval;
1485 	if (nousb) {
1486 		pr_info ("%s: USB support disabled\n", usbcore_name);
1487 		return 0;
1488 	}
1489 
1490 	retval = bus_register(&usb_bus_type);
1491 	if (retval)
1492 		goto out;
1493 	retval = usb_host_init();
1494 	if (retval)
1495 		goto host_init_failed;
1496 	retval = usb_major_init();
1497 	if (retval)
1498 		goto major_init_failed;
1499 	retval = usb_register(&usbfs_driver);
1500 	if (retval)
1501 		goto driver_register_failed;
1502 	retval = usbdev_init();
1503 	if (retval)
1504 		goto usbdevice_init_failed;
1505 	retval = usbfs_init();
1506 	if (retval)
1507 		goto fs_init_failed;
1508 	retval = usb_hub_init();
1509 	if (retval)
1510 		goto hub_init_failed;
1511 	retval = driver_register(&usb_generic_driver);
1512 	if (!retval)
1513 		goto out;
1514 
1515 	usb_hub_cleanup();
1516 hub_init_failed:
1517 	usbfs_cleanup();
1518 fs_init_failed:
1519 	usbdev_cleanup();
1520 usbdevice_init_failed:
1521 	usb_deregister(&usbfs_driver);
1522 driver_register_failed:
1523 	usb_major_cleanup();
1524 major_init_failed:
1525 	usb_host_cleanup();
1526 host_init_failed:
1527 	bus_unregister(&usb_bus_type);
1528 out:
1529 	return retval;
1530 }
1531 
1532 /*
1533  * Cleanup
1534  */
1535 static void __exit usb_exit(void)
1536 {
1537 	/* This will matter if shutdown/reboot does exitcalls. */
1538 	if (nousb)
1539 		return;
1540 
1541 	driver_unregister(&usb_generic_driver);
1542 	usb_major_cleanup();
1543 	usbfs_cleanup();
1544 	usb_deregister(&usbfs_driver);
1545 	usbdev_cleanup();
1546 	usb_hub_cleanup();
1547 	usb_host_cleanup();
1548 	bus_unregister(&usb_bus_type);
1549 }
1550 
1551 subsys_initcall(usb_init);
1552 module_exit(usb_exit);
1553 
1554 /*
1555  * USB may be built into the kernel or be built as modules.
1556  * These symbols are exported for device (or host controller)
1557  * driver modules to use.
1558  */
1559 
1560 EXPORT_SYMBOL(usb_register);
1561 EXPORT_SYMBOL(usb_deregister);
1562 EXPORT_SYMBOL(usb_disabled);
1563 
1564 EXPORT_SYMBOL_GPL(usb_get_intf);
1565 EXPORT_SYMBOL_GPL(usb_put_intf);
1566 
1567 EXPORT_SYMBOL(usb_alloc_dev);
1568 EXPORT_SYMBOL(usb_put_dev);
1569 EXPORT_SYMBOL(usb_get_dev);
1570 EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1571 
1572 EXPORT_SYMBOL(usb_lock_device);
1573 EXPORT_SYMBOL(usb_trylock_device);
1574 EXPORT_SYMBOL(usb_lock_device_for_reset);
1575 EXPORT_SYMBOL(usb_unlock_device);
1576 
1577 EXPORT_SYMBOL(usb_driver_claim_interface);
1578 EXPORT_SYMBOL(usb_driver_release_interface);
1579 EXPORT_SYMBOL(usb_match_id);
1580 EXPORT_SYMBOL(usb_find_interface);
1581 EXPORT_SYMBOL(usb_ifnum_to_if);
1582 EXPORT_SYMBOL(usb_altnum_to_altsetting);
1583 
1584 EXPORT_SYMBOL(usb_reset_device);
1585 EXPORT_SYMBOL(usb_disconnect);
1586 
1587 EXPORT_SYMBOL(__usb_get_extra_descriptor);
1588 
1589 EXPORT_SYMBOL(usb_find_device);
1590 EXPORT_SYMBOL(usb_get_current_frame_number);
1591 
1592 EXPORT_SYMBOL (usb_buffer_alloc);
1593 EXPORT_SYMBOL (usb_buffer_free);
1594 
1595 #if 0
1596 EXPORT_SYMBOL (usb_buffer_map);
1597 EXPORT_SYMBOL (usb_buffer_dmasync);
1598 EXPORT_SYMBOL (usb_buffer_unmap);
1599 #endif
1600 
1601 EXPORT_SYMBOL (usb_buffer_map_sg);
1602 #if 0
1603 EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1604 #endif
1605 EXPORT_SYMBOL (usb_buffer_unmap_sg);
1606 
1607 MODULE_LICENSE("GPL");
1608