1 /* 2 * drivers/usb/core/usb.c 3 * 4 * (C) Copyright Linus Torvalds 1999 5 * (C) Copyright Johannes Erdfelt 1999-2001 6 * (C) Copyright Andreas Gal 1999 7 * (C) Copyright Gregory P. Smith 1999 8 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 9 * (C) Copyright Randy Dunlap 2000 10 * (C) Copyright David Brownell 2000-2004 11 * (C) Copyright Yggdrasil Computing, Inc. 2000 12 * (usb_device_id matching changes by Adam J. Richter) 13 * (C) Copyright Greg Kroah-Hartman 2002-2003 14 * 15 * NOTE! This is not actually a driver at all, rather this is 16 * just a collection of helper routines that implement the 17 * generic USB things that the real drivers can use.. 18 * 19 * Think of this as a "USB library" rather than anything else. 20 * It should be considered a slave, with no callbacks. Callbacks 21 * are evil. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/string.h> 27 #include <linux/bitops.h> 28 #include <linux/slab.h> 29 #include <linux/interrupt.h> /* for in_interrupt() */ 30 #include <linux/kmod.h> 31 #include <linux/init.h> 32 #include <linux/spinlock.h> 33 #include <linux/errno.h> 34 #include <linux/usb.h> 35 #include <linux/mutex.h> 36 #include <linux/workqueue.h> 37 #include <linux/debugfs.h> 38 39 #include <asm/io.h> 40 #include <linux/scatterlist.h> 41 #include <linux/mm.h> 42 #include <linux/dma-mapping.h> 43 44 #include "hcd.h" 45 #include "usb.h" 46 47 48 const char *usbcore_name = "usbcore"; 49 50 static int nousb; /* Disable USB when built into kernel image */ 51 52 /* Workqueue for autosuspend and for remote wakeup of root hubs */ 53 struct workqueue_struct *ksuspend_usb_wq; 54 55 #ifdef CONFIG_USB_SUSPEND 56 static int usb_autosuspend_delay = 2; /* Default delay value, 57 * in seconds */ 58 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); 59 MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); 60 61 #else 62 #define usb_autosuspend_delay 0 63 #endif 64 65 66 /** 67 * usb_find_alt_setting() - Given a configuration, find the alternate setting 68 * for the given interface. 69 * @config - the configuration to search (not necessarily the current config). 70 * @iface_num - interface number to search in 71 * @alt_num - alternate interface setting number to search for. 72 * 73 * Search the configuration's interface cache for the given alt setting. 74 */ 75 struct usb_host_interface *usb_find_alt_setting( 76 struct usb_host_config *config, 77 unsigned int iface_num, 78 unsigned int alt_num) 79 { 80 struct usb_interface_cache *intf_cache = NULL; 81 int i; 82 83 for (i = 0; i < config->desc.bNumInterfaces; i++) { 84 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber 85 == iface_num) { 86 intf_cache = config->intf_cache[i]; 87 break; 88 } 89 } 90 if (!intf_cache) 91 return NULL; 92 for (i = 0; i < intf_cache->num_altsetting; i++) 93 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num) 94 return &intf_cache->altsetting[i]; 95 96 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, " 97 "config %u\n", alt_num, iface_num, 98 config->desc.bConfigurationValue); 99 return NULL; 100 } 101 EXPORT_SYMBOL_GPL(usb_find_alt_setting); 102 103 /** 104 * usb_ifnum_to_if - get the interface object with a given interface number 105 * @dev: the device whose current configuration is considered 106 * @ifnum: the desired interface 107 * 108 * This walks the device descriptor for the currently active configuration 109 * and returns a pointer to the interface with that particular interface 110 * number, or null. 111 * 112 * Note that configuration descriptors are not required to assign interface 113 * numbers sequentially, so that it would be incorrect to assume that 114 * the first interface in that descriptor corresponds to interface zero. 115 * This routine helps device drivers avoid such mistakes. 116 * However, you should make sure that you do the right thing with any 117 * alternate settings available for this interfaces. 118 * 119 * Don't call this function unless you are bound to one of the interfaces 120 * on this device or you have locked the device! 121 */ 122 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 123 unsigned ifnum) 124 { 125 struct usb_host_config *config = dev->actconfig; 126 int i; 127 128 if (!config) 129 return NULL; 130 for (i = 0; i < config->desc.bNumInterfaces; i++) 131 if (config->interface[i]->altsetting[0] 132 .desc.bInterfaceNumber == ifnum) 133 return config->interface[i]; 134 135 return NULL; 136 } 137 EXPORT_SYMBOL_GPL(usb_ifnum_to_if); 138 139 /** 140 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. 141 * @intf: the interface containing the altsetting in question 142 * @altnum: the desired alternate setting number 143 * 144 * This searches the altsetting array of the specified interface for 145 * an entry with the correct bAlternateSetting value and returns a pointer 146 * to that entry, or null. 147 * 148 * Note that altsettings need not be stored sequentially by number, so 149 * it would be incorrect to assume that the first altsetting entry in 150 * the array corresponds to altsetting zero. This routine helps device 151 * drivers avoid such mistakes. 152 * 153 * Don't call this function unless you are bound to the intf interface 154 * or you have locked the device! 155 */ 156 struct usb_host_interface *usb_altnum_to_altsetting( 157 const struct usb_interface *intf, 158 unsigned int altnum) 159 { 160 int i; 161 162 for (i = 0; i < intf->num_altsetting; i++) { 163 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 164 return &intf->altsetting[i]; 165 } 166 return NULL; 167 } 168 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); 169 170 static int __find_interface(struct device *dev, void *data) 171 { 172 int *minor = data; 173 struct usb_interface *intf; 174 175 if (!is_usb_interface(dev)) 176 return 0; 177 178 intf = to_usb_interface(dev); 179 if (intf->minor != -1 && intf->minor == *minor) 180 return 1; 181 return 0; 182 } 183 184 /** 185 * usb_find_interface - find usb_interface pointer for driver and device 186 * @drv: the driver whose current configuration is considered 187 * @minor: the minor number of the desired device 188 * 189 * This walks the bus device list and returns a pointer to the interface 190 * with the matching minor. Note, this only works for devices that share the 191 * USB major number. 192 */ 193 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 194 { 195 struct device *dev; 196 197 dev = bus_find_device(&usb_bus_type, NULL, &minor, __find_interface); 198 199 /* Drop reference count from bus_find_device */ 200 put_device(dev); 201 202 return dev ? to_usb_interface(dev) : NULL; 203 } 204 EXPORT_SYMBOL_GPL(usb_find_interface); 205 206 /** 207 * usb_release_dev - free a usb device structure when all users of it are finished. 208 * @dev: device that's been disconnected 209 * 210 * Will be called only by the device core when all users of this usb device are 211 * done. 212 */ 213 static void usb_release_dev(struct device *dev) 214 { 215 struct usb_device *udev; 216 struct usb_hcd *hcd; 217 218 udev = to_usb_device(dev); 219 hcd = bus_to_hcd(udev->bus); 220 221 usb_destroy_configuration(udev); 222 /* Root hubs aren't real devices, so don't free HCD resources */ 223 if (hcd->driver->free_dev && udev->parent) 224 hcd->driver->free_dev(hcd, udev); 225 usb_put_hcd(hcd); 226 kfree(udev->product); 227 kfree(udev->manufacturer); 228 kfree(udev->serial); 229 kfree(udev); 230 } 231 232 #ifdef CONFIG_HOTPLUG 233 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 234 { 235 struct usb_device *usb_dev; 236 237 usb_dev = to_usb_device(dev); 238 239 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) 240 return -ENOMEM; 241 242 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) 243 return -ENOMEM; 244 245 return 0; 246 } 247 248 #else 249 250 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 251 { 252 return -ENODEV; 253 } 254 #endif /* CONFIG_HOTPLUG */ 255 256 #ifdef CONFIG_PM 257 258 static int ksuspend_usb_init(void) 259 { 260 /* This workqueue is supposed to be both freezable and 261 * singlethreaded. Its job doesn't justify running on more 262 * than one CPU. 263 */ 264 ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd"); 265 if (!ksuspend_usb_wq) 266 return -ENOMEM; 267 return 0; 268 } 269 270 static void ksuspend_usb_cleanup(void) 271 { 272 destroy_workqueue(ksuspend_usb_wq); 273 } 274 275 /* USB device Power-Management thunks. 276 * There's no need to distinguish here between quiescing a USB device 277 * and powering it down; the generic_suspend() routine takes care of 278 * it by skipping the usb_port_suspend() call for a quiesce. And for 279 * USB interfaces there's no difference at all. 280 */ 281 282 static int usb_dev_prepare(struct device *dev) 283 { 284 return 0; /* Implement eventually? */ 285 } 286 287 static void usb_dev_complete(struct device *dev) 288 { 289 /* Currently used only for rebinding interfaces */ 290 usb_resume(dev, PMSG_RESUME); /* Message event is meaningless */ 291 } 292 293 static int usb_dev_suspend(struct device *dev) 294 { 295 return usb_suspend(dev, PMSG_SUSPEND); 296 } 297 298 static int usb_dev_resume(struct device *dev) 299 { 300 return usb_resume(dev, PMSG_RESUME); 301 } 302 303 static int usb_dev_freeze(struct device *dev) 304 { 305 return usb_suspend(dev, PMSG_FREEZE); 306 } 307 308 static int usb_dev_thaw(struct device *dev) 309 { 310 return usb_resume(dev, PMSG_THAW); 311 } 312 313 static int usb_dev_poweroff(struct device *dev) 314 { 315 return usb_suspend(dev, PMSG_HIBERNATE); 316 } 317 318 static int usb_dev_restore(struct device *dev) 319 { 320 return usb_resume(dev, PMSG_RESTORE); 321 } 322 323 static struct dev_pm_ops usb_device_pm_ops = { 324 .prepare = usb_dev_prepare, 325 .complete = usb_dev_complete, 326 .suspend = usb_dev_suspend, 327 .resume = usb_dev_resume, 328 .freeze = usb_dev_freeze, 329 .thaw = usb_dev_thaw, 330 .poweroff = usb_dev_poweroff, 331 .restore = usb_dev_restore, 332 }; 333 334 #else 335 336 #define ksuspend_usb_init() 0 337 #define ksuspend_usb_cleanup() do {} while (0) 338 #define usb_device_pm_ops (*(struct dev_pm_ops *)0) 339 340 #endif /* CONFIG_PM */ 341 342 343 static char *usb_devnode(struct device *dev, mode_t *mode) 344 { 345 struct usb_device *usb_dev; 346 347 usb_dev = to_usb_device(dev); 348 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", 349 usb_dev->bus->busnum, usb_dev->devnum); 350 } 351 352 struct device_type usb_device_type = { 353 .name = "usb_device", 354 .release = usb_release_dev, 355 .uevent = usb_dev_uevent, 356 .devnode = usb_devnode, 357 .pm = &usb_device_pm_ops, 358 }; 359 360 361 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */ 362 static unsigned usb_bus_is_wusb(struct usb_bus *bus) 363 { 364 struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self); 365 return hcd->wireless; 366 } 367 368 369 /** 370 * usb_alloc_dev - usb device constructor (usbcore-internal) 371 * @parent: hub to which device is connected; null to allocate a root hub 372 * @bus: bus used to access the device 373 * @port1: one-based index of port; ignored for root hubs 374 * Context: !in_interrupt() 375 * 376 * Only hub drivers (including virtual root hub drivers for host 377 * controllers) should ever call this. 378 * 379 * This call may not be used in a non-sleeping context. 380 */ 381 struct usb_device *usb_alloc_dev(struct usb_device *parent, 382 struct usb_bus *bus, unsigned port1) 383 { 384 struct usb_device *dev; 385 struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self); 386 unsigned root_hub = 0; 387 388 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 389 if (!dev) 390 return NULL; 391 392 if (!usb_get_hcd(bus_to_hcd(bus))) { 393 kfree(dev); 394 return NULL; 395 } 396 /* Root hubs aren't true devices, so don't allocate HCD resources */ 397 if (usb_hcd->driver->alloc_dev && parent && 398 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { 399 usb_put_hcd(bus_to_hcd(bus)); 400 kfree(dev); 401 return NULL; 402 } 403 404 device_initialize(&dev->dev); 405 dev->dev.bus = &usb_bus_type; 406 dev->dev.type = &usb_device_type; 407 dev->dev.groups = usb_device_groups; 408 dev->dev.dma_mask = bus->controller->dma_mask; 409 set_dev_node(&dev->dev, dev_to_node(bus->controller)); 410 dev->state = USB_STATE_ATTACHED; 411 atomic_set(&dev->urbnum, 0); 412 413 INIT_LIST_HEAD(&dev->ep0.urb_list); 414 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 415 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 416 /* ep0 maxpacket comes later, from device descriptor */ 417 usb_enable_endpoint(dev, &dev->ep0, false); 418 dev->can_submit = 1; 419 420 /* Save readable and stable topology id, distinguishing devices 421 * by location for diagnostics, tools, driver model, etc. The 422 * string is a path along hub ports, from the root. Each device's 423 * dev->devpath will be stable until USB is re-cabled, and hubs 424 * are often labeled with these port numbers. The name isn't 425 * as stable: bus->busnum changes easily from modprobe order, 426 * cardbus or pci hotplugging, and so on. 427 */ 428 if (unlikely(!parent)) { 429 dev->devpath[0] = '0'; 430 dev->route = 0; 431 432 dev->dev.parent = bus->controller; 433 dev_set_name(&dev->dev, "usb%d", bus->busnum); 434 root_hub = 1; 435 } else { 436 /* match any labeling on the hubs; it's one-based */ 437 if (parent->devpath[0] == '0') { 438 snprintf(dev->devpath, sizeof dev->devpath, 439 "%d", port1); 440 /* Root ports are not counted in route string */ 441 dev->route = 0; 442 } else { 443 snprintf(dev->devpath, sizeof dev->devpath, 444 "%s.%d", parent->devpath, port1); 445 /* Route string assumes hubs have less than 16 ports */ 446 if (port1 < 15) 447 dev->route = parent->route + 448 (port1 << ((parent->level - 1)*4)); 449 else 450 dev->route = parent->route + 451 (15 << ((parent->level - 1)*4)); 452 } 453 454 dev->dev.parent = &parent->dev; 455 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); 456 457 /* hub driver sets up TT records */ 458 } 459 460 dev->portnum = port1; 461 dev->bus = bus; 462 dev->parent = parent; 463 INIT_LIST_HEAD(&dev->filelist); 464 465 #ifdef CONFIG_PM 466 mutex_init(&dev->pm_mutex); 467 INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work); 468 INIT_WORK(&dev->autoresume, usb_autoresume_work); 469 dev->autosuspend_delay = usb_autosuspend_delay * HZ; 470 dev->connect_time = jiffies; 471 dev->active_duration = -jiffies; 472 #endif 473 if (root_hub) /* Root hub always ok [and always wired] */ 474 dev->authorized = 1; 475 else { 476 dev->authorized = usb_hcd->authorized_default; 477 dev->wusb = usb_bus_is_wusb(bus)? 1 : 0; 478 } 479 return dev; 480 } 481 482 /** 483 * usb_get_dev - increments the reference count of the usb device structure 484 * @dev: the device being referenced 485 * 486 * Each live reference to a device should be refcounted. 487 * 488 * Drivers for USB interfaces should normally record such references in 489 * their probe() methods, when they bind to an interface, and release 490 * them by calling usb_put_dev(), in their disconnect() methods. 491 * 492 * A pointer to the device with the incremented reference counter is returned. 493 */ 494 struct usb_device *usb_get_dev(struct usb_device *dev) 495 { 496 if (dev) 497 get_device(&dev->dev); 498 return dev; 499 } 500 EXPORT_SYMBOL_GPL(usb_get_dev); 501 502 /** 503 * usb_put_dev - release a use of the usb device structure 504 * @dev: device that's been disconnected 505 * 506 * Must be called when a user of a device is finished with it. When the last 507 * user of the device calls this function, the memory of the device is freed. 508 */ 509 void usb_put_dev(struct usb_device *dev) 510 { 511 if (dev) 512 put_device(&dev->dev); 513 } 514 EXPORT_SYMBOL_GPL(usb_put_dev); 515 516 /** 517 * usb_get_intf - increments the reference count of the usb interface structure 518 * @intf: the interface being referenced 519 * 520 * Each live reference to a interface must be refcounted. 521 * 522 * Drivers for USB interfaces should normally record such references in 523 * their probe() methods, when they bind to an interface, and release 524 * them by calling usb_put_intf(), in their disconnect() methods. 525 * 526 * A pointer to the interface with the incremented reference counter is 527 * returned. 528 */ 529 struct usb_interface *usb_get_intf(struct usb_interface *intf) 530 { 531 if (intf) 532 get_device(&intf->dev); 533 return intf; 534 } 535 EXPORT_SYMBOL_GPL(usb_get_intf); 536 537 /** 538 * usb_put_intf - release a use of the usb interface structure 539 * @intf: interface that's been decremented 540 * 541 * Must be called when a user of an interface is finished with it. When the 542 * last user of the interface calls this function, the memory of the interface 543 * is freed. 544 */ 545 void usb_put_intf(struct usb_interface *intf) 546 { 547 if (intf) 548 put_device(&intf->dev); 549 } 550 EXPORT_SYMBOL_GPL(usb_put_intf); 551 552 /* USB device locking 553 * 554 * USB devices and interfaces are locked using the semaphore in their 555 * embedded struct device. The hub driver guarantees that whenever a 556 * device is connected or disconnected, drivers are called with the 557 * USB device locked as well as their particular interface. 558 * 559 * Complications arise when several devices are to be locked at the same 560 * time. Only hub-aware drivers that are part of usbcore ever have to 561 * do this; nobody else needs to worry about it. The rule for locking 562 * is simple: 563 * 564 * When locking both a device and its parent, always lock the 565 * the parent first. 566 */ 567 568 /** 569 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure 570 * @udev: device that's being locked 571 * @iface: interface bound to the driver making the request (optional) 572 * 573 * Attempts to acquire the device lock, but fails if the device is 574 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 575 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 576 * lock, the routine polls repeatedly. This is to prevent deadlock with 577 * disconnect; in some drivers (such as usb-storage) the disconnect() 578 * or suspend() method will block waiting for a device reset to complete. 579 * 580 * Returns a negative error code for failure, otherwise 0. 581 */ 582 int usb_lock_device_for_reset(struct usb_device *udev, 583 const struct usb_interface *iface) 584 { 585 unsigned long jiffies_expire = jiffies + HZ; 586 587 if (udev->state == USB_STATE_NOTATTACHED) 588 return -ENODEV; 589 if (udev->state == USB_STATE_SUSPENDED) 590 return -EHOSTUNREACH; 591 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 592 iface->condition == USB_INTERFACE_UNBOUND)) 593 return -EINTR; 594 595 while (usb_trylock_device(udev) != 0) { 596 597 /* If we can't acquire the lock after waiting one second, 598 * we're probably deadlocked */ 599 if (time_after(jiffies, jiffies_expire)) 600 return -EBUSY; 601 602 msleep(15); 603 if (udev->state == USB_STATE_NOTATTACHED) 604 return -ENODEV; 605 if (udev->state == USB_STATE_SUSPENDED) 606 return -EHOSTUNREACH; 607 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 608 iface->condition == USB_INTERFACE_UNBOUND)) 609 return -EINTR; 610 } 611 return 0; 612 } 613 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); 614 615 static struct usb_device *match_device(struct usb_device *dev, 616 u16 vendor_id, u16 product_id) 617 { 618 struct usb_device *ret_dev = NULL; 619 int child; 620 621 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n", 622 le16_to_cpu(dev->descriptor.idVendor), 623 le16_to_cpu(dev->descriptor.idProduct)); 624 625 /* see if this device matches */ 626 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) && 627 (product_id == le16_to_cpu(dev->descriptor.idProduct))) { 628 dev_dbg(&dev->dev, "matched this device!\n"); 629 ret_dev = usb_get_dev(dev); 630 goto exit; 631 } 632 633 /* look through all of the children of this device */ 634 for (child = 0; child < dev->maxchild; ++child) { 635 if (dev->children[child]) { 636 usb_lock_device(dev->children[child]); 637 ret_dev = match_device(dev->children[child], 638 vendor_id, product_id); 639 usb_unlock_device(dev->children[child]); 640 if (ret_dev) 641 goto exit; 642 } 643 } 644 exit: 645 return ret_dev; 646 } 647 648 /** 649 * usb_find_device - find a specific usb device in the system 650 * @vendor_id: the vendor id of the device to find 651 * @product_id: the product id of the device to find 652 * 653 * Returns a pointer to a struct usb_device if such a specified usb 654 * device is present in the system currently. The usage count of the 655 * device will be incremented if a device is found. Make sure to call 656 * usb_put_dev() when the caller is finished with the device. 657 * 658 * If a device with the specified vendor and product id is not found, 659 * NULL is returned. 660 */ 661 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id) 662 { 663 struct list_head *buslist; 664 struct usb_bus *bus; 665 struct usb_device *dev = NULL; 666 667 mutex_lock(&usb_bus_list_lock); 668 for (buslist = usb_bus_list.next; 669 buslist != &usb_bus_list; 670 buslist = buslist->next) { 671 bus = container_of(buslist, struct usb_bus, bus_list); 672 if (!bus->root_hub) 673 continue; 674 usb_lock_device(bus->root_hub); 675 dev = match_device(bus->root_hub, vendor_id, product_id); 676 usb_unlock_device(bus->root_hub); 677 if (dev) 678 goto exit; 679 } 680 exit: 681 mutex_unlock(&usb_bus_list_lock); 682 return dev; 683 } 684 685 /** 686 * usb_get_current_frame_number - return current bus frame number 687 * @dev: the device whose bus is being queried 688 * 689 * Returns the current frame number for the USB host controller 690 * used with the given USB device. This can be used when scheduling 691 * isochronous requests. 692 * 693 * Note that different kinds of host controller have different 694 * "scheduling horizons". While one type might support scheduling only 695 * 32 frames into the future, others could support scheduling up to 696 * 1024 frames into the future. 697 */ 698 int usb_get_current_frame_number(struct usb_device *dev) 699 { 700 return usb_hcd_get_frame_number(dev); 701 } 702 EXPORT_SYMBOL_GPL(usb_get_current_frame_number); 703 704 /*-------------------------------------------------------------------*/ 705 /* 706 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 707 * extra field of the interface and endpoint descriptor structs. 708 */ 709 710 int __usb_get_extra_descriptor(char *buffer, unsigned size, 711 unsigned char type, void **ptr) 712 { 713 struct usb_descriptor_header *header; 714 715 while (size >= sizeof(struct usb_descriptor_header)) { 716 header = (struct usb_descriptor_header *)buffer; 717 718 if (header->bLength < 2) { 719 printk(KERN_ERR 720 "%s: bogus descriptor, type %d length %d\n", 721 usbcore_name, 722 header->bDescriptorType, 723 header->bLength); 724 return -1; 725 } 726 727 if (header->bDescriptorType == type) { 728 *ptr = header; 729 return 0; 730 } 731 732 buffer += header->bLength; 733 size -= header->bLength; 734 } 735 return -1; 736 } 737 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); 738 739 /** 740 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 741 * @dev: device the buffer will be used with 742 * @size: requested buffer size 743 * @mem_flags: affect whether allocation may block 744 * @dma: used to return DMA address of buffer 745 * 746 * Return value is either null (indicating no buffer could be allocated), or 747 * the cpu-space pointer to a buffer that may be used to perform DMA to the 748 * specified device. Such cpu-space buffers are returned along with the DMA 749 * address (through the pointer provided). 750 * 751 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 752 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU 753 * hardware during URB completion/resubmit. The implementation varies between 754 * platforms, depending on details of how DMA will work to this device. 755 * Using these buffers also eliminates cacheline sharing problems on 756 * architectures where CPU caches are not DMA-coherent. On systems without 757 * bus-snooping caches, these buffers are uncached. 758 * 759 * When the buffer is no longer used, free it with usb_buffer_free(). 760 */ 761 void *usb_buffer_alloc(struct usb_device *dev, size_t size, gfp_t mem_flags, 762 dma_addr_t *dma) 763 { 764 if (!dev || !dev->bus) 765 return NULL; 766 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 767 } 768 EXPORT_SYMBOL_GPL(usb_buffer_alloc); 769 770 /** 771 * usb_buffer_free - free memory allocated with usb_buffer_alloc() 772 * @dev: device the buffer was used with 773 * @size: requested buffer size 774 * @addr: CPU address of buffer 775 * @dma: DMA address of buffer 776 * 777 * This reclaims an I/O buffer, letting it be reused. The memory must have 778 * been allocated using usb_buffer_alloc(), and the parameters must match 779 * those provided in that allocation request. 780 */ 781 void usb_buffer_free(struct usb_device *dev, size_t size, void *addr, 782 dma_addr_t dma) 783 { 784 if (!dev || !dev->bus) 785 return; 786 if (!addr) 787 return; 788 hcd_buffer_free(dev->bus, size, addr, dma); 789 } 790 EXPORT_SYMBOL_GPL(usb_buffer_free); 791 792 /** 793 * usb_buffer_map - create DMA mapping(s) for an urb 794 * @urb: urb whose transfer_buffer/setup_packet will be mapped 795 * 796 * Return value is either null (indicating no buffer could be mapped), or 797 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are 798 * added to urb->transfer_flags if the operation succeeds. If the device 799 * is connected to this system through a non-DMA controller, this operation 800 * always succeeds. 801 * 802 * This call would normally be used for an urb which is reused, perhaps 803 * as the target of a large periodic transfer, with usb_buffer_dmasync() 804 * calls to synchronize memory and dma state. 805 * 806 * Reverse the effect of this call with usb_buffer_unmap(). 807 */ 808 #if 0 809 struct urb *usb_buffer_map(struct urb *urb) 810 { 811 struct usb_bus *bus; 812 struct device *controller; 813 814 if (!urb 815 || !urb->dev 816 || !(bus = urb->dev->bus) 817 || !(controller = bus->controller)) 818 return NULL; 819 820 if (controller->dma_mask) { 821 urb->transfer_dma = dma_map_single(controller, 822 urb->transfer_buffer, urb->transfer_buffer_length, 823 usb_pipein(urb->pipe) 824 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 825 if (usb_pipecontrol(urb->pipe)) 826 urb->setup_dma = dma_map_single(controller, 827 urb->setup_packet, 828 sizeof(struct usb_ctrlrequest), 829 DMA_TO_DEVICE); 830 /* FIXME generic api broken like pci, can't report errors */ 831 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */ 832 } else 833 urb->transfer_dma = ~0; 834 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP 835 | URB_NO_SETUP_DMA_MAP); 836 return urb; 837 } 838 EXPORT_SYMBOL_GPL(usb_buffer_map); 839 #endif /* 0 */ 840 841 /* XXX DISABLED, no users currently. If you wish to re-enable this 842 * XXX please determine whether the sync is to transfer ownership of 843 * XXX the buffer from device to cpu or vice verse, and thusly use the 844 * XXX appropriate _for_{cpu,device}() method. -DaveM 845 */ 846 #if 0 847 848 /** 849 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s) 850 * @urb: urb whose transfer_buffer/setup_packet will be synchronized 851 */ 852 void usb_buffer_dmasync(struct urb *urb) 853 { 854 struct usb_bus *bus; 855 struct device *controller; 856 857 if (!urb 858 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 859 || !urb->dev 860 || !(bus = urb->dev->bus) 861 || !(controller = bus->controller)) 862 return; 863 864 if (controller->dma_mask) { 865 dma_sync_single_for_cpu(controller, 866 urb->transfer_dma, urb->transfer_buffer_length, 867 usb_pipein(urb->pipe) 868 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 869 if (usb_pipecontrol(urb->pipe)) 870 dma_sync_single_for_cpu(controller, 871 urb->setup_dma, 872 sizeof(struct usb_ctrlrequest), 873 DMA_TO_DEVICE); 874 } 875 } 876 EXPORT_SYMBOL_GPL(usb_buffer_dmasync); 877 #endif 878 879 /** 880 * usb_buffer_unmap - free DMA mapping(s) for an urb 881 * @urb: urb whose transfer_buffer will be unmapped 882 * 883 * Reverses the effect of usb_buffer_map(). 884 */ 885 #if 0 886 void usb_buffer_unmap(struct urb *urb) 887 { 888 struct usb_bus *bus; 889 struct device *controller; 890 891 if (!urb 892 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) 893 || !urb->dev 894 || !(bus = urb->dev->bus) 895 || !(controller = bus->controller)) 896 return; 897 898 if (controller->dma_mask) { 899 dma_unmap_single(controller, 900 urb->transfer_dma, urb->transfer_buffer_length, 901 usb_pipein(urb->pipe) 902 ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 903 if (usb_pipecontrol(urb->pipe)) 904 dma_unmap_single(controller, 905 urb->setup_dma, 906 sizeof(struct usb_ctrlrequest), 907 DMA_TO_DEVICE); 908 } 909 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP 910 | URB_NO_SETUP_DMA_MAP); 911 } 912 EXPORT_SYMBOL_GPL(usb_buffer_unmap); 913 #endif /* 0 */ 914 915 /** 916 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint 917 * @dev: device to which the scatterlist will be mapped 918 * @is_in: mapping transfer direction 919 * @sg: the scatterlist to map 920 * @nents: the number of entries in the scatterlist 921 * 922 * Return value is either < 0 (indicating no buffers could be mapped), or 923 * the number of DMA mapping array entries in the scatterlist. 924 * 925 * The caller is responsible for placing the resulting DMA addresses from 926 * the scatterlist into URB transfer buffer pointers, and for setting the 927 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs. 928 * 929 * Top I/O rates come from queuing URBs, instead of waiting for each one 930 * to complete before starting the next I/O. This is particularly easy 931 * to do with scatterlists. Just allocate and submit one URB for each DMA 932 * mapping entry returned, stopping on the first error or when all succeed. 933 * Better yet, use the usb_sg_*() calls, which do that (and more) for you. 934 * 935 * This call would normally be used when translating scatterlist requests, 936 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it 937 * may be able to coalesce mappings for improved I/O efficiency. 938 * 939 * Reverse the effect of this call with usb_buffer_unmap_sg(). 940 */ 941 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 942 struct scatterlist *sg, int nents) 943 { 944 struct usb_bus *bus; 945 struct device *controller; 946 947 if (!dev 948 || !(bus = dev->bus) 949 || !(controller = bus->controller) 950 || !controller->dma_mask) 951 return -EINVAL; 952 953 /* FIXME generic api broken like pci, can't report errors */ 954 return dma_map_sg(controller, sg, nents, 955 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM; 956 } 957 EXPORT_SYMBOL_GPL(usb_buffer_map_sg); 958 959 /* XXX DISABLED, no users currently. If you wish to re-enable this 960 * XXX please determine whether the sync is to transfer ownership of 961 * XXX the buffer from device to cpu or vice verse, and thusly use the 962 * XXX appropriate _for_{cpu,device}() method. -DaveM 963 */ 964 #if 0 965 966 /** 967 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s) 968 * @dev: device to which the scatterlist will be mapped 969 * @is_in: mapping transfer direction 970 * @sg: the scatterlist to synchronize 971 * @n_hw_ents: the positive return value from usb_buffer_map_sg 972 * 973 * Use this when you are re-using a scatterlist's data buffers for 974 * another USB request. 975 */ 976 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 977 struct scatterlist *sg, int n_hw_ents) 978 { 979 struct usb_bus *bus; 980 struct device *controller; 981 982 if (!dev 983 || !(bus = dev->bus) 984 || !(controller = bus->controller) 985 || !controller->dma_mask) 986 return; 987 988 dma_sync_sg_for_cpu(controller, sg, n_hw_ents, 989 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 990 } 991 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg); 992 #endif 993 994 /** 995 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist 996 * @dev: device to which the scatterlist will be mapped 997 * @is_in: mapping transfer direction 998 * @sg: the scatterlist to unmap 999 * @n_hw_ents: the positive return value from usb_buffer_map_sg 1000 * 1001 * Reverses the effect of usb_buffer_map_sg(). 1002 */ 1003 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1004 struct scatterlist *sg, int n_hw_ents) 1005 { 1006 struct usb_bus *bus; 1007 struct device *controller; 1008 1009 if (!dev 1010 || !(bus = dev->bus) 1011 || !(controller = bus->controller) 1012 || !controller->dma_mask) 1013 return; 1014 1015 dma_unmap_sg(controller, sg, n_hw_ents, 1016 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1017 } 1018 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg); 1019 1020 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */ 1021 #ifdef MODULE 1022 module_param(nousb, bool, 0444); 1023 #else 1024 core_param(nousb, nousb, bool, 0444); 1025 #endif 1026 1027 /* 1028 * for external read access to <nousb> 1029 */ 1030 int usb_disabled(void) 1031 { 1032 return nousb; 1033 } 1034 EXPORT_SYMBOL_GPL(usb_disabled); 1035 1036 /* 1037 * Notifications of device and interface registration 1038 */ 1039 static int usb_bus_notify(struct notifier_block *nb, unsigned long action, 1040 void *data) 1041 { 1042 struct device *dev = data; 1043 1044 switch (action) { 1045 case BUS_NOTIFY_ADD_DEVICE: 1046 if (dev->type == &usb_device_type) 1047 (void) usb_create_sysfs_dev_files(to_usb_device(dev)); 1048 else if (dev->type == &usb_if_device_type) 1049 (void) usb_create_sysfs_intf_files( 1050 to_usb_interface(dev)); 1051 break; 1052 1053 case BUS_NOTIFY_DEL_DEVICE: 1054 if (dev->type == &usb_device_type) 1055 usb_remove_sysfs_dev_files(to_usb_device(dev)); 1056 else if (dev->type == &usb_if_device_type) 1057 usb_remove_sysfs_intf_files(to_usb_interface(dev)); 1058 break; 1059 } 1060 return 0; 1061 } 1062 1063 static struct notifier_block usb_bus_nb = { 1064 .notifier_call = usb_bus_notify, 1065 }; 1066 1067 struct dentry *usb_debug_root; 1068 EXPORT_SYMBOL_GPL(usb_debug_root); 1069 1070 static struct dentry *usb_debug_devices; 1071 1072 static int usb_debugfs_init(void) 1073 { 1074 usb_debug_root = debugfs_create_dir("usb", NULL); 1075 if (!usb_debug_root) 1076 return -ENOENT; 1077 1078 usb_debug_devices = debugfs_create_file("devices", 0444, 1079 usb_debug_root, NULL, 1080 &usbfs_devices_fops); 1081 if (!usb_debug_devices) { 1082 debugfs_remove(usb_debug_root); 1083 usb_debug_root = NULL; 1084 return -ENOENT; 1085 } 1086 1087 return 0; 1088 } 1089 1090 static void usb_debugfs_cleanup(void) 1091 { 1092 debugfs_remove(usb_debug_devices); 1093 debugfs_remove(usb_debug_root); 1094 } 1095 1096 /* 1097 * Init 1098 */ 1099 static int __init usb_init(void) 1100 { 1101 int retval; 1102 if (nousb) { 1103 pr_info("%s: USB support disabled\n", usbcore_name); 1104 return 0; 1105 } 1106 1107 retval = usb_debugfs_init(); 1108 if (retval) 1109 goto out; 1110 1111 retval = ksuspend_usb_init(); 1112 if (retval) 1113 goto out; 1114 retval = bus_register(&usb_bus_type); 1115 if (retval) 1116 goto bus_register_failed; 1117 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); 1118 if (retval) 1119 goto bus_notifier_failed; 1120 retval = usb_major_init(); 1121 if (retval) 1122 goto major_init_failed; 1123 retval = usb_register(&usbfs_driver); 1124 if (retval) 1125 goto driver_register_failed; 1126 retval = usb_devio_init(); 1127 if (retval) 1128 goto usb_devio_init_failed; 1129 retval = usbfs_init(); 1130 if (retval) 1131 goto fs_init_failed; 1132 retval = usb_hub_init(); 1133 if (retval) 1134 goto hub_init_failed; 1135 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 1136 if (!retval) 1137 goto out; 1138 1139 usb_hub_cleanup(); 1140 hub_init_failed: 1141 usbfs_cleanup(); 1142 fs_init_failed: 1143 usb_devio_cleanup(); 1144 usb_devio_init_failed: 1145 usb_deregister(&usbfs_driver); 1146 driver_register_failed: 1147 usb_major_cleanup(); 1148 major_init_failed: 1149 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1150 bus_notifier_failed: 1151 bus_unregister(&usb_bus_type); 1152 bus_register_failed: 1153 ksuspend_usb_cleanup(); 1154 out: 1155 return retval; 1156 } 1157 1158 /* 1159 * Cleanup 1160 */ 1161 static void __exit usb_exit(void) 1162 { 1163 /* This will matter if shutdown/reboot does exitcalls. */ 1164 if (nousb) 1165 return; 1166 1167 usb_deregister_device_driver(&usb_generic_driver); 1168 usb_major_cleanup(); 1169 usbfs_cleanup(); 1170 usb_deregister(&usbfs_driver); 1171 usb_devio_cleanup(); 1172 usb_hub_cleanup(); 1173 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1174 bus_unregister(&usb_bus_type); 1175 ksuspend_usb_cleanup(); 1176 usb_debugfs_cleanup(); 1177 } 1178 1179 subsys_initcall(usb_init); 1180 module_exit(usb_exit); 1181 MODULE_LICENSE("GPL"); 1182