xref: /linux/drivers/usb/core/usb.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/mutex.h>
36 #include <linux/workqueue.h>
37 #include <linux/debugfs.h>
38 
39 #include <asm/io.h>
40 #include <linux/scatterlist.h>
41 #include <linux/mm.h>
42 #include <linux/dma-mapping.h>
43 
44 #include "hcd.h"
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static int nousb;	/* Disable USB when built into kernel image */
51 
52 /* Workqueue for autosuspend and for remote wakeup of root hubs */
53 struct workqueue_struct *ksuspend_usb_wq;
54 
55 #ifdef	CONFIG_USB_SUSPEND
56 static int usb_autosuspend_delay = 2;		/* Default delay value,
57 						 * in seconds */
58 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
59 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
60 
61 #else
62 #define usb_autosuspend_delay		0
63 #endif
64 
65 
66 /**
67  * usb_find_alt_setting() - Given a configuration, find the alternate setting
68  * for the given interface.
69  * @config - the configuration to search (not necessarily the current config).
70  * @iface_num - interface number to search in
71  * @alt_num - alternate interface setting number to search for.
72  *
73  * Search the configuration's interface cache for the given alt setting.
74  */
75 struct usb_host_interface *usb_find_alt_setting(
76 		struct usb_host_config *config,
77 		unsigned int iface_num,
78 		unsigned int alt_num)
79 {
80 	struct usb_interface_cache *intf_cache = NULL;
81 	int i;
82 
83 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
84 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
85 				== iface_num) {
86 			intf_cache = config->intf_cache[i];
87 			break;
88 		}
89 	}
90 	if (!intf_cache)
91 		return NULL;
92 	for (i = 0; i < intf_cache->num_altsetting; i++)
93 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
94 			return &intf_cache->altsetting[i];
95 
96 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
97 			"config %u\n", alt_num, iface_num,
98 			config->desc.bConfigurationValue);
99 	return NULL;
100 }
101 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
102 
103 /**
104  * usb_ifnum_to_if - get the interface object with a given interface number
105  * @dev: the device whose current configuration is considered
106  * @ifnum: the desired interface
107  *
108  * This walks the device descriptor for the currently active configuration
109  * and returns a pointer to the interface with that particular interface
110  * number, or null.
111  *
112  * Note that configuration descriptors are not required to assign interface
113  * numbers sequentially, so that it would be incorrect to assume that
114  * the first interface in that descriptor corresponds to interface zero.
115  * This routine helps device drivers avoid such mistakes.
116  * However, you should make sure that you do the right thing with any
117  * alternate settings available for this interfaces.
118  *
119  * Don't call this function unless you are bound to one of the interfaces
120  * on this device or you have locked the device!
121  */
122 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
123 				      unsigned ifnum)
124 {
125 	struct usb_host_config *config = dev->actconfig;
126 	int i;
127 
128 	if (!config)
129 		return NULL;
130 	for (i = 0; i < config->desc.bNumInterfaces; i++)
131 		if (config->interface[i]->altsetting[0]
132 				.desc.bInterfaceNumber == ifnum)
133 			return config->interface[i];
134 
135 	return NULL;
136 }
137 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
138 
139 /**
140  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
141  * @intf: the interface containing the altsetting in question
142  * @altnum: the desired alternate setting number
143  *
144  * This searches the altsetting array of the specified interface for
145  * an entry with the correct bAlternateSetting value and returns a pointer
146  * to that entry, or null.
147  *
148  * Note that altsettings need not be stored sequentially by number, so
149  * it would be incorrect to assume that the first altsetting entry in
150  * the array corresponds to altsetting zero.  This routine helps device
151  * drivers avoid such mistakes.
152  *
153  * Don't call this function unless you are bound to the intf interface
154  * or you have locked the device!
155  */
156 struct usb_host_interface *usb_altnum_to_altsetting(
157 					const struct usb_interface *intf,
158 					unsigned int altnum)
159 {
160 	int i;
161 
162 	for (i = 0; i < intf->num_altsetting; i++) {
163 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
164 			return &intf->altsetting[i];
165 	}
166 	return NULL;
167 }
168 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
169 
170 static int __find_interface(struct device *dev, void *data)
171 {
172 	int *minor = data;
173 	struct usb_interface *intf;
174 
175 	if (!is_usb_interface(dev))
176 		return 0;
177 
178 	intf = to_usb_interface(dev);
179 	if (intf->minor != -1 && intf->minor == *minor)
180 		return 1;
181 	return 0;
182 }
183 
184 /**
185  * usb_find_interface - find usb_interface pointer for driver and device
186  * @drv: the driver whose current configuration is considered
187  * @minor: the minor number of the desired device
188  *
189  * This walks the bus device list and returns a pointer to the interface
190  * with the matching minor.  Note, this only works for devices that share the
191  * USB major number.
192  */
193 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
194 {
195 	struct device *dev;
196 
197 	dev = bus_find_device(&usb_bus_type, NULL, &minor, __find_interface);
198 
199 	/* Drop reference count from bus_find_device */
200 	put_device(dev);
201 
202 	return dev ? to_usb_interface(dev) : NULL;
203 }
204 EXPORT_SYMBOL_GPL(usb_find_interface);
205 
206 /**
207  * usb_release_dev - free a usb device structure when all users of it are finished.
208  * @dev: device that's been disconnected
209  *
210  * Will be called only by the device core when all users of this usb device are
211  * done.
212  */
213 static void usb_release_dev(struct device *dev)
214 {
215 	struct usb_device *udev;
216 	struct usb_hcd *hcd;
217 
218 	udev = to_usb_device(dev);
219 	hcd = bus_to_hcd(udev->bus);
220 
221 	usb_destroy_configuration(udev);
222 	/* Root hubs aren't real devices, so don't free HCD resources */
223 	if (hcd->driver->free_dev && udev->parent)
224 		hcd->driver->free_dev(hcd, udev);
225 	usb_put_hcd(hcd);
226 	kfree(udev->product);
227 	kfree(udev->manufacturer);
228 	kfree(udev->serial);
229 	kfree(udev);
230 }
231 
232 #ifdef	CONFIG_HOTPLUG
233 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
234 {
235 	struct usb_device *usb_dev;
236 
237 	usb_dev = to_usb_device(dev);
238 
239 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
240 		return -ENOMEM;
241 
242 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
243 		return -ENOMEM;
244 
245 	return 0;
246 }
247 
248 #else
249 
250 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
251 {
252 	return -ENODEV;
253 }
254 #endif	/* CONFIG_HOTPLUG */
255 
256 #ifdef	CONFIG_PM
257 
258 static int ksuspend_usb_init(void)
259 {
260 	/* This workqueue is supposed to be both freezable and
261 	 * singlethreaded.  Its job doesn't justify running on more
262 	 * than one CPU.
263 	 */
264 	ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd");
265 	if (!ksuspend_usb_wq)
266 		return -ENOMEM;
267 	return 0;
268 }
269 
270 static void ksuspend_usb_cleanup(void)
271 {
272 	destroy_workqueue(ksuspend_usb_wq);
273 }
274 
275 /* USB device Power-Management thunks.
276  * There's no need to distinguish here between quiescing a USB device
277  * and powering it down; the generic_suspend() routine takes care of
278  * it by skipping the usb_port_suspend() call for a quiesce.  And for
279  * USB interfaces there's no difference at all.
280  */
281 
282 static int usb_dev_prepare(struct device *dev)
283 {
284 	return 0;		/* Implement eventually? */
285 }
286 
287 static void usb_dev_complete(struct device *dev)
288 {
289 	/* Currently used only for rebinding interfaces */
290 	usb_resume(dev, PMSG_RESUME);	/* Message event is meaningless */
291 }
292 
293 static int usb_dev_suspend(struct device *dev)
294 {
295 	return usb_suspend(dev, PMSG_SUSPEND);
296 }
297 
298 static int usb_dev_resume(struct device *dev)
299 {
300 	return usb_resume(dev, PMSG_RESUME);
301 }
302 
303 static int usb_dev_freeze(struct device *dev)
304 {
305 	return usb_suspend(dev, PMSG_FREEZE);
306 }
307 
308 static int usb_dev_thaw(struct device *dev)
309 {
310 	return usb_resume(dev, PMSG_THAW);
311 }
312 
313 static int usb_dev_poweroff(struct device *dev)
314 {
315 	return usb_suspend(dev, PMSG_HIBERNATE);
316 }
317 
318 static int usb_dev_restore(struct device *dev)
319 {
320 	return usb_resume(dev, PMSG_RESTORE);
321 }
322 
323 static struct dev_pm_ops usb_device_pm_ops = {
324 	.prepare =	usb_dev_prepare,
325 	.complete =	usb_dev_complete,
326 	.suspend =	usb_dev_suspend,
327 	.resume =	usb_dev_resume,
328 	.freeze =	usb_dev_freeze,
329 	.thaw =		usb_dev_thaw,
330 	.poweroff =	usb_dev_poweroff,
331 	.restore =	usb_dev_restore,
332 };
333 
334 #else
335 
336 #define ksuspend_usb_init()	0
337 #define ksuspend_usb_cleanup()	do {} while (0)
338 #define usb_device_pm_ops	(*(struct dev_pm_ops *)0)
339 
340 #endif	/* CONFIG_PM */
341 
342 
343 static char *usb_devnode(struct device *dev, mode_t *mode)
344 {
345 	struct usb_device *usb_dev;
346 
347 	usb_dev = to_usb_device(dev);
348 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
349 			 usb_dev->bus->busnum, usb_dev->devnum);
350 }
351 
352 struct device_type usb_device_type = {
353 	.name =		"usb_device",
354 	.release =	usb_release_dev,
355 	.uevent =	usb_dev_uevent,
356 	.devnode = 	usb_devnode,
357 	.pm =		&usb_device_pm_ops,
358 };
359 
360 
361 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
362 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
363 {
364 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
365 	return hcd->wireless;
366 }
367 
368 
369 /**
370  * usb_alloc_dev - usb device constructor (usbcore-internal)
371  * @parent: hub to which device is connected; null to allocate a root hub
372  * @bus: bus used to access the device
373  * @port1: one-based index of port; ignored for root hubs
374  * Context: !in_interrupt()
375  *
376  * Only hub drivers (including virtual root hub drivers for host
377  * controllers) should ever call this.
378  *
379  * This call may not be used in a non-sleeping context.
380  */
381 struct usb_device *usb_alloc_dev(struct usb_device *parent,
382 				 struct usb_bus *bus, unsigned port1)
383 {
384 	struct usb_device *dev;
385 	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
386 	unsigned root_hub = 0;
387 
388 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
389 	if (!dev)
390 		return NULL;
391 
392 	if (!usb_get_hcd(bus_to_hcd(bus))) {
393 		kfree(dev);
394 		return NULL;
395 	}
396 	/* Root hubs aren't true devices, so don't allocate HCD resources */
397 	if (usb_hcd->driver->alloc_dev && parent &&
398 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
399 		usb_put_hcd(bus_to_hcd(bus));
400 		kfree(dev);
401 		return NULL;
402 	}
403 
404 	device_initialize(&dev->dev);
405 	dev->dev.bus = &usb_bus_type;
406 	dev->dev.type = &usb_device_type;
407 	dev->dev.groups = usb_device_groups;
408 	dev->dev.dma_mask = bus->controller->dma_mask;
409 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
410 	dev->state = USB_STATE_ATTACHED;
411 	atomic_set(&dev->urbnum, 0);
412 
413 	INIT_LIST_HEAD(&dev->ep0.urb_list);
414 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
415 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
416 	/* ep0 maxpacket comes later, from device descriptor */
417 	usb_enable_endpoint(dev, &dev->ep0, false);
418 	dev->can_submit = 1;
419 
420 	/* Save readable and stable topology id, distinguishing devices
421 	 * by location for diagnostics, tools, driver model, etc.  The
422 	 * string is a path along hub ports, from the root.  Each device's
423 	 * dev->devpath will be stable until USB is re-cabled, and hubs
424 	 * are often labeled with these port numbers.  The name isn't
425 	 * as stable:  bus->busnum changes easily from modprobe order,
426 	 * cardbus or pci hotplugging, and so on.
427 	 */
428 	if (unlikely(!parent)) {
429 		dev->devpath[0] = '0';
430 		dev->route = 0;
431 
432 		dev->dev.parent = bus->controller;
433 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
434 		root_hub = 1;
435 	} else {
436 		/* match any labeling on the hubs; it's one-based */
437 		if (parent->devpath[0] == '0') {
438 			snprintf(dev->devpath, sizeof dev->devpath,
439 				"%d", port1);
440 			/* Root ports are not counted in route string */
441 			dev->route = 0;
442 		} else {
443 			snprintf(dev->devpath, sizeof dev->devpath,
444 				"%s.%d", parent->devpath, port1);
445 			/* Route string assumes hubs have less than 16 ports */
446 			if (port1 < 15)
447 				dev->route = parent->route +
448 					(port1 << ((parent->level - 1)*4));
449 			else
450 				dev->route = parent->route +
451 					(15 << ((parent->level - 1)*4));
452 		}
453 
454 		dev->dev.parent = &parent->dev;
455 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
456 
457 		/* hub driver sets up TT records */
458 	}
459 
460 	dev->portnum = port1;
461 	dev->bus = bus;
462 	dev->parent = parent;
463 	INIT_LIST_HEAD(&dev->filelist);
464 
465 #ifdef	CONFIG_PM
466 	mutex_init(&dev->pm_mutex);
467 	INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work);
468 	INIT_WORK(&dev->autoresume, usb_autoresume_work);
469 	dev->autosuspend_delay = usb_autosuspend_delay * HZ;
470 	dev->connect_time = jiffies;
471 	dev->active_duration = -jiffies;
472 #endif
473 	if (root_hub)	/* Root hub always ok [and always wired] */
474 		dev->authorized = 1;
475 	else {
476 		dev->authorized = usb_hcd->authorized_default;
477 		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
478 	}
479 	return dev;
480 }
481 
482 /**
483  * usb_get_dev - increments the reference count of the usb device structure
484  * @dev: the device being referenced
485  *
486  * Each live reference to a device should be refcounted.
487  *
488  * Drivers for USB interfaces should normally record such references in
489  * their probe() methods, when they bind to an interface, and release
490  * them by calling usb_put_dev(), in their disconnect() methods.
491  *
492  * A pointer to the device with the incremented reference counter is returned.
493  */
494 struct usb_device *usb_get_dev(struct usb_device *dev)
495 {
496 	if (dev)
497 		get_device(&dev->dev);
498 	return dev;
499 }
500 EXPORT_SYMBOL_GPL(usb_get_dev);
501 
502 /**
503  * usb_put_dev - release a use of the usb device structure
504  * @dev: device that's been disconnected
505  *
506  * Must be called when a user of a device is finished with it.  When the last
507  * user of the device calls this function, the memory of the device is freed.
508  */
509 void usb_put_dev(struct usb_device *dev)
510 {
511 	if (dev)
512 		put_device(&dev->dev);
513 }
514 EXPORT_SYMBOL_GPL(usb_put_dev);
515 
516 /**
517  * usb_get_intf - increments the reference count of the usb interface structure
518  * @intf: the interface being referenced
519  *
520  * Each live reference to a interface must be refcounted.
521  *
522  * Drivers for USB interfaces should normally record such references in
523  * their probe() methods, when they bind to an interface, and release
524  * them by calling usb_put_intf(), in their disconnect() methods.
525  *
526  * A pointer to the interface with the incremented reference counter is
527  * returned.
528  */
529 struct usb_interface *usb_get_intf(struct usb_interface *intf)
530 {
531 	if (intf)
532 		get_device(&intf->dev);
533 	return intf;
534 }
535 EXPORT_SYMBOL_GPL(usb_get_intf);
536 
537 /**
538  * usb_put_intf - release a use of the usb interface structure
539  * @intf: interface that's been decremented
540  *
541  * Must be called when a user of an interface is finished with it.  When the
542  * last user of the interface calls this function, the memory of the interface
543  * is freed.
544  */
545 void usb_put_intf(struct usb_interface *intf)
546 {
547 	if (intf)
548 		put_device(&intf->dev);
549 }
550 EXPORT_SYMBOL_GPL(usb_put_intf);
551 
552 /*			USB device locking
553  *
554  * USB devices and interfaces are locked using the semaphore in their
555  * embedded struct device.  The hub driver guarantees that whenever a
556  * device is connected or disconnected, drivers are called with the
557  * USB device locked as well as their particular interface.
558  *
559  * Complications arise when several devices are to be locked at the same
560  * time.  Only hub-aware drivers that are part of usbcore ever have to
561  * do this; nobody else needs to worry about it.  The rule for locking
562  * is simple:
563  *
564  *	When locking both a device and its parent, always lock the
565  *	the parent first.
566  */
567 
568 /**
569  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
570  * @udev: device that's being locked
571  * @iface: interface bound to the driver making the request (optional)
572  *
573  * Attempts to acquire the device lock, but fails if the device is
574  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
575  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
576  * lock, the routine polls repeatedly.  This is to prevent deadlock with
577  * disconnect; in some drivers (such as usb-storage) the disconnect()
578  * or suspend() method will block waiting for a device reset to complete.
579  *
580  * Returns a negative error code for failure, otherwise 0.
581  */
582 int usb_lock_device_for_reset(struct usb_device *udev,
583 			      const struct usb_interface *iface)
584 {
585 	unsigned long jiffies_expire = jiffies + HZ;
586 
587 	if (udev->state == USB_STATE_NOTATTACHED)
588 		return -ENODEV;
589 	if (udev->state == USB_STATE_SUSPENDED)
590 		return -EHOSTUNREACH;
591 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
592 			iface->condition == USB_INTERFACE_UNBOUND))
593 		return -EINTR;
594 
595 	while (usb_trylock_device(udev) != 0) {
596 
597 		/* If we can't acquire the lock after waiting one second,
598 		 * we're probably deadlocked */
599 		if (time_after(jiffies, jiffies_expire))
600 			return -EBUSY;
601 
602 		msleep(15);
603 		if (udev->state == USB_STATE_NOTATTACHED)
604 			return -ENODEV;
605 		if (udev->state == USB_STATE_SUSPENDED)
606 			return -EHOSTUNREACH;
607 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
608 				iface->condition == USB_INTERFACE_UNBOUND))
609 			return -EINTR;
610 	}
611 	return 0;
612 }
613 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
614 
615 static struct usb_device *match_device(struct usb_device *dev,
616 				       u16 vendor_id, u16 product_id)
617 {
618 	struct usb_device *ret_dev = NULL;
619 	int child;
620 
621 	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
622 	    le16_to_cpu(dev->descriptor.idVendor),
623 	    le16_to_cpu(dev->descriptor.idProduct));
624 
625 	/* see if this device matches */
626 	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
627 	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
628 		dev_dbg(&dev->dev, "matched this device!\n");
629 		ret_dev = usb_get_dev(dev);
630 		goto exit;
631 	}
632 
633 	/* look through all of the children of this device */
634 	for (child = 0; child < dev->maxchild; ++child) {
635 		if (dev->children[child]) {
636 			usb_lock_device(dev->children[child]);
637 			ret_dev = match_device(dev->children[child],
638 					       vendor_id, product_id);
639 			usb_unlock_device(dev->children[child]);
640 			if (ret_dev)
641 				goto exit;
642 		}
643 	}
644 exit:
645 	return ret_dev;
646 }
647 
648 /**
649  * usb_find_device - find a specific usb device in the system
650  * @vendor_id: the vendor id of the device to find
651  * @product_id: the product id of the device to find
652  *
653  * Returns a pointer to a struct usb_device if such a specified usb
654  * device is present in the system currently.  The usage count of the
655  * device will be incremented if a device is found.  Make sure to call
656  * usb_put_dev() when the caller is finished with the device.
657  *
658  * If a device with the specified vendor and product id is not found,
659  * NULL is returned.
660  */
661 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
662 {
663 	struct list_head *buslist;
664 	struct usb_bus *bus;
665 	struct usb_device *dev = NULL;
666 
667 	mutex_lock(&usb_bus_list_lock);
668 	for (buslist = usb_bus_list.next;
669 	     buslist != &usb_bus_list;
670 	     buslist = buslist->next) {
671 		bus = container_of(buslist, struct usb_bus, bus_list);
672 		if (!bus->root_hub)
673 			continue;
674 		usb_lock_device(bus->root_hub);
675 		dev = match_device(bus->root_hub, vendor_id, product_id);
676 		usb_unlock_device(bus->root_hub);
677 		if (dev)
678 			goto exit;
679 	}
680 exit:
681 	mutex_unlock(&usb_bus_list_lock);
682 	return dev;
683 }
684 
685 /**
686  * usb_get_current_frame_number - return current bus frame number
687  * @dev: the device whose bus is being queried
688  *
689  * Returns the current frame number for the USB host controller
690  * used with the given USB device.  This can be used when scheduling
691  * isochronous requests.
692  *
693  * Note that different kinds of host controller have different
694  * "scheduling horizons".  While one type might support scheduling only
695  * 32 frames into the future, others could support scheduling up to
696  * 1024 frames into the future.
697  */
698 int usb_get_current_frame_number(struct usb_device *dev)
699 {
700 	return usb_hcd_get_frame_number(dev);
701 }
702 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
703 
704 /*-------------------------------------------------------------------*/
705 /*
706  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
707  * extra field of the interface and endpoint descriptor structs.
708  */
709 
710 int __usb_get_extra_descriptor(char *buffer, unsigned size,
711 			       unsigned char type, void **ptr)
712 {
713 	struct usb_descriptor_header *header;
714 
715 	while (size >= sizeof(struct usb_descriptor_header)) {
716 		header = (struct usb_descriptor_header *)buffer;
717 
718 		if (header->bLength < 2) {
719 			printk(KERN_ERR
720 				"%s: bogus descriptor, type %d length %d\n",
721 				usbcore_name,
722 				header->bDescriptorType,
723 				header->bLength);
724 			return -1;
725 		}
726 
727 		if (header->bDescriptorType == type) {
728 			*ptr = header;
729 			return 0;
730 		}
731 
732 		buffer += header->bLength;
733 		size -= header->bLength;
734 	}
735 	return -1;
736 }
737 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
738 
739 /**
740  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
741  * @dev: device the buffer will be used with
742  * @size: requested buffer size
743  * @mem_flags: affect whether allocation may block
744  * @dma: used to return DMA address of buffer
745  *
746  * Return value is either null (indicating no buffer could be allocated), or
747  * the cpu-space pointer to a buffer that may be used to perform DMA to the
748  * specified device.  Such cpu-space buffers are returned along with the DMA
749  * address (through the pointer provided).
750  *
751  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
752  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
753  * hardware during URB completion/resubmit.  The implementation varies between
754  * platforms, depending on details of how DMA will work to this device.
755  * Using these buffers also eliminates cacheline sharing problems on
756  * architectures where CPU caches are not DMA-coherent.  On systems without
757  * bus-snooping caches, these buffers are uncached.
758  *
759  * When the buffer is no longer used, free it with usb_buffer_free().
760  */
761 void *usb_buffer_alloc(struct usb_device *dev, size_t size, gfp_t mem_flags,
762 		       dma_addr_t *dma)
763 {
764 	if (!dev || !dev->bus)
765 		return NULL;
766 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
767 }
768 EXPORT_SYMBOL_GPL(usb_buffer_alloc);
769 
770 /**
771  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
772  * @dev: device the buffer was used with
773  * @size: requested buffer size
774  * @addr: CPU address of buffer
775  * @dma: DMA address of buffer
776  *
777  * This reclaims an I/O buffer, letting it be reused.  The memory must have
778  * been allocated using usb_buffer_alloc(), and the parameters must match
779  * those provided in that allocation request.
780  */
781 void usb_buffer_free(struct usb_device *dev, size_t size, void *addr,
782 		     dma_addr_t dma)
783 {
784 	if (!dev || !dev->bus)
785 		return;
786 	if (!addr)
787 		return;
788 	hcd_buffer_free(dev->bus, size, addr, dma);
789 }
790 EXPORT_SYMBOL_GPL(usb_buffer_free);
791 
792 /**
793  * usb_buffer_map - create DMA mapping(s) for an urb
794  * @urb: urb whose transfer_buffer/setup_packet will be mapped
795  *
796  * Return value is either null (indicating no buffer could be mapped), or
797  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
798  * added to urb->transfer_flags if the operation succeeds.  If the device
799  * is connected to this system through a non-DMA controller, this operation
800  * always succeeds.
801  *
802  * This call would normally be used for an urb which is reused, perhaps
803  * as the target of a large periodic transfer, with usb_buffer_dmasync()
804  * calls to synchronize memory and dma state.
805  *
806  * Reverse the effect of this call with usb_buffer_unmap().
807  */
808 #if 0
809 struct urb *usb_buffer_map(struct urb *urb)
810 {
811 	struct usb_bus		*bus;
812 	struct device		*controller;
813 
814 	if (!urb
815 			|| !urb->dev
816 			|| !(bus = urb->dev->bus)
817 			|| !(controller = bus->controller))
818 		return NULL;
819 
820 	if (controller->dma_mask) {
821 		urb->transfer_dma = dma_map_single(controller,
822 			urb->transfer_buffer, urb->transfer_buffer_length,
823 			usb_pipein(urb->pipe)
824 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
825 		if (usb_pipecontrol(urb->pipe))
826 			urb->setup_dma = dma_map_single(controller,
827 					urb->setup_packet,
828 					sizeof(struct usb_ctrlrequest),
829 					DMA_TO_DEVICE);
830 	/* FIXME generic api broken like pci, can't report errors */
831 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
832 	} else
833 		urb->transfer_dma = ~0;
834 	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
835 				| URB_NO_SETUP_DMA_MAP);
836 	return urb;
837 }
838 EXPORT_SYMBOL_GPL(usb_buffer_map);
839 #endif  /*  0  */
840 
841 /* XXX DISABLED, no users currently.  If you wish to re-enable this
842  * XXX please determine whether the sync is to transfer ownership of
843  * XXX the buffer from device to cpu or vice verse, and thusly use the
844  * XXX appropriate _for_{cpu,device}() method.  -DaveM
845  */
846 #if 0
847 
848 /**
849  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
850  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
851  */
852 void usb_buffer_dmasync(struct urb *urb)
853 {
854 	struct usb_bus		*bus;
855 	struct device		*controller;
856 
857 	if (!urb
858 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
859 			|| !urb->dev
860 			|| !(bus = urb->dev->bus)
861 			|| !(controller = bus->controller))
862 		return;
863 
864 	if (controller->dma_mask) {
865 		dma_sync_single_for_cpu(controller,
866 			urb->transfer_dma, urb->transfer_buffer_length,
867 			usb_pipein(urb->pipe)
868 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
869 		if (usb_pipecontrol(urb->pipe))
870 			dma_sync_single_for_cpu(controller,
871 					urb->setup_dma,
872 					sizeof(struct usb_ctrlrequest),
873 					DMA_TO_DEVICE);
874 	}
875 }
876 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
877 #endif
878 
879 /**
880  * usb_buffer_unmap - free DMA mapping(s) for an urb
881  * @urb: urb whose transfer_buffer will be unmapped
882  *
883  * Reverses the effect of usb_buffer_map().
884  */
885 #if 0
886 void usb_buffer_unmap(struct urb *urb)
887 {
888 	struct usb_bus		*bus;
889 	struct device		*controller;
890 
891 	if (!urb
892 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
893 			|| !urb->dev
894 			|| !(bus = urb->dev->bus)
895 			|| !(controller = bus->controller))
896 		return;
897 
898 	if (controller->dma_mask) {
899 		dma_unmap_single(controller,
900 			urb->transfer_dma, urb->transfer_buffer_length,
901 			usb_pipein(urb->pipe)
902 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
903 		if (usb_pipecontrol(urb->pipe))
904 			dma_unmap_single(controller,
905 					urb->setup_dma,
906 					sizeof(struct usb_ctrlrequest),
907 					DMA_TO_DEVICE);
908 	}
909 	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
910 				| URB_NO_SETUP_DMA_MAP);
911 }
912 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
913 #endif  /*  0  */
914 
915 /**
916  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
917  * @dev: device to which the scatterlist will be mapped
918  * @is_in: mapping transfer direction
919  * @sg: the scatterlist to map
920  * @nents: the number of entries in the scatterlist
921  *
922  * Return value is either < 0 (indicating no buffers could be mapped), or
923  * the number of DMA mapping array entries in the scatterlist.
924  *
925  * The caller is responsible for placing the resulting DMA addresses from
926  * the scatterlist into URB transfer buffer pointers, and for setting the
927  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
928  *
929  * Top I/O rates come from queuing URBs, instead of waiting for each one
930  * to complete before starting the next I/O.   This is particularly easy
931  * to do with scatterlists.  Just allocate and submit one URB for each DMA
932  * mapping entry returned, stopping on the first error or when all succeed.
933  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
934  *
935  * This call would normally be used when translating scatterlist requests,
936  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
937  * may be able to coalesce mappings for improved I/O efficiency.
938  *
939  * Reverse the effect of this call with usb_buffer_unmap_sg().
940  */
941 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
942 		      struct scatterlist *sg, int nents)
943 {
944 	struct usb_bus		*bus;
945 	struct device		*controller;
946 
947 	if (!dev
948 			|| !(bus = dev->bus)
949 			|| !(controller = bus->controller)
950 			|| !controller->dma_mask)
951 		return -EINVAL;
952 
953 	/* FIXME generic api broken like pci, can't report errors */
954 	return dma_map_sg(controller, sg, nents,
955 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
956 }
957 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
958 
959 /* XXX DISABLED, no users currently.  If you wish to re-enable this
960  * XXX please determine whether the sync is to transfer ownership of
961  * XXX the buffer from device to cpu or vice verse, and thusly use the
962  * XXX appropriate _for_{cpu,device}() method.  -DaveM
963  */
964 #if 0
965 
966 /**
967  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
968  * @dev: device to which the scatterlist will be mapped
969  * @is_in: mapping transfer direction
970  * @sg: the scatterlist to synchronize
971  * @n_hw_ents: the positive return value from usb_buffer_map_sg
972  *
973  * Use this when you are re-using a scatterlist's data buffers for
974  * another USB request.
975  */
976 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
977 			   struct scatterlist *sg, int n_hw_ents)
978 {
979 	struct usb_bus		*bus;
980 	struct device		*controller;
981 
982 	if (!dev
983 			|| !(bus = dev->bus)
984 			|| !(controller = bus->controller)
985 			|| !controller->dma_mask)
986 		return;
987 
988 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
989 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
990 }
991 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
992 #endif
993 
994 /**
995  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
996  * @dev: device to which the scatterlist will be mapped
997  * @is_in: mapping transfer direction
998  * @sg: the scatterlist to unmap
999  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1000  *
1001  * Reverses the effect of usb_buffer_map_sg().
1002  */
1003 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1004 			 struct scatterlist *sg, int n_hw_ents)
1005 {
1006 	struct usb_bus		*bus;
1007 	struct device		*controller;
1008 
1009 	if (!dev
1010 			|| !(bus = dev->bus)
1011 			|| !(controller = bus->controller)
1012 			|| !controller->dma_mask)
1013 		return;
1014 
1015 	dma_unmap_sg(controller, sg, n_hw_ents,
1016 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1017 }
1018 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
1019 
1020 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
1021 #ifdef MODULE
1022 module_param(nousb, bool, 0444);
1023 #else
1024 core_param(nousb, nousb, bool, 0444);
1025 #endif
1026 
1027 /*
1028  * for external read access to <nousb>
1029  */
1030 int usb_disabled(void)
1031 {
1032 	return nousb;
1033 }
1034 EXPORT_SYMBOL_GPL(usb_disabled);
1035 
1036 /*
1037  * Notifications of device and interface registration
1038  */
1039 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1040 		void *data)
1041 {
1042 	struct device *dev = data;
1043 
1044 	switch (action) {
1045 	case BUS_NOTIFY_ADD_DEVICE:
1046 		if (dev->type == &usb_device_type)
1047 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1048 		else if (dev->type == &usb_if_device_type)
1049 			(void) usb_create_sysfs_intf_files(
1050 					to_usb_interface(dev));
1051 		break;
1052 
1053 	case BUS_NOTIFY_DEL_DEVICE:
1054 		if (dev->type == &usb_device_type)
1055 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1056 		else if (dev->type == &usb_if_device_type)
1057 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1058 		break;
1059 	}
1060 	return 0;
1061 }
1062 
1063 static struct notifier_block usb_bus_nb = {
1064 	.notifier_call = usb_bus_notify,
1065 };
1066 
1067 struct dentry *usb_debug_root;
1068 EXPORT_SYMBOL_GPL(usb_debug_root);
1069 
1070 static struct dentry *usb_debug_devices;
1071 
1072 static int usb_debugfs_init(void)
1073 {
1074 	usb_debug_root = debugfs_create_dir("usb", NULL);
1075 	if (!usb_debug_root)
1076 		return -ENOENT;
1077 
1078 	usb_debug_devices = debugfs_create_file("devices", 0444,
1079 						usb_debug_root, NULL,
1080 						&usbfs_devices_fops);
1081 	if (!usb_debug_devices) {
1082 		debugfs_remove(usb_debug_root);
1083 		usb_debug_root = NULL;
1084 		return -ENOENT;
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 static void usb_debugfs_cleanup(void)
1091 {
1092 	debugfs_remove(usb_debug_devices);
1093 	debugfs_remove(usb_debug_root);
1094 }
1095 
1096 /*
1097  * Init
1098  */
1099 static int __init usb_init(void)
1100 {
1101 	int retval;
1102 	if (nousb) {
1103 		pr_info("%s: USB support disabled\n", usbcore_name);
1104 		return 0;
1105 	}
1106 
1107 	retval = usb_debugfs_init();
1108 	if (retval)
1109 		goto out;
1110 
1111 	retval = ksuspend_usb_init();
1112 	if (retval)
1113 		goto out;
1114 	retval = bus_register(&usb_bus_type);
1115 	if (retval)
1116 		goto bus_register_failed;
1117 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1118 	if (retval)
1119 		goto bus_notifier_failed;
1120 	retval = usb_major_init();
1121 	if (retval)
1122 		goto major_init_failed;
1123 	retval = usb_register(&usbfs_driver);
1124 	if (retval)
1125 		goto driver_register_failed;
1126 	retval = usb_devio_init();
1127 	if (retval)
1128 		goto usb_devio_init_failed;
1129 	retval = usbfs_init();
1130 	if (retval)
1131 		goto fs_init_failed;
1132 	retval = usb_hub_init();
1133 	if (retval)
1134 		goto hub_init_failed;
1135 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1136 	if (!retval)
1137 		goto out;
1138 
1139 	usb_hub_cleanup();
1140 hub_init_failed:
1141 	usbfs_cleanup();
1142 fs_init_failed:
1143 	usb_devio_cleanup();
1144 usb_devio_init_failed:
1145 	usb_deregister(&usbfs_driver);
1146 driver_register_failed:
1147 	usb_major_cleanup();
1148 major_init_failed:
1149 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1150 bus_notifier_failed:
1151 	bus_unregister(&usb_bus_type);
1152 bus_register_failed:
1153 	ksuspend_usb_cleanup();
1154 out:
1155 	return retval;
1156 }
1157 
1158 /*
1159  * Cleanup
1160  */
1161 static void __exit usb_exit(void)
1162 {
1163 	/* This will matter if shutdown/reboot does exitcalls. */
1164 	if (nousb)
1165 		return;
1166 
1167 	usb_deregister_device_driver(&usb_generic_driver);
1168 	usb_major_cleanup();
1169 	usbfs_cleanup();
1170 	usb_deregister(&usbfs_driver);
1171 	usb_devio_cleanup();
1172 	usb_hub_cleanup();
1173 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1174 	bus_unregister(&usb_bus_type);
1175 	ksuspend_usb_cleanup();
1176 	usb_debugfs_cleanup();
1177 }
1178 
1179 subsys_initcall(usb_init);
1180 module_exit(usb_exit);
1181 MODULE_LICENSE("GPL");
1182