xref: /linux/drivers/usb/core/usb.c (revision 37f0e658eeeac720f3d558cf5aaf9edf0705ff23)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39 #include <linux/usb/of.h>
40 
41 #include <asm/io.h>
42 #include <linux/scatterlist.h>
43 #include <linux/mm.h>
44 #include <linux/dma-mapping.h>
45 
46 #include "usb.h"
47 
48 
49 const char *usbcore_name = "usbcore";
50 
51 static bool nousb;	/* Disable USB when built into kernel image */
52 
53 module_param(nousb, bool, 0444);
54 
55 /*
56  * for external read access to <nousb>
57  */
58 int usb_disabled(void)
59 {
60 	return nousb;
61 }
62 EXPORT_SYMBOL_GPL(usb_disabled);
63 
64 #ifdef	CONFIG_PM
65 static int usb_autosuspend_delay = 2;		/* Default delay value,
66 						 * in seconds */
67 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
68 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
69 
70 #else
71 #define usb_autosuspend_delay		0
72 #endif
73 
74 
75 /**
76  * usb_find_alt_setting() - Given a configuration, find the alternate setting
77  * for the given interface.
78  * @config: the configuration to search (not necessarily the current config).
79  * @iface_num: interface number to search in
80  * @alt_num: alternate interface setting number to search for.
81  *
82  * Search the configuration's interface cache for the given alt setting.
83  *
84  * Return: The alternate setting, if found. %NULL otherwise.
85  */
86 struct usb_host_interface *usb_find_alt_setting(
87 		struct usb_host_config *config,
88 		unsigned int iface_num,
89 		unsigned int alt_num)
90 {
91 	struct usb_interface_cache *intf_cache = NULL;
92 	int i;
93 
94 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
95 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
96 				== iface_num) {
97 			intf_cache = config->intf_cache[i];
98 			break;
99 		}
100 	}
101 	if (!intf_cache)
102 		return NULL;
103 	for (i = 0; i < intf_cache->num_altsetting; i++)
104 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
105 			return &intf_cache->altsetting[i];
106 
107 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
108 			"config %u\n", alt_num, iface_num,
109 			config->desc.bConfigurationValue);
110 	return NULL;
111 }
112 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
113 
114 /**
115  * usb_ifnum_to_if - get the interface object with a given interface number
116  * @dev: the device whose current configuration is considered
117  * @ifnum: the desired interface
118  *
119  * This walks the device descriptor for the currently active configuration
120  * to find the interface object with the particular interface number.
121  *
122  * Note that configuration descriptors are not required to assign interface
123  * numbers sequentially, so that it would be incorrect to assume that
124  * the first interface in that descriptor corresponds to interface zero.
125  * This routine helps device drivers avoid such mistakes.
126  * However, you should make sure that you do the right thing with any
127  * alternate settings available for this interfaces.
128  *
129  * Don't call this function unless you are bound to one of the interfaces
130  * on this device or you have locked the device!
131  *
132  * Return: A pointer to the interface that has @ifnum as interface number,
133  * if found. %NULL otherwise.
134  */
135 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
136 				      unsigned ifnum)
137 {
138 	struct usb_host_config *config = dev->actconfig;
139 	int i;
140 
141 	if (!config)
142 		return NULL;
143 	for (i = 0; i < config->desc.bNumInterfaces; i++)
144 		if (config->interface[i]->altsetting[0]
145 				.desc.bInterfaceNumber == ifnum)
146 			return config->interface[i];
147 
148 	return NULL;
149 }
150 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
151 
152 /**
153  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
154  * @intf: the interface containing the altsetting in question
155  * @altnum: the desired alternate setting number
156  *
157  * This searches the altsetting array of the specified interface for
158  * an entry with the correct bAlternateSetting value.
159  *
160  * Note that altsettings need not be stored sequentially by number, so
161  * it would be incorrect to assume that the first altsetting entry in
162  * the array corresponds to altsetting zero.  This routine helps device
163  * drivers avoid such mistakes.
164  *
165  * Don't call this function unless you are bound to the intf interface
166  * or you have locked the device!
167  *
168  * Return: A pointer to the entry of the altsetting array of @intf that
169  * has @altnum as the alternate setting number. %NULL if not found.
170  */
171 struct usb_host_interface *usb_altnum_to_altsetting(
172 					const struct usb_interface *intf,
173 					unsigned int altnum)
174 {
175 	int i;
176 
177 	for (i = 0; i < intf->num_altsetting; i++) {
178 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
179 			return &intf->altsetting[i];
180 	}
181 	return NULL;
182 }
183 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
184 
185 struct find_interface_arg {
186 	int minor;
187 	struct device_driver *drv;
188 };
189 
190 static int __find_interface(struct device *dev, void *data)
191 {
192 	struct find_interface_arg *arg = data;
193 	struct usb_interface *intf;
194 
195 	if (!is_usb_interface(dev))
196 		return 0;
197 
198 	if (dev->driver != arg->drv)
199 		return 0;
200 	intf = to_usb_interface(dev);
201 	return intf->minor == arg->minor;
202 }
203 
204 /**
205  * usb_find_interface - find usb_interface pointer for driver and device
206  * @drv: the driver whose current configuration is considered
207  * @minor: the minor number of the desired device
208  *
209  * This walks the bus device list and returns a pointer to the interface
210  * with the matching minor and driver.  Note, this only works for devices
211  * that share the USB major number.
212  *
213  * Return: A pointer to the interface with the matching major and @minor.
214  */
215 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
216 {
217 	struct find_interface_arg argb;
218 	struct device *dev;
219 
220 	argb.minor = minor;
221 	argb.drv = &drv->drvwrap.driver;
222 
223 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
224 
225 	/* Drop reference count from bus_find_device */
226 	put_device(dev);
227 
228 	return dev ? to_usb_interface(dev) : NULL;
229 }
230 EXPORT_SYMBOL_GPL(usb_find_interface);
231 
232 struct each_dev_arg {
233 	void *data;
234 	int (*fn)(struct usb_device *, void *);
235 };
236 
237 static int __each_dev(struct device *dev, void *data)
238 {
239 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
240 
241 	/* There are struct usb_interface on the same bus, filter them out */
242 	if (!is_usb_device(dev))
243 		return 0;
244 
245 	return arg->fn(to_usb_device(dev), arg->data);
246 }
247 
248 /**
249  * usb_for_each_dev - iterate over all USB devices in the system
250  * @data: data pointer that will be handed to the callback function
251  * @fn: callback function to be called for each USB device
252  *
253  * Iterate over all USB devices and call @fn for each, passing it @data. If it
254  * returns anything other than 0, we break the iteration prematurely and return
255  * that value.
256  */
257 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
258 {
259 	struct each_dev_arg arg = {data, fn};
260 
261 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
262 }
263 EXPORT_SYMBOL_GPL(usb_for_each_dev);
264 
265 /**
266  * usb_release_dev - free a usb device structure when all users of it are finished.
267  * @dev: device that's been disconnected
268  *
269  * Will be called only by the device core when all users of this usb device are
270  * done.
271  */
272 static void usb_release_dev(struct device *dev)
273 {
274 	struct usb_device *udev;
275 	struct usb_hcd *hcd;
276 
277 	udev = to_usb_device(dev);
278 	hcd = bus_to_hcd(udev->bus);
279 
280 	usb_destroy_configuration(udev);
281 	usb_release_bos_descriptor(udev);
282 	usb_put_hcd(hcd);
283 	kfree(udev->product);
284 	kfree(udev->manufacturer);
285 	kfree(udev->serial);
286 	kfree(udev);
287 }
288 
289 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
290 {
291 	struct usb_device *usb_dev;
292 
293 	usb_dev = to_usb_device(dev);
294 
295 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
296 		return -ENOMEM;
297 
298 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
299 		return -ENOMEM;
300 
301 	return 0;
302 }
303 
304 #ifdef	CONFIG_PM
305 
306 /* USB device Power-Management thunks.
307  * There's no need to distinguish here between quiescing a USB device
308  * and powering it down; the generic_suspend() routine takes care of
309  * it by skipping the usb_port_suspend() call for a quiesce.  And for
310  * USB interfaces there's no difference at all.
311  */
312 
313 static int usb_dev_prepare(struct device *dev)
314 {
315 	return 0;		/* Implement eventually? */
316 }
317 
318 static void usb_dev_complete(struct device *dev)
319 {
320 	/* Currently used only for rebinding interfaces */
321 	usb_resume_complete(dev);
322 }
323 
324 static int usb_dev_suspend(struct device *dev)
325 {
326 	return usb_suspend(dev, PMSG_SUSPEND);
327 }
328 
329 static int usb_dev_resume(struct device *dev)
330 {
331 	return usb_resume(dev, PMSG_RESUME);
332 }
333 
334 static int usb_dev_freeze(struct device *dev)
335 {
336 	return usb_suspend(dev, PMSG_FREEZE);
337 }
338 
339 static int usb_dev_thaw(struct device *dev)
340 {
341 	return usb_resume(dev, PMSG_THAW);
342 }
343 
344 static int usb_dev_poweroff(struct device *dev)
345 {
346 	return usb_suspend(dev, PMSG_HIBERNATE);
347 }
348 
349 static int usb_dev_restore(struct device *dev)
350 {
351 	return usb_resume(dev, PMSG_RESTORE);
352 }
353 
354 static const struct dev_pm_ops usb_device_pm_ops = {
355 	.prepare =	usb_dev_prepare,
356 	.complete =	usb_dev_complete,
357 	.suspend =	usb_dev_suspend,
358 	.resume =	usb_dev_resume,
359 	.freeze =	usb_dev_freeze,
360 	.thaw =		usb_dev_thaw,
361 	.poweroff =	usb_dev_poweroff,
362 	.restore =	usb_dev_restore,
363 	.runtime_suspend =	usb_runtime_suspend,
364 	.runtime_resume =	usb_runtime_resume,
365 	.runtime_idle =		usb_runtime_idle,
366 };
367 
368 #endif	/* CONFIG_PM */
369 
370 
371 static char *usb_devnode(struct device *dev,
372 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
373 {
374 	struct usb_device *usb_dev;
375 
376 	usb_dev = to_usb_device(dev);
377 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
378 			 usb_dev->bus->busnum, usb_dev->devnum);
379 }
380 
381 struct device_type usb_device_type = {
382 	.name =		"usb_device",
383 	.release =	usb_release_dev,
384 	.uevent =	usb_dev_uevent,
385 	.devnode = 	usb_devnode,
386 #ifdef CONFIG_PM
387 	.pm =		&usb_device_pm_ops,
388 #endif
389 };
390 
391 
392 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
393 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
394 {
395 	struct usb_hcd *hcd = bus_to_hcd(bus);
396 	return hcd->wireless;
397 }
398 
399 
400 /**
401  * usb_alloc_dev - usb device constructor (usbcore-internal)
402  * @parent: hub to which device is connected; null to allocate a root hub
403  * @bus: bus used to access the device
404  * @port1: one-based index of port; ignored for root hubs
405  * Context: !in_interrupt()
406  *
407  * Only hub drivers (including virtual root hub drivers for host
408  * controllers) should ever call this.
409  *
410  * This call may not be used in a non-sleeping context.
411  *
412  * Return: On success, a pointer to the allocated usb device. %NULL on
413  * failure.
414  */
415 struct usb_device *usb_alloc_dev(struct usb_device *parent,
416 				 struct usb_bus *bus, unsigned port1)
417 {
418 	struct usb_device *dev;
419 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
420 	unsigned root_hub = 0;
421 	unsigned raw_port = port1;
422 
423 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
424 	if (!dev)
425 		return NULL;
426 
427 	if (!usb_get_hcd(usb_hcd)) {
428 		kfree(dev);
429 		return NULL;
430 	}
431 	/* Root hubs aren't true devices, so don't allocate HCD resources */
432 	if (usb_hcd->driver->alloc_dev && parent &&
433 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
434 		usb_put_hcd(bus_to_hcd(bus));
435 		kfree(dev);
436 		return NULL;
437 	}
438 
439 	device_initialize(&dev->dev);
440 	dev->dev.bus = &usb_bus_type;
441 	dev->dev.type = &usb_device_type;
442 	dev->dev.groups = usb_device_groups;
443 	dev->dev.dma_mask = bus->controller->dma_mask;
444 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
445 	dev->state = USB_STATE_ATTACHED;
446 	dev->lpm_disable_count = 1;
447 	atomic_set(&dev->urbnum, 0);
448 
449 	INIT_LIST_HEAD(&dev->ep0.urb_list);
450 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
451 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
452 	/* ep0 maxpacket comes later, from device descriptor */
453 	usb_enable_endpoint(dev, &dev->ep0, false);
454 	dev->can_submit = 1;
455 
456 	/* Save readable and stable topology id, distinguishing devices
457 	 * by location for diagnostics, tools, driver model, etc.  The
458 	 * string is a path along hub ports, from the root.  Each device's
459 	 * dev->devpath will be stable until USB is re-cabled, and hubs
460 	 * are often labeled with these port numbers.  The name isn't
461 	 * as stable:  bus->busnum changes easily from modprobe order,
462 	 * cardbus or pci hotplugging, and so on.
463 	 */
464 	if (unlikely(!parent)) {
465 		dev->devpath[0] = '0';
466 		dev->route = 0;
467 
468 		dev->dev.parent = bus->controller;
469 		dev->dev.of_node = bus->controller->of_node;
470 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
471 		root_hub = 1;
472 	} else {
473 		/* match any labeling on the hubs; it's one-based */
474 		if (parent->devpath[0] == '0') {
475 			snprintf(dev->devpath, sizeof dev->devpath,
476 				"%d", port1);
477 			/* Root ports are not counted in route string */
478 			dev->route = 0;
479 		} else {
480 			snprintf(dev->devpath, sizeof dev->devpath,
481 				"%s.%d", parent->devpath, port1);
482 			/* Route string assumes hubs have less than 16 ports */
483 			if (port1 < 15)
484 				dev->route = parent->route +
485 					(port1 << ((parent->level - 1)*4));
486 			else
487 				dev->route = parent->route +
488 					(15 << ((parent->level - 1)*4));
489 		}
490 
491 		dev->dev.parent = &parent->dev;
492 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
493 
494 		if (!parent->parent) {
495 			/* device under root hub's port */
496 			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
497 				port1);
498 		}
499 		dev->dev.of_node = usb_of_get_child_node(parent->dev.of_node,
500 				raw_port);
501 
502 		/* hub driver sets up TT records */
503 	}
504 
505 	dev->portnum = port1;
506 	dev->bus = bus;
507 	dev->parent = parent;
508 	INIT_LIST_HEAD(&dev->filelist);
509 
510 #ifdef	CONFIG_PM
511 	pm_runtime_set_autosuspend_delay(&dev->dev,
512 			usb_autosuspend_delay * 1000);
513 	dev->connect_time = jiffies;
514 	dev->active_duration = -jiffies;
515 #endif
516 	if (root_hub)	/* Root hub always ok [and always wired] */
517 		dev->authorized = 1;
518 	else {
519 		dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
520 		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
521 	}
522 	return dev;
523 }
524 EXPORT_SYMBOL_GPL(usb_alloc_dev);
525 
526 /**
527  * usb_get_dev - increments the reference count of the usb device structure
528  * @dev: the device being referenced
529  *
530  * Each live reference to a device should be refcounted.
531  *
532  * Drivers for USB interfaces should normally record such references in
533  * their probe() methods, when they bind to an interface, and release
534  * them by calling usb_put_dev(), in their disconnect() methods.
535  *
536  * Return: A pointer to the device with the incremented reference counter.
537  */
538 struct usb_device *usb_get_dev(struct usb_device *dev)
539 {
540 	if (dev)
541 		get_device(&dev->dev);
542 	return dev;
543 }
544 EXPORT_SYMBOL_GPL(usb_get_dev);
545 
546 /**
547  * usb_put_dev - release a use of the usb device structure
548  * @dev: device that's been disconnected
549  *
550  * Must be called when a user of a device is finished with it.  When the last
551  * user of the device calls this function, the memory of the device is freed.
552  */
553 void usb_put_dev(struct usb_device *dev)
554 {
555 	if (dev)
556 		put_device(&dev->dev);
557 }
558 EXPORT_SYMBOL_GPL(usb_put_dev);
559 
560 /**
561  * usb_get_intf - increments the reference count of the usb interface structure
562  * @intf: the interface being referenced
563  *
564  * Each live reference to a interface must be refcounted.
565  *
566  * Drivers for USB interfaces should normally record such references in
567  * their probe() methods, when they bind to an interface, and release
568  * them by calling usb_put_intf(), in their disconnect() methods.
569  *
570  * Return: A pointer to the interface with the incremented reference counter.
571  */
572 struct usb_interface *usb_get_intf(struct usb_interface *intf)
573 {
574 	if (intf)
575 		get_device(&intf->dev);
576 	return intf;
577 }
578 EXPORT_SYMBOL_GPL(usb_get_intf);
579 
580 /**
581  * usb_put_intf - release a use of the usb interface structure
582  * @intf: interface that's been decremented
583  *
584  * Must be called when a user of an interface is finished with it.  When the
585  * last user of the interface calls this function, the memory of the interface
586  * is freed.
587  */
588 void usb_put_intf(struct usb_interface *intf)
589 {
590 	if (intf)
591 		put_device(&intf->dev);
592 }
593 EXPORT_SYMBOL_GPL(usb_put_intf);
594 
595 /*			USB device locking
596  *
597  * USB devices and interfaces are locked using the semaphore in their
598  * embedded struct device.  The hub driver guarantees that whenever a
599  * device is connected or disconnected, drivers are called with the
600  * USB device locked as well as their particular interface.
601  *
602  * Complications arise when several devices are to be locked at the same
603  * time.  Only hub-aware drivers that are part of usbcore ever have to
604  * do this; nobody else needs to worry about it.  The rule for locking
605  * is simple:
606  *
607  *	When locking both a device and its parent, always lock the
608  *	the parent first.
609  */
610 
611 /**
612  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
613  * @udev: device that's being locked
614  * @iface: interface bound to the driver making the request (optional)
615  *
616  * Attempts to acquire the device lock, but fails if the device is
617  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
618  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
619  * lock, the routine polls repeatedly.  This is to prevent deadlock with
620  * disconnect; in some drivers (such as usb-storage) the disconnect()
621  * or suspend() method will block waiting for a device reset to complete.
622  *
623  * Return: A negative error code for failure, otherwise 0.
624  */
625 int usb_lock_device_for_reset(struct usb_device *udev,
626 			      const struct usb_interface *iface)
627 {
628 	unsigned long jiffies_expire = jiffies + HZ;
629 
630 	if (udev->state == USB_STATE_NOTATTACHED)
631 		return -ENODEV;
632 	if (udev->state == USB_STATE_SUSPENDED)
633 		return -EHOSTUNREACH;
634 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
635 			iface->condition == USB_INTERFACE_UNBOUND))
636 		return -EINTR;
637 
638 	while (!usb_trylock_device(udev)) {
639 
640 		/* If we can't acquire the lock after waiting one second,
641 		 * we're probably deadlocked */
642 		if (time_after(jiffies, jiffies_expire))
643 			return -EBUSY;
644 
645 		msleep(15);
646 		if (udev->state == USB_STATE_NOTATTACHED)
647 			return -ENODEV;
648 		if (udev->state == USB_STATE_SUSPENDED)
649 			return -EHOSTUNREACH;
650 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
651 				iface->condition == USB_INTERFACE_UNBOUND))
652 			return -EINTR;
653 	}
654 	return 0;
655 }
656 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
657 
658 /**
659  * usb_get_current_frame_number - return current bus frame number
660  * @dev: the device whose bus is being queried
661  *
662  * Return: The current frame number for the USB host controller used
663  * with the given USB device. This can be used when scheduling
664  * isochronous requests.
665  *
666  * Note: Different kinds of host controller have different "scheduling
667  * horizons". While one type might support scheduling only 32 frames
668  * into the future, others could support scheduling up to 1024 frames
669  * into the future.
670  *
671  */
672 int usb_get_current_frame_number(struct usb_device *dev)
673 {
674 	return usb_hcd_get_frame_number(dev);
675 }
676 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
677 
678 /*-------------------------------------------------------------------*/
679 /*
680  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
681  * extra field of the interface and endpoint descriptor structs.
682  */
683 
684 int __usb_get_extra_descriptor(char *buffer, unsigned size,
685 			       unsigned char type, void **ptr)
686 {
687 	struct usb_descriptor_header *header;
688 
689 	while (size >= sizeof(struct usb_descriptor_header)) {
690 		header = (struct usb_descriptor_header *)buffer;
691 
692 		if (header->bLength < 2) {
693 			printk(KERN_ERR
694 				"%s: bogus descriptor, type %d length %d\n",
695 				usbcore_name,
696 				header->bDescriptorType,
697 				header->bLength);
698 			return -1;
699 		}
700 
701 		if (header->bDescriptorType == type) {
702 			*ptr = header;
703 			return 0;
704 		}
705 
706 		buffer += header->bLength;
707 		size -= header->bLength;
708 	}
709 	return -1;
710 }
711 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
712 
713 /**
714  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
715  * @dev: device the buffer will be used with
716  * @size: requested buffer size
717  * @mem_flags: affect whether allocation may block
718  * @dma: used to return DMA address of buffer
719  *
720  * Return: Either null (indicating no buffer could be allocated), or the
721  * cpu-space pointer to a buffer that may be used to perform DMA to the
722  * specified device.  Such cpu-space buffers are returned along with the DMA
723  * address (through the pointer provided).
724  *
725  * Note:
726  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
727  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
728  * hardware during URB completion/resubmit.  The implementation varies between
729  * platforms, depending on details of how DMA will work to this device.
730  * Using these buffers also eliminates cacheline sharing problems on
731  * architectures where CPU caches are not DMA-coherent.  On systems without
732  * bus-snooping caches, these buffers are uncached.
733  *
734  * When the buffer is no longer used, free it with usb_free_coherent().
735  */
736 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
737 			 dma_addr_t *dma)
738 {
739 	if (!dev || !dev->bus)
740 		return NULL;
741 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
742 }
743 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
744 
745 /**
746  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
747  * @dev: device the buffer was used with
748  * @size: requested buffer size
749  * @addr: CPU address of buffer
750  * @dma: DMA address of buffer
751  *
752  * This reclaims an I/O buffer, letting it be reused.  The memory must have
753  * been allocated using usb_alloc_coherent(), and the parameters must match
754  * those provided in that allocation request.
755  */
756 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
757 		       dma_addr_t dma)
758 {
759 	if (!dev || !dev->bus)
760 		return;
761 	if (!addr)
762 		return;
763 	hcd_buffer_free(dev->bus, size, addr, dma);
764 }
765 EXPORT_SYMBOL_GPL(usb_free_coherent);
766 
767 /**
768  * usb_buffer_map - create DMA mapping(s) for an urb
769  * @urb: urb whose transfer_buffer/setup_packet will be mapped
770  *
771  * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
772  * succeeds. If the device is connected to this system through a non-DMA
773  * controller, this operation always succeeds.
774  *
775  * This call would normally be used for an urb which is reused, perhaps
776  * as the target of a large periodic transfer, with usb_buffer_dmasync()
777  * calls to synchronize memory and dma state.
778  *
779  * Reverse the effect of this call with usb_buffer_unmap().
780  *
781  * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
782  *
783  */
784 #if 0
785 struct urb *usb_buffer_map(struct urb *urb)
786 {
787 	struct usb_bus		*bus;
788 	struct device		*controller;
789 
790 	if (!urb
791 			|| !urb->dev
792 			|| !(bus = urb->dev->bus)
793 			|| !(controller = bus->controller))
794 		return NULL;
795 
796 	if (controller->dma_mask) {
797 		urb->transfer_dma = dma_map_single(controller,
798 			urb->transfer_buffer, urb->transfer_buffer_length,
799 			usb_pipein(urb->pipe)
800 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
801 	/* FIXME generic api broken like pci, can't report errors */
802 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
803 	} else
804 		urb->transfer_dma = ~0;
805 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
806 	return urb;
807 }
808 EXPORT_SYMBOL_GPL(usb_buffer_map);
809 #endif  /*  0  */
810 
811 /* XXX DISABLED, no users currently.  If you wish to re-enable this
812  * XXX please determine whether the sync is to transfer ownership of
813  * XXX the buffer from device to cpu or vice verse, and thusly use the
814  * XXX appropriate _for_{cpu,device}() method.  -DaveM
815  */
816 #if 0
817 
818 /**
819  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
820  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
821  */
822 void usb_buffer_dmasync(struct urb *urb)
823 {
824 	struct usb_bus		*bus;
825 	struct device		*controller;
826 
827 	if (!urb
828 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
829 			|| !urb->dev
830 			|| !(bus = urb->dev->bus)
831 			|| !(controller = bus->controller))
832 		return;
833 
834 	if (controller->dma_mask) {
835 		dma_sync_single_for_cpu(controller,
836 			urb->transfer_dma, urb->transfer_buffer_length,
837 			usb_pipein(urb->pipe)
838 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
839 		if (usb_pipecontrol(urb->pipe))
840 			dma_sync_single_for_cpu(controller,
841 					urb->setup_dma,
842 					sizeof(struct usb_ctrlrequest),
843 					DMA_TO_DEVICE);
844 	}
845 }
846 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
847 #endif
848 
849 /**
850  * usb_buffer_unmap - free DMA mapping(s) for an urb
851  * @urb: urb whose transfer_buffer will be unmapped
852  *
853  * Reverses the effect of usb_buffer_map().
854  */
855 #if 0
856 void usb_buffer_unmap(struct urb *urb)
857 {
858 	struct usb_bus		*bus;
859 	struct device		*controller;
860 
861 	if (!urb
862 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
863 			|| !urb->dev
864 			|| !(bus = urb->dev->bus)
865 			|| !(controller = bus->controller))
866 		return;
867 
868 	if (controller->dma_mask) {
869 		dma_unmap_single(controller,
870 			urb->transfer_dma, urb->transfer_buffer_length,
871 			usb_pipein(urb->pipe)
872 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
873 	}
874 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
875 }
876 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
877 #endif  /*  0  */
878 
879 #if 0
880 /**
881  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
882  * @dev: device to which the scatterlist will be mapped
883  * @is_in: mapping transfer direction
884  * @sg: the scatterlist to map
885  * @nents: the number of entries in the scatterlist
886  *
887  * Return: Either < 0 (indicating no buffers could be mapped), or the
888  * number of DMA mapping array entries in the scatterlist.
889  *
890  * Note:
891  * The caller is responsible for placing the resulting DMA addresses from
892  * the scatterlist into URB transfer buffer pointers, and for setting the
893  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
894  *
895  * Top I/O rates come from queuing URBs, instead of waiting for each one
896  * to complete before starting the next I/O.   This is particularly easy
897  * to do with scatterlists.  Just allocate and submit one URB for each DMA
898  * mapping entry returned, stopping on the first error or when all succeed.
899  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
900  *
901  * This call would normally be used when translating scatterlist requests,
902  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
903  * may be able to coalesce mappings for improved I/O efficiency.
904  *
905  * Reverse the effect of this call with usb_buffer_unmap_sg().
906  */
907 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
908 		      struct scatterlist *sg, int nents)
909 {
910 	struct usb_bus		*bus;
911 	struct device		*controller;
912 
913 	if (!dev
914 			|| !(bus = dev->bus)
915 			|| !(controller = bus->controller)
916 			|| !controller->dma_mask)
917 		return -EINVAL;
918 
919 	/* FIXME generic api broken like pci, can't report errors */
920 	return dma_map_sg(controller, sg, nents,
921 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
922 }
923 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
924 #endif
925 
926 /* XXX DISABLED, no users currently.  If you wish to re-enable this
927  * XXX please determine whether the sync is to transfer ownership of
928  * XXX the buffer from device to cpu or vice verse, and thusly use the
929  * XXX appropriate _for_{cpu,device}() method.  -DaveM
930  */
931 #if 0
932 
933 /**
934  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
935  * @dev: device to which the scatterlist will be mapped
936  * @is_in: mapping transfer direction
937  * @sg: the scatterlist to synchronize
938  * @n_hw_ents: the positive return value from usb_buffer_map_sg
939  *
940  * Use this when you are re-using a scatterlist's data buffers for
941  * another USB request.
942  */
943 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
944 			   struct scatterlist *sg, int n_hw_ents)
945 {
946 	struct usb_bus		*bus;
947 	struct device		*controller;
948 
949 	if (!dev
950 			|| !(bus = dev->bus)
951 			|| !(controller = bus->controller)
952 			|| !controller->dma_mask)
953 		return;
954 
955 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
956 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
957 }
958 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
959 #endif
960 
961 #if 0
962 /**
963  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
964  * @dev: device to which the scatterlist will be mapped
965  * @is_in: mapping transfer direction
966  * @sg: the scatterlist to unmap
967  * @n_hw_ents: the positive return value from usb_buffer_map_sg
968  *
969  * Reverses the effect of usb_buffer_map_sg().
970  */
971 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
972 			 struct scatterlist *sg, int n_hw_ents)
973 {
974 	struct usb_bus		*bus;
975 	struct device		*controller;
976 
977 	if (!dev
978 			|| !(bus = dev->bus)
979 			|| !(controller = bus->controller)
980 			|| !controller->dma_mask)
981 		return;
982 
983 	dma_unmap_sg(controller, sg, n_hw_ents,
984 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
985 }
986 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
987 #endif
988 
989 /*
990  * Notifications of device and interface registration
991  */
992 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
993 		void *data)
994 {
995 	struct device *dev = data;
996 
997 	switch (action) {
998 	case BUS_NOTIFY_ADD_DEVICE:
999 		if (dev->type == &usb_device_type)
1000 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1001 		else if (dev->type == &usb_if_device_type)
1002 			usb_create_sysfs_intf_files(to_usb_interface(dev));
1003 		break;
1004 
1005 	case BUS_NOTIFY_DEL_DEVICE:
1006 		if (dev->type == &usb_device_type)
1007 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1008 		else if (dev->type == &usb_if_device_type)
1009 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1010 		break;
1011 	}
1012 	return 0;
1013 }
1014 
1015 static struct notifier_block usb_bus_nb = {
1016 	.notifier_call = usb_bus_notify,
1017 };
1018 
1019 struct dentry *usb_debug_root;
1020 EXPORT_SYMBOL_GPL(usb_debug_root);
1021 
1022 static struct dentry *usb_debug_devices;
1023 
1024 static int usb_debugfs_init(void)
1025 {
1026 	usb_debug_root = debugfs_create_dir("usb", NULL);
1027 	if (!usb_debug_root)
1028 		return -ENOENT;
1029 
1030 	usb_debug_devices = debugfs_create_file("devices", 0444,
1031 						usb_debug_root, NULL,
1032 						&usbfs_devices_fops);
1033 	if (!usb_debug_devices) {
1034 		debugfs_remove(usb_debug_root);
1035 		usb_debug_root = NULL;
1036 		return -ENOENT;
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 static void usb_debugfs_cleanup(void)
1043 {
1044 	debugfs_remove(usb_debug_devices);
1045 	debugfs_remove(usb_debug_root);
1046 }
1047 
1048 /*
1049  * Init
1050  */
1051 static int __init usb_init(void)
1052 {
1053 	int retval;
1054 	if (usb_disabled()) {
1055 		pr_info("%s: USB support disabled\n", usbcore_name);
1056 		return 0;
1057 	}
1058 	usb_init_pool_max();
1059 
1060 	retval = usb_debugfs_init();
1061 	if (retval)
1062 		goto out;
1063 
1064 	usb_acpi_register();
1065 	retval = bus_register(&usb_bus_type);
1066 	if (retval)
1067 		goto bus_register_failed;
1068 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1069 	if (retval)
1070 		goto bus_notifier_failed;
1071 	retval = usb_major_init();
1072 	if (retval)
1073 		goto major_init_failed;
1074 	retval = usb_register(&usbfs_driver);
1075 	if (retval)
1076 		goto driver_register_failed;
1077 	retval = usb_devio_init();
1078 	if (retval)
1079 		goto usb_devio_init_failed;
1080 	retval = usb_hub_init();
1081 	if (retval)
1082 		goto hub_init_failed;
1083 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1084 	if (!retval)
1085 		goto out;
1086 
1087 	usb_hub_cleanup();
1088 hub_init_failed:
1089 	usb_devio_cleanup();
1090 usb_devio_init_failed:
1091 	usb_deregister(&usbfs_driver);
1092 driver_register_failed:
1093 	usb_major_cleanup();
1094 major_init_failed:
1095 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1096 bus_notifier_failed:
1097 	bus_unregister(&usb_bus_type);
1098 bus_register_failed:
1099 	usb_acpi_unregister();
1100 	usb_debugfs_cleanup();
1101 out:
1102 	return retval;
1103 }
1104 
1105 /*
1106  * Cleanup
1107  */
1108 static void __exit usb_exit(void)
1109 {
1110 	/* This will matter if shutdown/reboot does exitcalls. */
1111 	if (usb_disabled())
1112 		return;
1113 
1114 	usb_deregister_device_driver(&usb_generic_driver);
1115 	usb_major_cleanup();
1116 	usb_deregister(&usbfs_driver);
1117 	usb_devio_cleanup();
1118 	usb_hub_cleanup();
1119 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1120 	bus_unregister(&usb_bus_type);
1121 	usb_acpi_unregister();
1122 	usb_debugfs_cleanup();
1123 	idr_destroy(&usb_bus_idr);
1124 }
1125 
1126 subsys_initcall(usb_init);
1127 module_exit(usb_exit);
1128 MODULE_LICENSE("GPL");
1129