xref: /linux/drivers/usb/core/urb.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Released under the GPLv2 only.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/log2.h>
11 #include <linux/kmsan.h>
12 #include <linux/usb.h>
13 #include <linux/wait.h>
14 #include <linux/usb/hcd.h>
15 #include <linux/scatterlist.h>
16 
17 #define to_urb(d) container_of(d, struct urb, kref)
18 
19 
20 static void urb_destroy(struct kref *kref)
21 {
22 	struct urb *urb = to_urb(kref);
23 
24 	if (urb->transfer_flags & URB_FREE_BUFFER)
25 		kfree(urb->transfer_buffer);
26 
27 	kfree(urb);
28 }
29 
30 /**
31  * usb_init_urb - initializes a urb so that it can be used by a USB driver
32  * @urb: pointer to the urb to initialize
33  *
34  * Initializes a urb so that the USB subsystem can use it properly.
35  *
36  * If a urb is created with a call to usb_alloc_urb() it is not
37  * necessary to call this function.  Only use this if you allocate the
38  * space for a struct urb on your own.  If you call this function, be
39  * careful when freeing the memory for your urb that it is no longer in
40  * use by the USB core.
41  *
42  * Only use this function if you _really_ understand what you are doing.
43  */
44 void usb_init_urb(struct urb *urb)
45 {
46 	if (urb) {
47 		memset(urb, 0, sizeof(*urb));
48 		kref_init(&urb->kref);
49 		INIT_LIST_HEAD(&urb->urb_list);
50 		INIT_LIST_HEAD(&urb->anchor_list);
51 	}
52 }
53 EXPORT_SYMBOL_GPL(usb_init_urb);
54 
55 /**
56  * usb_alloc_urb - creates a new urb for a USB driver to use
57  * @iso_packets: number of iso packets for this urb
58  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
59  *	valid options for this.
60  *
61  * Creates an urb for the USB driver to use, initializes a few internal
62  * structures, increments the usage counter, and returns a pointer to it.
63  *
64  * If the driver want to use this urb for interrupt, control, or bulk
65  * endpoints, pass '0' as the number of iso packets.
66  *
67  * The driver must call usb_free_urb() when it is finished with the urb.
68  *
69  * Return: A pointer to the new urb, or %NULL if no memory is available.
70  */
71 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
72 {
73 	struct urb *urb;
74 
75 	urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets),
76 		      mem_flags);
77 	if (!urb)
78 		return NULL;
79 	usb_init_urb(urb);
80 	return urb;
81 }
82 EXPORT_SYMBOL_GPL(usb_alloc_urb);
83 
84 /**
85  * usb_free_urb - frees the memory used by a urb when all users of it are finished
86  * @urb: pointer to the urb to free, may be NULL
87  *
88  * Must be called when a user of a urb is finished with it.  When the last user
89  * of the urb calls this function, the memory of the urb is freed.
90  *
91  * Note: The transfer buffer associated with the urb is not freed unless the
92  * URB_FREE_BUFFER transfer flag is set.
93  */
94 void usb_free_urb(struct urb *urb)
95 {
96 	if (urb)
97 		kref_put(&urb->kref, urb_destroy);
98 }
99 EXPORT_SYMBOL_GPL(usb_free_urb);
100 
101 /**
102  * usb_get_urb - increments the reference count of the urb
103  * @urb: pointer to the urb to modify, may be NULL
104  *
105  * This must be  called whenever a urb is transferred from a device driver to a
106  * host controller driver.  This allows proper reference counting to happen
107  * for urbs.
108  *
109  * Return: A pointer to the urb with the incremented reference counter.
110  */
111 struct urb *usb_get_urb(struct urb *urb)
112 {
113 	if (urb)
114 		kref_get(&urb->kref);
115 	return urb;
116 }
117 EXPORT_SYMBOL_GPL(usb_get_urb);
118 
119 /**
120  * usb_anchor_urb - anchors an URB while it is processed
121  * @urb: pointer to the urb to anchor
122  * @anchor: pointer to the anchor
123  *
124  * This can be called to have access to URBs which are to be executed
125  * without bothering to track them
126  */
127 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
128 {
129 	unsigned long flags;
130 
131 	spin_lock_irqsave(&anchor->lock, flags);
132 	usb_get_urb(urb);
133 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
134 	urb->anchor = anchor;
135 
136 	if (unlikely(anchor->poisoned))
137 		atomic_inc(&urb->reject);
138 
139 	spin_unlock_irqrestore(&anchor->lock, flags);
140 }
141 EXPORT_SYMBOL_GPL(usb_anchor_urb);
142 
143 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
144 {
145 	return atomic_read(&anchor->suspend_wakeups) == 0 &&
146 		list_empty(&anchor->urb_list);
147 }
148 
149 /* Callers must hold anchor->lock */
150 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
151 {
152 	urb->anchor = NULL;
153 	list_del(&urb->anchor_list);
154 	usb_put_urb(urb);
155 	if (usb_anchor_check_wakeup(anchor))
156 		wake_up(&anchor->wait);
157 }
158 
159 /**
160  * usb_unanchor_urb - unanchors an URB
161  * @urb: pointer to the urb to anchor
162  *
163  * Call this to stop the system keeping track of this URB
164  */
165 void usb_unanchor_urb(struct urb *urb)
166 {
167 	unsigned long flags;
168 	struct usb_anchor *anchor;
169 
170 	if (!urb)
171 		return;
172 
173 	anchor = urb->anchor;
174 	if (!anchor)
175 		return;
176 
177 	spin_lock_irqsave(&anchor->lock, flags);
178 	/*
179 	 * At this point, we could be competing with another thread which
180 	 * has the same intention. To protect the urb from being unanchored
181 	 * twice, only the winner of the race gets the job.
182 	 */
183 	if (likely(anchor == urb->anchor))
184 		__usb_unanchor_urb(urb, anchor);
185 	spin_unlock_irqrestore(&anchor->lock, flags);
186 }
187 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
188 
189 /*-------------------------------------------------------------------*/
190 
191 static const int pipetypes[4] = {
192 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
193 };
194 
195 /**
196  * usb_pipe_type_check - sanity check of a specific pipe for a usb device
197  * @dev: struct usb_device to be checked
198  * @pipe: pipe to check
199  *
200  * This performs a light-weight sanity check for the endpoint in the
201  * given usb device.  It returns 0 if the pipe is valid for the specific usb
202  * device, otherwise a negative error code.
203  */
204 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe)
205 {
206 	const struct usb_host_endpoint *ep;
207 
208 	ep = usb_pipe_endpoint(dev, pipe);
209 	if (!ep)
210 		return -EINVAL;
211 	if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
212 		return -EINVAL;
213 	return 0;
214 }
215 EXPORT_SYMBOL_GPL(usb_pipe_type_check);
216 
217 /**
218  * usb_urb_ep_type_check - sanity check of endpoint in the given urb
219  * @urb: urb to be checked
220  *
221  * This performs a light-weight sanity check for the endpoint in the
222  * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
223  * a negative error code.
224  */
225 int usb_urb_ep_type_check(const struct urb *urb)
226 {
227 	return usb_pipe_type_check(urb->dev, urb->pipe);
228 }
229 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
230 
231 /**
232  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
233  * @urb: pointer to the urb describing the request
234  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
235  *	of valid options for this.
236  *
237  * This submits a transfer request, and transfers control of the URB
238  * describing that request to the USB subsystem.  Request completion will
239  * be indicated later, asynchronously, by calling the completion handler.
240  * The three types of completion are success, error, and unlink
241  * (a software-induced fault, also called "request cancellation").
242  *
243  * URBs may be submitted in interrupt context.
244  *
245  * The caller must have correctly initialized the URB before submitting
246  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
247  * available to ensure that most fields are correctly initialized, for
248  * the particular kind of transfer, although they will not initialize
249  * any transfer flags.
250  *
251  * If the submission is successful, the complete() callback from the URB
252  * will be called exactly once, when the USB core and Host Controller Driver
253  * (HCD) are finished with the URB.  When the completion function is called,
254  * control of the URB is returned to the device driver which issued the
255  * request.  The completion handler may then immediately free or reuse that
256  * URB.
257  *
258  * With few exceptions, USB device drivers should never access URB fields
259  * provided by usbcore or the HCD until its complete() is called.
260  * The exceptions relate to periodic transfer scheduling.  For both
261  * interrupt and isochronous urbs, as part of successful URB submission
262  * urb->interval is modified to reflect the actual transfer period used
263  * (normally some power of two units).  And for isochronous urbs,
264  * urb->start_frame is modified to reflect when the URB's transfers were
265  * scheduled to start.
266  *
267  * Not all isochronous transfer scheduling policies will work, but most
268  * host controller drivers should easily handle ISO queues going from now
269  * until 10-200 msec into the future.  Drivers should try to keep at
270  * least one or two msec of data in the queue; many controllers require
271  * that new transfers start at least 1 msec in the future when they are
272  * added.  If the driver is unable to keep up and the queue empties out,
273  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
274  * If the flag is set, or if the queue is idle, then the URB is always
275  * assigned to the first available (and not yet expired) slot in the
276  * endpoint's schedule.  If the flag is not set and the queue is active
277  * then the URB is always assigned to the next slot in the schedule
278  * following the end of the endpoint's previous URB, even if that slot is
279  * in the past.  When a packet is assigned in this way to a slot that has
280  * already expired, the packet is not transmitted and the corresponding
281  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
282  * would happen to all the packets in the URB, submission fails with a
283  * -EXDEV error code.
284  *
285  * For control endpoints, the synchronous usb_control_msg() call is
286  * often used (in non-interrupt context) instead of this call.
287  * That is often used through convenience wrappers, for the requests
288  * that are standardized in the USB 2.0 specification.  For bulk
289  * endpoints, a synchronous usb_bulk_msg() call is available.
290  *
291  * Return:
292  * 0 on successful submissions. A negative error number otherwise.
293  *
294  * Request Queuing:
295  *
296  * URBs may be submitted to endpoints before previous ones complete, to
297  * minimize the impact of interrupt latencies and system overhead on data
298  * throughput.  With that queuing policy, an endpoint's queue would never
299  * be empty.  This is required for continuous isochronous data streams,
300  * and may also be required for some kinds of interrupt transfers. Such
301  * queuing also maximizes bandwidth utilization by letting USB controllers
302  * start work on later requests before driver software has finished the
303  * completion processing for earlier (successful) requests.
304  *
305  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
306  * than one.  This was previously a HCD-specific behavior, except for ISO
307  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
308  * after faults (transfer errors or cancellation).
309  *
310  * Reserved Bandwidth Transfers:
311  *
312  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
313  * using the interval specified in the urb.  Submitting the first urb to
314  * the endpoint reserves the bandwidth necessary to make those transfers.
315  * If the USB subsystem can't allocate sufficient bandwidth to perform
316  * the periodic request, submitting such a periodic request should fail.
317  *
318  * For devices under xHCI, the bandwidth is reserved at configuration time, or
319  * when the alt setting is selected.  If there is not enough bus bandwidth, the
320  * configuration/alt setting request will fail.  Therefore, submissions to
321  * periodic endpoints on devices under xHCI should never fail due to bandwidth
322  * constraints.
323  *
324  * Device drivers must explicitly request that repetition, by ensuring that
325  * some URB is always on the endpoint's queue (except possibly for short
326  * periods during completion callbacks).  When there is no longer an urb
327  * queued, the endpoint's bandwidth reservation is canceled.  This means
328  * drivers can use their completion handlers to ensure they keep bandwidth
329  * they need, by reinitializing and resubmitting the just-completed urb
330  * until the driver longer needs that periodic bandwidth.
331  *
332  * Memory Flags:
333  *
334  * The general rules for how to decide which mem_flags to use
335  * are the same as for kmalloc.  There are four
336  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
337  * GFP_ATOMIC.
338  *
339  * GFP_NOFS is not ever used, as it has not been implemented yet.
340  *
341  * GFP_ATOMIC is used when
342  *   (a) you are inside a completion handler, an interrupt, bottom half,
343  *       tasklet or timer, or
344  *   (b) you are holding a spinlock or rwlock (does not apply to
345  *       semaphores), or
346  *   (c) current->state != TASK_RUNNING, this is the case only after
347  *       you've changed it.
348  *
349  * GFP_NOIO is used in the block io path and error handling of storage
350  * devices.
351  *
352  * All other situations use GFP_KERNEL.
353  *
354  * Some more specific rules for mem_flags can be inferred, such as
355  *  (1) start_xmit, timeout, and receive methods of network drivers must
356  *      use GFP_ATOMIC (they are called with a spinlock held);
357  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
358  *      called with a spinlock held);
359  *  (3) If you use a kernel thread with a network driver you must use
360  *      GFP_NOIO, unless (b) or (c) apply;
361  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
362  *      apply or your are in a storage driver's block io path;
363  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
364  *  (6) changing firmware on a running storage or net device uses
365  *      GFP_NOIO, unless b) or c) apply
366  *
367  */
368 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
369 {
370 	int				xfertype, max;
371 	struct usb_device		*dev;
372 	struct usb_host_endpoint	*ep;
373 	int				is_out;
374 	unsigned int			allowed;
375 	bool				is_eusb2_isoch_double;
376 
377 	if (!urb || !urb->complete)
378 		return -EINVAL;
379 	if (urb->hcpriv) {
380 		WARN_ONCE(1, "URB %p submitted while active\n", urb);
381 		return -EBUSY;
382 	}
383 
384 	dev = urb->dev;
385 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
386 		return -ENODEV;
387 
388 	/* For now, get the endpoint from the pipe.  Eventually drivers
389 	 * will be required to set urb->ep directly and we will eliminate
390 	 * urb->pipe.
391 	 */
392 	ep = usb_pipe_endpoint(dev, urb->pipe);
393 	if (!ep)
394 		return -ENOENT;
395 
396 	urb->ep = ep;
397 	urb->status = -EINPROGRESS;
398 	urb->actual_length = 0;
399 
400 	/* Lots of sanity checks, so HCDs can rely on clean data
401 	 * and don't need to duplicate tests
402 	 */
403 	xfertype = usb_endpoint_type(&ep->desc);
404 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
405 		struct usb_ctrlrequest *setup =
406 				(struct usb_ctrlrequest *) urb->setup_packet;
407 
408 		if (!setup)
409 			return -ENOEXEC;
410 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
411 				!setup->wLength;
412 		dev_WARN_ONCE(&dev->dev, (usb_pipeout(urb->pipe) != is_out),
413 				"BOGUS control dir, pipe %x doesn't match bRequestType %x\n",
414 				urb->pipe, setup->bRequestType);
415 		if (le16_to_cpu(setup->wLength) != urb->transfer_buffer_length) {
416 			dev_dbg(&dev->dev, "BOGUS control len %d doesn't match transfer length %d\n",
417 					le16_to_cpu(setup->wLength),
418 					urb->transfer_buffer_length);
419 			return -EBADR;
420 		}
421 	} else {
422 		is_out = usb_endpoint_dir_out(&ep->desc);
423 	}
424 
425 	/* Clear the internal flags and cache the direction for later use */
426 	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
427 			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
428 			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
429 			URB_DMA_SG_COMBINED);
430 	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
431 	kmsan_handle_urb(urb, is_out);
432 
433 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
434 			dev->state < USB_STATE_CONFIGURED)
435 		return -ENODEV;
436 
437 	max = usb_endpoint_maxp(&ep->desc);
438 	is_eusb2_isoch_double = usb_endpoint_is_hs_isoc_double(dev, ep);
439 	if (!max && !is_eusb2_isoch_double) {
440 		dev_dbg(&dev->dev,
441 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
442 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
443 			__func__, max);
444 		return -EMSGSIZE;
445 	}
446 
447 	/* periodic transfers limit size per frame/uframe,
448 	 * but drivers only control those sizes for ISO.
449 	 * while we're checking, initialize return status.
450 	 */
451 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
452 		int	n, len;
453 
454 		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
455 		 * 3 packets each
456 		 */
457 		if (dev->speed >= USB_SPEED_SUPER) {
458 			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
459 			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
460 			max *= burst;
461 			max *= mult;
462 		}
463 
464 		if (dev->speed == USB_SPEED_SUPER_PLUS &&
465 		    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
466 			struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
467 
468 			isoc_ep_comp = &ep->ssp_isoc_ep_comp;
469 			max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
470 		}
471 
472 		/* High speed, 1-3 packets/uframe, max 6 for eUSB2 double bw */
473 		if (dev->speed == USB_SPEED_HIGH) {
474 			if (is_eusb2_isoch_double)
475 				max = le32_to_cpu(ep->eusb2_isoc_ep_comp.dwBytesPerInterval);
476 			else
477 				max *= usb_endpoint_maxp_mult(&ep->desc);
478 		}
479 
480 		if (urb->number_of_packets <= 0)
481 			return -EINVAL;
482 		for (n = 0; n < urb->number_of_packets; n++) {
483 			len = urb->iso_frame_desc[n].length;
484 			if (len < 0 || len > max)
485 				return -EMSGSIZE;
486 			urb->iso_frame_desc[n].status = -EXDEV;
487 			urb->iso_frame_desc[n].actual_length = 0;
488 		}
489 	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint) {
490 		struct scatterlist *sg;
491 		int i;
492 
493 		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
494 			if (sg->length % max)
495 				return -EINVAL;
496 	}
497 
498 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
499 	if (urb->transfer_buffer_length > INT_MAX)
500 		return -EMSGSIZE;
501 
502 	/*
503 	 * stuff that drivers shouldn't do, but which shouldn't
504 	 * cause problems in HCDs if they get it wrong.
505 	 */
506 
507 	/* Check that the pipe's type matches the endpoint's type */
508 	if (usb_pipe_type_check(urb->dev, urb->pipe))
509 		dev_warn_once(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
510 			usb_pipetype(urb->pipe), pipetypes[xfertype]);
511 
512 	/* Check against a simple/standard policy */
513 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
514 			URB_FREE_BUFFER);
515 	switch (xfertype) {
516 	case USB_ENDPOINT_XFER_BULK:
517 	case USB_ENDPOINT_XFER_INT:
518 		if (is_out)
519 			allowed |= URB_ZERO_PACKET;
520 		fallthrough;
521 	default:			/* all non-iso endpoints */
522 		if (!is_out)
523 			allowed |= URB_SHORT_NOT_OK;
524 		break;
525 	case USB_ENDPOINT_XFER_ISOC:
526 		allowed |= URB_ISO_ASAP;
527 		break;
528 	}
529 	allowed &= urb->transfer_flags;
530 
531 	/* warn if submitter gave bogus flags */
532 	if (allowed != urb->transfer_flags)
533 		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
534 			urb->transfer_flags, allowed);
535 
536 	/*
537 	 * Force periodic transfer intervals to be legal values that are
538 	 * a power of two (so HCDs don't need to).
539 	 *
540 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
541 	 * supports different values... this uses EHCI/UHCI defaults (and
542 	 * EHCI can use smaller non-default values).
543 	 */
544 	switch (xfertype) {
545 	case USB_ENDPOINT_XFER_ISOC:
546 	case USB_ENDPOINT_XFER_INT:
547 		/* too small? */
548 		if (urb->interval <= 0)
549 			return -EINVAL;
550 
551 		/* too big? */
552 		switch (dev->speed) {
553 		case USB_SPEED_SUPER_PLUS:
554 		case USB_SPEED_SUPER:	/* units are 125us */
555 			/* Handle up to 2^(16-1) microframes */
556 			if (urb->interval > (1 << 15))
557 				return -EINVAL;
558 			max = 1 << 15;
559 			break;
560 		case USB_SPEED_HIGH:	/* units are microframes */
561 			/* NOTE usb handles 2^15 */
562 			if (urb->interval > (1024 * 8))
563 				urb->interval = 1024 * 8;
564 			max = 1024 * 8;
565 			break;
566 		case USB_SPEED_FULL:	/* units are frames/msec */
567 		case USB_SPEED_LOW:
568 			if (xfertype == USB_ENDPOINT_XFER_INT) {
569 				if (urb->interval > 255)
570 					return -EINVAL;
571 				/* NOTE ohci only handles up to 32 */
572 				max = 128;
573 			} else {
574 				if (urb->interval > 1024)
575 					urb->interval = 1024;
576 				/* NOTE usb and ohci handle up to 2^15 */
577 				max = 1024;
578 			}
579 			break;
580 		default:
581 			return -EINVAL;
582 		}
583 		/* Round down to a power of 2, no more than max */
584 		urb->interval = min(max, 1 << ilog2(urb->interval));
585 	}
586 
587 	return usb_hcd_submit_urb(urb, mem_flags);
588 }
589 EXPORT_SYMBOL_GPL(usb_submit_urb);
590 
591 /*-------------------------------------------------------------------*/
592 
593 /**
594  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
595  * @urb: pointer to urb describing a previously submitted request,
596  *	may be NULL
597  *
598  * This routine cancels an in-progress request.  URBs complete only once
599  * per submission, and may be canceled only once per submission.
600  * Successful cancellation means termination of @urb will be expedited
601  * and the completion handler will be called with a status code
602  * indicating that the request has been canceled (rather than any other
603  * code).
604  *
605  * Drivers should not call this routine or related routines, such as
606  * usb_kill_urb(), after their disconnect method has returned. The
607  * disconnect function should synchronize with a driver's I/O routines
608  * to insure that all URB-related activity has completed before it returns.
609  *
610  * This request is asynchronous, however the HCD might call the ->complete()
611  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
612  * must not hold any locks that may be taken by the completion function.
613  * Success is indicated by returning -EINPROGRESS, at which time the URB will
614  * probably not yet have been given back to the device driver. When it is
615  * eventually called, the completion function will see @urb->status ==
616  * -ECONNRESET.
617  * Failure is indicated by usb_unlink_urb() returning any other value.
618  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
619  * never submitted, or it was unlinked before, or the hardware is already
620  * finished with it), even if the completion handler has not yet run.
621  *
622  * The URB must not be deallocated while this routine is running.  In
623  * particular, when a driver calls this routine, it must insure that the
624  * completion handler cannot deallocate the URB.
625  *
626  * Return: -EINPROGRESS on success. See description for other values on
627  * failure.
628  *
629  * Unlinking and Endpoint Queues:
630  *
631  * [The behaviors and guarantees described below do not apply to virtual
632  * root hubs but only to endpoint queues for physical USB devices.]
633  *
634  * Host Controller Drivers (HCDs) place all the URBs for a particular
635  * endpoint in a queue.  Normally the queue advances as the controller
636  * hardware processes each request.  But when an URB terminates with an
637  * error its queue generally stops (see below), at least until that URB's
638  * completion routine returns.  It is guaranteed that a stopped queue
639  * will not restart until all its unlinked URBs have been fully retired,
640  * with their completion routines run, even if that's not until some time
641  * after the original completion handler returns.  The same behavior and
642  * guarantee apply when an URB terminates because it was unlinked.
643  *
644  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
645  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
646  * and -EREMOTEIO.  Control endpoint queues behave the same way except
647  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
648  * for isochronous endpoints are treated differently, because they must
649  * advance at fixed rates.  Such queues do not stop when an URB
650  * encounters an error or is unlinked.  An unlinked isochronous URB may
651  * leave a gap in the stream of packets; it is undefined whether such
652  * gaps can be filled in.
653  *
654  * Note that early termination of an URB because a short packet was
655  * received will generate a -EREMOTEIO error if and only if the
656  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
657  * drivers can build deep queues for large or complex bulk transfers
658  * and clean them up reliably after any sort of aborted transfer by
659  * unlinking all pending URBs at the first fault.
660  *
661  * When a control URB terminates with an error other than -EREMOTEIO, it
662  * is quite likely that the status stage of the transfer will not take
663  * place.
664  */
665 int usb_unlink_urb(struct urb *urb)
666 {
667 	if (!urb)
668 		return -EINVAL;
669 	if (!urb->dev)
670 		return -ENODEV;
671 	if (!urb->ep)
672 		return -EIDRM;
673 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
674 }
675 EXPORT_SYMBOL_GPL(usb_unlink_urb);
676 
677 /**
678  * usb_kill_urb - cancel a transfer request and wait for it to finish
679  * @urb: pointer to URB describing a previously submitted request,
680  *	may be NULL
681  *
682  * This routine cancels an in-progress request.  It is guaranteed that
683  * upon return all completion handlers will have finished and the URB
684  * will be totally idle and available for reuse.  These features make
685  * this an ideal way to stop I/O in a disconnect() callback or close()
686  * function.  If the request has not already finished or been unlinked
687  * the completion handler will see urb->status == -ENOENT.
688  *
689  * While the routine is running, attempts to resubmit the URB will fail
690  * with error -EPERM.  Thus even if the URB's completion handler always
691  * tries to resubmit, it will not succeed and the URB will become idle.
692  *
693  * The URB must not be deallocated while this routine is running.  In
694  * particular, when a driver calls this routine, it must insure that the
695  * completion handler cannot deallocate the URB.
696  *
697  * This routine may not be used in an interrupt context (such as a bottom
698  * half or a completion handler), or when holding a spinlock, or in other
699  * situations where the caller can't schedule().
700  *
701  * This routine should not be called by a driver after its disconnect
702  * method has returned.
703  */
704 void usb_kill_urb(struct urb *urb)
705 {
706 	might_sleep();
707 	if (!(urb && urb->dev && urb->ep))
708 		return;
709 	atomic_inc(&urb->reject);
710 	/*
711 	 * Order the write of urb->reject above before the read
712 	 * of urb->use_count below.  Pairs with the barriers in
713 	 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
714 	 */
715 	smp_mb__after_atomic();
716 
717 	usb_hcd_unlink_urb(urb, -ENOENT);
718 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
719 
720 	atomic_dec(&urb->reject);
721 }
722 EXPORT_SYMBOL_GPL(usb_kill_urb);
723 
724 /**
725  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
726  * @urb: pointer to URB describing a previously submitted request,
727  *	may be NULL
728  *
729  * This routine cancels an in-progress request.  It is guaranteed that
730  * upon return all completion handlers will have finished and the URB
731  * will be totally idle and cannot be reused.  These features make
732  * this an ideal way to stop I/O in a disconnect() callback.
733  * If the request has not already finished or been unlinked
734  * the completion handler will see urb->status == -ENOENT.
735  *
736  * After and while the routine runs, attempts to resubmit the URB will fail
737  * with error -EPERM.  Thus even if the URB's completion handler always
738  * tries to resubmit, it will not succeed and the URB will become idle.
739  *
740  * The URB must not be deallocated while this routine is running.  In
741  * particular, when a driver calls this routine, it must insure that the
742  * completion handler cannot deallocate the URB.
743  *
744  * This routine may not be used in an interrupt context (such as a bottom
745  * half or a completion handler), or when holding a spinlock, or in other
746  * situations where the caller can't schedule().
747  *
748  * This routine should not be called by a driver after its disconnect
749  * method has returned.
750  */
751 void usb_poison_urb(struct urb *urb)
752 {
753 	might_sleep();
754 	if (!urb)
755 		return;
756 	atomic_inc(&urb->reject);
757 	/*
758 	 * Order the write of urb->reject above before the read
759 	 * of urb->use_count below.  Pairs with the barriers in
760 	 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
761 	 */
762 	smp_mb__after_atomic();
763 
764 	if (!urb->dev || !urb->ep)
765 		return;
766 
767 	usb_hcd_unlink_urb(urb, -ENOENT);
768 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
769 }
770 EXPORT_SYMBOL_GPL(usb_poison_urb);
771 
772 void usb_unpoison_urb(struct urb *urb)
773 {
774 	if (!urb)
775 		return;
776 
777 	atomic_dec(&urb->reject);
778 }
779 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
780 
781 /**
782  * usb_block_urb - reliably prevent further use of an URB
783  * @urb: pointer to URB to be blocked, may be NULL
784  *
785  * After the routine has run, attempts to resubmit the URB will fail
786  * with error -EPERM.  Thus even if the URB's completion handler always
787  * tries to resubmit, it will not succeed and the URB will become idle.
788  *
789  * The URB must not be deallocated while this routine is running.  In
790  * particular, when a driver calls this routine, it must insure that the
791  * completion handler cannot deallocate the URB.
792  */
793 void usb_block_urb(struct urb *urb)
794 {
795 	if (!urb)
796 		return;
797 
798 	atomic_inc(&urb->reject);
799 }
800 EXPORT_SYMBOL_GPL(usb_block_urb);
801 
802 /**
803  * usb_kill_anchored_urbs - kill all URBs associated with an anchor
804  * @anchor: anchor the requests are bound to
805  *
806  * This kills all outstanding URBs starting from the back of the queue,
807  * with guarantee that no completer callbacks will take place from the
808  * anchor after this function returns.
809  *
810  * This routine should not be called by a driver after its disconnect
811  * method has returned.
812  */
813 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
814 {
815 	struct urb *victim;
816 	int surely_empty;
817 
818 	do {
819 		spin_lock_irq(&anchor->lock);
820 		while (!list_empty(&anchor->urb_list)) {
821 			victim = list_entry(anchor->urb_list.prev,
822 					    struct urb, anchor_list);
823 			/* make sure the URB isn't freed before we kill it */
824 			usb_get_urb(victim);
825 			spin_unlock_irq(&anchor->lock);
826 			/* this will unanchor the URB */
827 			usb_kill_urb(victim);
828 			usb_put_urb(victim);
829 			spin_lock_irq(&anchor->lock);
830 		}
831 		surely_empty = usb_anchor_check_wakeup(anchor);
832 
833 		spin_unlock_irq(&anchor->lock);
834 		cpu_relax();
835 	} while (!surely_empty);
836 }
837 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
838 
839 
840 /**
841  * usb_poison_anchored_urbs - cease all traffic from an anchor
842  * @anchor: anchor the requests are bound to
843  *
844  * this allows all outstanding URBs to be poisoned starting
845  * from the back of the queue. Newly added URBs will also be
846  * poisoned
847  *
848  * This routine should not be called by a driver after its disconnect
849  * method has returned.
850  */
851 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
852 {
853 	struct urb *victim;
854 	int surely_empty;
855 
856 	do {
857 		spin_lock_irq(&anchor->lock);
858 		anchor->poisoned = 1;
859 		while (!list_empty(&anchor->urb_list)) {
860 			victim = list_entry(anchor->urb_list.prev,
861 					    struct urb, anchor_list);
862 			/* make sure the URB isn't freed before we kill it */
863 			usb_get_urb(victim);
864 			spin_unlock_irq(&anchor->lock);
865 			/* this will unanchor the URB */
866 			usb_poison_urb(victim);
867 			usb_put_urb(victim);
868 			spin_lock_irq(&anchor->lock);
869 		}
870 		surely_empty = usb_anchor_check_wakeup(anchor);
871 
872 		spin_unlock_irq(&anchor->lock);
873 		cpu_relax();
874 	} while (!surely_empty);
875 }
876 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
877 
878 /**
879  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
880  * @anchor: anchor the requests are bound to
881  *
882  * Reverses the effect of usb_poison_anchored_urbs
883  * the anchor can be used normally after it returns
884  */
885 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
886 {
887 	unsigned long flags;
888 	struct urb *lazarus;
889 
890 	spin_lock_irqsave(&anchor->lock, flags);
891 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
892 		usb_unpoison_urb(lazarus);
893 	}
894 	anchor->poisoned = 0;
895 	spin_unlock_irqrestore(&anchor->lock, flags);
896 }
897 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
898 
899 /**
900  * usb_anchor_suspend_wakeups
901  * @anchor: the anchor you want to suspend wakeups on
902  *
903  * Call this to stop the last urb being unanchored from waking up any
904  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
905  * back path to delay waking up until after the completion handler has run.
906  */
907 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
908 {
909 	if (anchor)
910 		atomic_inc(&anchor->suspend_wakeups);
911 }
912 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
913 
914 /**
915  * usb_anchor_resume_wakeups
916  * @anchor: the anchor you want to resume wakeups on
917  *
918  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
919  * wake up any current waiters if the anchor is empty.
920  */
921 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
922 {
923 	if (!anchor)
924 		return;
925 
926 	atomic_dec(&anchor->suspend_wakeups);
927 	if (usb_anchor_check_wakeup(anchor))
928 		wake_up(&anchor->wait);
929 }
930 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
931 
932 /**
933  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
934  * @anchor: the anchor you want to become unused
935  * @timeout: how long you are willing to wait in milliseconds
936  *
937  * Call this is you want to be sure all an anchor's
938  * URBs have finished
939  *
940  * Return: Non-zero if the anchor became unused. Zero on timeout.
941  */
942 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
943 				  unsigned int timeout)
944 {
945 	return wait_event_timeout(anchor->wait,
946 				  usb_anchor_check_wakeup(anchor),
947 				  msecs_to_jiffies(timeout));
948 }
949 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
950 
951 /**
952  * usb_get_from_anchor - get an anchor's oldest urb
953  * @anchor: the anchor whose urb you want
954  *
955  * This will take the oldest urb from an anchor,
956  * unanchor and return it
957  *
958  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
959  * urbs associated with it.
960  */
961 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
962 {
963 	struct urb *victim;
964 	unsigned long flags;
965 
966 	spin_lock_irqsave(&anchor->lock, flags);
967 	if (!list_empty(&anchor->urb_list)) {
968 		victim = list_entry(anchor->urb_list.next, struct urb,
969 				    anchor_list);
970 		usb_get_urb(victim);
971 		__usb_unanchor_urb(victim, anchor);
972 	} else {
973 		victim = NULL;
974 	}
975 	spin_unlock_irqrestore(&anchor->lock, flags);
976 
977 	return victim;
978 }
979 
980 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
981 
982 /**
983  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
984  * @anchor: the anchor whose urbs you want to unanchor
985  *
986  * use this to get rid of all an anchor's urbs
987  */
988 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
989 {
990 	struct urb *victim;
991 	unsigned long flags;
992 	int surely_empty;
993 
994 	do {
995 		spin_lock_irqsave(&anchor->lock, flags);
996 		while (!list_empty(&anchor->urb_list)) {
997 			victim = list_entry(anchor->urb_list.prev,
998 					    struct urb, anchor_list);
999 			__usb_unanchor_urb(victim, anchor);
1000 		}
1001 		surely_empty = usb_anchor_check_wakeup(anchor);
1002 
1003 		spin_unlock_irqrestore(&anchor->lock, flags);
1004 		cpu_relax();
1005 	} while (!surely_empty);
1006 }
1007 
1008 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
1009 
1010 /**
1011  * usb_anchor_empty - is an anchor empty
1012  * @anchor: the anchor you want to query
1013  *
1014  * Return: 1 if the anchor has no urbs associated with it.
1015  */
1016 int usb_anchor_empty(struct usb_anchor *anchor)
1017 {
1018 	return list_empty(&anchor->urb_list);
1019 }
1020 
1021 EXPORT_SYMBOL_GPL(usb_anchor_empty);
1022 
1023