xref: /linux/drivers/usb/core/urb.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 #include <linux/module.h>
2 #include <linux/string.h>
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/init.h>
6 #include <linux/log2.h>
7 #include <linux/usb.h>
8 #include <linux/wait.h>
9 #include "hcd.h"
10 
11 #define to_urb(d) container_of(d, struct urb, kref)
12 
13 
14 static void urb_destroy(struct kref *kref)
15 {
16 	struct urb *urb = to_urb(kref);
17 
18 	if (urb->transfer_flags & URB_FREE_BUFFER)
19 		kfree(urb->transfer_buffer);
20 
21 	kfree(urb);
22 }
23 
24 /**
25  * usb_init_urb - initializes a urb so that it can be used by a USB driver
26  * @urb: pointer to the urb to initialize
27  *
28  * Initializes a urb so that the USB subsystem can use it properly.
29  *
30  * If a urb is created with a call to usb_alloc_urb() it is not
31  * necessary to call this function.  Only use this if you allocate the
32  * space for a struct urb on your own.  If you call this function, be
33  * careful when freeing the memory for your urb that it is no longer in
34  * use by the USB core.
35  *
36  * Only use this function if you _really_ understand what you are doing.
37  */
38 void usb_init_urb(struct urb *urb)
39 {
40 	if (urb) {
41 		memset(urb, 0, sizeof(*urb));
42 		kref_init(&urb->kref);
43 		INIT_LIST_HEAD(&urb->anchor_list);
44 	}
45 }
46 EXPORT_SYMBOL_GPL(usb_init_urb);
47 
48 /**
49  * usb_alloc_urb - creates a new urb for a USB driver to use
50  * @iso_packets: number of iso packets for this urb
51  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
52  *	valid options for this.
53  *
54  * Creates an urb for the USB driver to use, initializes a few internal
55  * structures, incrementes the usage counter, and returns a pointer to it.
56  *
57  * If no memory is available, NULL is returned.
58  *
59  * If the driver want to use this urb for interrupt, control, or bulk
60  * endpoints, pass '0' as the number of iso packets.
61  *
62  * The driver must call usb_free_urb() when it is finished with the urb.
63  */
64 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
65 {
66 	struct urb *urb;
67 
68 	urb = kmalloc(sizeof(struct urb) +
69 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
70 		mem_flags);
71 	if (!urb) {
72 		printk(KERN_ERR "alloc_urb: kmalloc failed\n");
73 		return NULL;
74 	}
75 	usb_init_urb(urb);
76 	return urb;
77 }
78 EXPORT_SYMBOL_GPL(usb_alloc_urb);
79 
80 /**
81  * usb_free_urb - frees the memory used by a urb when all users of it are finished
82  * @urb: pointer to the urb to free, may be NULL
83  *
84  * Must be called when a user of a urb is finished with it.  When the last user
85  * of the urb calls this function, the memory of the urb is freed.
86  *
87  * Note: The transfer buffer associated with the urb is not freed unless the
88  * URB_FREE_BUFFER transfer flag is set.
89  */
90 void usb_free_urb(struct urb *urb)
91 {
92 	if (urb)
93 		kref_put(&urb->kref, urb_destroy);
94 }
95 EXPORT_SYMBOL_GPL(usb_free_urb);
96 
97 /**
98  * usb_get_urb - increments the reference count of the urb
99  * @urb: pointer to the urb to modify, may be NULL
100  *
101  * This must be  called whenever a urb is transferred from a device driver to a
102  * host controller driver.  This allows proper reference counting to happen
103  * for urbs.
104  *
105  * A pointer to the urb with the incremented reference counter is returned.
106  */
107 struct urb *usb_get_urb(struct urb *urb)
108 {
109 	if (urb)
110 		kref_get(&urb->kref);
111 	return urb;
112 }
113 EXPORT_SYMBOL_GPL(usb_get_urb);
114 
115 /**
116  * usb_anchor_urb - anchors an URB while it is processed
117  * @urb: pointer to the urb to anchor
118  * @anchor: pointer to the anchor
119  *
120  * This can be called to have access to URBs which are to be executed
121  * without bothering to track them
122  */
123 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
124 {
125 	unsigned long flags;
126 
127 	spin_lock_irqsave(&anchor->lock, flags);
128 	usb_get_urb(urb);
129 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
130 	urb->anchor = anchor;
131 
132 	if (unlikely(anchor->poisoned)) {
133 		atomic_inc(&urb->reject);
134 	}
135 
136 	spin_unlock_irqrestore(&anchor->lock, flags);
137 }
138 EXPORT_SYMBOL_GPL(usb_anchor_urb);
139 
140 /**
141  * usb_unanchor_urb - unanchors an URB
142  * @urb: pointer to the urb to anchor
143  *
144  * Call this to stop the system keeping track of this URB
145  */
146 void usb_unanchor_urb(struct urb *urb)
147 {
148 	unsigned long flags;
149 	struct usb_anchor *anchor;
150 
151 	if (!urb)
152 		return;
153 
154 	anchor = urb->anchor;
155 	if (!anchor)
156 		return;
157 
158 	spin_lock_irqsave(&anchor->lock, flags);
159 	if (unlikely(anchor != urb->anchor)) {
160 		/* we've lost the race to another thread */
161 		spin_unlock_irqrestore(&anchor->lock, flags);
162 		return;
163 	}
164 	urb->anchor = NULL;
165 	list_del(&urb->anchor_list);
166 	spin_unlock_irqrestore(&anchor->lock, flags);
167 	usb_put_urb(urb);
168 	if (list_empty(&anchor->urb_list))
169 		wake_up(&anchor->wait);
170 }
171 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
172 
173 /*-------------------------------------------------------------------*/
174 
175 /**
176  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
177  * @urb: pointer to the urb describing the request
178  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
179  *	of valid options for this.
180  *
181  * This submits a transfer request, and transfers control of the URB
182  * describing that request to the USB subsystem.  Request completion will
183  * be indicated later, asynchronously, by calling the completion handler.
184  * The three types of completion are success, error, and unlink
185  * (a software-induced fault, also called "request cancellation").
186  *
187  * URBs may be submitted in interrupt context.
188  *
189  * The caller must have correctly initialized the URB before submitting
190  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
191  * available to ensure that most fields are correctly initialized, for
192  * the particular kind of transfer, although they will not initialize
193  * any transfer flags.
194  *
195  * Successful submissions return 0; otherwise this routine returns a
196  * negative error number.  If the submission is successful, the complete()
197  * callback from the URB will be called exactly once, when the USB core and
198  * Host Controller Driver (HCD) are finished with the URB.  When the completion
199  * function is called, control of the URB is returned to the device
200  * driver which issued the request.  The completion handler may then
201  * immediately free or reuse that URB.
202  *
203  * With few exceptions, USB device drivers should never access URB fields
204  * provided by usbcore or the HCD until its complete() is called.
205  * The exceptions relate to periodic transfer scheduling.  For both
206  * interrupt and isochronous urbs, as part of successful URB submission
207  * urb->interval is modified to reflect the actual transfer period used
208  * (normally some power of two units).  And for isochronous urbs,
209  * urb->start_frame is modified to reflect when the URB's transfers were
210  * scheduled to start.  Not all isochronous transfer scheduling policies
211  * will work, but most host controller drivers should easily handle ISO
212  * queues going from now until 10-200 msec into the future.
213  *
214  * For control endpoints, the synchronous usb_control_msg() call is
215  * often used (in non-interrupt context) instead of this call.
216  * That is often used through convenience wrappers, for the requests
217  * that are standardized in the USB 2.0 specification.  For bulk
218  * endpoints, a synchronous usb_bulk_msg() call is available.
219  *
220  * Request Queuing:
221  *
222  * URBs may be submitted to endpoints before previous ones complete, to
223  * minimize the impact of interrupt latencies and system overhead on data
224  * throughput.  With that queuing policy, an endpoint's queue would never
225  * be empty.  This is required for continuous isochronous data streams,
226  * and may also be required for some kinds of interrupt transfers. Such
227  * queuing also maximizes bandwidth utilization by letting USB controllers
228  * start work on later requests before driver software has finished the
229  * completion processing for earlier (successful) requests.
230  *
231  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
232  * than one.  This was previously a HCD-specific behavior, except for ISO
233  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
234  * after faults (transfer errors or cancellation).
235  *
236  * Reserved Bandwidth Transfers:
237  *
238  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
239  * using the interval specified in the urb.  Submitting the first urb to
240  * the endpoint reserves the bandwidth necessary to make those transfers.
241  * If the USB subsystem can't allocate sufficient bandwidth to perform
242  * the periodic request, submitting such a periodic request should fail.
243  *
244  * For devices under xHCI, the bandwidth is reserved at configuration time, or
245  * when the alt setting is selected.  If there is not enough bus bandwidth, the
246  * configuration/alt setting request will fail.  Therefore, submissions to
247  * periodic endpoints on devices under xHCI should never fail due to bandwidth
248  * constraints.
249  *
250  * Device drivers must explicitly request that repetition, by ensuring that
251  * some URB is always on the endpoint's queue (except possibly for short
252  * periods during completion callacks).  When there is no longer an urb
253  * queued, the endpoint's bandwidth reservation is canceled.  This means
254  * drivers can use their completion handlers to ensure they keep bandwidth
255  * they need, by reinitializing and resubmitting the just-completed urb
256  * until the driver longer needs that periodic bandwidth.
257  *
258  * Memory Flags:
259  *
260  * The general rules for how to decide which mem_flags to use
261  * are the same as for kmalloc.  There are four
262  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
263  * GFP_ATOMIC.
264  *
265  * GFP_NOFS is not ever used, as it has not been implemented yet.
266  *
267  * GFP_ATOMIC is used when
268  *   (a) you are inside a completion handler, an interrupt, bottom half,
269  *       tasklet or timer, or
270  *   (b) you are holding a spinlock or rwlock (does not apply to
271  *       semaphores), or
272  *   (c) current->state != TASK_RUNNING, this is the case only after
273  *       you've changed it.
274  *
275  * GFP_NOIO is used in the block io path and error handling of storage
276  * devices.
277  *
278  * All other situations use GFP_KERNEL.
279  *
280  * Some more specific rules for mem_flags can be inferred, such as
281  *  (1) start_xmit, timeout, and receive methods of network drivers must
282  *      use GFP_ATOMIC (they are called with a spinlock held);
283  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
284  *      called with a spinlock held);
285  *  (3) If you use a kernel thread with a network driver you must use
286  *      GFP_NOIO, unless (b) or (c) apply;
287  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
288  *      apply or your are in a storage driver's block io path;
289  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
290  *  (6) changing firmware on a running storage or net device uses
291  *      GFP_NOIO, unless b) or c) apply
292  *
293  */
294 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
295 {
296 	int				xfertype, max;
297 	struct usb_device		*dev;
298 	struct usb_host_endpoint	*ep;
299 	int				is_out;
300 
301 	if (!urb || urb->hcpriv || !urb->complete)
302 		return -EINVAL;
303 	dev = urb->dev;
304 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
305 		return -ENODEV;
306 
307 	/* For now, get the endpoint from the pipe.  Eventually drivers
308 	 * will be required to set urb->ep directly and we will eliminate
309 	 * urb->pipe.
310 	 */
311 	ep = (usb_pipein(urb->pipe) ? dev->ep_in : dev->ep_out)
312 			[usb_pipeendpoint(urb->pipe)];
313 	if (!ep)
314 		return -ENOENT;
315 
316 	urb->ep = ep;
317 	urb->status = -EINPROGRESS;
318 	urb->actual_length = 0;
319 
320 	/* Lots of sanity checks, so HCDs can rely on clean data
321 	 * and don't need to duplicate tests
322 	 */
323 	xfertype = usb_endpoint_type(&ep->desc);
324 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
325 		struct usb_ctrlrequest *setup =
326 				(struct usb_ctrlrequest *) urb->setup_packet;
327 
328 		if (!setup)
329 			return -ENOEXEC;
330 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
331 				!setup->wLength;
332 	} else {
333 		is_out = usb_endpoint_dir_out(&ep->desc);
334 	}
335 
336 	/* Cache the direction for later use */
337 	urb->transfer_flags = (urb->transfer_flags & ~URB_DIR_MASK) |
338 			(is_out ? URB_DIR_OUT : URB_DIR_IN);
339 
340 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
341 			dev->state < USB_STATE_CONFIGURED)
342 		return -ENODEV;
343 
344 	max = le16_to_cpu(ep->desc.wMaxPacketSize);
345 	if (max <= 0) {
346 		dev_dbg(&dev->dev,
347 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
348 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
349 			__func__, max);
350 		return -EMSGSIZE;
351 	}
352 
353 	/* periodic transfers limit size per frame/uframe,
354 	 * but drivers only control those sizes for ISO.
355 	 * while we're checking, initialize return status.
356 	 */
357 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
358 		int	n, len;
359 
360 		/* FIXME SuperSpeed isoc endpoints have up to 16 bursts */
361 		/* "high bandwidth" mode, 1-3 packets/uframe? */
362 		if (dev->speed == USB_SPEED_HIGH) {
363 			int	mult = 1 + ((max >> 11) & 0x03);
364 			max &= 0x07ff;
365 			max *= mult;
366 		}
367 
368 		if (urb->number_of_packets <= 0)
369 			return -EINVAL;
370 		for (n = 0; n < urb->number_of_packets; n++) {
371 			len = urb->iso_frame_desc[n].length;
372 			if (len < 0 || len > max)
373 				return -EMSGSIZE;
374 			urb->iso_frame_desc[n].status = -EXDEV;
375 			urb->iso_frame_desc[n].actual_length = 0;
376 		}
377 	}
378 
379 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
380 	if (urb->transfer_buffer_length > INT_MAX)
381 		return -EMSGSIZE;
382 
383 #ifdef DEBUG
384 	/* stuff that drivers shouldn't do, but which shouldn't
385 	 * cause problems in HCDs if they get it wrong.
386 	 */
387 	{
388 	unsigned int	orig_flags = urb->transfer_flags;
389 	unsigned int	allowed;
390 
391 	/* enforce simple/standard policy */
392 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
393 			URB_NO_INTERRUPT | URB_DIR_MASK | URB_FREE_BUFFER);
394 	switch (xfertype) {
395 	case USB_ENDPOINT_XFER_BULK:
396 		if (is_out)
397 			allowed |= URB_ZERO_PACKET;
398 		/* FALLTHROUGH */
399 	case USB_ENDPOINT_XFER_CONTROL:
400 		allowed |= URB_NO_FSBR;	/* only affects UHCI */
401 		/* FALLTHROUGH */
402 	default:			/* all non-iso endpoints */
403 		if (!is_out)
404 			allowed |= URB_SHORT_NOT_OK;
405 		break;
406 	case USB_ENDPOINT_XFER_ISOC:
407 		allowed |= URB_ISO_ASAP;
408 		break;
409 	}
410 	urb->transfer_flags &= allowed;
411 
412 	/* fail if submitter gave bogus flags */
413 	if (urb->transfer_flags != orig_flags) {
414 		dev_err(&dev->dev, "BOGUS urb flags, %x --> %x\n",
415 			orig_flags, urb->transfer_flags);
416 		return -EINVAL;
417 	}
418 	}
419 #endif
420 	/*
421 	 * Force periodic transfer intervals to be legal values that are
422 	 * a power of two (so HCDs don't need to).
423 	 *
424 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
425 	 * supports different values... this uses EHCI/UHCI defaults (and
426 	 * EHCI can use smaller non-default values).
427 	 */
428 	switch (xfertype) {
429 	case USB_ENDPOINT_XFER_ISOC:
430 	case USB_ENDPOINT_XFER_INT:
431 		/* too small? */
432 		switch (dev->speed) {
433 		case USB_SPEED_VARIABLE:
434 			if (urb->interval < 6)
435 				return -EINVAL;
436 			break;
437 		default:
438 			if (urb->interval <= 0)
439 				return -EINVAL;
440 			break;
441 		}
442 		/* too big? */
443 		switch (dev->speed) {
444 		case USB_SPEED_SUPER:	/* units are 125us */
445 			/* Handle up to 2^(16-1) microframes */
446 			if (urb->interval > (1 << 15))
447 				return -EINVAL;
448 			max = 1 << 15;
449 		case USB_SPEED_VARIABLE:
450 			if (urb->interval > 16)
451 				return -EINVAL;
452 			break;
453 		case USB_SPEED_HIGH:	/* units are microframes */
454 			/* NOTE usb handles 2^15 */
455 			if (urb->interval > (1024 * 8))
456 				urb->interval = 1024 * 8;
457 			max = 1024 * 8;
458 			break;
459 		case USB_SPEED_FULL:	/* units are frames/msec */
460 		case USB_SPEED_LOW:
461 			if (xfertype == USB_ENDPOINT_XFER_INT) {
462 				if (urb->interval > 255)
463 					return -EINVAL;
464 				/* NOTE ohci only handles up to 32 */
465 				max = 128;
466 			} else {
467 				if (urb->interval > 1024)
468 					urb->interval = 1024;
469 				/* NOTE usb and ohci handle up to 2^15 */
470 				max = 1024;
471 			}
472 			break;
473 		default:
474 			return -EINVAL;
475 		}
476 		if (dev->speed != USB_SPEED_VARIABLE) {
477 			/* Round down to a power of 2, no more than max */
478 			urb->interval = min(max, 1 << ilog2(urb->interval));
479 		}
480 	}
481 
482 	return usb_hcd_submit_urb(urb, mem_flags);
483 }
484 EXPORT_SYMBOL_GPL(usb_submit_urb);
485 
486 /*-------------------------------------------------------------------*/
487 
488 /**
489  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
490  * @urb: pointer to urb describing a previously submitted request,
491  *	may be NULL
492  *
493  * This routine cancels an in-progress request.  URBs complete only once
494  * per submission, and may be canceled only once per submission.
495  * Successful cancellation means termination of @urb will be expedited
496  * and the completion handler will be called with a status code
497  * indicating that the request has been canceled (rather than any other
498  * code).
499  *
500  * Drivers should not call this routine or related routines, such as
501  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
502  * method has returned.  The disconnect function should synchronize with
503  * a driver's I/O routines to insure that all URB-related activity has
504  * completed before it returns.
505  *
506  * This request is always asynchronous.  Success is indicated by
507  * returning -EINPROGRESS, at which time the URB will probably not yet
508  * have been given back to the device driver.  When it is eventually
509  * called, the completion function will see @urb->status == -ECONNRESET.
510  * Failure is indicated by usb_unlink_urb() returning any other value.
511  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
512  * never submitted, or it was unlinked before, or the hardware is already
513  * finished with it), even if the completion handler has not yet run.
514  *
515  * Unlinking and Endpoint Queues:
516  *
517  * [The behaviors and guarantees described below do not apply to virtual
518  * root hubs but only to endpoint queues for physical USB devices.]
519  *
520  * Host Controller Drivers (HCDs) place all the URBs for a particular
521  * endpoint in a queue.  Normally the queue advances as the controller
522  * hardware processes each request.  But when an URB terminates with an
523  * error its queue generally stops (see below), at least until that URB's
524  * completion routine returns.  It is guaranteed that a stopped queue
525  * will not restart until all its unlinked URBs have been fully retired,
526  * with their completion routines run, even if that's not until some time
527  * after the original completion handler returns.  The same behavior and
528  * guarantee apply when an URB terminates because it was unlinked.
529  *
530  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
531  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
532  * and -EREMOTEIO.  Control endpoint queues behave the same way except
533  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
534  * for isochronous endpoints are treated differently, because they must
535  * advance at fixed rates.  Such queues do not stop when an URB
536  * encounters an error or is unlinked.  An unlinked isochronous URB may
537  * leave a gap in the stream of packets; it is undefined whether such
538  * gaps can be filled in.
539  *
540  * Note that early termination of an URB because a short packet was
541  * received will generate a -EREMOTEIO error if and only if the
542  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
543  * drivers can build deep queues for large or complex bulk transfers
544  * and clean them up reliably after any sort of aborted transfer by
545  * unlinking all pending URBs at the first fault.
546  *
547  * When a control URB terminates with an error other than -EREMOTEIO, it
548  * is quite likely that the status stage of the transfer will not take
549  * place.
550  */
551 int usb_unlink_urb(struct urb *urb)
552 {
553 	if (!urb)
554 		return -EINVAL;
555 	if (!urb->dev)
556 		return -ENODEV;
557 	if (!urb->ep)
558 		return -EIDRM;
559 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
560 }
561 EXPORT_SYMBOL_GPL(usb_unlink_urb);
562 
563 /**
564  * usb_kill_urb - cancel a transfer request and wait for it to finish
565  * @urb: pointer to URB describing a previously submitted request,
566  *	may be NULL
567  *
568  * This routine cancels an in-progress request.  It is guaranteed that
569  * upon return all completion handlers will have finished and the URB
570  * will be totally idle and available for reuse.  These features make
571  * this an ideal way to stop I/O in a disconnect() callback or close()
572  * function.  If the request has not already finished or been unlinked
573  * the completion handler will see urb->status == -ENOENT.
574  *
575  * While the routine is running, attempts to resubmit the URB will fail
576  * with error -EPERM.  Thus even if the URB's completion handler always
577  * tries to resubmit, it will not succeed and the URB will become idle.
578  *
579  * This routine may not be used in an interrupt context (such as a bottom
580  * half or a completion handler), or when holding a spinlock, or in other
581  * situations where the caller can't schedule().
582  *
583  * This routine should not be called by a driver after its disconnect
584  * method has returned.
585  */
586 void usb_kill_urb(struct urb *urb)
587 {
588 	might_sleep();
589 	if (!(urb && urb->dev && urb->ep))
590 		return;
591 	atomic_inc(&urb->reject);
592 
593 	usb_hcd_unlink_urb(urb, -ENOENT);
594 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
595 
596 	atomic_dec(&urb->reject);
597 }
598 EXPORT_SYMBOL_GPL(usb_kill_urb);
599 
600 /**
601  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
602  * @urb: pointer to URB describing a previously submitted request,
603  *	may be NULL
604  *
605  * This routine cancels an in-progress request.  It is guaranteed that
606  * upon return all completion handlers will have finished and the URB
607  * will be totally idle and cannot be reused.  These features make
608  * this an ideal way to stop I/O in a disconnect() callback.
609  * If the request has not already finished or been unlinked
610  * the completion handler will see urb->status == -ENOENT.
611  *
612  * After and while the routine runs, attempts to resubmit the URB will fail
613  * with error -EPERM.  Thus even if the URB's completion handler always
614  * tries to resubmit, it will not succeed and the URB will become idle.
615  *
616  * This routine may not be used in an interrupt context (such as a bottom
617  * half or a completion handler), or when holding a spinlock, or in other
618  * situations where the caller can't schedule().
619  *
620  * This routine should not be called by a driver after its disconnect
621  * method has returned.
622  */
623 void usb_poison_urb(struct urb *urb)
624 {
625 	might_sleep();
626 	if (!(urb && urb->dev && urb->ep))
627 		return;
628 	atomic_inc(&urb->reject);
629 
630 	usb_hcd_unlink_urb(urb, -ENOENT);
631 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
632 }
633 EXPORT_SYMBOL_GPL(usb_poison_urb);
634 
635 void usb_unpoison_urb(struct urb *urb)
636 {
637 	if (!urb)
638 		return;
639 
640 	atomic_dec(&urb->reject);
641 }
642 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
643 
644 /**
645  * usb_kill_anchored_urbs - cancel transfer requests en masse
646  * @anchor: anchor the requests are bound to
647  *
648  * this allows all outstanding URBs to be killed starting
649  * from the back of the queue
650  *
651  * This routine should not be called by a driver after its disconnect
652  * method has returned.
653  */
654 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
655 {
656 	struct urb *victim;
657 
658 	spin_lock_irq(&anchor->lock);
659 	while (!list_empty(&anchor->urb_list)) {
660 		victim = list_entry(anchor->urb_list.prev, struct urb,
661 				    anchor_list);
662 		/* we must make sure the URB isn't freed before we kill it*/
663 		usb_get_urb(victim);
664 		spin_unlock_irq(&anchor->lock);
665 		/* this will unanchor the URB */
666 		usb_kill_urb(victim);
667 		usb_put_urb(victim);
668 		spin_lock_irq(&anchor->lock);
669 	}
670 	spin_unlock_irq(&anchor->lock);
671 }
672 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
673 
674 
675 /**
676  * usb_poison_anchored_urbs - cease all traffic from an anchor
677  * @anchor: anchor the requests are bound to
678  *
679  * this allows all outstanding URBs to be poisoned starting
680  * from the back of the queue. Newly added URBs will also be
681  * poisoned
682  *
683  * This routine should not be called by a driver after its disconnect
684  * method has returned.
685  */
686 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
687 {
688 	struct urb *victim;
689 
690 	spin_lock_irq(&anchor->lock);
691 	anchor->poisoned = 1;
692 	while (!list_empty(&anchor->urb_list)) {
693 		victim = list_entry(anchor->urb_list.prev, struct urb,
694 				    anchor_list);
695 		/* we must make sure the URB isn't freed before we kill it*/
696 		usb_get_urb(victim);
697 		spin_unlock_irq(&anchor->lock);
698 		/* this will unanchor the URB */
699 		usb_poison_urb(victim);
700 		usb_put_urb(victim);
701 		spin_lock_irq(&anchor->lock);
702 	}
703 	spin_unlock_irq(&anchor->lock);
704 }
705 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
706 
707 /**
708  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
709  * @anchor: anchor the requests are bound to
710  *
711  * Reverses the effect of usb_poison_anchored_urbs
712  * the anchor can be used normally after it returns
713  */
714 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
715 {
716 	unsigned long flags;
717 	struct urb *lazarus;
718 
719 	spin_lock_irqsave(&anchor->lock, flags);
720 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
721 		usb_unpoison_urb(lazarus);
722 	}
723 	anchor->poisoned = 0;
724 	spin_unlock_irqrestore(&anchor->lock, flags);
725 }
726 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
727 /**
728  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
729  * @anchor: anchor the requests are bound to
730  *
731  * this allows all outstanding URBs to be unlinked starting
732  * from the back of the queue. This function is asynchronous.
733  * The unlinking is just tiggered. It may happen after this
734  * function has returned.
735  *
736  * This routine should not be called by a driver after its disconnect
737  * method has returned.
738  */
739 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
740 {
741 	struct urb *victim;
742 	unsigned long flags;
743 
744 	spin_lock_irqsave(&anchor->lock, flags);
745 	while (!list_empty(&anchor->urb_list)) {
746 		victim = list_entry(anchor->urb_list.prev, struct urb,
747 				    anchor_list);
748 		usb_get_urb(victim);
749 		spin_unlock_irqrestore(&anchor->lock, flags);
750 		/* this will unanchor the URB */
751 		usb_unlink_urb(victim);
752 		usb_put_urb(victim);
753 		spin_lock_irqsave(&anchor->lock, flags);
754 	}
755 	spin_unlock_irqrestore(&anchor->lock, flags);
756 }
757 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
758 
759 /**
760  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
761  * @anchor: the anchor you want to become unused
762  * @timeout: how long you are willing to wait in milliseconds
763  *
764  * Call this is you want to be sure all an anchor's
765  * URBs have finished
766  */
767 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
768 				  unsigned int timeout)
769 {
770 	return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
771 				  msecs_to_jiffies(timeout));
772 }
773 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
774 
775 /**
776  * usb_get_from_anchor - get an anchor's oldest urb
777  * @anchor: the anchor whose urb you want
778  *
779  * this will take the oldest urb from an anchor,
780  * unanchor and return it
781  */
782 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
783 {
784 	struct urb *victim;
785 	unsigned long flags;
786 
787 	spin_lock_irqsave(&anchor->lock, flags);
788 	if (!list_empty(&anchor->urb_list)) {
789 		victim = list_entry(anchor->urb_list.next, struct urb,
790 				    anchor_list);
791 		usb_get_urb(victim);
792 		spin_unlock_irqrestore(&anchor->lock, flags);
793 		usb_unanchor_urb(victim);
794 	} else {
795 		spin_unlock_irqrestore(&anchor->lock, flags);
796 		victim = NULL;
797 	}
798 
799 	return victim;
800 }
801 
802 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
803 
804 /**
805  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
806  * @anchor: the anchor whose urbs you want to unanchor
807  *
808  * use this to get rid of all an anchor's urbs
809  */
810 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
811 {
812 	struct urb *victim;
813 	unsigned long flags;
814 
815 	spin_lock_irqsave(&anchor->lock, flags);
816 	while (!list_empty(&anchor->urb_list)) {
817 		victim = list_entry(anchor->urb_list.prev, struct urb,
818 				    anchor_list);
819 		usb_get_urb(victim);
820 		spin_unlock_irqrestore(&anchor->lock, flags);
821 		/* this may free the URB */
822 		usb_unanchor_urb(victim);
823 		usb_put_urb(victim);
824 		spin_lock_irqsave(&anchor->lock, flags);
825 	}
826 	spin_unlock_irqrestore(&anchor->lock, flags);
827 }
828 
829 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
830 
831 /**
832  * usb_anchor_empty - is an anchor empty
833  * @anchor: the anchor you want to query
834  *
835  * returns 1 if the anchor has no urbs associated with it
836  */
837 int usb_anchor_empty(struct usb_anchor *anchor)
838 {
839 	return list_empty(&anchor->urb_list);
840 }
841 
842 EXPORT_SYMBOL_GPL(usb_anchor_empty);
843 
844