xref: /linux/drivers/usb/core/urb.c (revision 4f4ee7d87989df17aaca80a2e2d62b15d3f3cacc)
1 /*
2  * Released under the GPLv2 only.
3  * SPDX-License-Identifier: GPL-2.0
4  */
5 
6 #include <linux/module.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/log2.h>
11 #include <linux/usb.h>
12 #include <linux/wait.h>
13 #include <linux/usb/hcd.h>
14 #include <linux/scatterlist.h>
15 
16 #define to_urb(d) container_of(d, struct urb, kref)
17 
18 
19 static void urb_destroy(struct kref *kref)
20 {
21 	struct urb *urb = to_urb(kref);
22 
23 	if (urb->transfer_flags & URB_FREE_BUFFER)
24 		kfree(urb->transfer_buffer);
25 
26 	kfree(urb);
27 }
28 
29 /**
30  * usb_init_urb - initializes a urb so that it can be used by a USB driver
31  * @urb: pointer to the urb to initialize
32  *
33  * Initializes a urb so that the USB subsystem can use it properly.
34  *
35  * If a urb is created with a call to usb_alloc_urb() it is not
36  * necessary to call this function.  Only use this if you allocate the
37  * space for a struct urb on your own.  If you call this function, be
38  * careful when freeing the memory for your urb that it is no longer in
39  * use by the USB core.
40  *
41  * Only use this function if you _really_ understand what you are doing.
42  */
43 void usb_init_urb(struct urb *urb)
44 {
45 	if (urb) {
46 		memset(urb, 0, sizeof(*urb));
47 		kref_init(&urb->kref);
48 		INIT_LIST_HEAD(&urb->anchor_list);
49 	}
50 }
51 EXPORT_SYMBOL_GPL(usb_init_urb);
52 
53 /**
54  * usb_alloc_urb - creates a new urb for a USB driver to use
55  * @iso_packets: number of iso packets for this urb
56  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
57  *	valid options for this.
58  *
59  * Creates an urb for the USB driver to use, initializes a few internal
60  * structures, increments the usage counter, and returns a pointer to it.
61  *
62  * If the driver want to use this urb for interrupt, control, or bulk
63  * endpoints, pass '0' as the number of iso packets.
64  *
65  * The driver must call usb_free_urb() when it is finished with the urb.
66  *
67  * Return: A pointer to the new urb, or %NULL if no memory is available.
68  */
69 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
70 {
71 	struct urb *urb;
72 
73 	urb = kmalloc(sizeof(struct urb) +
74 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
75 		mem_flags);
76 	if (!urb)
77 		return NULL;
78 	usb_init_urb(urb);
79 	return urb;
80 }
81 EXPORT_SYMBOL_GPL(usb_alloc_urb);
82 
83 /**
84  * usb_free_urb - frees the memory used by a urb when all users of it are finished
85  * @urb: pointer to the urb to free, may be NULL
86  *
87  * Must be called when a user of a urb is finished with it.  When the last user
88  * of the urb calls this function, the memory of the urb is freed.
89  *
90  * Note: The transfer buffer associated with the urb is not freed unless the
91  * URB_FREE_BUFFER transfer flag is set.
92  */
93 void usb_free_urb(struct urb *urb)
94 {
95 	if (urb)
96 		kref_put(&urb->kref, urb_destroy);
97 }
98 EXPORT_SYMBOL_GPL(usb_free_urb);
99 
100 /**
101  * usb_get_urb - increments the reference count of the urb
102  * @urb: pointer to the urb to modify, may be NULL
103  *
104  * This must be  called whenever a urb is transferred from a device driver to a
105  * host controller driver.  This allows proper reference counting to happen
106  * for urbs.
107  *
108  * Return: A pointer to the urb with the incremented reference counter.
109  */
110 struct urb *usb_get_urb(struct urb *urb)
111 {
112 	if (urb)
113 		kref_get(&urb->kref);
114 	return urb;
115 }
116 EXPORT_SYMBOL_GPL(usb_get_urb);
117 
118 /**
119  * usb_anchor_urb - anchors an URB while it is processed
120  * @urb: pointer to the urb to anchor
121  * @anchor: pointer to the anchor
122  *
123  * This can be called to have access to URBs which are to be executed
124  * without bothering to track them
125  */
126 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
127 {
128 	unsigned long flags;
129 
130 	spin_lock_irqsave(&anchor->lock, flags);
131 	usb_get_urb(urb);
132 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
133 	urb->anchor = anchor;
134 
135 	if (unlikely(anchor->poisoned))
136 		atomic_inc(&urb->reject);
137 
138 	spin_unlock_irqrestore(&anchor->lock, flags);
139 }
140 EXPORT_SYMBOL_GPL(usb_anchor_urb);
141 
142 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
143 {
144 	return atomic_read(&anchor->suspend_wakeups) == 0 &&
145 		list_empty(&anchor->urb_list);
146 }
147 
148 /* Callers must hold anchor->lock */
149 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
150 {
151 	urb->anchor = NULL;
152 	list_del(&urb->anchor_list);
153 	usb_put_urb(urb);
154 	if (usb_anchor_check_wakeup(anchor))
155 		wake_up(&anchor->wait);
156 }
157 
158 /**
159  * usb_unanchor_urb - unanchors an URB
160  * @urb: pointer to the urb to anchor
161  *
162  * Call this to stop the system keeping track of this URB
163  */
164 void usb_unanchor_urb(struct urb *urb)
165 {
166 	unsigned long flags;
167 	struct usb_anchor *anchor;
168 
169 	if (!urb)
170 		return;
171 
172 	anchor = urb->anchor;
173 	if (!anchor)
174 		return;
175 
176 	spin_lock_irqsave(&anchor->lock, flags);
177 	/*
178 	 * At this point, we could be competing with another thread which
179 	 * has the same intention. To protect the urb from being unanchored
180 	 * twice, only the winner of the race gets the job.
181 	 */
182 	if (likely(anchor == urb->anchor))
183 		__usb_unanchor_urb(urb, anchor);
184 	spin_unlock_irqrestore(&anchor->lock, flags);
185 }
186 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
187 
188 /*-------------------------------------------------------------------*/
189 
190 /**
191  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
192  * @urb: pointer to the urb describing the request
193  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
194  *	of valid options for this.
195  *
196  * This submits a transfer request, and transfers control of the URB
197  * describing that request to the USB subsystem.  Request completion will
198  * be indicated later, asynchronously, by calling the completion handler.
199  * The three types of completion are success, error, and unlink
200  * (a software-induced fault, also called "request cancellation").
201  *
202  * URBs may be submitted in interrupt context.
203  *
204  * The caller must have correctly initialized the URB before submitting
205  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
206  * available to ensure that most fields are correctly initialized, for
207  * the particular kind of transfer, although they will not initialize
208  * any transfer flags.
209  *
210  * If the submission is successful, the complete() callback from the URB
211  * will be called exactly once, when the USB core and Host Controller Driver
212  * (HCD) are finished with the URB.  When the completion function is called,
213  * control of the URB is returned to the device driver which issued the
214  * request.  The completion handler may then immediately free or reuse that
215  * URB.
216  *
217  * With few exceptions, USB device drivers should never access URB fields
218  * provided by usbcore or the HCD until its complete() is called.
219  * The exceptions relate to periodic transfer scheduling.  For both
220  * interrupt and isochronous urbs, as part of successful URB submission
221  * urb->interval is modified to reflect the actual transfer period used
222  * (normally some power of two units).  And for isochronous urbs,
223  * urb->start_frame is modified to reflect when the URB's transfers were
224  * scheduled to start.
225  *
226  * Not all isochronous transfer scheduling policies will work, but most
227  * host controller drivers should easily handle ISO queues going from now
228  * until 10-200 msec into the future.  Drivers should try to keep at
229  * least one or two msec of data in the queue; many controllers require
230  * that new transfers start at least 1 msec in the future when they are
231  * added.  If the driver is unable to keep up and the queue empties out,
232  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
233  * If the flag is set, or if the queue is idle, then the URB is always
234  * assigned to the first available (and not yet expired) slot in the
235  * endpoint's schedule.  If the flag is not set and the queue is active
236  * then the URB is always assigned to the next slot in the schedule
237  * following the end of the endpoint's previous URB, even if that slot is
238  * in the past.  When a packet is assigned in this way to a slot that has
239  * already expired, the packet is not transmitted and the corresponding
240  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
241  * would happen to all the packets in the URB, submission fails with a
242  * -EXDEV error code.
243  *
244  * For control endpoints, the synchronous usb_control_msg() call is
245  * often used (in non-interrupt context) instead of this call.
246  * That is often used through convenience wrappers, for the requests
247  * that are standardized in the USB 2.0 specification.  For bulk
248  * endpoints, a synchronous usb_bulk_msg() call is available.
249  *
250  * Return:
251  * 0 on successful submissions. A negative error number otherwise.
252  *
253  * Request Queuing:
254  *
255  * URBs may be submitted to endpoints before previous ones complete, to
256  * minimize the impact of interrupt latencies and system overhead on data
257  * throughput.  With that queuing policy, an endpoint's queue would never
258  * be empty.  This is required for continuous isochronous data streams,
259  * and may also be required for some kinds of interrupt transfers. Such
260  * queuing also maximizes bandwidth utilization by letting USB controllers
261  * start work on later requests before driver software has finished the
262  * completion processing for earlier (successful) requests.
263  *
264  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
265  * than one.  This was previously a HCD-specific behavior, except for ISO
266  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
267  * after faults (transfer errors or cancellation).
268  *
269  * Reserved Bandwidth Transfers:
270  *
271  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
272  * using the interval specified in the urb.  Submitting the first urb to
273  * the endpoint reserves the bandwidth necessary to make those transfers.
274  * If the USB subsystem can't allocate sufficient bandwidth to perform
275  * the periodic request, submitting such a periodic request should fail.
276  *
277  * For devices under xHCI, the bandwidth is reserved at configuration time, or
278  * when the alt setting is selected.  If there is not enough bus bandwidth, the
279  * configuration/alt setting request will fail.  Therefore, submissions to
280  * periodic endpoints on devices under xHCI should never fail due to bandwidth
281  * constraints.
282  *
283  * Device drivers must explicitly request that repetition, by ensuring that
284  * some URB is always on the endpoint's queue (except possibly for short
285  * periods during completion callbacks).  When there is no longer an urb
286  * queued, the endpoint's bandwidth reservation is canceled.  This means
287  * drivers can use their completion handlers to ensure they keep bandwidth
288  * they need, by reinitializing and resubmitting the just-completed urb
289  * until the driver longer needs that periodic bandwidth.
290  *
291  * Memory Flags:
292  *
293  * The general rules for how to decide which mem_flags to use
294  * are the same as for kmalloc.  There are four
295  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
296  * GFP_ATOMIC.
297  *
298  * GFP_NOFS is not ever used, as it has not been implemented yet.
299  *
300  * GFP_ATOMIC is used when
301  *   (a) you are inside a completion handler, an interrupt, bottom half,
302  *       tasklet or timer, or
303  *   (b) you are holding a spinlock or rwlock (does not apply to
304  *       semaphores), or
305  *   (c) current->state != TASK_RUNNING, this is the case only after
306  *       you've changed it.
307  *
308  * GFP_NOIO is used in the block io path and error handling of storage
309  * devices.
310  *
311  * All other situations use GFP_KERNEL.
312  *
313  * Some more specific rules for mem_flags can be inferred, such as
314  *  (1) start_xmit, timeout, and receive methods of network drivers must
315  *      use GFP_ATOMIC (they are called with a spinlock held);
316  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
317  *      called with a spinlock held);
318  *  (3) If you use a kernel thread with a network driver you must use
319  *      GFP_NOIO, unless (b) or (c) apply;
320  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
321  *      apply or your are in a storage driver's block io path;
322  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
323  *  (6) changing firmware on a running storage or net device uses
324  *      GFP_NOIO, unless b) or c) apply
325  *
326  */
327 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
328 {
329 	static int			pipetypes[4] = {
330 		PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
331 	};
332 	int				xfertype, max;
333 	struct usb_device		*dev;
334 	struct usb_host_endpoint	*ep;
335 	int				is_out;
336 	unsigned int			allowed;
337 
338 	if (!urb || !urb->complete)
339 		return -EINVAL;
340 	if (urb->hcpriv) {
341 		WARN_ONCE(1, "URB %pK submitted while active\n", urb);
342 		return -EBUSY;
343 	}
344 
345 	dev = urb->dev;
346 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
347 		return -ENODEV;
348 
349 	/* For now, get the endpoint from the pipe.  Eventually drivers
350 	 * will be required to set urb->ep directly and we will eliminate
351 	 * urb->pipe.
352 	 */
353 	ep = usb_pipe_endpoint(dev, urb->pipe);
354 	if (!ep)
355 		return -ENOENT;
356 
357 	urb->ep = ep;
358 	urb->status = -EINPROGRESS;
359 	urb->actual_length = 0;
360 
361 	/* Lots of sanity checks, so HCDs can rely on clean data
362 	 * and don't need to duplicate tests
363 	 */
364 	xfertype = usb_endpoint_type(&ep->desc);
365 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
366 		struct usb_ctrlrequest *setup =
367 				(struct usb_ctrlrequest *) urb->setup_packet;
368 
369 		if (!setup)
370 			return -ENOEXEC;
371 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
372 				!setup->wLength;
373 	} else {
374 		is_out = usb_endpoint_dir_out(&ep->desc);
375 	}
376 
377 	/* Clear the internal flags and cache the direction for later use */
378 	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
379 			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
380 			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
381 			URB_DMA_SG_COMBINED);
382 	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
383 
384 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
385 			dev->state < USB_STATE_CONFIGURED)
386 		return -ENODEV;
387 
388 	max = usb_endpoint_maxp(&ep->desc);
389 	if (max <= 0) {
390 		dev_dbg(&dev->dev,
391 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
392 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
393 			__func__, max);
394 		return -EMSGSIZE;
395 	}
396 
397 	/* periodic transfers limit size per frame/uframe,
398 	 * but drivers only control those sizes for ISO.
399 	 * while we're checking, initialize return status.
400 	 */
401 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
402 		int	n, len;
403 
404 		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
405 		 * 3 packets each
406 		 */
407 		if (dev->speed >= USB_SPEED_SUPER) {
408 			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
409 			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
410 			max *= burst;
411 			max *= mult;
412 		}
413 
414 		/* "high bandwidth" mode, 1-3 packets/uframe? */
415 		if (dev->speed == USB_SPEED_HIGH)
416 			max *= usb_endpoint_maxp_mult(&ep->desc);
417 
418 		if (urb->number_of_packets <= 0)
419 			return -EINVAL;
420 		for (n = 0; n < urb->number_of_packets; n++) {
421 			len = urb->iso_frame_desc[n].length;
422 			if (len < 0 || len > max)
423 				return -EMSGSIZE;
424 			urb->iso_frame_desc[n].status = -EXDEV;
425 			urb->iso_frame_desc[n].actual_length = 0;
426 		}
427 	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
428 			dev->speed != USB_SPEED_WIRELESS) {
429 		struct scatterlist *sg;
430 		int i;
431 
432 		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
433 			if (sg->length % max)
434 				return -EINVAL;
435 	}
436 
437 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
438 	if (urb->transfer_buffer_length > INT_MAX)
439 		return -EMSGSIZE;
440 
441 	/*
442 	 * stuff that drivers shouldn't do, but which shouldn't
443 	 * cause problems in HCDs if they get it wrong.
444 	 */
445 
446 	/* Check that the pipe's type matches the endpoint's type */
447 	if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
448 		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
449 			usb_pipetype(urb->pipe), pipetypes[xfertype]);
450 
451 	/* Check against a simple/standard policy */
452 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
453 			URB_FREE_BUFFER);
454 	switch (xfertype) {
455 	case USB_ENDPOINT_XFER_BULK:
456 	case USB_ENDPOINT_XFER_INT:
457 		if (is_out)
458 			allowed |= URB_ZERO_PACKET;
459 		/* FALLTHROUGH */
460 	case USB_ENDPOINT_XFER_CONTROL:
461 		allowed |= URB_NO_FSBR;	/* only affects UHCI */
462 		/* FALLTHROUGH */
463 	default:			/* all non-iso endpoints */
464 		if (!is_out)
465 			allowed |= URB_SHORT_NOT_OK;
466 		break;
467 	case USB_ENDPOINT_XFER_ISOC:
468 		allowed |= URB_ISO_ASAP;
469 		break;
470 	}
471 	allowed &= urb->transfer_flags;
472 
473 	/* warn if submitter gave bogus flags */
474 	if (allowed != urb->transfer_flags)
475 		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
476 			urb->transfer_flags, allowed);
477 
478 	/*
479 	 * Force periodic transfer intervals to be legal values that are
480 	 * a power of two (so HCDs don't need to).
481 	 *
482 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
483 	 * supports different values... this uses EHCI/UHCI defaults (and
484 	 * EHCI can use smaller non-default values).
485 	 */
486 	switch (xfertype) {
487 	case USB_ENDPOINT_XFER_ISOC:
488 	case USB_ENDPOINT_XFER_INT:
489 		/* too small? */
490 		switch (dev->speed) {
491 		case USB_SPEED_WIRELESS:
492 			if ((urb->interval < 6)
493 				&& (xfertype == USB_ENDPOINT_XFER_INT))
494 				return -EINVAL;
495 			/* fall through */
496 		default:
497 			if (urb->interval <= 0)
498 				return -EINVAL;
499 			break;
500 		}
501 		/* too big? */
502 		switch (dev->speed) {
503 		case USB_SPEED_SUPER_PLUS:
504 		case USB_SPEED_SUPER:	/* units are 125us */
505 			/* Handle up to 2^(16-1) microframes */
506 			if (urb->interval > (1 << 15))
507 				return -EINVAL;
508 			max = 1 << 15;
509 			break;
510 		case USB_SPEED_WIRELESS:
511 			if (urb->interval > 16)
512 				return -EINVAL;
513 			break;
514 		case USB_SPEED_HIGH:	/* units are microframes */
515 			/* NOTE usb handles 2^15 */
516 			if (urb->interval > (1024 * 8))
517 				urb->interval = 1024 * 8;
518 			max = 1024 * 8;
519 			break;
520 		case USB_SPEED_FULL:	/* units are frames/msec */
521 		case USB_SPEED_LOW:
522 			if (xfertype == USB_ENDPOINT_XFER_INT) {
523 				if (urb->interval > 255)
524 					return -EINVAL;
525 				/* NOTE ohci only handles up to 32 */
526 				max = 128;
527 			} else {
528 				if (urb->interval > 1024)
529 					urb->interval = 1024;
530 				/* NOTE usb and ohci handle up to 2^15 */
531 				max = 1024;
532 			}
533 			break;
534 		default:
535 			return -EINVAL;
536 		}
537 		if (dev->speed != USB_SPEED_WIRELESS) {
538 			/* Round down to a power of 2, no more than max */
539 			urb->interval = min(max, 1 << ilog2(urb->interval));
540 		}
541 	}
542 
543 	return usb_hcd_submit_urb(urb, mem_flags);
544 }
545 EXPORT_SYMBOL_GPL(usb_submit_urb);
546 
547 /*-------------------------------------------------------------------*/
548 
549 /**
550  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
551  * @urb: pointer to urb describing a previously submitted request,
552  *	may be NULL
553  *
554  * This routine cancels an in-progress request.  URBs complete only once
555  * per submission, and may be canceled only once per submission.
556  * Successful cancellation means termination of @urb will be expedited
557  * and the completion handler will be called with a status code
558  * indicating that the request has been canceled (rather than any other
559  * code).
560  *
561  * Drivers should not call this routine or related routines, such as
562  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
563  * method has returned.  The disconnect function should synchronize with
564  * a driver's I/O routines to insure that all URB-related activity has
565  * completed before it returns.
566  *
567  * This request is asynchronous, however the HCD might call the ->complete()
568  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
569  * must not hold any locks that may be taken by the completion function.
570  * Success is indicated by returning -EINPROGRESS, at which time the URB will
571  * probably not yet have been given back to the device driver. When it is
572  * eventually called, the completion function will see @urb->status ==
573  * -ECONNRESET.
574  * Failure is indicated by usb_unlink_urb() returning any other value.
575  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
576  * never submitted, or it was unlinked before, or the hardware is already
577  * finished with it), even if the completion handler has not yet run.
578  *
579  * The URB must not be deallocated while this routine is running.  In
580  * particular, when a driver calls this routine, it must insure that the
581  * completion handler cannot deallocate the URB.
582  *
583  * Return: -EINPROGRESS on success. See description for other values on
584  * failure.
585  *
586  * Unlinking and Endpoint Queues:
587  *
588  * [The behaviors and guarantees described below do not apply to virtual
589  * root hubs but only to endpoint queues for physical USB devices.]
590  *
591  * Host Controller Drivers (HCDs) place all the URBs for a particular
592  * endpoint in a queue.  Normally the queue advances as the controller
593  * hardware processes each request.  But when an URB terminates with an
594  * error its queue generally stops (see below), at least until that URB's
595  * completion routine returns.  It is guaranteed that a stopped queue
596  * will not restart until all its unlinked URBs have been fully retired,
597  * with their completion routines run, even if that's not until some time
598  * after the original completion handler returns.  The same behavior and
599  * guarantee apply when an URB terminates because it was unlinked.
600  *
601  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
602  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
603  * and -EREMOTEIO.  Control endpoint queues behave the same way except
604  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
605  * for isochronous endpoints are treated differently, because they must
606  * advance at fixed rates.  Such queues do not stop when an URB
607  * encounters an error or is unlinked.  An unlinked isochronous URB may
608  * leave a gap in the stream of packets; it is undefined whether such
609  * gaps can be filled in.
610  *
611  * Note that early termination of an URB because a short packet was
612  * received will generate a -EREMOTEIO error if and only if the
613  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
614  * drivers can build deep queues for large or complex bulk transfers
615  * and clean them up reliably after any sort of aborted transfer by
616  * unlinking all pending URBs at the first fault.
617  *
618  * When a control URB terminates with an error other than -EREMOTEIO, it
619  * is quite likely that the status stage of the transfer will not take
620  * place.
621  */
622 int usb_unlink_urb(struct urb *urb)
623 {
624 	if (!urb)
625 		return -EINVAL;
626 	if (!urb->dev)
627 		return -ENODEV;
628 	if (!urb->ep)
629 		return -EIDRM;
630 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
631 }
632 EXPORT_SYMBOL_GPL(usb_unlink_urb);
633 
634 /**
635  * usb_kill_urb - cancel a transfer request and wait for it to finish
636  * @urb: pointer to URB describing a previously submitted request,
637  *	may be NULL
638  *
639  * This routine cancels an in-progress request.  It is guaranteed that
640  * upon return all completion handlers will have finished and the URB
641  * will be totally idle and available for reuse.  These features make
642  * this an ideal way to stop I/O in a disconnect() callback or close()
643  * function.  If the request has not already finished or been unlinked
644  * the completion handler will see urb->status == -ENOENT.
645  *
646  * While the routine is running, attempts to resubmit the URB will fail
647  * with error -EPERM.  Thus even if the URB's completion handler always
648  * tries to resubmit, it will not succeed and the URB will become idle.
649  *
650  * The URB must not be deallocated while this routine is running.  In
651  * particular, when a driver calls this routine, it must insure that the
652  * completion handler cannot deallocate the URB.
653  *
654  * This routine may not be used in an interrupt context (such as a bottom
655  * half or a completion handler), or when holding a spinlock, or in other
656  * situations where the caller can't schedule().
657  *
658  * This routine should not be called by a driver after its disconnect
659  * method has returned.
660  */
661 void usb_kill_urb(struct urb *urb)
662 {
663 	might_sleep();
664 	if (!(urb && urb->dev && urb->ep))
665 		return;
666 	atomic_inc(&urb->reject);
667 
668 	usb_hcd_unlink_urb(urb, -ENOENT);
669 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
670 
671 	atomic_dec(&urb->reject);
672 }
673 EXPORT_SYMBOL_GPL(usb_kill_urb);
674 
675 /**
676  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
677  * @urb: pointer to URB describing a previously submitted request,
678  *	may be NULL
679  *
680  * This routine cancels an in-progress request.  It is guaranteed that
681  * upon return all completion handlers will have finished and the URB
682  * will be totally idle and cannot be reused.  These features make
683  * this an ideal way to stop I/O in a disconnect() callback.
684  * If the request has not already finished or been unlinked
685  * the completion handler will see urb->status == -ENOENT.
686  *
687  * After and while the routine runs, attempts to resubmit the URB will fail
688  * with error -EPERM.  Thus even if the URB's completion handler always
689  * tries to resubmit, it will not succeed and the URB will become idle.
690  *
691  * The URB must not be deallocated while this routine is running.  In
692  * particular, when a driver calls this routine, it must insure that the
693  * completion handler cannot deallocate the URB.
694  *
695  * This routine may not be used in an interrupt context (such as a bottom
696  * half or a completion handler), or when holding a spinlock, or in other
697  * situations where the caller can't schedule().
698  *
699  * This routine should not be called by a driver after its disconnect
700  * method has returned.
701  */
702 void usb_poison_urb(struct urb *urb)
703 {
704 	might_sleep();
705 	if (!urb)
706 		return;
707 	atomic_inc(&urb->reject);
708 
709 	if (!urb->dev || !urb->ep)
710 		return;
711 
712 	usb_hcd_unlink_urb(urb, -ENOENT);
713 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
714 }
715 EXPORT_SYMBOL_GPL(usb_poison_urb);
716 
717 void usb_unpoison_urb(struct urb *urb)
718 {
719 	if (!urb)
720 		return;
721 
722 	atomic_dec(&urb->reject);
723 }
724 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
725 
726 /**
727  * usb_block_urb - reliably prevent further use of an URB
728  * @urb: pointer to URB to be blocked, may be NULL
729  *
730  * After the routine has run, attempts to resubmit the URB will fail
731  * with error -EPERM.  Thus even if the URB's completion handler always
732  * tries to resubmit, it will not succeed and the URB will become idle.
733  *
734  * The URB must not be deallocated while this routine is running.  In
735  * particular, when a driver calls this routine, it must insure that the
736  * completion handler cannot deallocate the URB.
737  */
738 void usb_block_urb(struct urb *urb)
739 {
740 	if (!urb)
741 		return;
742 
743 	atomic_inc(&urb->reject);
744 }
745 EXPORT_SYMBOL_GPL(usb_block_urb);
746 
747 /**
748  * usb_kill_anchored_urbs - cancel transfer requests en masse
749  * @anchor: anchor the requests are bound to
750  *
751  * this allows all outstanding URBs to be killed starting
752  * from the back of the queue
753  *
754  * This routine should not be called by a driver after its disconnect
755  * method has returned.
756  */
757 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
758 {
759 	struct urb *victim;
760 
761 	spin_lock_irq(&anchor->lock);
762 	while (!list_empty(&anchor->urb_list)) {
763 		victim = list_entry(anchor->urb_list.prev, struct urb,
764 				    anchor_list);
765 		/* we must make sure the URB isn't freed before we kill it*/
766 		usb_get_urb(victim);
767 		spin_unlock_irq(&anchor->lock);
768 		/* this will unanchor the URB */
769 		usb_kill_urb(victim);
770 		usb_put_urb(victim);
771 		spin_lock_irq(&anchor->lock);
772 	}
773 	spin_unlock_irq(&anchor->lock);
774 }
775 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
776 
777 
778 /**
779  * usb_poison_anchored_urbs - cease all traffic from an anchor
780  * @anchor: anchor the requests are bound to
781  *
782  * this allows all outstanding URBs to be poisoned starting
783  * from the back of the queue. Newly added URBs will also be
784  * poisoned
785  *
786  * This routine should not be called by a driver after its disconnect
787  * method has returned.
788  */
789 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
790 {
791 	struct urb *victim;
792 
793 	spin_lock_irq(&anchor->lock);
794 	anchor->poisoned = 1;
795 	while (!list_empty(&anchor->urb_list)) {
796 		victim = list_entry(anchor->urb_list.prev, struct urb,
797 				    anchor_list);
798 		/* we must make sure the URB isn't freed before we kill it*/
799 		usb_get_urb(victim);
800 		spin_unlock_irq(&anchor->lock);
801 		/* this will unanchor the URB */
802 		usb_poison_urb(victim);
803 		usb_put_urb(victim);
804 		spin_lock_irq(&anchor->lock);
805 	}
806 	spin_unlock_irq(&anchor->lock);
807 }
808 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
809 
810 /**
811  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
812  * @anchor: anchor the requests are bound to
813  *
814  * Reverses the effect of usb_poison_anchored_urbs
815  * the anchor can be used normally after it returns
816  */
817 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
818 {
819 	unsigned long flags;
820 	struct urb *lazarus;
821 
822 	spin_lock_irqsave(&anchor->lock, flags);
823 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
824 		usb_unpoison_urb(lazarus);
825 	}
826 	anchor->poisoned = 0;
827 	spin_unlock_irqrestore(&anchor->lock, flags);
828 }
829 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
830 /**
831  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
832  * @anchor: anchor the requests are bound to
833  *
834  * this allows all outstanding URBs to be unlinked starting
835  * from the back of the queue. This function is asynchronous.
836  * The unlinking is just triggered. It may happen after this
837  * function has returned.
838  *
839  * This routine should not be called by a driver after its disconnect
840  * method has returned.
841  */
842 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
843 {
844 	struct urb *victim;
845 
846 	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
847 		usb_unlink_urb(victim);
848 		usb_put_urb(victim);
849 	}
850 }
851 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
852 
853 /**
854  * usb_anchor_suspend_wakeups
855  * @anchor: the anchor you want to suspend wakeups on
856  *
857  * Call this to stop the last urb being unanchored from waking up any
858  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
859  * back path to delay waking up until after the completion handler has run.
860  */
861 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
862 {
863 	if (anchor)
864 		atomic_inc(&anchor->suspend_wakeups);
865 }
866 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
867 
868 /**
869  * usb_anchor_resume_wakeups
870  * @anchor: the anchor you want to resume wakeups on
871  *
872  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
873  * wake up any current waiters if the anchor is empty.
874  */
875 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
876 {
877 	if (!anchor)
878 		return;
879 
880 	atomic_dec(&anchor->suspend_wakeups);
881 	if (usb_anchor_check_wakeup(anchor))
882 		wake_up(&anchor->wait);
883 }
884 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
885 
886 /**
887  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
888  * @anchor: the anchor you want to become unused
889  * @timeout: how long you are willing to wait in milliseconds
890  *
891  * Call this is you want to be sure all an anchor's
892  * URBs have finished
893  *
894  * Return: Non-zero if the anchor became unused. Zero on timeout.
895  */
896 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
897 				  unsigned int timeout)
898 {
899 	return wait_event_timeout(anchor->wait,
900 				  usb_anchor_check_wakeup(anchor),
901 				  msecs_to_jiffies(timeout));
902 }
903 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
904 
905 /**
906  * usb_get_from_anchor - get an anchor's oldest urb
907  * @anchor: the anchor whose urb you want
908  *
909  * This will take the oldest urb from an anchor,
910  * unanchor and return it
911  *
912  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
913  * urbs associated with it.
914  */
915 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
916 {
917 	struct urb *victim;
918 	unsigned long flags;
919 
920 	spin_lock_irqsave(&anchor->lock, flags);
921 	if (!list_empty(&anchor->urb_list)) {
922 		victim = list_entry(anchor->urb_list.next, struct urb,
923 				    anchor_list);
924 		usb_get_urb(victim);
925 		__usb_unanchor_urb(victim, anchor);
926 	} else {
927 		victim = NULL;
928 	}
929 	spin_unlock_irqrestore(&anchor->lock, flags);
930 
931 	return victim;
932 }
933 
934 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
935 
936 /**
937  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
938  * @anchor: the anchor whose urbs you want to unanchor
939  *
940  * use this to get rid of all an anchor's urbs
941  */
942 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
943 {
944 	struct urb *victim;
945 	unsigned long flags;
946 
947 	spin_lock_irqsave(&anchor->lock, flags);
948 	while (!list_empty(&anchor->urb_list)) {
949 		victim = list_entry(anchor->urb_list.prev, struct urb,
950 				    anchor_list);
951 		__usb_unanchor_urb(victim, anchor);
952 	}
953 	spin_unlock_irqrestore(&anchor->lock, flags);
954 }
955 
956 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
957 
958 /**
959  * usb_anchor_empty - is an anchor empty
960  * @anchor: the anchor you want to query
961  *
962  * Return: 1 if the anchor has no urbs associated with it.
963  */
964 int usb_anchor_empty(struct usb_anchor *anchor)
965 {
966 	return list_empty(&anchor->urb_list);
967 }
968 
969 EXPORT_SYMBOL_GPL(usb_anchor_empty);
970 
971