1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/usb/core/usb.c 4 * 5 * (C) Copyright Linus Torvalds 1999 6 * (C) Copyright Johannes Erdfelt 1999-2001 7 * (C) Copyright Andreas Gal 1999 8 * (C) Copyright Gregory P. Smith 1999 9 * (C) Copyright Deti Fliegl 1999 (new USB architecture) 10 * (C) Copyright Randy Dunlap 2000 11 * (C) Copyright David Brownell 2000-2004 12 * (C) Copyright Yggdrasil Computing, Inc. 2000 13 * (usb_device_id matching changes by Adam J. Richter) 14 * (C) Copyright Greg Kroah-Hartman 2002-2003 15 * 16 * Released under the GPLv2 only. 17 * 18 * NOTE! This is not actually a driver at all, rather this is 19 * just a collection of helper routines that implement the 20 * generic USB things that the real drivers can use.. 21 * 22 * Think of this as a "USB library" rather than anything else, 23 * with no callbacks. Callbacks are evil. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/string.h> 29 #include <linux/bitops.h> 30 #include <linux/slab.h> 31 #include <linux/kmod.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/errno.h> 35 #include <linux/usb.h> 36 #include <linux/usb/hcd.h> 37 #include <linux/mutex.h> 38 #include <linux/workqueue.h> 39 #include <linux/debugfs.h> 40 #include <linux/usb/of.h> 41 42 #include <asm/io.h> 43 #include <linux/scatterlist.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 47 #include "hub.h" 48 49 const char *usbcore_name = "usbcore"; 50 51 static bool nousb; /* Disable USB when built into kernel image */ 52 53 module_param(nousb, bool, 0444); 54 55 /* 56 * for external read access to <nousb> 57 */ 58 int usb_disabled(void) 59 { 60 return nousb; 61 } 62 EXPORT_SYMBOL_GPL(usb_disabled); 63 64 #ifdef CONFIG_PM 65 /* Default delay value, in seconds */ 66 static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY; 67 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644); 68 MODULE_PARM_DESC(autosuspend, "default autosuspend delay"); 69 70 #else 71 #define usb_autosuspend_delay 0 72 #endif 73 74 static bool match_endpoint(struct usb_endpoint_descriptor *epd, 75 struct usb_endpoint_descriptor **bulk_in, 76 struct usb_endpoint_descriptor **bulk_out, 77 struct usb_endpoint_descriptor **int_in, 78 struct usb_endpoint_descriptor **int_out) 79 { 80 switch (usb_endpoint_type(epd)) { 81 case USB_ENDPOINT_XFER_BULK: 82 if (usb_endpoint_dir_in(epd)) { 83 if (bulk_in && !*bulk_in) { 84 *bulk_in = epd; 85 break; 86 } 87 } else { 88 if (bulk_out && !*bulk_out) { 89 *bulk_out = epd; 90 break; 91 } 92 } 93 94 return false; 95 case USB_ENDPOINT_XFER_INT: 96 if (usb_endpoint_dir_in(epd)) { 97 if (int_in && !*int_in) { 98 *int_in = epd; 99 break; 100 } 101 } else { 102 if (int_out && !*int_out) { 103 *int_out = epd; 104 break; 105 } 106 } 107 108 return false; 109 default: 110 return false; 111 } 112 113 return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) && 114 (!int_in || *int_in) && (!int_out || *int_out); 115 } 116 117 /** 118 * usb_find_common_endpoints() -- look up common endpoint descriptors 119 * @alt: alternate setting to search 120 * @bulk_in: pointer to descriptor pointer, or NULL 121 * @bulk_out: pointer to descriptor pointer, or NULL 122 * @int_in: pointer to descriptor pointer, or NULL 123 * @int_out: pointer to descriptor pointer, or NULL 124 * 125 * Search the alternate setting's endpoint descriptors for the first bulk-in, 126 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the 127 * provided pointers (unless they are NULL). 128 * 129 * If a requested endpoint is not found, the corresponding pointer is set to 130 * NULL. 131 * 132 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. 133 */ 134 int usb_find_common_endpoints(struct usb_host_interface *alt, 135 struct usb_endpoint_descriptor **bulk_in, 136 struct usb_endpoint_descriptor **bulk_out, 137 struct usb_endpoint_descriptor **int_in, 138 struct usb_endpoint_descriptor **int_out) 139 { 140 struct usb_endpoint_descriptor *epd; 141 int i; 142 143 if (bulk_in) 144 *bulk_in = NULL; 145 if (bulk_out) 146 *bulk_out = NULL; 147 if (int_in) 148 *int_in = NULL; 149 if (int_out) 150 *int_out = NULL; 151 152 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 153 epd = &alt->endpoint[i].desc; 154 155 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) 156 return 0; 157 } 158 159 return -ENXIO; 160 } 161 EXPORT_SYMBOL_GPL(usb_find_common_endpoints); 162 163 /** 164 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors 165 * @alt: alternate setting to search 166 * @bulk_in: pointer to descriptor pointer, or NULL 167 * @bulk_out: pointer to descriptor pointer, or NULL 168 * @int_in: pointer to descriptor pointer, or NULL 169 * @int_out: pointer to descriptor pointer, or NULL 170 * 171 * Search the alternate setting's endpoint descriptors for the last bulk-in, 172 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the 173 * provided pointers (unless they are NULL). 174 * 175 * If a requested endpoint is not found, the corresponding pointer is set to 176 * NULL. 177 * 178 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise. 179 */ 180 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 181 struct usb_endpoint_descriptor **bulk_in, 182 struct usb_endpoint_descriptor **bulk_out, 183 struct usb_endpoint_descriptor **int_in, 184 struct usb_endpoint_descriptor **int_out) 185 { 186 struct usb_endpoint_descriptor *epd; 187 int i; 188 189 if (bulk_in) 190 *bulk_in = NULL; 191 if (bulk_out) 192 *bulk_out = NULL; 193 if (int_in) 194 *int_in = NULL; 195 if (int_out) 196 *int_out = NULL; 197 198 for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) { 199 epd = &alt->endpoint[i].desc; 200 201 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out)) 202 return 0; 203 } 204 205 return -ENXIO; 206 } 207 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse); 208 209 /** 210 * usb_find_endpoint() - Given an endpoint address, search for the endpoint's 211 * usb_host_endpoint structure in an interface's current altsetting. 212 * @intf: the interface whose current altsetting should be searched 213 * @ep_addr: the endpoint address (number and direction) to find 214 * 215 * Search the altsetting's list of endpoints for one with the specified address. 216 * 217 * Return: Pointer to the usb_host_endpoint if found, %NULL otherwise. 218 */ 219 static const struct usb_host_endpoint *usb_find_endpoint( 220 const struct usb_interface *intf, unsigned int ep_addr) 221 { 222 int n; 223 const struct usb_host_endpoint *ep; 224 225 n = intf->cur_altsetting->desc.bNumEndpoints; 226 ep = intf->cur_altsetting->endpoint; 227 for (; n > 0; (--n, ++ep)) { 228 if (ep->desc.bEndpointAddress == ep_addr) 229 return ep; 230 } 231 return NULL; 232 } 233 234 /** 235 * usb_check_bulk_endpoints - Check whether an interface's current altsetting 236 * contains a set of bulk endpoints with the given addresses. 237 * @intf: the interface whose current altsetting should be searched 238 * @ep_addrs: 0-terminated array of the endpoint addresses (number and 239 * direction) to look for 240 * 241 * Search for endpoints with the specified addresses and check their types. 242 * 243 * Return: %true if all the endpoints are found and are bulk, %false otherwise. 244 */ 245 bool usb_check_bulk_endpoints( 246 const struct usb_interface *intf, const u8 *ep_addrs) 247 { 248 const struct usb_host_endpoint *ep; 249 250 for (; *ep_addrs; ++ep_addrs) { 251 ep = usb_find_endpoint(intf, *ep_addrs); 252 if (!ep || !usb_endpoint_xfer_bulk(&ep->desc)) 253 return false; 254 } 255 return true; 256 } 257 EXPORT_SYMBOL_GPL(usb_check_bulk_endpoints); 258 259 /** 260 * usb_check_int_endpoints - Check whether an interface's current altsetting 261 * contains a set of interrupt endpoints with the given addresses. 262 * @intf: the interface whose current altsetting should be searched 263 * @ep_addrs: 0-terminated array of the endpoint addresses (number and 264 * direction) to look for 265 * 266 * Search for endpoints with the specified addresses and check their types. 267 * 268 * Return: %true if all the endpoints are found and are interrupt, 269 * %false otherwise. 270 */ 271 bool usb_check_int_endpoints( 272 const struct usb_interface *intf, const u8 *ep_addrs) 273 { 274 const struct usb_host_endpoint *ep; 275 276 for (; *ep_addrs; ++ep_addrs) { 277 ep = usb_find_endpoint(intf, *ep_addrs); 278 if (!ep || !usb_endpoint_xfer_int(&ep->desc)) 279 return false; 280 } 281 return true; 282 } 283 EXPORT_SYMBOL_GPL(usb_check_int_endpoints); 284 285 /** 286 * usb_find_alt_setting() - Given a configuration, find the alternate setting 287 * for the given interface. 288 * @config: the configuration to search (not necessarily the current config). 289 * @iface_num: interface number to search in 290 * @alt_num: alternate interface setting number to search for. 291 * 292 * Search the configuration's interface cache for the given alt setting. 293 * 294 * Return: The alternate setting, if found. %NULL otherwise. 295 */ 296 struct usb_host_interface *usb_find_alt_setting( 297 struct usb_host_config *config, 298 unsigned int iface_num, 299 unsigned int alt_num) 300 { 301 struct usb_interface_cache *intf_cache = NULL; 302 int i; 303 304 if (!config) 305 return NULL; 306 for (i = 0; i < config->desc.bNumInterfaces; i++) { 307 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber 308 == iface_num) { 309 intf_cache = config->intf_cache[i]; 310 break; 311 } 312 } 313 if (!intf_cache) 314 return NULL; 315 for (i = 0; i < intf_cache->num_altsetting; i++) 316 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num) 317 return &intf_cache->altsetting[i]; 318 319 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, " 320 "config %u\n", alt_num, iface_num, 321 config->desc.bConfigurationValue); 322 return NULL; 323 } 324 EXPORT_SYMBOL_GPL(usb_find_alt_setting); 325 326 /** 327 * usb_ifnum_to_if - get the interface object with a given interface number 328 * @dev: the device whose current configuration is considered 329 * @ifnum: the desired interface 330 * 331 * This walks the device descriptor for the currently active configuration 332 * to find the interface object with the particular interface number. 333 * 334 * Note that configuration descriptors are not required to assign interface 335 * numbers sequentially, so that it would be incorrect to assume that 336 * the first interface in that descriptor corresponds to interface zero. 337 * This routine helps device drivers avoid such mistakes. 338 * However, you should make sure that you do the right thing with any 339 * alternate settings available for this interfaces. 340 * 341 * Don't call this function unless you are bound to one of the interfaces 342 * on this device or you have locked the device! 343 * 344 * Return: A pointer to the interface that has @ifnum as interface number, 345 * if found. %NULL otherwise. 346 */ 347 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 348 unsigned ifnum) 349 { 350 struct usb_host_config *config = dev->actconfig; 351 int i; 352 353 if (!config) 354 return NULL; 355 for (i = 0; i < config->desc.bNumInterfaces; i++) 356 if (config->interface[i]->altsetting[0] 357 .desc.bInterfaceNumber == ifnum) 358 return config->interface[i]; 359 360 return NULL; 361 } 362 EXPORT_SYMBOL_GPL(usb_ifnum_to_if); 363 364 /** 365 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number. 366 * @intf: the interface containing the altsetting in question 367 * @altnum: the desired alternate setting number 368 * 369 * This searches the altsetting array of the specified interface for 370 * an entry with the correct bAlternateSetting value. 371 * 372 * Note that altsettings need not be stored sequentially by number, so 373 * it would be incorrect to assume that the first altsetting entry in 374 * the array corresponds to altsetting zero. This routine helps device 375 * drivers avoid such mistakes. 376 * 377 * Don't call this function unless you are bound to the intf interface 378 * or you have locked the device! 379 * 380 * Return: A pointer to the entry of the altsetting array of @intf that 381 * has @altnum as the alternate setting number. %NULL if not found. 382 */ 383 struct usb_host_interface *usb_altnum_to_altsetting( 384 const struct usb_interface *intf, 385 unsigned int altnum) 386 { 387 int i; 388 389 for (i = 0; i < intf->num_altsetting; i++) { 390 if (intf->altsetting[i].desc.bAlternateSetting == altnum) 391 return &intf->altsetting[i]; 392 } 393 return NULL; 394 } 395 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting); 396 397 struct find_interface_arg { 398 int minor; 399 struct device_driver *drv; 400 }; 401 402 static int __find_interface(struct device *dev, const void *data) 403 { 404 const struct find_interface_arg *arg = data; 405 struct usb_interface *intf; 406 407 if (!is_usb_interface(dev)) 408 return 0; 409 410 if (dev->driver != arg->drv) 411 return 0; 412 intf = to_usb_interface(dev); 413 return intf->minor == arg->minor; 414 } 415 416 /** 417 * usb_find_interface - find usb_interface pointer for driver and device 418 * @drv: the driver whose current configuration is considered 419 * @minor: the minor number of the desired device 420 * 421 * This walks the bus device list and returns a pointer to the interface 422 * with the matching minor and driver. Note, this only works for devices 423 * that share the USB major number. 424 * 425 * Return: A pointer to the interface with the matching major and @minor. 426 */ 427 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor) 428 { 429 struct find_interface_arg argb; 430 struct device *dev; 431 432 argb.minor = minor; 433 argb.drv = &drv->drvwrap.driver; 434 435 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface); 436 437 /* Drop reference count from bus_find_device */ 438 put_device(dev); 439 440 return dev ? to_usb_interface(dev) : NULL; 441 } 442 EXPORT_SYMBOL_GPL(usb_find_interface); 443 444 struct each_dev_arg { 445 void *data; 446 int (*fn)(struct usb_device *, void *); 447 }; 448 449 static int __each_dev(struct device *dev, void *data) 450 { 451 struct each_dev_arg *arg = (struct each_dev_arg *)data; 452 453 /* There are struct usb_interface on the same bus, filter them out */ 454 if (!is_usb_device(dev)) 455 return 0; 456 457 return arg->fn(to_usb_device(dev), arg->data); 458 } 459 460 /** 461 * usb_for_each_dev - iterate over all USB devices in the system 462 * @data: data pointer that will be handed to the callback function 463 * @fn: callback function to be called for each USB device 464 * 465 * Iterate over all USB devices and call @fn for each, passing it @data. If it 466 * returns anything other than 0, we break the iteration prematurely and return 467 * that value. 468 */ 469 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)) 470 { 471 struct each_dev_arg arg = {data, fn}; 472 473 return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev); 474 } 475 EXPORT_SYMBOL_GPL(usb_for_each_dev); 476 477 /** 478 * usb_release_dev - free a usb device structure when all users of it are finished. 479 * @dev: device that's been disconnected 480 * 481 * Will be called only by the device core when all users of this usb device are 482 * done. 483 */ 484 static void usb_release_dev(struct device *dev) 485 { 486 struct usb_device *udev; 487 struct usb_hcd *hcd; 488 489 udev = to_usb_device(dev); 490 hcd = bus_to_hcd(udev->bus); 491 492 usb_destroy_configuration(udev); 493 usb_release_bos_descriptor(udev); 494 of_node_put(dev->of_node); 495 usb_put_hcd(hcd); 496 kfree(udev->product); 497 kfree(udev->manufacturer); 498 kfree(udev->serial); 499 kfree(udev); 500 } 501 502 static int usb_dev_uevent(const struct device *dev, struct kobj_uevent_env *env) 503 { 504 const struct usb_device *usb_dev; 505 506 usb_dev = to_usb_device(dev); 507 508 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum)) 509 return -ENOMEM; 510 511 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum)) 512 return -ENOMEM; 513 514 return 0; 515 } 516 517 #ifdef CONFIG_PM 518 519 /* USB device Power-Management thunks. 520 * There's no need to distinguish here between quiescing a USB device 521 * and powering it down; the generic_suspend() routine takes care of 522 * it by skipping the usb_port_suspend() call for a quiesce. And for 523 * USB interfaces there's no difference at all. 524 */ 525 526 static int usb_dev_prepare(struct device *dev) 527 { 528 return 0; /* Implement eventually? */ 529 } 530 531 static void usb_dev_complete(struct device *dev) 532 { 533 /* Currently used only for rebinding interfaces */ 534 usb_resume_complete(dev); 535 } 536 537 static int usb_dev_suspend(struct device *dev) 538 { 539 return usb_suspend(dev, PMSG_SUSPEND); 540 } 541 542 static int usb_dev_resume(struct device *dev) 543 { 544 return usb_resume(dev, PMSG_RESUME); 545 } 546 547 static int usb_dev_freeze(struct device *dev) 548 { 549 return usb_suspend(dev, PMSG_FREEZE); 550 } 551 552 static int usb_dev_thaw(struct device *dev) 553 { 554 return usb_resume(dev, PMSG_THAW); 555 } 556 557 static int usb_dev_poweroff(struct device *dev) 558 { 559 return usb_suspend(dev, PMSG_HIBERNATE); 560 } 561 562 static int usb_dev_restore(struct device *dev) 563 { 564 return usb_resume(dev, PMSG_RESTORE); 565 } 566 567 static const struct dev_pm_ops usb_device_pm_ops = { 568 .prepare = usb_dev_prepare, 569 .complete = usb_dev_complete, 570 .suspend = usb_dev_suspend, 571 .resume = usb_dev_resume, 572 .freeze = usb_dev_freeze, 573 .thaw = usb_dev_thaw, 574 .poweroff = usb_dev_poweroff, 575 .restore = usb_dev_restore, 576 .runtime_suspend = usb_runtime_suspend, 577 .runtime_resume = usb_runtime_resume, 578 .runtime_idle = usb_runtime_idle, 579 }; 580 581 #endif /* CONFIG_PM */ 582 583 584 static char *usb_devnode(const struct device *dev, 585 umode_t *mode, kuid_t *uid, kgid_t *gid) 586 { 587 const struct usb_device *usb_dev; 588 589 usb_dev = to_usb_device(dev); 590 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d", 591 usb_dev->bus->busnum, usb_dev->devnum); 592 } 593 594 struct device_type usb_device_type = { 595 .name = "usb_device", 596 .release = usb_release_dev, 597 .uevent = usb_dev_uevent, 598 .devnode = usb_devnode, 599 #ifdef CONFIG_PM 600 .pm = &usb_device_pm_ops, 601 #endif 602 }; 603 604 605 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */ 606 static unsigned usb_bus_is_wusb(struct usb_bus *bus) 607 { 608 struct usb_hcd *hcd = bus_to_hcd(bus); 609 return hcd->wireless; 610 } 611 612 static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd) 613 { 614 struct usb_hub *hub; 615 616 if (!dev->parent) 617 return true; /* Root hub always ok [and always wired] */ 618 619 switch (hcd->dev_policy) { 620 case USB_DEVICE_AUTHORIZE_NONE: 621 default: 622 return false; 623 624 case USB_DEVICE_AUTHORIZE_ALL: 625 return true; 626 627 case USB_DEVICE_AUTHORIZE_INTERNAL: 628 hub = usb_hub_to_struct_hub(dev->parent); 629 return hub->ports[dev->portnum - 1]->connect_type == 630 USB_PORT_CONNECT_TYPE_HARD_WIRED; 631 } 632 } 633 634 /** 635 * usb_alloc_dev - usb device constructor (usbcore-internal) 636 * @parent: hub to which device is connected; null to allocate a root hub 637 * @bus: bus used to access the device 638 * @port1: one-based index of port; ignored for root hubs 639 * 640 * Context: task context, might sleep. 641 * 642 * Only hub drivers (including virtual root hub drivers for host 643 * controllers) should ever call this. 644 * 645 * This call may not be used in a non-sleeping context. 646 * 647 * Return: On success, a pointer to the allocated usb device. %NULL on 648 * failure. 649 */ 650 struct usb_device *usb_alloc_dev(struct usb_device *parent, 651 struct usb_bus *bus, unsigned port1) 652 { 653 struct usb_device *dev; 654 struct usb_hcd *usb_hcd = bus_to_hcd(bus); 655 unsigned root_hub = 0; 656 unsigned raw_port = port1; 657 658 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 659 if (!dev) 660 return NULL; 661 662 if (!usb_get_hcd(usb_hcd)) { 663 kfree(dev); 664 return NULL; 665 } 666 /* Root hubs aren't true devices, so don't allocate HCD resources */ 667 if (usb_hcd->driver->alloc_dev && parent && 668 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) { 669 usb_put_hcd(bus_to_hcd(bus)); 670 kfree(dev); 671 return NULL; 672 } 673 674 device_initialize(&dev->dev); 675 dev->dev.bus = &usb_bus_type; 676 dev->dev.type = &usb_device_type; 677 dev->dev.groups = usb_device_groups; 678 set_dev_node(&dev->dev, dev_to_node(bus->sysdev)); 679 dev->state = USB_STATE_ATTACHED; 680 dev->lpm_disable_count = 1; 681 atomic_set(&dev->urbnum, 0); 682 683 INIT_LIST_HEAD(&dev->ep0.urb_list); 684 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE; 685 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT; 686 /* ep0 maxpacket comes later, from device descriptor */ 687 usb_enable_endpoint(dev, &dev->ep0, false); 688 dev->can_submit = 1; 689 690 /* Save readable and stable topology id, distinguishing devices 691 * by location for diagnostics, tools, driver model, etc. The 692 * string is a path along hub ports, from the root. Each device's 693 * dev->devpath will be stable until USB is re-cabled, and hubs 694 * are often labeled with these port numbers. The name isn't 695 * as stable: bus->busnum changes easily from modprobe order, 696 * cardbus or pci hotplugging, and so on. 697 */ 698 if (unlikely(!parent)) { 699 dev->devpath[0] = '0'; 700 dev->route = 0; 701 702 dev->dev.parent = bus->controller; 703 device_set_of_node_from_dev(&dev->dev, bus->sysdev); 704 dev_set_name(&dev->dev, "usb%d", bus->busnum); 705 root_hub = 1; 706 } else { 707 /* match any labeling on the hubs; it's one-based */ 708 if (parent->devpath[0] == '0') { 709 snprintf(dev->devpath, sizeof dev->devpath, 710 "%d", port1); 711 /* Root ports are not counted in route string */ 712 dev->route = 0; 713 } else { 714 snprintf(dev->devpath, sizeof dev->devpath, 715 "%s.%d", parent->devpath, port1); 716 /* Route string assumes hubs have less than 16 ports */ 717 if (port1 < 15) 718 dev->route = parent->route + 719 (port1 << ((parent->level - 1)*4)); 720 else 721 dev->route = parent->route + 722 (15 << ((parent->level - 1)*4)); 723 } 724 725 dev->dev.parent = &parent->dev; 726 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath); 727 728 if (!parent->parent) { 729 /* device under root hub's port */ 730 raw_port = usb_hcd_find_raw_port_number(usb_hcd, 731 port1); 732 } 733 dev->dev.of_node = usb_of_get_device_node(parent, raw_port); 734 735 /* hub driver sets up TT records */ 736 } 737 738 dev->portnum = port1; 739 dev->bus = bus; 740 dev->parent = parent; 741 INIT_LIST_HEAD(&dev->filelist); 742 743 #ifdef CONFIG_PM 744 pm_runtime_set_autosuspend_delay(&dev->dev, 745 usb_autosuspend_delay * 1000); 746 dev->connect_time = jiffies; 747 dev->active_duration = -jiffies; 748 #endif 749 750 dev->authorized = usb_dev_authorized(dev, usb_hcd); 751 if (!root_hub) 752 dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0; 753 754 return dev; 755 } 756 EXPORT_SYMBOL_GPL(usb_alloc_dev); 757 758 /** 759 * usb_get_dev - increments the reference count of the usb device structure 760 * @dev: the device being referenced 761 * 762 * Each live reference to a device should be refcounted. 763 * 764 * Drivers for USB interfaces should normally record such references in 765 * their probe() methods, when they bind to an interface, and release 766 * them by calling usb_put_dev(), in their disconnect() methods. 767 * However, if a driver does not access the usb_device structure after 768 * its disconnect() method returns then refcounting is not necessary, 769 * because the USB core guarantees that a usb_device will not be 770 * deallocated until after all of its interface drivers have been unbound. 771 * 772 * Return: A pointer to the device with the incremented reference counter. 773 */ 774 struct usb_device *usb_get_dev(struct usb_device *dev) 775 { 776 if (dev) 777 get_device(&dev->dev); 778 return dev; 779 } 780 EXPORT_SYMBOL_GPL(usb_get_dev); 781 782 /** 783 * usb_put_dev - release a use of the usb device structure 784 * @dev: device that's been disconnected 785 * 786 * Must be called when a user of a device is finished with it. When the last 787 * user of the device calls this function, the memory of the device is freed. 788 */ 789 void usb_put_dev(struct usb_device *dev) 790 { 791 if (dev) 792 put_device(&dev->dev); 793 } 794 EXPORT_SYMBOL_GPL(usb_put_dev); 795 796 /** 797 * usb_get_intf - increments the reference count of the usb interface structure 798 * @intf: the interface being referenced 799 * 800 * Each live reference to a interface must be refcounted. 801 * 802 * Drivers for USB interfaces should normally record such references in 803 * their probe() methods, when they bind to an interface, and release 804 * them by calling usb_put_intf(), in their disconnect() methods. 805 * However, if a driver does not access the usb_interface structure after 806 * its disconnect() method returns then refcounting is not necessary, 807 * because the USB core guarantees that a usb_interface will not be 808 * deallocated until after its driver has been unbound. 809 * 810 * Return: A pointer to the interface with the incremented reference counter. 811 */ 812 struct usb_interface *usb_get_intf(struct usb_interface *intf) 813 { 814 if (intf) 815 get_device(&intf->dev); 816 return intf; 817 } 818 EXPORT_SYMBOL_GPL(usb_get_intf); 819 820 /** 821 * usb_put_intf - release a use of the usb interface structure 822 * @intf: interface that's been decremented 823 * 824 * Must be called when a user of an interface is finished with it. When the 825 * last user of the interface calls this function, the memory of the interface 826 * is freed. 827 */ 828 void usb_put_intf(struct usb_interface *intf) 829 { 830 if (intf) 831 put_device(&intf->dev); 832 } 833 EXPORT_SYMBOL_GPL(usb_put_intf); 834 835 /** 836 * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint 837 * @intf: the usb interface 838 * 839 * While a USB device cannot perform DMA operations by itself, many USB 840 * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint 841 * for the given USB interface, if any. The returned device structure must be 842 * released with put_device(). 843 * 844 * See also usb_get_dma_device(). 845 * 846 * Returns: A reference to the usb interface's DMA endpoint; or NULL if none 847 * exists. 848 */ 849 struct device *usb_intf_get_dma_device(struct usb_interface *intf) 850 { 851 struct usb_device *udev = interface_to_usbdev(intf); 852 struct device *dmadev; 853 854 if (!udev->bus) 855 return NULL; 856 857 dmadev = get_device(udev->bus->sysdev); 858 if (!dmadev || !dmadev->dma_mask) { 859 put_device(dmadev); 860 return NULL; 861 } 862 863 return dmadev; 864 } 865 EXPORT_SYMBOL_GPL(usb_intf_get_dma_device); 866 867 /* USB device locking 868 * 869 * USB devices and interfaces are locked using the semaphore in their 870 * embedded struct device. The hub driver guarantees that whenever a 871 * device is connected or disconnected, drivers are called with the 872 * USB device locked as well as their particular interface. 873 * 874 * Complications arise when several devices are to be locked at the same 875 * time. Only hub-aware drivers that are part of usbcore ever have to 876 * do this; nobody else needs to worry about it. The rule for locking 877 * is simple: 878 * 879 * When locking both a device and its parent, always lock the 880 * parent first. 881 */ 882 883 /** 884 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure 885 * @udev: device that's being locked 886 * @iface: interface bound to the driver making the request (optional) 887 * 888 * Attempts to acquire the device lock, but fails if the device is 889 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface 890 * is neither BINDING nor BOUND. Rather than sleeping to wait for the 891 * lock, the routine polls repeatedly. This is to prevent deadlock with 892 * disconnect; in some drivers (such as usb-storage) the disconnect() 893 * or suspend() method will block waiting for a device reset to complete. 894 * 895 * Return: A negative error code for failure, otherwise 0. 896 */ 897 int usb_lock_device_for_reset(struct usb_device *udev, 898 const struct usb_interface *iface) 899 { 900 unsigned long jiffies_expire = jiffies + HZ; 901 902 if (udev->state == USB_STATE_NOTATTACHED) 903 return -ENODEV; 904 if (udev->state == USB_STATE_SUSPENDED) 905 return -EHOSTUNREACH; 906 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 907 iface->condition == USB_INTERFACE_UNBOUND)) 908 return -EINTR; 909 910 while (!usb_trylock_device(udev)) { 911 912 /* If we can't acquire the lock after waiting one second, 913 * we're probably deadlocked */ 914 if (time_after(jiffies, jiffies_expire)) 915 return -EBUSY; 916 917 msleep(15); 918 if (udev->state == USB_STATE_NOTATTACHED) 919 return -ENODEV; 920 if (udev->state == USB_STATE_SUSPENDED) 921 return -EHOSTUNREACH; 922 if (iface && (iface->condition == USB_INTERFACE_UNBINDING || 923 iface->condition == USB_INTERFACE_UNBOUND)) 924 return -EINTR; 925 } 926 return 0; 927 } 928 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset); 929 930 /** 931 * usb_get_current_frame_number - return current bus frame number 932 * @dev: the device whose bus is being queried 933 * 934 * Return: The current frame number for the USB host controller used 935 * with the given USB device. This can be used when scheduling 936 * isochronous requests. 937 * 938 * Note: Different kinds of host controller have different "scheduling 939 * horizons". While one type might support scheduling only 32 frames 940 * into the future, others could support scheduling up to 1024 frames 941 * into the future. 942 * 943 */ 944 int usb_get_current_frame_number(struct usb_device *dev) 945 { 946 return usb_hcd_get_frame_number(dev); 947 } 948 EXPORT_SYMBOL_GPL(usb_get_current_frame_number); 949 950 /*-------------------------------------------------------------------*/ 951 /* 952 * __usb_get_extra_descriptor() finds a descriptor of specific type in the 953 * extra field of the interface and endpoint descriptor structs. 954 */ 955 956 int __usb_get_extra_descriptor(char *buffer, unsigned size, 957 unsigned char type, void **ptr, size_t minsize) 958 { 959 struct usb_descriptor_header *header; 960 961 while (size >= sizeof(struct usb_descriptor_header)) { 962 header = (struct usb_descriptor_header *)buffer; 963 964 if (header->bLength < 2 || header->bLength > size) { 965 printk(KERN_ERR 966 "%s: bogus descriptor, type %d length %d\n", 967 usbcore_name, 968 header->bDescriptorType, 969 header->bLength); 970 return -1; 971 } 972 973 if (header->bDescriptorType == type && header->bLength >= minsize) { 974 *ptr = header; 975 return 0; 976 } 977 978 buffer += header->bLength; 979 size -= header->bLength; 980 } 981 return -1; 982 } 983 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor); 984 985 /** 986 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP 987 * @dev: device the buffer will be used with 988 * @size: requested buffer size 989 * @mem_flags: affect whether allocation may block 990 * @dma: used to return DMA address of buffer 991 * 992 * Return: Either null (indicating no buffer could be allocated), or the 993 * cpu-space pointer to a buffer that may be used to perform DMA to the 994 * specified device. Such cpu-space buffers are returned along with the DMA 995 * address (through the pointer provided). 996 * 997 * Note: 998 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags 999 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU 1000 * hardware during URB completion/resubmit. The implementation varies between 1001 * platforms, depending on details of how DMA will work to this device. 1002 * Using these buffers also eliminates cacheline sharing problems on 1003 * architectures where CPU caches are not DMA-coherent. On systems without 1004 * bus-snooping caches, these buffers are uncached. 1005 * 1006 * When the buffer is no longer used, free it with usb_free_coherent(). 1007 */ 1008 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags, 1009 dma_addr_t *dma) 1010 { 1011 if (!dev || !dev->bus) 1012 return NULL; 1013 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma); 1014 } 1015 EXPORT_SYMBOL_GPL(usb_alloc_coherent); 1016 1017 /** 1018 * usb_free_coherent - free memory allocated with usb_alloc_coherent() 1019 * @dev: device the buffer was used with 1020 * @size: requested buffer size 1021 * @addr: CPU address of buffer 1022 * @dma: DMA address of buffer 1023 * 1024 * This reclaims an I/O buffer, letting it be reused. The memory must have 1025 * been allocated using usb_alloc_coherent(), and the parameters must match 1026 * those provided in that allocation request. 1027 */ 1028 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr, 1029 dma_addr_t dma) 1030 { 1031 if (!dev || !dev->bus) 1032 return; 1033 if (!addr) 1034 return; 1035 hcd_buffer_free(dev->bus, size, addr, dma); 1036 } 1037 EXPORT_SYMBOL_GPL(usb_free_coherent); 1038 1039 /* 1040 * Notifications of device and interface registration 1041 */ 1042 static int usb_bus_notify(struct notifier_block *nb, unsigned long action, 1043 void *data) 1044 { 1045 struct device *dev = data; 1046 1047 switch (action) { 1048 case BUS_NOTIFY_ADD_DEVICE: 1049 if (dev->type == &usb_device_type) 1050 (void) usb_create_sysfs_dev_files(to_usb_device(dev)); 1051 else if (dev->type == &usb_if_device_type) 1052 usb_create_sysfs_intf_files(to_usb_interface(dev)); 1053 break; 1054 1055 case BUS_NOTIFY_DEL_DEVICE: 1056 if (dev->type == &usb_device_type) 1057 usb_remove_sysfs_dev_files(to_usb_device(dev)); 1058 else if (dev->type == &usb_if_device_type) 1059 usb_remove_sysfs_intf_files(to_usb_interface(dev)); 1060 break; 1061 } 1062 return 0; 1063 } 1064 1065 static struct notifier_block usb_bus_nb = { 1066 .notifier_call = usb_bus_notify, 1067 }; 1068 1069 static void usb_debugfs_init(void) 1070 { 1071 debugfs_create_file("devices", 0444, usb_debug_root, NULL, 1072 &usbfs_devices_fops); 1073 } 1074 1075 static void usb_debugfs_cleanup(void) 1076 { 1077 debugfs_lookup_and_remove("devices", usb_debug_root); 1078 } 1079 1080 /* 1081 * Init 1082 */ 1083 static int __init usb_init(void) 1084 { 1085 int retval; 1086 if (usb_disabled()) { 1087 pr_info("%s: USB support disabled\n", usbcore_name); 1088 return 0; 1089 } 1090 usb_init_pool_max(); 1091 1092 usb_debugfs_init(); 1093 1094 usb_acpi_register(); 1095 retval = bus_register(&usb_bus_type); 1096 if (retval) 1097 goto bus_register_failed; 1098 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb); 1099 if (retval) 1100 goto bus_notifier_failed; 1101 retval = usb_major_init(); 1102 if (retval) 1103 goto major_init_failed; 1104 retval = class_register(&usbmisc_class); 1105 if (retval) 1106 goto class_register_failed; 1107 retval = usb_register(&usbfs_driver); 1108 if (retval) 1109 goto driver_register_failed; 1110 retval = usb_devio_init(); 1111 if (retval) 1112 goto usb_devio_init_failed; 1113 retval = usb_hub_init(); 1114 if (retval) 1115 goto hub_init_failed; 1116 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE); 1117 if (!retval) 1118 goto out; 1119 1120 usb_hub_cleanup(); 1121 hub_init_failed: 1122 usb_devio_cleanup(); 1123 usb_devio_init_failed: 1124 usb_deregister(&usbfs_driver); 1125 driver_register_failed: 1126 class_unregister(&usbmisc_class); 1127 class_register_failed: 1128 usb_major_cleanup(); 1129 major_init_failed: 1130 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1131 bus_notifier_failed: 1132 bus_unregister(&usb_bus_type); 1133 bus_register_failed: 1134 usb_acpi_unregister(); 1135 usb_debugfs_cleanup(); 1136 out: 1137 return retval; 1138 } 1139 1140 /* 1141 * Cleanup 1142 */ 1143 static void __exit usb_exit(void) 1144 { 1145 /* This will matter if shutdown/reboot does exitcalls. */ 1146 if (usb_disabled()) 1147 return; 1148 1149 usb_release_quirk_list(); 1150 usb_deregister_device_driver(&usb_generic_driver); 1151 usb_major_cleanup(); 1152 usb_deregister(&usbfs_driver); 1153 usb_devio_cleanup(); 1154 usb_hub_cleanup(); 1155 class_unregister(&usbmisc_class); 1156 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb); 1157 bus_unregister(&usb_bus_type); 1158 usb_acpi_unregister(); 1159 usb_debugfs_cleanup(); 1160 idr_destroy(&usb_bus_idr); 1161 } 1162 1163 subsys_initcall(usb_init); 1164 module_exit(usb_exit); 1165 MODULE_LICENSE("GPL"); 1166