xref: /linux/drivers/usb/core/usb.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * drivers/usb/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/config.h>
25 
26 #ifdef CONFIG_USB_DEBUG
27 	#define DEBUG
28 #else
29 	#undef DEBUG
30 #endif
31 
32 #include <linux/module.h>
33 #include <linux/string.h>
34 #include <linux/bitops.h>
35 #include <linux/slab.h>
36 #include <linux/interrupt.h>  /* for in_interrupt() */
37 #include <linux/kmod.h>
38 #include <linux/init.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/smp_lock.h>
42 #include <linux/rwsem.h>
43 #include <linux/usb.h>
44 
45 #include <asm/io.h>
46 #include <asm/scatterlist.h>
47 #include <linux/mm.h>
48 #include <linux/dma-mapping.h>
49 
50 #include "hcd.h"
51 #include "usb.h"
52 
53 
54 const char *usbcore_name = "usbcore";
55 
56 static int nousb;	/* Disable USB when built into kernel image */
57 			/* Not honored on modular build */
58 
59 static DECLARE_RWSEM(usb_all_devices_rwsem);
60 
61 
62 static int generic_probe (struct device *dev)
63 {
64 	return 0;
65 }
66 static int generic_remove (struct device *dev)
67 {
68 	return 0;
69 }
70 
71 static struct device_driver usb_generic_driver = {
72 	.owner = THIS_MODULE,
73 	.name =	"usb",
74 	.bus = &usb_bus_type,
75 	.probe = generic_probe,
76 	.remove = generic_remove,
77 };
78 
79 static int usb_generic_driver_data;
80 
81 /* called from driver core with usb_bus_type.subsys writelock */
82 static int usb_probe_interface(struct device *dev)
83 {
84 	struct usb_interface * intf = to_usb_interface(dev);
85 	struct usb_driver * driver = to_usb_driver(dev->driver);
86 	const struct usb_device_id *id;
87 	int error = -ENODEV;
88 
89 	dev_dbg(dev, "%s\n", __FUNCTION__);
90 
91 	if (!driver->probe)
92 		return error;
93 	/* FIXME we'd much prefer to just resume it ... */
94 	if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED)
95 		return -EHOSTUNREACH;
96 
97 	id = usb_match_id (intf, driver->id_table);
98 	if (id) {
99 		dev_dbg (dev, "%s - got id\n", __FUNCTION__);
100 		intf->condition = USB_INTERFACE_BINDING;
101 		error = driver->probe (intf, id);
102 		intf->condition = error ? USB_INTERFACE_UNBOUND :
103 				USB_INTERFACE_BOUND;
104 	}
105 
106 	return error;
107 }
108 
109 /* called from driver core with usb_bus_type.subsys writelock */
110 static int usb_unbind_interface(struct device *dev)
111 {
112 	struct usb_interface *intf = to_usb_interface(dev);
113 	struct usb_driver *driver = to_usb_driver(intf->dev.driver);
114 
115 	intf->condition = USB_INTERFACE_UNBINDING;
116 
117 	/* release all urbs for this interface */
118 	usb_disable_interface(interface_to_usbdev(intf), intf);
119 
120 	if (driver && driver->disconnect)
121 		driver->disconnect(intf);
122 
123 	/* reset other interface state */
124 	usb_set_interface(interface_to_usbdev(intf),
125 			intf->altsetting[0].desc.bInterfaceNumber,
126 			0);
127 	usb_set_intfdata(intf, NULL);
128 	intf->condition = USB_INTERFACE_UNBOUND;
129 
130 	return 0;
131 }
132 
133 /**
134  * usb_register - register a USB driver
135  * @new_driver: USB operations for the driver
136  *
137  * Registers a USB driver with the USB core.  The list of unattached
138  * interfaces will be rescanned whenever a new driver is added, allowing
139  * the new driver to attach to any recognized devices.
140  * Returns a negative error code on failure and 0 on success.
141  *
142  * NOTE: if you want your driver to use the USB major number, you must call
143  * usb_register_dev() to enable that functionality.  This function no longer
144  * takes care of that.
145  */
146 int usb_register(struct usb_driver *new_driver)
147 {
148 	int retval = 0;
149 
150 	if (nousb)
151 		return -ENODEV;
152 
153 	new_driver->driver.name = (char *)new_driver->name;
154 	new_driver->driver.bus = &usb_bus_type;
155 	new_driver->driver.probe = usb_probe_interface;
156 	new_driver->driver.remove = usb_unbind_interface;
157 	new_driver->driver.owner = new_driver->owner;
158 
159 	usb_lock_all_devices();
160 	retval = driver_register(&new_driver->driver);
161 	usb_unlock_all_devices();
162 
163 	if (!retval) {
164 		pr_info("%s: registered new driver %s\n",
165 			usbcore_name, new_driver->name);
166 		usbfs_update_special();
167 	} else {
168 		printk(KERN_ERR "%s: error %d registering driver %s\n",
169 			usbcore_name, retval, new_driver->name);
170 	}
171 
172 	return retval;
173 }
174 
175 /**
176  * usb_deregister - unregister a USB driver
177  * @driver: USB operations of the driver to unregister
178  * Context: must be able to sleep
179  *
180  * Unlinks the specified driver from the internal USB driver list.
181  *
182  * NOTE: If you called usb_register_dev(), you still need to call
183  * usb_deregister_dev() to clean up your driver's allocated minor numbers,
184  * this * call will no longer do it for you.
185  */
186 void usb_deregister(struct usb_driver *driver)
187 {
188 	pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name);
189 
190 	usb_lock_all_devices();
191 	driver_unregister (&driver->driver);
192 	usb_unlock_all_devices();
193 
194 	usbfs_update_special();
195 }
196 
197 /**
198  * usb_ifnum_to_if - get the interface object with a given interface number
199  * @dev: the device whose current configuration is considered
200  * @ifnum: the desired interface
201  *
202  * This walks the device descriptor for the currently active configuration
203  * and returns a pointer to the interface with that particular interface
204  * number, or null.
205  *
206  * Note that configuration descriptors are not required to assign interface
207  * numbers sequentially, so that it would be incorrect to assume that
208  * the first interface in that descriptor corresponds to interface zero.
209  * This routine helps device drivers avoid such mistakes.
210  * However, you should make sure that you do the right thing with any
211  * alternate settings available for this interfaces.
212  *
213  * Don't call this function unless you are bound to one of the interfaces
214  * on this device or you have locked the device!
215  */
216 struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
217 {
218 	struct usb_host_config *config = dev->actconfig;
219 	int i;
220 
221 	if (!config)
222 		return NULL;
223 	for (i = 0; i < config->desc.bNumInterfaces; i++)
224 		if (config->interface[i]->altsetting[0]
225 				.desc.bInterfaceNumber == ifnum)
226 			return config->interface[i];
227 
228 	return NULL;
229 }
230 
231 /**
232  * usb_altnum_to_altsetting - get the altsetting structure with a given
233  *	alternate setting number.
234  * @intf: the interface containing the altsetting in question
235  * @altnum: the desired alternate setting number
236  *
237  * This searches the altsetting array of the specified interface for
238  * an entry with the correct bAlternateSetting value and returns a pointer
239  * to that entry, or null.
240  *
241  * Note that altsettings need not be stored sequentially by number, so
242  * it would be incorrect to assume that the first altsetting entry in
243  * the array corresponds to altsetting zero.  This routine helps device
244  * drivers avoid such mistakes.
245  *
246  * Don't call this function unless you are bound to the intf interface
247  * or you have locked the device!
248  */
249 struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
250 		unsigned int altnum)
251 {
252 	int i;
253 
254 	for (i = 0; i < intf->num_altsetting; i++) {
255 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
256 			return &intf->altsetting[i];
257 	}
258 	return NULL;
259 }
260 
261 /**
262  * usb_driver_claim_interface - bind a driver to an interface
263  * @driver: the driver to be bound
264  * @iface: the interface to which it will be bound; must be in the
265  *	usb device's active configuration
266  * @priv: driver data associated with that interface
267  *
268  * This is used by usb device drivers that need to claim more than one
269  * interface on a device when probing (audio and acm are current examples).
270  * No device driver should directly modify internal usb_interface or
271  * usb_device structure members.
272  *
273  * Few drivers should need to use this routine, since the most natural
274  * way to bind to an interface is to return the private data from
275  * the driver's probe() method.
276  *
277  * Callers must own the device lock and the driver model's usb_bus_type.subsys
278  * writelock.  So driver probe() entries don't need extra locking,
279  * but other call contexts may need to explicitly claim those locks.
280  */
281 int usb_driver_claim_interface(struct usb_driver *driver,
282 				struct usb_interface *iface, void* priv)
283 {
284 	struct device *dev = &iface->dev;
285 
286 	if (dev->driver)
287 		return -EBUSY;
288 
289 	dev->driver = &driver->driver;
290 	usb_set_intfdata(iface, priv);
291 	iface->condition = USB_INTERFACE_BOUND;
292 
293 	/* if interface was already added, bind now; else let
294 	 * the future device_add() bind it, bypassing probe()
295 	 */
296 	if (klist_node_attached(&dev->knode_bus))
297 		device_bind_driver(dev);
298 
299 	return 0;
300 }
301 
302 /**
303  * usb_driver_release_interface - unbind a driver from an interface
304  * @driver: the driver to be unbound
305  * @iface: the interface from which it will be unbound
306  *
307  * This can be used by drivers to release an interface without waiting
308  * for their disconnect() methods to be called.  In typical cases this
309  * also causes the driver disconnect() method to be called.
310  *
311  * This call is synchronous, and may not be used in an interrupt context.
312  * Callers must own the device lock and the driver model's usb_bus_type.subsys
313  * writelock.  So driver disconnect() entries don't need extra locking,
314  * but other call contexts may need to explicitly claim those locks.
315  */
316 void usb_driver_release_interface(struct usb_driver *driver,
317 					struct usb_interface *iface)
318 {
319 	struct device *dev = &iface->dev;
320 
321 	/* this should never happen, don't release something that's not ours */
322 	if (!dev->driver || dev->driver != &driver->driver)
323 		return;
324 
325 	/* don't release from within disconnect() */
326 	if (iface->condition != USB_INTERFACE_BOUND)
327 		return;
328 
329 	/* release only after device_add() */
330 	if (klist_node_attached(&dev->knode_bus)) {
331 		iface->condition = USB_INTERFACE_UNBINDING;
332 		device_release_driver(dev);
333 	}
334 
335 	dev->driver = NULL;
336 	usb_set_intfdata(iface, NULL);
337 	iface->condition = USB_INTERFACE_UNBOUND;
338 }
339 
340 /**
341  * usb_match_id - find first usb_device_id matching device or interface
342  * @interface: the interface of interest
343  * @id: array of usb_device_id structures, terminated by zero entry
344  *
345  * usb_match_id searches an array of usb_device_id's and returns
346  * the first one matching the device or interface, or null.
347  * This is used when binding (or rebinding) a driver to an interface.
348  * Most USB device drivers will use this indirectly, through the usb core,
349  * but some layered driver frameworks use it directly.
350  * These device tables are exported with MODULE_DEVICE_TABLE, through
351  * modutils and "modules.usbmap", to support the driver loading
352  * functionality of USB hotplugging.
353  *
354  * What Matches:
355  *
356  * The "match_flags" element in a usb_device_id controls which
357  * members are used.  If the corresponding bit is set, the
358  * value in the device_id must match its corresponding member
359  * in the device or interface descriptor, or else the device_id
360  * does not match.
361  *
362  * "driver_info" is normally used only by device drivers,
363  * but you can create a wildcard "matches anything" usb_device_id
364  * as a driver's "modules.usbmap" entry if you provide an id with
365  * only a nonzero "driver_info" field.  If you do this, the USB device
366  * driver's probe() routine should use additional intelligence to
367  * decide whether to bind to the specified interface.
368  *
369  * What Makes Good usb_device_id Tables:
370  *
371  * The match algorithm is very simple, so that intelligence in
372  * driver selection must come from smart driver id records.
373  * Unless you have good reasons to use another selection policy,
374  * provide match elements only in related groups, and order match
375  * specifiers from specific to general.  Use the macros provided
376  * for that purpose if you can.
377  *
378  * The most specific match specifiers use device descriptor
379  * data.  These are commonly used with product-specific matches;
380  * the USB_DEVICE macro lets you provide vendor and product IDs,
381  * and you can also match against ranges of product revisions.
382  * These are widely used for devices with application or vendor
383  * specific bDeviceClass values.
384  *
385  * Matches based on device class/subclass/protocol specifications
386  * are slightly more general; use the USB_DEVICE_INFO macro, or
387  * its siblings.  These are used with single-function devices
388  * where bDeviceClass doesn't specify that each interface has
389  * its own class.
390  *
391  * Matches based on interface class/subclass/protocol are the
392  * most general; they let drivers bind to any interface on a
393  * multiple-function device.  Use the USB_INTERFACE_INFO
394  * macro, or its siblings, to match class-per-interface style
395  * devices (as recorded in bDeviceClass).
396  *
397  * Within those groups, remember that not all combinations are
398  * meaningful.  For example, don't give a product version range
399  * without vendor and product IDs; or specify a protocol without
400  * its associated class and subclass.
401  */
402 const struct usb_device_id *
403 usb_match_id(struct usb_interface *interface, const struct usb_device_id *id)
404 {
405 	struct usb_host_interface *intf;
406 	struct usb_device *dev;
407 
408 	/* proc_connectinfo in devio.c may call us with id == NULL. */
409 	if (id == NULL)
410 		return NULL;
411 
412 	intf = interface->cur_altsetting;
413 	dev = interface_to_usbdev(interface);
414 
415 	/* It is important to check that id->driver_info is nonzero,
416 	   since an entry that is all zeroes except for a nonzero
417 	   id->driver_info is the way to create an entry that
418 	   indicates that the driver want to examine every
419 	   device and interface. */
420 	for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||
421 	       id->driver_info; id++) {
422 
423 		if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
424 		    id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
425 			continue;
426 
427 		if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
428 		    id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
429 			continue;
430 
431 		/* No need to test id->bcdDevice_lo != 0, since 0 is never
432 		   greater than any unsigned number. */
433 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
434 		    (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
435 			continue;
436 
437 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
438 		    (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
439 			continue;
440 
441 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
442 		    (id->bDeviceClass != dev->descriptor.bDeviceClass))
443 			continue;
444 
445 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
446 		    (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))
447 			continue;
448 
449 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
450 		    (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
451 			continue;
452 
453 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
454 		    (id->bInterfaceClass != intf->desc.bInterfaceClass))
455 			continue;
456 
457 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
458 		    (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
459 			continue;
460 
461 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
462 		    (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
463 			continue;
464 
465 		return id;
466 	}
467 
468 	return NULL;
469 }
470 
471 
472 static int __find_interface(struct device * dev, void * data)
473 {
474 	struct usb_interface ** ret = (struct usb_interface **)data;
475 	struct usb_interface * intf = *ret;
476 	int *minor = (int *)data;
477 
478 	/* can't look at usb devices, only interfaces */
479 	if (dev->driver == &usb_generic_driver)
480 		return 0;
481 
482 	intf = to_usb_interface(dev);
483 	if (intf->minor != -1 && intf->minor == *minor) {
484 		*ret = intf;
485 		return 1;
486 	}
487 	return 0;
488 }
489 
490 /**
491  * usb_find_interface - find usb_interface pointer for driver and device
492  * @drv: the driver whose current configuration is considered
493  * @minor: the minor number of the desired device
494  *
495  * This walks the driver device list and returns a pointer to the interface
496  * with the matching minor.  Note, this only works for devices that share the
497  * USB major number.
498  */
499 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
500 {
501 	struct usb_interface *intf = (struct usb_interface *)(long)minor;
502 	int ret;
503 
504 	ret = driver_for_each_device(&drv->driver, NULL, &intf, __find_interface);
505 
506 	return ret ? intf : NULL;
507 }
508 
509 static int usb_device_match (struct device *dev, struct device_driver *drv)
510 {
511 	struct usb_interface *intf;
512 	struct usb_driver *usb_drv;
513 	const struct usb_device_id *id;
514 
515 	/* check for generic driver, which we don't match any device with */
516 	if (drv == &usb_generic_driver)
517 		return 0;
518 
519 	intf = to_usb_interface(dev);
520 	usb_drv = to_usb_driver(drv);
521 
522 	id = usb_match_id (intf, usb_drv->id_table);
523 	if (id)
524 		return 1;
525 
526 	return 0;
527 }
528 
529 
530 #ifdef	CONFIG_HOTPLUG
531 
532 /*
533  * USB hotplugging invokes what /proc/sys/kernel/hotplug says
534  * (normally /sbin/hotplug) when USB devices get added or removed.
535  *
536  * This invokes a user mode policy agent, typically helping to load driver
537  * or other modules, configure the device, and more.  Drivers can provide
538  * a MODULE_DEVICE_TABLE to help with module loading subtasks.
539  *
540  * We're called either from khubd (the typical case) or from root hub
541  * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
542  * delays in event delivery.  Use sysfs (and DEVPATH) to make sure the
543  * device (and this configuration!) are still present.
544  */
545 static int usb_hotplug (struct device *dev, char **envp, int num_envp,
546 			char *buffer, int buffer_size)
547 {
548 	struct usb_interface *intf;
549 	struct usb_device *usb_dev;
550 	int i = 0;
551 	int length = 0;
552 
553 	if (!dev)
554 		return -ENODEV;
555 
556 	/* driver is often null here; dev_dbg() would oops */
557 	pr_debug ("usb %s: hotplug\n", dev->bus_id);
558 
559 	/* Must check driver_data here, as on remove driver is always NULL */
560 	if ((dev->driver == &usb_generic_driver) ||
561 	    (dev->driver_data == &usb_generic_driver_data))
562 		return 0;
563 
564 	intf = to_usb_interface(dev);
565 	usb_dev = interface_to_usbdev (intf);
566 
567 	if (usb_dev->devnum < 0) {
568 		pr_debug ("usb %s: already deleted?\n", dev->bus_id);
569 		return -ENODEV;
570 	}
571 	if (!usb_dev->bus) {
572 		pr_debug ("usb %s: bus removed?\n", dev->bus_id);
573 		return -ENODEV;
574 	}
575 
576 #ifdef	CONFIG_USB_DEVICEFS
577 	/* If this is available, userspace programs can directly read
578 	 * all the device descriptors we don't tell them about.  Or
579 	 * even act as usermode drivers.
580 	 *
581 	 * FIXME reduce hardwired intelligence here
582 	 */
583 	if (add_hotplug_env_var(envp, num_envp, &i,
584 				buffer, buffer_size, &length,
585 				"DEVICE=/proc/bus/usb/%03d/%03d",
586 				usb_dev->bus->busnum, usb_dev->devnum))
587 		return -ENOMEM;
588 #endif
589 
590 	/* per-device configurations are common */
591 	if (add_hotplug_env_var(envp, num_envp, &i,
592 				buffer, buffer_size, &length,
593 				"PRODUCT=%x/%x/%x",
594 				le16_to_cpu(usb_dev->descriptor.idVendor),
595 				le16_to_cpu(usb_dev->descriptor.idProduct),
596 				le16_to_cpu(usb_dev->descriptor.bcdDevice)))
597 		return -ENOMEM;
598 
599 	/* class-based driver binding models */
600 	if (add_hotplug_env_var(envp, num_envp, &i,
601 				buffer, buffer_size, &length,
602 				"TYPE=%d/%d/%d",
603 				usb_dev->descriptor.bDeviceClass,
604 				usb_dev->descriptor.bDeviceSubClass,
605 				usb_dev->descriptor.bDeviceProtocol))
606 		return -ENOMEM;
607 
608 	if (usb_dev->descriptor.bDeviceClass == 0) {
609 		struct usb_host_interface *alt = intf->cur_altsetting;
610 
611 		/* 2.4 only exposed interface zero.  in 2.5, hotplug
612 		 * agents are called for all interfaces, and can use
613 		 * $DEVPATH/bInterfaceNumber if necessary.
614 		 */
615 		if (add_hotplug_env_var(envp, num_envp, &i,
616 					buffer, buffer_size, &length,
617 					"INTERFACE=%d/%d/%d",
618 					alt->desc.bInterfaceClass,
619 					alt->desc.bInterfaceSubClass,
620 					alt->desc.bInterfaceProtocol))
621 			return -ENOMEM;
622 
623 		if (add_hotplug_env_var(envp, num_envp, &i,
624 					buffer, buffer_size, &length,
625 					"MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
626 					le16_to_cpu(usb_dev->descriptor.idVendor),
627 					le16_to_cpu(usb_dev->descriptor.idProduct),
628 					le16_to_cpu(usb_dev->descriptor.bcdDevice),
629 					usb_dev->descriptor.bDeviceClass,
630 					usb_dev->descriptor.bDeviceSubClass,
631 					usb_dev->descriptor.bDeviceProtocol,
632 					alt->desc.bInterfaceClass,
633 					alt->desc.bInterfaceSubClass,
634 					alt->desc.bInterfaceProtocol))
635 			return -ENOMEM;
636  	} else {
637 		if (add_hotplug_env_var(envp, num_envp, &i,
638 					buffer, buffer_size, &length,
639 					"MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic*isc*ip*",
640 					le16_to_cpu(usb_dev->descriptor.idVendor),
641 					le16_to_cpu(usb_dev->descriptor.idProduct),
642 					le16_to_cpu(usb_dev->descriptor.bcdDevice),
643 					usb_dev->descriptor.bDeviceClass,
644 					usb_dev->descriptor.bDeviceSubClass,
645 					usb_dev->descriptor.bDeviceProtocol))
646 			return -ENOMEM;
647 	}
648 
649 	envp[i] = NULL;
650 
651 	return 0;
652 }
653 
654 #else
655 
656 static int usb_hotplug (struct device *dev, char **envp,
657 			int num_envp, char *buffer, int buffer_size)
658 {
659 	return -ENODEV;
660 }
661 
662 #endif	/* CONFIG_HOTPLUG */
663 
664 /**
665  * usb_release_dev - free a usb device structure when all users of it are finished.
666  * @dev: device that's been disconnected
667  *
668  * Will be called only by the device core when all users of this usb device are
669  * done.
670  */
671 static void usb_release_dev(struct device *dev)
672 {
673 	struct usb_device *udev;
674 
675 	udev = to_usb_device(dev);
676 
677 	usb_destroy_configuration(udev);
678 	usb_bus_put(udev->bus);
679 	kfree(udev->product);
680 	kfree(udev->manufacturer);
681 	kfree(udev->serial);
682 	kfree(udev);
683 }
684 
685 /**
686  * usb_alloc_dev - usb device constructor (usbcore-internal)
687  * @parent: hub to which device is connected; null to allocate a root hub
688  * @bus: bus used to access the device
689  * @port1: one-based index of port; ignored for root hubs
690  * Context: !in_interrupt ()
691  *
692  * Only hub drivers (including virtual root hub drivers for host
693  * controllers) should ever call this.
694  *
695  * This call may not be used in a non-sleeping context.
696  */
697 struct usb_device *
698 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
699 {
700 	struct usb_device *dev;
701 
702 	dev = kmalloc(sizeof(*dev), GFP_KERNEL);
703 	if (!dev)
704 		return NULL;
705 
706 	memset(dev, 0, sizeof(*dev));
707 
708 	bus = usb_bus_get(bus);
709 	if (!bus) {
710 		kfree(dev);
711 		return NULL;
712 	}
713 
714 	device_initialize(&dev->dev);
715 	dev->dev.bus = &usb_bus_type;
716 	dev->dev.dma_mask = bus->controller->dma_mask;
717 	dev->dev.driver_data = &usb_generic_driver_data;
718 	dev->dev.driver = &usb_generic_driver;
719 	dev->dev.release = usb_release_dev;
720 	dev->state = USB_STATE_ATTACHED;
721 
722 	INIT_LIST_HEAD(&dev->ep0.urb_list);
723 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
724 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
725 	/* ep0 maxpacket comes later, from device descriptor */
726 	dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
727 
728 	/* Save readable and stable topology id, distinguishing devices
729 	 * by location for diagnostics, tools, driver model, etc.  The
730 	 * string is a path along hub ports, from the root.  Each device's
731 	 * dev->devpath will be stable until USB is re-cabled, and hubs
732 	 * are often labeled with these port numbers.  The bus_id isn't
733 	 * as stable:  bus->busnum changes easily from modprobe order,
734 	 * cardbus or pci hotplugging, and so on.
735 	 */
736 	if (unlikely (!parent)) {
737 		dev->devpath [0] = '0';
738 
739 		dev->dev.parent = bus->controller;
740 		sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
741 	} else {
742 		/* match any labeling on the hubs; it's one-based */
743 		if (parent->devpath [0] == '0')
744 			snprintf (dev->devpath, sizeof dev->devpath,
745 				"%d", port1);
746 		else
747 			snprintf (dev->devpath, sizeof dev->devpath,
748 				"%s.%d", parent->devpath, port1);
749 
750 		dev->dev.parent = &parent->dev;
751 		sprintf (&dev->dev.bus_id[0], "%d-%s",
752 			bus->busnum, dev->devpath);
753 
754 		/* hub driver sets up TT records */
755 	}
756 
757 	dev->bus = bus;
758 	dev->parent = parent;
759 	INIT_LIST_HEAD(&dev->filelist);
760 
761 	init_MUTEX(&dev->serialize);
762 
763 	return dev;
764 }
765 
766 /**
767  * usb_get_dev - increments the reference count of the usb device structure
768  * @dev: the device being referenced
769  *
770  * Each live reference to a device should be refcounted.
771  *
772  * Drivers for USB interfaces should normally record such references in
773  * their probe() methods, when they bind to an interface, and release
774  * them by calling usb_put_dev(), in their disconnect() methods.
775  *
776  * A pointer to the device with the incremented reference counter is returned.
777  */
778 struct usb_device *usb_get_dev(struct usb_device *dev)
779 {
780 	if (dev)
781 		get_device(&dev->dev);
782 	return dev;
783 }
784 
785 /**
786  * usb_put_dev - release a use of the usb device structure
787  * @dev: device that's been disconnected
788  *
789  * Must be called when a user of a device is finished with it.  When the last
790  * user of the device calls this function, the memory of the device is freed.
791  */
792 void usb_put_dev(struct usb_device *dev)
793 {
794 	if (dev)
795 		put_device(&dev->dev);
796 }
797 
798 /**
799  * usb_get_intf - increments the reference count of the usb interface structure
800  * @intf: the interface being referenced
801  *
802  * Each live reference to a interface must be refcounted.
803  *
804  * Drivers for USB interfaces should normally record such references in
805  * their probe() methods, when they bind to an interface, and release
806  * them by calling usb_put_intf(), in their disconnect() methods.
807  *
808  * A pointer to the interface with the incremented reference counter is
809  * returned.
810  */
811 struct usb_interface *usb_get_intf(struct usb_interface *intf)
812 {
813 	if (intf)
814 		get_device(&intf->dev);
815 	return intf;
816 }
817 
818 /**
819  * usb_put_intf - release a use of the usb interface structure
820  * @intf: interface that's been decremented
821  *
822  * Must be called when a user of an interface is finished with it.  When the
823  * last user of the interface calls this function, the memory of the interface
824  * is freed.
825  */
826 void usb_put_intf(struct usb_interface *intf)
827 {
828 	if (intf)
829 		put_device(&intf->dev);
830 }
831 
832 
833 /*			USB device locking
834  *
835  * Although locking USB devices should be straightforward, it is
836  * complicated by the way the driver-model core works.  When a new USB
837  * driver is registered or unregistered, the core will automatically
838  * probe or disconnect all matching interfaces on all USB devices while
839  * holding the USB subsystem writelock.  There's no good way for us to
840  * tell which devices will be used or to lock them beforehand; our only
841  * option is to effectively lock all the USB devices.
842  *
843  * We do that by using a private rw-semaphore, usb_all_devices_rwsem.
844  * When locking an individual device you must first acquire the rwsem's
845  * readlock.  When a driver is registered or unregistered the writelock
846  * must be held.  These actions are encapsulated in the subroutines
847  * below, so all a driver needs to do is call usb_lock_device() and
848  * usb_unlock_device().
849  *
850  * Complications arise when several devices are to be locked at the same
851  * time.  Only hub-aware drivers that are part of usbcore ever have to
852  * do this; nobody else needs to worry about it.  The problem is that
853  * usb_lock_device() must not be called to lock a second device since it
854  * would acquire the rwsem's readlock reentrantly, leading to deadlock if
855  * another thread was waiting for the writelock.  The solution is simple:
856  *
857  *	When locking more than one device, call usb_lock_device()
858  *	to lock the first one.  Lock the others by calling
859  *	down(&udev->serialize) directly.
860  *
861  *	When unlocking multiple devices, use up(&udev->serialize)
862  *	to unlock all but the last one.  Unlock the last one by
863  *	calling usb_unlock_device().
864  *
865  *	When locking both a device and its parent, always lock the
866  *	the parent first.
867  */
868 
869 /**
870  * usb_lock_device - acquire the lock for a usb device structure
871  * @udev: device that's being locked
872  *
873  * Use this routine when you don't hold any other device locks;
874  * to acquire nested inner locks call down(&udev->serialize) directly.
875  * This is necessary for proper interaction with usb_lock_all_devices().
876  */
877 void usb_lock_device(struct usb_device *udev)
878 {
879 	down_read(&usb_all_devices_rwsem);
880 	down(&udev->serialize);
881 }
882 
883 /**
884  * usb_trylock_device - attempt to acquire the lock for a usb device structure
885  * @udev: device that's being locked
886  *
887  * Don't use this routine if you already hold a device lock;
888  * use down_trylock(&udev->serialize) instead.
889  * This is necessary for proper interaction with usb_lock_all_devices().
890  *
891  * Returns 1 if successful, 0 if contention.
892  */
893 int usb_trylock_device(struct usb_device *udev)
894 {
895 	if (!down_read_trylock(&usb_all_devices_rwsem))
896 		return 0;
897 	if (down_trylock(&udev->serialize)) {
898 		up_read(&usb_all_devices_rwsem);
899 		return 0;
900 	}
901 	return 1;
902 }
903 
904 /**
905  * usb_lock_device_for_reset - cautiously acquire the lock for a
906  *	usb device structure
907  * @udev: device that's being locked
908  * @iface: interface bound to the driver making the request (optional)
909  *
910  * Attempts to acquire the device lock, but fails if the device is
911  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
912  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
913  * lock, the routine polls repeatedly.  This is to prevent deadlock with
914  * disconnect; in some drivers (such as usb-storage) the disconnect()
915  * callback will block waiting for a device reset to complete.
916  *
917  * Returns a negative error code for failure, otherwise 1 or 0 to indicate
918  * that the device will or will not have to be unlocked.  (0 can be
919  * returned when an interface is given and is BINDING, because in that
920  * case the driver already owns the device lock.)
921  */
922 int usb_lock_device_for_reset(struct usb_device *udev,
923 		struct usb_interface *iface)
924 {
925 	if (udev->state == USB_STATE_NOTATTACHED)
926 		return -ENODEV;
927 	if (udev->state == USB_STATE_SUSPENDED)
928 		return -EHOSTUNREACH;
929 	if (iface) {
930 		switch (iface->condition) {
931 		  case USB_INTERFACE_BINDING:
932 			return 0;
933 		  case USB_INTERFACE_BOUND:
934 			break;
935 		  default:
936 			return -EINTR;
937 		}
938 	}
939 
940 	while (!usb_trylock_device(udev)) {
941 		msleep(15);
942 		if (udev->state == USB_STATE_NOTATTACHED)
943 			return -ENODEV;
944 		if (udev->state == USB_STATE_SUSPENDED)
945 			return -EHOSTUNREACH;
946 		if (iface && iface->condition != USB_INTERFACE_BOUND)
947 			return -EINTR;
948 	}
949 	return 1;
950 }
951 
952 /**
953  * usb_unlock_device - release the lock for a usb device structure
954  * @udev: device that's being unlocked
955  *
956  * Use this routine when releasing the only device lock you hold;
957  * to release inner nested locks call up(&udev->serialize) directly.
958  * This is necessary for proper interaction with usb_lock_all_devices().
959  */
960 void usb_unlock_device(struct usb_device *udev)
961 {
962 	up(&udev->serialize);
963 	up_read(&usb_all_devices_rwsem);
964 }
965 
966 /**
967  * usb_lock_all_devices - acquire the lock for all usb device structures
968  *
969  * This is necessary when registering a new driver or probing a bus,
970  * since the driver-model core may try to use any usb_device.
971  */
972 void usb_lock_all_devices(void)
973 {
974 	down_write(&usb_all_devices_rwsem);
975 }
976 
977 /**
978  * usb_unlock_all_devices - release the lock for all usb device structures
979  */
980 void usb_unlock_all_devices(void)
981 {
982 	up_write(&usb_all_devices_rwsem);
983 }
984 
985 
986 static struct usb_device *match_device(struct usb_device *dev,
987 				       u16 vendor_id, u16 product_id)
988 {
989 	struct usb_device *ret_dev = NULL;
990 	int child;
991 
992 	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
993 	    le16_to_cpu(dev->descriptor.idVendor),
994 	    le16_to_cpu(dev->descriptor.idProduct));
995 
996 	/* see if this device matches */
997 	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
998 	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
999 		dev_dbg (&dev->dev, "matched this device!\n");
1000 		ret_dev = usb_get_dev(dev);
1001 		goto exit;
1002 	}
1003 
1004 	/* look through all of the children of this device */
1005 	for (child = 0; child < dev->maxchild; ++child) {
1006 		if (dev->children[child]) {
1007 			down(&dev->children[child]->serialize);
1008 			ret_dev = match_device(dev->children[child],
1009 					       vendor_id, product_id);
1010 			up(&dev->children[child]->serialize);
1011 			if (ret_dev)
1012 				goto exit;
1013 		}
1014 	}
1015 exit:
1016 	return ret_dev;
1017 }
1018 
1019 /**
1020  * usb_find_device - find a specific usb device in the system
1021  * @vendor_id: the vendor id of the device to find
1022  * @product_id: the product id of the device to find
1023  *
1024  * Returns a pointer to a struct usb_device if such a specified usb
1025  * device is present in the system currently.  The usage count of the
1026  * device will be incremented if a device is found.  Make sure to call
1027  * usb_put_dev() when the caller is finished with the device.
1028  *
1029  * If a device with the specified vendor and product id is not found,
1030  * NULL is returned.
1031  */
1032 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
1033 {
1034 	struct list_head *buslist;
1035 	struct usb_bus *bus;
1036 	struct usb_device *dev = NULL;
1037 
1038 	down(&usb_bus_list_lock);
1039 	for (buslist = usb_bus_list.next;
1040 	     buslist != &usb_bus_list;
1041 	     buslist = buslist->next) {
1042 		bus = container_of(buslist, struct usb_bus, bus_list);
1043 		if (!bus->root_hub)
1044 			continue;
1045 		usb_lock_device(bus->root_hub);
1046 		dev = match_device(bus->root_hub, vendor_id, product_id);
1047 		usb_unlock_device(bus->root_hub);
1048 		if (dev)
1049 			goto exit;
1050 	}
1051 exit:
1052 	up(&usb_bus_list_lock);
1053 	return dev;
1054 }
1055 
1056 /**
1057  * usb_get_current_frame_number - return current bus frame number
1058  * @dev: the device whose bus is being queried
1059  *
1060  * Returns the current frame number for the USB host controller
1061  * used with the given USB device.  This can be used when scheduling
1062  * isochronous requests.
1063  *
1064  * Note that different kinds of host controller have different
1065  * "scheduling horizons".  While one type might support scheduling only
1066  * 32 frames into the future, others could support scheduling up to
1067  * 1024 frames into the future.
1068  */
1069 int usb_get_current_frame_number(struct usb_device *dev)
1070 {
1071 	return dev->bus->op->get_frame_number (dev);
1072 }
1073 
1074 /*-------------------------------------------------------------------*/
1075 /*
1076  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
1077  * extra field of the interface and endpoint descriptor structs.
1078  */
1079 
1080 int __usb_get_extra_descriptor(char *buffer, unsigned size,
1081 	unsigned char type, void **ptr)
1082 {
1083 	struct usb_descriptor_header *header;
1084 
1085 	while (size >= sizeof(struct usb_descriptor_header)) {
1086 		header = (struct usb_descriptor_header *)buffer;
1087 
1088 		if (header->bLength < 2) {
1089 			printk(KERN_ERR
1090 				"%s: bogus descriptor, type %d length %d\n",
1091 				usbcore_name,
1092 				header->bDescriptorType,
1093 				header->bLength);
1094 			return -1;
1095 		}
1096 
1097 		if (header->bDescriptorType == type) {
1098 			*ptr = header;
1099 			return 0;
1100 		}
1101 
1102 		buffer += header->bLength;
1103 		size -= header->bLength;
1104 	}
1105 	return -1;
1106 }
1107 
1108 /**
1109  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
1110  * @dev: device the buffer will be used with
1111  * @size: requested buffer size
1112  * @mem_flags: affect whether allocation may block
1113  * @dma: used to return DMA address of buffer
1114  *
1115  * Return value is either null (indicating no buffer could be allocated), or
1116  * the cpu-space pointer to a buffer that may be used to perform DMA to the
1117  * specified device.  Such cpu-space buffers are returned along with the DMA
1118  * address (through the pointer provided).
1119  *
1120  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
1121  * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
1122  * mapping hardware for long idle periods.  The implementation varies between
1123  * platforms, depending on details of how DMA will work to this device.
1124  * Using these buffers also helps prevent cacheline sharing problems on
1125  * architectures where CPU caches are not DMA-coherent.
1126  *
1127  * When the buffer is no longer used, free it with usb_buffer_free().
1128  */
1129 void *usb_buffer_alloc (
1130 	struct usb_device *dev,
1131 	size_t size,
1132 	unsigned mem_flags,
1133 	dma_addr_t *dma
1134 )
1135 {
1136 	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
1137 		return NULL;
1138 	return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
1139 }
1140 
1141 /**
1142  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
1143  * @dev: device the buffer was used with
1144  * @size: requested buffer size
1145  * @addr: CPU address of buffer
1146  * @dma: DMA address of buffer
1147  *
1148  * This reclaims an I/O buffer, letting it be reused.  The memory must have
1149  * been allocated using usb_buffer_alloc(), and the parameters must match
1150  * those provided in that allocation request.
1151  */
1152 void usb_buffer_free (
1153 	struct usb_device *dev,
1154 	size_t size,
1155 	void *addr,
1156 	dma_addr_t dma
1157 )
1158 {
1159 	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
1160 	    	return;
1161 	dev->bus->op->buffer_free (dev->bus, size, addr, dma);
1162 }
1163 
1164 /**
1165  * usb_buffer_map - create DMA mapping(s) for an urb
1166  * @urb: urb whose transfer_buffer/setup_packet will be mapped
1167  *
1168  * Return value is either null (indicating no buffer could be mapped), or
1169  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
1170  * added to urb->transfer_flags if the operation succeeds.  If the device
1171  * is connected to this system through a non-DMA controller, this operation
1172  * always succeeds.
1173  *
1174  * This call would normally be used for an urb which is reused, perhaps
1175  * as the target of a large periodic transfer, with usb_buffer_dmasync()
1176  * calls to synchronize memory and dma state.
1177  *
1178  * Reverse the effect of this call with usb_buffer_unmap().
1179  */
1180 #if 0
1181 struct urb *usb_buffer_map (struct urb *urb)
1182 {
1183 	struct usb_bus		*bus;
1184 	struct device		*controller;
1185 
1186 	if (!urb
1187 			|| !urb->dev
1188 			|| !(bus = urb->dev->bus)
1189 			|| !(controller = bus->controller))
1190 		return NULL;
1191 
1192 	if (controller->dma_mask) {
1193 		urb->transfer_dma = dma_map_single (controller,
1194 			urb->transfer_buffer, urb->transfer_buffer_length,
1195 			usb_pipein (urb->pipe)
1196 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1197 		if (usb_pipecontrol (urb->pipe))
1198 			urb->setup_dma = dma_map_single (controller,
1199 					urb->setup_packet,
1200 					sizeof (struct usb_ctrlrequest),
1201 					DMA_TO_DEVICE);
1202 	// FIXME generic api broken like pci, can't report errors
1203 	// if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
1204 	} else
1205 		urb->transfer_dma = ~0;
1206 	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
1207 				| URB_NO_SETUP_DMA_MAP);
1208 	return urb;
1209 }
1210 #endif  /*  0  */
1211 
1212 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1213  * XXX please determine whether the sync is to transfer ownership of
1214  * XXX the buffer from device to cpu or vice verse, and thusly use the
1215  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1216  */
1217 #if 0
1218 
1219 /**
1220  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
1221  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
1222  */
1223 void usb_buffer_dmasync (struct urb *urb)
1224 {
1225 	struct usb_bus		*bus;
1226 	struct device		*controller;
1227 
1228 	if (!urb
1229 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1230 			|| !urb->dev
1231 			|| !(bus = urb->dev->bus)
1232 			|| !(controller = bus->controller))
1233 		return;
1234 
1235 	if (controller->dma_mask) {
1236 		dma_sync_single (controller,
1237 			urb->transfer_dma, urb->transfer_buffer_length,
1238 			usb_pipein (urb->pipe)
1239 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1240 		if (usb_pipecontrol (urb->pipe))
1241 			dma_sync_single (controller,
1242 					urb->setup_dma,
1243 					sizeof (struct usb_ctrlrequest),
1244 					DMA_TO_DEVICE);
1245 	}
1246 }
1247 #endif
1248 
1249 /**
1250  * usb_buffer_unmap - free DMA mapping(s) for an urb
1251  * @urb: urb whose transfer_buffer will be unmapped
1252  *
1253  * Reverses the effect of usb_buffer_map().
1254  */
1255 #if 0
1256 void usb_buffer_unmap (struct urb *urb)
1257 {
1258 	struct usb_bus		*bus;
1259 	struct device		*controller;
1260 
1261 	if (!urb
1262 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1263 			|| !urb->dev
1264 			|| !(bus = urb->dev->bus)
1265 			|| !(controller = bus->controller))
1266 		return;
1267 
1268 	if (controller->dma_mask) {
1269 		dma_unmap_single (controller,
1270 			urb->transfer_dma, urb->transfer_buffer_length,
1271 			usb_pipein (urb->pipe)
1272 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1273 		if (usb_pipecontrol (urb->pipe))
1274 			dma_unmap_single (controller,
1275 					urb->setup_dma,
1276 					sizeof (struct usb_ctrlrequest),
1277 					DMA_TO_DEVICE);
1278 	}
1279 	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
1280 				| URB_NO_SETUP_DMA_MAP);
1281 }
1282 #endif  /*  0  */
1283 
1284 /**
1285  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1286  * @dev: device to which the scatterlist will be mapped
1287  * @pipe: endpoint defining the mapping direction
1288  * @sg: the scatterlist to map
1289  * @nents: the number of entries in the scatterlist
1290  *
1291  * Return value is either < 0 (indicating no buffers could be mapped), or
1292  * the number of DMA mapping array entries in the scatterlist.
1293  *
1294  * The caller is responsible for placing the resulting DMA addresses from
1295  * the scatterlist into URB transfer buffer pointers, and for setting the
1296  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1297  *
1298  * Top I/O rates come from queuing URBs, instead of waiting for each one
1299  * to complete before starting the next I/O.   This is particularly easy
1300  * to do with scatterlists.  Just allocate and submit one URB for each DMA
1301  * mapping entry returned, stopping on the first error or when all succeed.
1302  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1303  *
1304  * This call would normally be used when translating scatterlist requests,
1305  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1306  * may be able to coalesce mappings for improved I/O efficiency.
1307  *
1308  * Reverse the effect of this call with usb_buffer_unmap_sg().
1309  */
1310 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1311 		struct scatterlist *sg, int nents)
1312 {
1313 	struct usb_bus		*bus;
1314 	struct device		*controller;
1315 
1316 	if (!dev
1317 			|| usb_pipecontrol (pipe)
1318 			|| !(bus = dev->bus)
1319 			|| !(controller = bus->controller)
1320 			|| !controller->dma_mask)
1321 		return -1;
1322 
1323 	// FIXME generic api broken like pci, can't report errors
1324 	return dma_map_sg (controller, sg, nents,
1325 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1326 }
1327 
1328 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1329  * XXX please determine whether the sync is to transfer ownership of
1330  * XXX the buffer from device to cpu or vice verse, and thusly use the
1331  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1332  */
1333 #if 0
1334 
1335 /**
1336  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1337  * @dev: device to which the scatterlist will be mapped
1338  * @pipe: endpoint defining the mapping direction
1339  * @sg: the scatterlist to synchronize
1340  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1341  *
1342  * Use this when you are re-using a scatterlist's data buffers for
1343  * another USB request.
1344  */
1345 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1346 		struct scatterlist *sg, int n_hw_ents)
1347 {
1348 	struct usb_bus		*bus;
1349 	struct device		*controller;
1350 
1351 	if (!dev
1352 			|| !(bus = dev->bus)
1353 			|| !(controller = bus->controller)
1354 			|| !controller->dma_mask)
1355 		return;
1356 
1357 	dma_sync_sg (controller, sg, n_hw_ents,
1358 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1359 }
1360 #endif
1361 
1362 /**
1363  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1364  * @dev: device to which the scatterlist will be mapped
1365  * @pipe: endpoint defining the mapping direction
1366  * @sg: the scatterlist to unmap
1367  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1368  *
1369  * Reverses the effect of usb_buffer_map_sg().
1370  */
1371 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1372 		struct scatterlist *sg, int n_hw_ents)
1373 {
1374 	struct usb_bus		*bus;
1375 	struct device		*controller;
1376 
1377 	if (!dev
1378 			|| !(bus = dev->bus)
1379 			|| !(controller = bus->controller)
1380 			|| !controller->dma_mask)
1381 		return;
1382 
1383 	dma_unmap_sg (controller, sg, n_hw_ents,
1384 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1385 }
1386 
1387 static int usb_generic_suspend(struct device *dev, pm_message_t message)
1388 {
1389 	struct usb_interface *intf;
1390 	struct usb_driver *driver;
1391 
1392 	if (dev->driver == &usb_generic_driver)
1393 		return usb_suspend_device (to_usb_device(dev), message);
1394 
1395 	if ((dev->driver == NULL) ||
1396 	    (dev->driver_data == &usb_generic_driver_data))
1397 		return 0;
1398 
1399 	intf = to_usb_interface(dev);
1400 	driver = to_usb_driver(dev->driver);
1401 
1402 	/* there's only one USB suspend state */
1403 	if (intf->dev.power.power_state.event)
1404 		return 0;
1405 
1406 	if (driver->suspend)
1407 		return driver->suspend(intf, message);
1408 	return 0;
1409 }
1410 
1411 static int usb_generic_resume(struct device *dev)
1412 {
1413 	struct usb_interface *intf;
1414 	struct usb_driver *driver;
1415 
1416 	/* devices resume through their hub */
1417 	if (dev->driver == &usb_generic_driver)
1418 		return usb_resume_device (to_usb_device(dev));
1419 
1420 	if ((dev->driver == NULL) ||
1421 	    (dev->driver_data == &usb_generic_driver_data))
1422 		return 0;
1423 
1424 	intf = to_usb_interface(dev);
1425 	driver = to_usb_driver(dev->driver);
1426 
1427 	if (driver->resume)
1428 		return driver->resume(intf);
1429 	return 0;
1430 }
1431 
1432 struct bus_type usb_bus_type = {
1433 	.name =		"usb",
1434 	.match =	usb_device_match,
1435 	.hotplug =	usb_hotplug,
1436 	.suspend =	usb_generic_suspend,
1437 	.resume =	usb_generic_resume,
1438 };
1439 
1440 #ifndef MODULE
1441 
1442 static int __init usb_setup_disable(char *str)
1443 {
1444 	nousb = 1;
1445 	return 1;
1446 }
1447 
1448 /* format to disable USB on kernel command line is: nousb */
1449 __setup("nousb", usb_setup_disable);
1450 
1451 #endif
1452 
1453 /*
1454  * for external read access to <nousb>
1455  */
1456 int usb_disabled(void)
1457 {
1458 	return nousb;
1459 }
1460 
1461 /*
1462  * Init
1463  */
1464 static int __init usb_init(void)
1465 {
1466 	int retval;
1467 	if (nousb) {
1468 		pr_info ("%s: USB support disabled\n", usbcore_name);
1469 		return 0;
1470 	}
1471 
1472 	retval = bus_register(&usb_bus_type);
1473 	if (retval)
1474 		goto out;
1475 	retval = usb_host_init();
1476 	if (retval)
1477 		goto host_init_failed;
1478 	retval = usb_major_init();
1479 	if (retval)
1480 		goto major_init_failed;
1481 	retval = usbfs_init();
1482 	if (retval)
1483 		goto fs_init_failed;
1484 	retval = usb_hub_init();
1485 	if (retval)
1486 		goto hub_init_failed;
1487 
1488 	retval = driver_register(&usb_generic_driver);
1489 	if (!retval)
1490 		goto out;
1491 
1492 	usb_hub_cleanup();
1493 hub_init_failed:
1494 	usbfs_cleanup();
1495 fs_init_failed:
1496 	usb_major_cleanup();
1497 major_init_failed:
1498 	usb_host_cleanup();
1499 host_init_failed:
1500 	bus_unregister(&usb_bus_type);
1501 out:
1502 	return retval;
1503 }
1504 
1505 /*
1506  * Cleanup
1507  */
1508 static void __exit usb_exit(void)
1509 {
1510 	/* This will matter if shutdown/reboot does exitcalls. */
1511 	if (nousb)
1512 		return;
1513 
1514 	driver_unregister(&usb_generic_driver);
1515 	usb_major_cleanup();
1516 	usbfs_cleanup();
1517 	usb_hub_cleanup();
1518 	usb_host_cleanup();
1519 	bus_unregister(&usb_bus_type);
1520 }
1521 
1522 subsys_initcall(usb_init);
1523 module_exit(usb_exit);
1524 
1525 /*
1526  * USB may be built into the kernel or be built as modules.
1527  * These symbols are exported for device (or host controller)
1528  * driver modules to use.
1529  */
1530 
1531 EXPORT_SYMBOL(usb_register);
1532 EXPORT_SYMBOL(usb_deregister);
1533 EXPORT_SYMBOL(usb_disabled);
1534 
1535 EXPORT_SYMBOL_GPL(usb_get_intf);
1536 EXPORT_SYMBOL_GPL(usb_put_intf);
1537 
1538 EXPORT_SYMBOL(usb_alloc_dev);
1539 EXPORT_SYMBOL(usb_put_dev);
1540 EXPORT_SYMBOL(usb_get_dev);
1541 EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1542 
1543 EXPORT_SYMBOL(usb_lock_device);
1544 EXPORT_SYMBOL(usb_trylock_device);
1545 EXPORT_SYMBOL(usb_lock_device_for_reset);
1546 EXPORT_SYMBOL(usb_unlock_device);
1547 
1548 EXPORT_SYMBOL(usb_driver_claim_interface);
1549 EXPORT_SYMBOL(usb_driver_release_interface);
1550 EXPORT_SYMBOL(usb_match_id);
1551 EXPORT_SYMBOL(usb_find_interface);
1552 EXPORT_SYMBOL(usb_ifnum_to_if);
1553 EXPORT_SYMBOL(usb_altnum_to_altsetting);
1554 
1555 EXPORT_SYMBOL(usb_reset_device);
1556 EXPORT_SYMBOL(usb_disconnect);
1557 
1558 EXPORT_SYMBOL(__usb_get_extra_descriptor);
1559 
1560 EXPORT_SYMBOL(usb_find_device);
1561 EXPORT_SYMBOL(usb_get_current_frame_number);
1562 
1563 EXPORT_SYMBOL (usb_buffer_alloc);
1564 EXPORT_SYMBOL (usb_buffer_free);
1565 
1566 #if 0
1567 EXPORT_SYMBOL (usb_buffer_map);
1568 EXPORT_SYMBOL (usb_buffer_dmasync);
1569 EXPORT_SYMBOL (usb_buffer_unmap);
1570 #endif
1571 
1572 EXPORT_SYMBOL (usb_buffer_map_sg);
1573 #if 0
1574 EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1575 #endif
1576 EXPORT_SYMBOL (usb_buffer_unmap_sg);
1577 
1578 MODULE_LICENSE("GPL");
1579