xref: /linux/drivers/usb/core/usb.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39 #include <linux/usb/of.h>
40 
41 #include <asm/io.h>
42 #include <linux/scatterlist.h>
43 #include <linux/mm.h>
44 #include <linux/dma-mapping.h>
45 
46 #include "usb.h"
47 
48 
49 const char *usbcore_name = "usbcore";
50 
51 static bool nousb;	/* Disable USB when built into kernel image */
52 
53 module_param(nousb, bool, 0444);
54 
55 /*
56  * for external read access to <nousb>
57  */
58 int usb_disabled(void)
59 {
60 	return nousb;
61 }
62 EXPORT_SYMBOL_GPL(usb_disabled);
63 
64 #ifdef	CONFIG_PM
65 static int usb_autosuspend_delay = 2;		/* Default delay value,
66 						 * in seconds */
67 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
68 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
69 
70 #else
71 #define usb_autosuspend_delay		0
72 #endif
73 
74 
75 /**
76  * usb_find_alt_setting() - Given a configuration, find the alternate setting
77  * for the given interface.
78  * @config: the configuration to search (not necessarily the current config).
79  * @iface_num: interface number to search in
80  * @alt_num: alternate interface setting number to search for.
81  *
82  * Search the configuration's interface cache for the given alt setting.
83  *
84  * Return: The alternate setting, if found. %NULL otherwise.
85  */
86 struct usb_host_interface *usb_find_alt_setting(
87 		struct usb_host_config *config,
88 		unsigned int iface_num,
89 		unsigned int alt_num)
90 {
91 	struct usb_interface_cache *intf_cache = NULL;
92 	int i;
93 
94 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
95 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
96 				== iface_num) {
97 			intf_cache = config->intf_cache[i];
98 			break;
99 		}
100 	}
101 	if (!intf_cache)
102 		return NULL;
103 	for (i = 0; i < intf_cache->num_altsetting; i++)
104 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
105 			return &intf_cache->altsetting[i];
106 
107 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
108 			"config %u\n", alt_num, iface_num,
109 			config->desc.bConfigurationValue);
110 	return NULL;
111 }
112 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
113 
114 /**
115  * usb_ifnum_to_if - get the interface object with a given interface number
116  * @dev: the device whose current configuration is considered
117  * @ifnum: the desired interface
118  *
119  * This walks the device descriptor for the currently active configuration
120  * to find the interface object with the particular interface number.
121  *
122  * Note that configuration descriptors are not required to assign interface
123  * numbers sequentially, so that it would be incorrect to assume that
124  * the first interface in that descriptor corresponds to interface zero.
125  * This routine helps device drivers avoid such mistakes.
126  * However, you should make sure that you do the right thing with any
127  * alternate settings available for this interfaces.
128  *
129  * Don't call this function unless you are bound to one of the interfaces
130  * on this device or you have locked the device!
131  *
132  * Return: A pointer to the interface that has @ifnum as interface number,
133  * if found. %NULL otherwise.
134  */
135 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
136 				      unsigned ifnum)
137 {
138 	struct usb_host_config *config = dev->actconfig;
139 	int i;
140 
141 	if (!config)
142 		return NULL;
143 	for (i = 0; i < config->desc.bNumInterfaces; i++)
144 		if (config->interface[i]->altsetting[0]
145 				.desc.bInterfaceNumber == ifnum)
146 			return config->interface[i];
147 
148 	return NULL;
149 }
150 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
151 
152 /**
153  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
154  * @intf: the interface containing the altsetting in question
155  * @altnum: the desired alternate setting number
156  *
157  * This searches the altsetting array of the specified interface for
158  * an entry with the correct bAlternateSetting value.
159  *
160  * Note that altsettings need not be stored sequentially by number, so
161  * it would be incorrect to assume that the first altsetting entry in
162  * the array corresponds to altsetting zero.  This routine helps device
163  * drivers avoid such mistakes.
164  *
165  * Don't call this function unless you are bound to the intf interface
166  * or you have locked the device!
167  *
168  * Return: A pointer to the entry of the altsetting array of @intf that
169  * has @altnum as the alternate setting number. %NULL if not found.
170  */
171 struct usb_host_interface *usb_altnum_to_altsetting(
172 					const struct usb_interface *intf,
173 					unsigned int altnum)
174 {
175 	int i;
176 
177 	for (i = 0; i < intf->num_altsetting; i++) {
178 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
179 			return &intf->altsetting[i];
180 	}
181 	return NULL;
182 }
183 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
184 
185 struct find_interface_arg {
186 	int minor;
187 	struct device_driver *drv;
188 };
189 
190 static int __find_interface(struct device *dev, void *data)
191 {
192 	struct find_interface_arg *arg = data;
193 	struct usb_interface *intf;
194 
195 	if (!is_usb_interface(dev))
196 		return 0;
197 
198 	if (dev->driver != arg->drv)
199 		return 0;
200 	intf = to_usb_interface(dev);
201 	return intf->minor == arg->minor;
202 }
203 
204 /**
205  * usb_find_interface - find usb_interface pointer for driver and device
206  * @drv: the driver whose current configuration is considered
207  * @minor: the minor number of the desired device
208  *
209  * This walks the bus device list and returns a pointer to the interface
210  * with the matching minor and driver.  Note, this only works for devices
211  * that share the USB major number.
212  *
213  * Return: A pointer to the interface with the matching major and @minor.
214  */
215 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
216 {
217 	struct find_interface_arg argb;
218 	struct device *dev;
219 
220 	argb.minor = minor;
221 	argb.drv = &drv->drvwrap.driver;
222 
223 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
224 
225 	/* Drop reference count from bus_find_device */
226 	put_device(dev);
227 
228 	return dev ? to_usb_interface(dev) : NULL;
229 }
230 EXPORT_SYMBOL_GPL(usb_find_interface);
231 
232 struct each_dev_arg {
233 	void *data;
234 	int (*fn)(struct usb_device *, void *);
235 };
236 
237 static int __each_dev(struct device *dev, void *data)
238 {
239 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
240 
241 	/* There are struct usb_interface on the same bus, filter them out */
242 	if (!is_usb_device(dev))
243 		return 0;
244 
245 	return arg->fn(to_usb_device(dev), arg->data);
246 }
247 
248 /**
249  * usb_for_each_dev - iterate over all USB devices in the system
250  * @data: data pointer that will be handed to the callback function
251  * @fn: callback function to be called for each USB device
252  *
253  * Iterate over all USB devices and call @fn for each, passing it @data. If it
254  * returns anything other than 0, we break the iteration prematurely and return
255  * that value.
256  */
257 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
258 {
259 	struct each_dev_arg arg = {data, fn};
260 
261 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
262 }
263 EXPORT_SYMBOL_GPL(usb_for_each_dev);
264 
265 /**
266  * usb_release_dev - free a usb device structure when all users of it are finished.
267  * @dev: device that's been disconnected
268  *
269  * Will be called only by the device core when all users of this usb device are
270  * done.
271  */
272 static void usb_release_dev(struct device *dev)
273 {
274 	struct usb_device *udev;
275 	struct usb_hcd *hcd;
276 
277 	udev = to_usb_device(dev);
278 	hcd = bus_to_hcd(udev->bus);
279 
280 	usb_destroy_configuration(udev);
281 	usb_release_bos_descriptor(udev);
282 	usb_put_hcd(hcd);
283 	kfree(udev->product);
284 	kfree(udev->manufacturer);
285 	kfree(udev->serial);
286 	kfree(udev);
287 }
288 
289 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
290 {
291 	struct usb_device *usb_dev;
292 
293 	usb_dev = to_usb_device(dev);
294 
295 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
296 		return -ENOMEM;
297 
298 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
299 		return -ENOMEM;
300 
301 	return 0;
302 }
303 
304 #ifdef	CONFIG_PM
305 
306 /* USB device Power-Management thunks.
307  * There's no need to distinguish here between quiescing a USB device
308  * and powering it down; the generic_suspend() routine takes care of
309  * it by skipping the usb_port_suspend() call for a quiesce.  And for
310  * USB interfaces there's no difference at all.
311  */
312 
313 static int usb_dev_prepare(struct device *dev)
314 {
315 	struct usb_device *udev = to_usb_device(dev);
316 
317 	/* Return 0 if the current wakeup setting is wrong, otherwise 1 */
318 	if (udev->do_remote_wakeup != device_may_wakeup(dev))
319 		return 0;
320 
321 	return 1;
322 }
323 
324 static void usb_dev_complete(struct device *dev)
325 {
326 	/* Currently used only for rebinding interfaces */
327 	usb_resume_complete(dev);
328 }
329 
330 static int usb_dev_suspend(struct device *dev)
331 {
332 	return usb_suspend(dev, PMSG_SUSPEND);
333 }
334 
335 static int usb_dev_resume(struct device *dev)
336 {
337 	return usb_resume(dev, PMSG_RESUME);
338 }
339 
340 static int usb_dev_freeze(struct device *dev)
341 {
342 	return usb_suspend(dev, PMSG_FREEZE);
343 }
344 
345 static int usb_dev_thaw(struct device *dev)
346 {
347 	return usb_resume(dev, PMSG_THAW);
348 }
349 
350 static int usb_dev_poweroff(struct device *dev)
351 {
352 	return usb_suspend(dev, PMSG_HIBERNATE);
353 }
354 
355 static int usb_dev_restore(struct device *dev)
356 {
357 	return usb_resume(dev, PMSG_RESTORE);
358 }
359 
360 static const struct dev_pm_ops usb_device_pm_ops = {
361 	.prepare =	usb_dev_prepare,
362 	.complete =	usb_dev_complete,
363 	.suspend =	usb_dev_suspend,
364 	.resume =	usb_dev_resume,
365 	.freeze =	usb_dev_freeze,
366 	.thaw =		usb_dev_thaw,
367 	.poweroff =	usb_dev_poweroff,
368 	.restore =	usb_dev_restore,
369 	.runtime_suspend =	usb_runtime_suspend,
370 	.runtime_resume =	usb_runtime_resume,
371 	.runtime_idle =		usb_runtime_idle,
372 };
373 
374 #endif	/* CONFIG_PM */
375 
376 
377 static char *usb_devnode(struct device *dev,
378 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
379 {
380 	struct usb_device *usb_dev;
381 
382 	usb_dev = to_usb_device(dev);
383 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
384 			 usb_dev->bus->busnum, usb_dev->devnum);
385 }
386 
387 struct device_type usb_device_type = {
388 	.name =		"usb_device",
389 	.release =	usb_release_dev,
390 	.uevent =	usb_dev_uevent,
391 	.devnode = 	usb_devnode,
392 #ifdef CONFIG_PM
393 	.pm =		&usb_device_pm_ops,
394 #endif
395 };
396 
397 
398 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
399 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
400 {
401 	struct usb_hcd *hcd = bus_to_hcd(bus);
402 	return hcd->wireless;
403 }
404 
405 
406 /**
407  * usb_alloc_dev - usb device constructor (usbcore-internal)
408  * @parent: hub to which device is connected; null to allocate a root hub
409  * @bus: bus used to access the device
410  * @port1: one-based index of port; ignored for root hubs
411  * Context: !in_interrupt()
412  *
413  * Only hub drivers (including virtual root hub drivers for host
414  * controllers) should ever call this.
415  *
416  * This call may not be used in a non-sleeping context.
417  *
418  * Return: On success, a pointer to the allocated usb device. %NULL on
419  * failure.
420  */
421 struct usb_device *usb_alloc_dev(struct usb_device *parent,
422 				 struct usb_bus *bus, unsigned port1)
423 {
424 	struct usb_device *dev;
425 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
426 	unsigned root_hub = 0;
427 
428 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
429 	if (!dev)
430 		return NULL;
431 
432 	if (!usb_get_hcd(usb_hcd)) {
433 		kfree(dev);
434 		return NULL;
435 	}
436 	/* Root hubs aren't true devices, so don't allocate HCD resources */
437 	if (usb_hcd->driver->alloc_dev && parent &&
438 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
439 		usb_put_hcd(bus_to_hcd(bus));
440 		kfree(dev);
441 		return NULL;
442 	}
443 
444 	device_initialize(&dev->dev);
445 	dev->dev.bus = &usb_bus_type;
446 	dev->dev.type = &usb_device_type;
447 	dev->dev.groups = usb_device_groups;
448 	dev->dev.dma_mask = bus->controller->dma_mask;
449 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
450 	dev->state = USB_STATE_ATTACHED;
451 	dev->lpm_disable_count = 1;
452 	atomic_set(&dev->urbnum, 0);
453 
454 	INIT_LIST_HEAD(&dev->ep0.urb_list);
455 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
456 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
457 	/* ep0 maxpacket comes later, from device descriptor */
458 	usb_enable_endpoint(dev, &dev->ep0, false);
459 	dev->can_submit = 1;
460 
461 	/* Save readable and stable topology id, distinguishing devices
462 	 * by location for diagnostics, tools, driver model, etc.  The
463 	 * string is a path along hub ports, from the root.  Each device's
464 	 * dev->devpath will be stable until USB is re-cabled, and hubs
465 	 * are often labeled with these port numbers.  The name isn't
466 	 * as stable:  bus->busnum changes easily from modprobe order,
467 	 * cardbus or pci hotplugging, and so on.
468 	 */
469 	if (unlikely(!parent)) {
470 		dev->devpath[0] = '0';
471 		dev->route = 0;
472 
473 		dev->dev.parent = bus->controller;
474 		dev->dev.of_node = bus->controller->of_node;
475 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
476 		root_hub = 1;
477 	} else {
478 		/* match any labeling on the hubs; it's one-based */
479 		if (parent->devpath[0] == '0') {
480 			snprintf(dev->devpath, sizeof dev->devpath,
481 				"%d", port1);
482 			/* Root ports are not counted in route string */
483 			dev->route = 0;
484 		} else {
485 			snprintf(dev->devpath, sizeof dev->devpath,
486 				"%s.%d", parent->devpath, port1);
487 			/* Route string assumes hubs have less than 16 ports */
488 			if (port1 < 15)
489 				dev->route = parent->route +
490 					(port1 << ((parent->level - 1)*4));
491 			else
492 				dev->route = parent->route +
493 					(15 << ((parent->level - 1)*4));
494 		}
495 
496 		dev->dev.parent = &parent->dev;
497 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
498 
499 		if (!parent->parent) {
500 			/* device under root hub's port */
501 			port1 = usb_hcd_find_raw_port_number(usb_hcd,
502 				port1);
503 		}
504 		dev->dev.of_node = usb_of_get_child_node(parent->dev.of_node,
505 				port1);
506 
507 		/* hub driver sets up TT records */
508 	}
509 
510 	dev->portnum = port1;
511 	dev->bus = bus;
512 	dev->parent = parent;
513 	INIT_LIST_HEAD(&dev->filelist);
514 
515 #ifdef	CONFIG_PM
516 	pm_runtime_set_autosuspend_delay(&dev->dev,
517 			usb_autosuspend_delay * 1000);
518 	dev->connect_time = jiffies;
519 	dev->active_duration = -jiffies;
520 #endif
521 	if (root_hub)	/* Root hub always ok [and always wired] */
522 		dev->authorized = 1;
523 	else {
524 		dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
525 		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
526 	}
527 	return dev;
528 }
529 EXPORT_SYMBOL_GPL(usb_alloc_dev);
530 
531 /**
532  * usb_get_dev - increments the reference count of the usb device structure
533  * @dev: the device being referenced
534  *
535  * Each live reference to a device should be refcounted.
536  *
537  * Drivers for USB interfaces should normally record such references in
538  * their probe() methods, when they bind to an interface, and release
539  * them by calling usb_put_dev(), in their disconnect() methods.
540  *
541  * Return: A pointer to the device with the incremented reference counter.
542  */
543 struct usb_device *usb_get_dev(struct usb_device *dev)
544 {
545 	if (dev)
546 		get_device(&dev->dev);
547 	return dev;
548 }
549 EXPORT_SYMBOL_GPL(usb_get_dev);
550 
551 /**
552  * usb_put_dev - release a use of the usb device structure
553  * @dev: device that's been disconnected
554  *
555  * Must be called when a user of a device is finished with it.  When the last
556  * user of the device calls this function, the memory of the device is freed.
557  */
558 void usb_put_dev(struct usb_device *dev)
559 {
560 	if (dev)
561 		put_device(&dev->dev);
562 }
563 EXPORT_SYMBOL_GPL(usb_put_dev);
564 
565 /**
566  * usb_get_intf - increments the reference count of the usb interface structure
567  * @intf: the interface being referenced
568  *
569  * Each live reference to a interface must be refcounted.
570  *
571  * Drivers for USB interfaces should normally record such references in
572  * their probe() methods, when they bind to an interface, and release
573  * them by calling usb_put_intf(), in their disconnect() methods.
574  *
575  * Return: A pointer to the interface with the incremented reference counter.
576  */
577 struct usb_interface *usb_get_intf(struct usb_interface *intf)
578 {
579 	if (intf)
580 		get_device(&intf->dev);
581 	return intf;
582 }
583 EXPORT_SYMBOL_GPL(usb_get_intf);
584 
585 /**
586  * usb_put_intf - release a use of the usb interface structure
587  * @intf: interface that's been decremented
588  *
589  * Must be called when a user of an interface is finished with it.  When the
590  * last user of the interface calls this function, the memory of the interface
591  * is freed.
592  */
593 void usb_put_intf(struct usb_interface *intf)
594 {
595 	if (intf)
596 		put_device(&intf->dev);
597 }
598 EXPORT_SYMBOL_GPL(usb_put_intf);
599 
600 /*			USB device locking
601  *
602  * USB devices and interfaces are locked using the semaphore in their
603  * embedded struct device.  The hub driver guarantees that whenever a
604  * device is connected or disconnected, drivers are called with the
605  * USB device locked as well as their particular interface.
606  *
607  * Complications arise when several devices are to be locked at the same
608  * time.  Only hub-aware drivers that are part of usbcore ever have to
609  * do this; nobody else needs to worry about it.  The rule for locking
610  * is simple:
611  *
612  *	When locking both a device and its parent, always lock the
613  *	the parent first.
614  */
615 
616 /**
617  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
618  * @udev: device that's being locked
619  * @iface: interface bound to the driver making the request (optional)
620  *
621  * Attempts to acquire the device lock, but fails if the device is
622  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
623  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
624  * lock, the routine polls repeatedly.  This is to prevent deadlock with
625  * disconnect; in some drivers (such as usb-storage) the disconnect()
626  * or suspend() method will block waiting for a device reset to complete.
627  *
628  * Return: A negative error code for failure, otherwise 0.
629  */
630 int usb_lock_device_for_reset(struct usb_device *udev,
631 			      const struct usb_interface *iface)
632 {
633 	unsigned long jiffies_expire = jiffies + HZ;
634 
635 	if (udev->state == USB_STATE_NOTATTACHED)
636 		return -ENODEV;
637 	if (udev->state == USB_STATE_SUSPENDED)
638 		return -EHOSTUNREACH;
639 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
640 			iface->condition == USB_INTERFACE_UNBOUND))
641 		return -EINTR;
642 
643 	while (!usb_trylock_device(udev)) {
644 
645 		/* If we can't acquire the lock after waiting one second,
646 		 * we're probably deadlocked */
647 		if (time_after(jiffies, jiffies_expire))
648 			return -EBUSY;
649 
650 		msleep(15);
651 		if (udev->state == USB_STATE_NOTATTACHED)
652 			return -ENODEV;
653 		if (udev->state == USB_STATE_SUSPENDED)
654 			return -EHOSTUNREACH;
655 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
656 				iface->condition == USB_INTERFACE_UNBOUND))
657 			return -EINTR;
658 	}
659 	return 0;
660 }
661 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
662 
663 /**
664  * usb_get_current_frame_number - return current bus frame number
665  * @dev: the device whose bus is being queried
666  *
667  * Return: The current frame number for the USB host controller used
668  * with the given USB device. This can be used when scheduling
669  * isochronous requests.
670  *
671  * Note: Different kinds of host controller have different "scheduling
672  * horizons". While one type might support scheduling only 32 frames
673  * into the future, others could support scheduling up to 1024 frames
674  * into the future.
675  *
676  */
677 int usb_get_current_frame_number(struct usb_device *dev)
678 {
679 	return usb_hcd_get_frame_number(dev);
680 }
681 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
682 
683 /*-------------------------------------------------------------------*/
684 /*
685  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
686  * extra field of the interface and endpoint descriptor structs.
687  */
688 
689 int __usb_get_extra_descriptor(char *buffer, unsigned size,
690 			       unsigned char type, void **ptr)
691 {
692 	struct usb_descriptor_header *header;
693 
694 	while (size >= sizeof(struct usb_descriptor_header)) {
695 		header = (struct usb_descriptor_header *)buffer;
696 
697 		if (header->bLength < 2) {
698 			printk(KERN_ERR
699 				"%s: bogus descriptor, type %d length %d\n",
700 				usbcore_name,
701 				header->bDescriptorType,
702 				header->bLength);
703 			return -1;
704 		}
705 
706 		if (header->bDescriptorType == type) {
707 			*ptr = header;
708 			return 0;
709 		}
710 
711 		buffer += header->bLength;
712 		size -= header->bLength;
713 	}
714 	return -1;
715 }
716 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
717 
718 /**
719  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
720  * @dev: device the buffer will be used with
721  * @size: requested buffer size
722  * @mem_flags: affect whether allocation may block
723  * @dma: used to return DMA address of buffer
724  *
725  * Return: Either null (indicating no buffer could be allocated), or the
726  * cpu-space pointer to a buffer that may be used to perform DMA to the
727  * specified device.  Such cpu-space buffers are returned along with the DMA
728  * address (through the pointer provided).
729  *
730  * Note:
731  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
732  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
733  * hardware during URB completion/resubmit.  The implementation varies between
734  * platforms, depending on details of how DMA will work to this device.
735  * Using these buffers also eliminates cacheline sharing problems on
736  * architectures where CPU caches are not DMA-coherent.  On systems without
737  * bus-snooping caches, these buffers are uncached.
738  *
739  * When the buffer is no longer used, free it with usb_free_coherent().
740  */
741 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
742 			 dma_addr_t *dma)
743 {
744 	if (!dev || !dev->bus)
745 		return NULL;
746 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
747 }
748 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
749 
750 /**
751  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
752  * @dev: device the buffer was used with
753  * @size: requested buffer size
754  * @addr: CPU address of buffer
755  * @dma: DMA address of buffer
756  *
757  * This reclaims an I/O buffer, letting it be reused.  The memory must have
758  * been allocated using usb_alloc_coherent(), and the parameters must match
759  * those provided in that allocation request.
760  */
761 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
762 		       dma_addr_t dma)
763 {
764 	if (!dev || !dev->bus)
765 		return;
766 	if (!addr)
767 		return;
768 	hcd_buffer_free(dev->bus, size, addr, dma);
769 }
770 EXPORT_SYMBOL_GPL(usb_free_coherent);
771 
772 /**
773  * usb_buffer_map - create DMA mapping(s) for an urb
774  * @urb: urb whose transfer_buffer/setup_packet will be mapped
775  *
776  * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
777  * succeeds. If the device is connected to this system through a non-DMA
778  * controller, this operation always succeeds.
779  *
780  * This call would normally be used for an urb which is reused, perhaps
781  * as the target of a large periodic transfer, with usb_buffer_dmasync()
782  * calls to synchronize memory and dma state.
783  *
784  * Reverse the effect of this call with usb_buffer_unmap().
785  *
786  * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
787  *
788  */
789 #if 0
790 struct urb *usb_buffer_map(struct urb *urb)
791 {
792 	struct usb_bus		*bus;
793 	struct device		*controller;
794 
795 	if (!urb
796 			|| !urb->dev
797 			|| !(bus = urb->dev->bus)
798 			|| !(controller = bus->controller))
799 		return NULL;
800 
801 	if (controller->dma_mask) {
802 		urb->transfer_dma = dma_map_single(controller,
803 			urb->transfer_buffer, urb->transfer_buffer_length,
804 			usb_pipein(urb->pipe)
805 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
806 	/* FIXME generic api broken like pci, can't report errors */
807 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
808 	} else
809 		urb->transfer_dma = ~0;
810 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
811 	return urb;
812 }
813 EXPORT_SYMBOL_GPL(usb_buffer_map);
814 #endif  /*  0  */
815 
816 /* XXX DISABLED, no users currently.  If you wish to re-enable this
817  * XXX please determine whether the sync is to transfer ownership of
818  * XXX the buffer from device to cpu or vice verse, and thusly use the
819  * XXX appropriate _for_{cpu,device}() method.  -DaveM
820  */
821 #if 0
822 
823 /**
824  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
825  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
826  */
827 void usb_buffer_dmasync(struct urb *urb)
828 {
829 	struct usb_bus		*bus;
830 	struct device		*controller;
831 
832 	if (!urb
833 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
834 			|| !urb->dev
835 			|| !(bus = urb->dev->bus)
836 			|| !(controller = bus->controller))
837 		return;
838 
839 	if (controller->dma_mask) {
840 		dma_sync_single_for_cpu(controller,
841 			urb->transfer_dma, urb->transfer_buffer_length,
842 			usb_pipein(urb->pipe)
843 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
844 		if (usb_pipecontrol(urb->pipe))
845 			dma_sync_single_for_cpu(controller,
846 					urb->setup_dma,
847 					sizeof(struct usb_ctrlrequest),
848 					DMA_TO_DEVICE);
849 	}
850 }
851 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
852 #endif
853 
854 /**
855  * usb_buffer_unmap - free DMA mapping(s) for an urb
856  * @urb: urb whose transfer_buffer will be unmapped
857  *
858  * Reverses the effect of usb_buffer_map().
859  */
860 #if 0
861 void usb_buffer_unmap(struct urb *urb)
862 {
863 	struct usb_bus		*bus;
864 	struct device		*controller;
865 
866 	if (!urb
867 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
868 			|| !urb->dev
869 			|| !(bus = urb->dev->bus)
870 			|| !(controller = bus->controller))
871 		return;
872 
873 	if (controller->dma_mask) {
874 		dma_unmap_single(controller,
875 			urb->transfer_dma, urb->transfer_buffer_length,
876 			usb_pipein(urb->pipe)
877 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
878 	}
879 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
880 }
881 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
882 #endif  /*  0  */
883 
884 #if 0
885 /**
886  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
887  * @dev: device to which the scatterlist will be mapped
888  * @is_in: mapping transfer direction
889  * @sg: the scatterlist to map
890  * @nents: the number of entries in the scatterlist
891  *
892  * Return: Either < 0 (indicating no buffers could be mapped), or the
893  * number of DMA mapping array entries in the scatterlist.
894  *
895  * Note:
896  * The caller is responsible for placing the resulting DMA addresses from
897  * the scatterlist into URB transfer buffer pointers, and for setting the
898  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
899  *
900  * Top I/O rates come from queuing URBs, instead of waiting for each one
901  * to complete before starting the next I/O.   This is particularly easy
902  * to do with scatterlists.  Just allocate and submit one URB for each DMA
903  * mapping entry returned, stopping on the first error or when all succeed.
904  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
905  *
906  * This call would normally be used when translating scatterlist requests,
907  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
908  * may be able to coalesce mappings for improved I/O efficiency.
909  *
910  * Reverse the effect of this call with usb_buffer_unmap_sg().
911  */
912 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
913 		      struct scatterlist *sg, int nents)
914 {
915 	struct usb_bus		*bus;
916 	struct device		*controller;
917 
918 	if (!dev
919 			|| !(bus = dev->bus)
920 			|| !(controller = bus->controller)
921 			|| !controller->dma_mask)
922 		return -EINVAL;
923 
924 	/* FIXME generic api broken like pci, can't report errors */
925 	return dma_map_sg(controller, sg, nents,
926 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
927 }
928 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
929 #endif
930 
931 /* XXX DISABLED, no users currently.  If you wish to re-enable this
932  * XXX please determine whether the sync is to transfer ownership of
933  * XXX the buffer from device to cpu or vice verse, and thusly use the
934  * XXX appropriate _for_{cpu,device}() method.  -DaveM
935  */
936 #if 0
937 
938 /**
939  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
940  * @dev: device to which the scatterlist will be mapped
941  * @is_in: mapping transfer direction
942  * @sg: the scatterlist to synchronize
943  * @n_hw_ents: the positive return value from usb_buffer_map_sg
944  *
945  * Use this when you are re-using a scatterlist's data buffers for
946  * another USB request.
947  */
948 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
949 			   struct scatterlist *sg, int n_hw_ents)
950 {
951 	struct usb_bus		*bus;
952 	struct device		*controller;
953 
954 	if (!dev
955 			|| !(bus = dev->bus)
956 			|| !(controller = bus->controller)
957 			|| !controller->dma_mask)
958 		return;
959 
960 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
961 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
962 }
963 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
964 #endif
965 
966 #if 0
967 /**
968  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
969  * @dev: device to which the scatterlist will be mapped
970  * @is_in: mapping transfer direction
971  * @sg: the scatterlist to unmap
972  * @n_hw_ents: the positive return value from usb_buffer_map_sg
973  *
974  * Reverses the effect of usb_buffer_map_sg().
975  */
976 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
977 			 struct scatterlist *sg, int n_hw_ents)
978 {
979 	struct usb_bus		*bus;
980 	struct device		*controller;
981 
982 	if (!dev
983 			|| !(bus = dev->bus)
984 			|| !(controller = bus->controller)
985 			|| !controller->dma_mask)
986 		return;
987 
988 	dma_unmap_sg(controller, sg, n_hw_ents,
989 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
990 }
991 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
992 #endif
993 
994 /*
995  * Notifications of device and interface registration
996  */
997 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
998 		void *data)
999 {
1000 	struct device *dev = data;
1001 
1002 	switch (action) {
1003 	case BUS_NOTIFY_ADD_DEVICE:
1004 		if (dev->type == &usb_device_type)
1005 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1006 		else if (dev->type == &usb_if_device_type)
1007 			usb_create_sysfs_intf_files(to_usb_interface(dev));
1008 		break;
1009 
1010 	case BUS_NOTIFY_DEL_DEVICE:
1011 		if (dev->type == &usb_device_type)
1012 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1013 		else if (dev->type == &usb_if_device_type)
1014 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1015 		break;
1016 	}
1017 	return 0;
1018 }
1019 
1020 static struct notifier_block usb_bus_nb = {
1021 	.notifier_call = usb_bus_notify,
1022 };
1023 
1024 struct dentry *usb_debug_root;
1025 EXPORT_SYMBOL_GPL(usb_debug_root);
1026 
1027 static struct dentry *usb_debug_devices;
1028 
1029 static int usb_debugfs_init(void)
1030 {
1031 	usb_debug_root = debugfs_create_dir("usb", NULL);
1032 	if (!usb_debug_root)
1033 		return -ENOENT;
1034 
1035 	usb_debug_devices = debugfs_create_file("devices", 0444,
1036 						usb_debug_root, NULL,
1037 						&usbfs_devices_fops);
1038 	if (!usb_debug_devices) {
1039 		debugfs_remove(usb_debug_root);
1040 		usb_debug_root = NULL;
1041 		return -ENOENT;
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 static void usb_debugfs_cleanup(void)
1048 {
1049 	debugfs_remove(usb_debug_devices);
1050 	debugfs_remove(usb_debug_root);
1051 }
1052 
1053 /*
1054  * Init
1055  */
1056 static int __init usb_init(void)
1057 {
1058 	int retval;
1059 	if (usb_disabled()) {
1060 		pr_info("%s: USB support disabled\n", usbcore_name);
1061 		return 0;
1062 	}
1063 	usb_init_pool_max();
1064 
1065 	retval = usb_debugfs_init();
1066 	if (retval)
1067 		goto out;
1068 
1069 	usb_acpi_register();
1070 	retval = bus_register(&usb_bus_type);
1071 	if (retval)
1072 		goto bus_register_failed;
1073 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1074 	if (retval)
1075 		goto bus_notifier_failed;
1076 	retval = usb_major_init();
1077 	if (retval)
1078 		goto major_init_failed;
1079 	retval = usb_register(&usbfs_driver);
1080 	if (retval)
1081 		goto driver_register_failed;
1082 	retval = usb_devio_init();
1083 	if (retval)
1084 		goto usb_devio_init_failed;
1085 	retval = usb_hub_init();
1086 	if (retval)
1087 		goto hub_init_failed;
1088 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1089 	if (!retval)
1090 		goto out;
1091 
1092 	usb_hub_cleanup();
1093 hub_init_failed:
1094 	usb_devio_cleanup();
1095 usb_devio_init_failed:
1096 	usb_deregister(&usbfs_driver);
1097 driver_register_failed:
1098 	usb_major_cleanup();
1099 major_init_failed:
1100 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1101 bus_notifier_failed:
1102 	bus_unregister(&usb_bus_type);
1103 bus_register_failed:
1104 	usb_acpi_unregister();
1105 	usb_debugfs_cleanup();
1106 out:
1107 	return retval;
1108 }
1109 
1110 /*
1111  * Cleanup
1112  */
1113 static void __exit usb_exit(void)
1114 {
1115 	/* This will matter if shutdown/reboot does exitcalls. */
1116 	if (usb_disabled())
1117 		return;
1118 
1119 	usb_deregister_device_driver(&usb_generic_driver);
1120 	usb_major_cleanup();
1121 	usb_deregister(&usbfs_driver);
1122 	usb_devio_cleanup();
1123 	usb_hub_cleanup();
1124 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1125 	bus_unregister(&usb_bus_type);
1126 	usb_acpi_unregister();
1127 	usb_debugfs_cleanup();
1128 	idr_destroy(&usb_bus_idr);
1129 }
1130 
1131 subsys_initcall(usb_init);
1132 module_exit(usb_exit);
1133 MODULE_LICENSE("GPL");
1134