xref: /linux/drivers/usb/core/urb.c (revision 257ca10c7317d4a424e48bb95d14ca53a1f1dd6f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Released under the GPLv2 only.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/log2.h>
11 #include <linux/kmsan.h>
12 #include <linux/usb.h>
13 #include <linux/wait.h>
14 #include <linux/usb/hcd.h>
15 #include <linux/scatterlist.h>
16 
17 #define to_urb(d) container_of(d, struct urb, kref)
18 
19 
20 static void urb_destroy(struct kref *kref)
21 {
22 	struct urb *urb = to_urb(kref);
23 
24 	if (urb->transfer_flags & URB_FREE_BUFFER)
25 		kfree(urb->transfer_buffer);
26 
27 	kfree(urb);
28 }
29 
30 /**
31  * usb_init_urb - initializes a urb so that it can be used by a USB driver
32  * @urb: pointer to the urb to initialize
33  *
34  * Initializes a urb so that the USB subsystem can use it properly.
35  *
36  * If a urb is created with a call to usb_alloc_urb() it is not
37  * necessary to call this function.  Only use this if you allocate the
38  * space for a struct urb on your own.  If you call this function, be
39  * careful when freeing the memory for your urb that it is no longer in
40  * use by the USB core.
41  *
42  * Only use this function if you _really_ understand what you are doing.
43  */
44 void usb_init_urb(struct urb *urb)
45 {
46 	if (urb) {
47 		memset(urb, 0, sizeof(*urb));
48 		kref_init(&urb->kref);
49 		INIT_LIST_HEAD(&urb->urb_list);
50 		INIT_LIST_HEAD(&urb->anchor_list);
51 	}
52 }
53 EXPORT_SYMBOL_GPL(usb_init_urb);
54 
55 /**
56  * usb_alloc_urb - creates a new urb for a USB driver to use
57  * @iso_packets: number of iso packets for this urb
58  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
59  *	valid options for this.
60  *
61  * Creates an urb for the USB driver to use, initializes a few internal
62  * structures, increments the usage counter, and returns a pointer to it.
63  *
64  * If the driver want to use this urb for interrupt, control, or bulk
65  * endpoints, pass '0' as the number of iso packets.
66  *
67  * The driver must call usb_free_urb() when it is finished with the urb.
68  *
69  * Return: A pointer to the new urb, or %NULL if no memory is available.
70  */
71 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
72 {
73 	struct urb *urb;
74 
75 	urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets),
76 		      mem_flags);
77 	if (!urb)
78 		return NULL;
79 	usb_init_urb(urb);
80 	return urb;
81 }
82 EXPORT_SYMBOL_GPL(usb_alloc_urb);
83 
84 /**
85  * usb_free_urb - frees the memory used by a urb when all users of it are finished
86  * @urb: pointer to the urb to free, may be NULL
87  *
88  * Must be called when a user of a urb is finished with it.  When the last user
89  * of the urb calls this function, the memory of the urb is freed.
90  *
91  * Note: The transfer buffer associated with the urb is not freed unless the
92  * URB_FREE_BUFFER transfer flag is set.
93  */
94 void usb_free_urb(struct urb *urb)
95 {
96 	if (urb)
97 		kref_put(&urb->kref, urb_destroy);
98 }
99 EXPORT_SYMBOL_GPL(usb_free_urb);
100 
101 /**
102  * usb_get_urb - increments the reference count of the urb
103  * @urb: pointer to the urb to modify, may be NULL
104  *
105  * This must be  called whenever a urb is transferred from a device driver to a
106  * host controller driver.  This allows proper reference counting to happen
107  * for urbs.
108  *
109  * Return: A pointer to the urb with the incremented reference counter.
110  */
111 struct urb *usb_get_urb(struct urb *urb)
112 {
113 	if (urb)
114 		kref_get(&urb->kref);
115 	return urb;
116 }
117 EXPORT_SYMBOL_GPL(usb_get_urb);
118 
119 /**
120  * usb_anchor_urb - anchors an URB while it is processed
121  * @urb: pointer to the urb to anchor
122  * @anchor: pointer to the anchor
123  *
124  * This can be called to have access to URBs which are to be executed
125  * without bothering to track them
126  */
127 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
128 {
129 	unsigned long flags;
130 
131 	spin_lock_irqsave(&anchor->lock, flags);
132 	usb_get_urb(urb);
133 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
134 	urb->anchor = anchor;
135 
136 	if (unlikely(anchor->poisoned))
137 		atomic_inc(&urb->reject);
138 
139 	spin_unlock_irqrestore(&anchor->lock, flags);
140 }
141 EXPORT_SYMBOL_GPL(usb_anchor_urb);
142 
143 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
144 {
145 	return atomic_read(&anchor->suspend_wakeups) == 0 &&
146 		list_empty(&anchor->urb_list);
147 }
148 
149 /* Callers must hold anchor->lock */
150 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
151 {
152 	urb->anchor = NULL;
153 	list_del(&urb->anchor_list);
154 	usb_put_urb(urb);
155 	if (usb_anchor_check_wakeup(anchor))
156 		wake_up(&anchor->wait);
157 }
158 
159 /**
160  * usb_unanchor_urb - unanchors an URB
161  * @urb: pointer to the urb to anchor
162  *
163  * Call this to stop the system keeping track of this URB
164  */
165 void usb_unanchor_urb(struct urb *urb)
166 {
167 	unsigned long flags;
168 	struct usb_anchor *anchor;
169 
170 	if (!urb)
171 		return;
172 
173 	anchor = urb->anchor;
174 	if (!anchor)
175 		return;
176 
177 	spin_lock_irqsave(&anchor->lock, flags);
178 	/*
179 	 * At this point, we could be competing with another thread which
180 	 * has the same intention. To protect the urb from being unanchored
181 	 * twice, only the winner of the race gets the job.
182 	 */
183 	if (likely(anchor == urb->anchor))
184 		__usb_unanchor_urb(urb, anchor);
185 	spin_unlock_irqrestore(&anchor->lock, flags);
186 }
187 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
188 
189 /*-------------------------------------------------------------------*/
190 
191 static const int pipetypes[4] = {
192 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
193 };
194 
195 /**
196  * usb_pipe_type_check - sanity check of a specific pipe for a usb device
197  * @dev: struct usb_device to be checked
198  * @pipe: pipe to check
199  *
200  * This performs a light-weight sanity check for the endpoint in the
201  * given usb device.  It returns 0 if the pipe is valid for the specific usb
202  * device, otherwise a negative error code.
203  */
204 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe)
205 {
206 	const struct usb_host_endpoint *ep;
207 
208 	ep = usb_pipe_endpoint(dev, pipe);
209 	if (!ep)
210 		return -EINVAL;
211 	if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
212 		return -EINVAL;
213 	return 0;
214 }
215 EXPORT_SYMBOL_GPL(usb_pipe_type_check);
216 
217 /**
218  * usb_urb_ep_type_check - sanity check of endpoint in the given urb
219  * @urb: urb to be checked
220  *
221  * This performs a light-weight sanity check for the endpoint in the
222  * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
223  * a negative error code.
224  */
225 int usb_urb_ep_type_check(const struct urb *urb)
226 {
227 	return usb_pipe_type_check(urb->dev, urb->pipe);
228 }
229 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
230 
231 /**
232  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
233  * @urb: pointer to the urb describing the request
234  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
235  *	of valid options for this.
236  *
237  * This submits a transfer request, and transfers control of the URB
238  * describing that request to the USB subsystem.  Request completion will
239  * be indicated later, asynchronously, by calling the completion handler.
240  * The three types of completion are success, error, and unlink
241  * (a software-induced fault, also called "request cancellation").
242  *
243  * URBs may be submitted in interrupt context.
244  *
245  * The caller must have correctly initialized the URB before submitting
246  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
247  * available to ensure that most fields are correctly initialized, for
248  * the particular kind of transfer, although they will not initialize
249  * any transfer flags.
250  *
251  * If the submission is successful, the complete() callback from the URB
252  * will be called exactly once, when the USB core and Host Controller Driver
253  * (HCD) are finished with the URB.  When the completion function is called,
254  * control of the URB is returned to the device driver which issued the
255  * request.  The completion handler may then immediately free or reuse that
256  * URB.
257  *
258  * With few exceptions, USB device drivers should never access URB fields
259  * provided by usbcore or the HCD until its complete() is called.
260  * The exceptions relate to periodic transfer scheduling.  For both
261  * interrupt and isochronous urbs, as part of successful URB submission
262  * urb->interval is modified to reflect the actual transfer period used
263  * (normally some power of two units).  And for isochronous urbs,
264  * urb->start_frame is modified to reflect when the URB's transfers were
265  * scheduled to start.
266  *
267  * Not all isochronous transfer scheduling policies will work, but most
268  * host controller drivers should easily handle ISO queues going from now
269  * until 10-200 msec into the future.  Drivers should try to keep at
270  * least one or two msec of data in the queue; many controllers require
271  * that new transfers start at least 1 msec in the future when they are
272  * added.  If the driver is unable to keep up and the queue empties out,
273  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
274  * If the flag is set, or if the queue is idle, then the URB is always
275  * assigned to the first available (and not yet expired) slot in the
276  * endpoint's schedule.  If the flag is not set and the queue is active
277  * then the URB is always assigned to the next slot in the schedule
278  * following the end of the endpoint's previous URB, even if that slot is
279  * in the past.  When a packet is assigned in this way to a slot that has
280  * already expired, the packet is not transmitted and the corresponding
281  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
282  * would happen to all the packets in the URB, submission fails with a
283  * -EXDEV error code.
284  *
285  * For control endpoints, the synchronous usb_control_msg() call is
286  * often used (in non-interrupt context) instead of this call.
287  * That is often used through convenience wrappers, for the requests
288  * that are standardized in the USB 2.0 specification.  For bulk
289  * endpoints, a synchronous usb_bulk_msg() call is available.
290  *
291  * Return:
292  * 0 on successful submissions. A negative error number otherwise.
293  *
294  * Request Queuing:
295  *
296  * URBs may be submitted to endpoints before previous ones complete, to
297  * minimize the impact of interrupt latencies and system overhead on data
298  * throughput.  With that queuing policy, an endpoint's queue would never
299  * be empty.  This is required for continuous isochronous data streams,
300  * and may also be required for some kinds of interrupt transfers. Such
301  * queuing also maximizes bandwidth utilization by letting USB controllers
302  * start work on later requests before driver software has finished the
303  * completion processing for earlier (successful) requests.
304  *
305  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
306  * than one.  This was previously a HCD-specific behavior, except for ISO
307  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
308  * after faults (transfer errors or cancellation).
309  *
310  * Reserved Bandwidth Transfers:
311  *
312  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
313  * using the interval specified in the urb.  Submitting the first urb to
314  * the endpoint reserves the bandwidth necessary to make those transfers.
315  * If the USB subsystem can't allocate sufficient bandwidth to perform
316  * the periodic request, submitting such a periodic request should fail.
317  *
318  * For devices under xHCI, the bandwidth is reserved at configuration time, or
319  * when the alt setting is selected.  If there is not enough bus bandwidth, the
320  * configuration/alt setting request will fail.  Therefore, submissions to
321  * periodic endpoints on devices under xHCI should never fail due to bandwidth
322  * constraints.
323  *
324  * Device drivers must explicitly request that repetition, by ensuring that
325  * some URB is always on the endpoint's queue (except possibly for short
326  * periods during completion callbacks).  When there is no longer an urb
327  * queued, the endpoint's bandwidth reservation is canceled.  This means
328  * drivers can use their completion handlers to ensure they keep bandwidth
329  * they need, by reinitializing and resubmitting the just-completed urb
330  * until the driver longer needs that periodic bandwidth.
331  *
332  * Memory Flags:
333  *
334  * The general rules for how to decide which mem_flags to use
335  * are the same as for kmalloc.  There are four
336  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
337  * GFP_ATOMIC.
338  *
339  * GFP_NOFS is not ever used, as it has not been implemented yet.
340  *
341  * GFP_ATOMIC is used when
342  *   (a) you are inside a completion handler, an interrupt, bottom half,
343  *       tasklet or timer, or
344  *   (b) you are holding a spinlock or rwlock (does not apply to
345  *       semaphores), or
346  *   (c) current->state != TASK_RUNNING, this is the case only after
347  *       you've changed it.
348  *
349  * GFP_NOIO is used in the block io path and error handling of storage
350  * devices.
351  *
352  * All other situations use GFP_KERNEL.
353  *
354  * Some more specific rules for mem_flags can be inferred, such as
355  *  (1) start_xmit, timeout, and receive methods of network drivers must
356  *      use GFP_ATOMIC (they are called with a spinlock held);
357  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
358  *      called with a spinlock held);
359  *  (3) If you use a kernel thread with a network driver you must use
360  *      GFP_NOIO, unless (b) or (c) apply;
361  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
362  *      apply or your are in a storage driver's block io path;
363  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
364  *  (6) changing firmware on a running storage or net device uses
365  *      GFP_NOIO, unless b) or c) apply
366  *
367  */
368 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
369 {
370 	int				xfertype, max;
371 	struct usb_device		*dev;
372 	struct usb_host_endpoint	*ep;
373 	int				is_out;
374 	unsigned int			allowed;
375 
376 	if (!urb || !urb->complete)
377 		return -EINVAL;
378 	if (urb->hcpriv) {
379 		WARN_ONCE(1, "URB %pK submitted while active\n", urb);
380 		return -EBUSY;
381 	}
382 
383 	dev = urb->dev;
384 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
385 		return -ENODEV;
386 
387 	/* For now, get the endpoint from the pipe.  Eventually drivers
388 	 * will be required to set urb->ep directly and we will eliminate
389 	 * urb->pipe.
390 	 */
391 	ep = usb_pipe_endpoint(dev, urb->pipe);
392 	if (!ep)
393 		return -ENOENT;
394 
395 	urb->ep = ep;
396 	urb->status = -EINPROGRESS;
397 	urb->actual_length = 0;
398 
399 	/* Lots of sanity checks, so HCDs can rely on clean data
400 	 * and don't need to duplicate tests
401 	 */
402 	xfertype = usb_endpoint_type(&ep->desc);
403 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
404 		struct usb_ctrlrequest *setup =
405 				(struct usb_ctrlrequest *) urb->setup_packet;
406 
407 		if (!setup)
408 			return -ENOEXEC;
409 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
410 				!setup->wLength;
411 		dev_WARN_ONCE(&dev->dev, (usb_pipeout(urb->pipe) != is_out),
412 				"BOGUS control dir, pipe %x doesn't match bRequestType %x\n",
413 				urb->pipe, setup->bRequestType);
414 		if (le16_to_cpu(setup->wLength) != urb->transfer_buffer_length) {
415 			dev_dbg(&dev->dev, "BOGUS control len %d doesn't match transfer length %d\n",
416 					le16_to_cpu(setup->wLength),
417 					urb->transfer_buffer_length);
418 			return -EBADR;
419 		}
420 	} else {
421 		is_out = usb_endpoint_dir_out(&ep->desc);
422 	}
423 
424 	/* Clear the internal flags and cache the direction for later use */
425 	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
426 			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
427 			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
428 			URB_DMA_SG_COMBINED);
429 	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
430 	kmsan_handle_urb(urb, is_out);
431 
432 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
433 			dev->state < USB_STATE_CONFIGURED)
434 		return -ENODEV;
435 
436 	max = usb_endpoint_maxp(&ep->desc);
437 	if (max <= 0) {
438 		dev_dbg(&dev->dev,
439 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
440 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
441 			__func__, max);
442 		return -EMSGSIZE;
443 	}
444 
445 	/* periodic transfers limit size per frame/uframe,
446 	 * but drivers only control those sizes for ISO.
447 	 * while we're checking, initialize return status.
448 	 */
449 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
450 		int	n, len;
451 
452 		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
453 		 * 3 packets each
454 		 */
455 		if (dev->speed >= USB_SPEED_SUPER) {
456 			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
457 			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
458 			max *= burst;
459 			max *= mult;
460 		}
461 
462 		if (dev->speed == USB_SPEED_SUPER_PLUS &&
463 		    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
464 			struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
465 
466 			isoc_ep_comp = &ep->ssp_isoc_ep_comp;
467 			max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
468 		}
469 
470 		/* "high bandwidth" mode, 1-3 packets/uframe? */
471 		if (dev->speed == USB_SPEED_HIGH)
472 			max *= usb_endpoint_maxp_mult(&ep->desc);
473 
474 		if (urb->number_of_packets <= 0)
475 			return -EINVAL;
476 		for (n = 0; n < urb->number_of_packets; n++) {
477 			len = urb->iso_frame_desc[n].length;
478 			if (len < 0 || len > max)
479 				return -EMSGSIZE;
480 			urb->iso_frame_desc[n].status = -EXDEV;
481 			urb->iso_frame_desc[n].actual_length = 0;
482 		}
483 	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint) {
484 		struct scatterlist *sg;
485 		int i;
486 
487 		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
488 			if (sg->length % max)
489 				return -EINVAL;
490 	}
491 
492 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
493 	if (urb->transfer_buffer_length > INT_MAX)
494 		return -EMSGSIZE;
495 
496 	/*
497 	 * stuff that drivers shouldn't do, but which shouldn't
498 	 * cause problems in HCDs if they get it wrong.
499 	 */
500 
501 	/* Check that the pipe's type matches the endpoint's type */
502 	if (usb_pipe_type_check(urb->dev, urb->pipe))
503 		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
504 			usb_pipetype(urb->pipe), pipetypes[xfertype]);
505 
506 	/* Check against a simple/standard policy */
507 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
508 			URB_FREE_BUFFER);
509 	switch (xfertype) {
510 	case USB_ENDPOINT_XFER_BULK:
511 	case USB_ENDPOINT_XFER_INT:
512 		if (is_out)
513 			allowed |= URB_ZERO_PACKET;
514 		fallthrough;
515 	default:			/* all non-iso endpoints */
516 		if (!is_out)
517 			allowed |= URB_SHORT_NOT_OK;
518 		break;
519 	case USB_ENDPOINT_XFER_ISOC:
520 		allowed |= URB_ISO_ASAP;
521 		break;
522 	}
523 	allowed &= urb->transfer_flags;
524 
525 	/* warn if submitter gave bogus flags */
526 	if (allowed != urb->transfer_flags)
527 		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
528 			urb->transfer_flags, allowed);
529 
530 	/*
531 	 * Force periodic transfer intervals to be legal values that are
532 	 * a power of two (so HCDs don't need to).
533 	 *
534 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
535 	 * supports different values... this uses EHCI/UHCI defaults (and
536 	 * EHCI can use smaller non-default values).
537 	 */
538 	switch (xfertype) {
539 	case USB_ENDPOINT_XFER_ISOC:
540 	case USB_ENDPOINT_XFER_INT:
541 		/* too small? */
542 		if (urb->interval <= 0)
543 			return -EINVAL;
544 
545 		/* too big? */
546 		switch (dev->speed) {
547 		case USB_SPEED_SUPER_PLUS:
548 		case USB_SPEED_SUPER:	/* units are 125us */
549 			/* Handle up to 2^(16-1) microframes */
550 			if (urb->interval > (1 << 15))
551 				return -EINVAL;
552 			max = 1 << 15;
553 			break;
554 		case USB_SPEED_HIGH:	/* units are microframes */
555 			/* NOTE usb handles 2^15 */
556 			if (urb->interval > (1024 * 8))
557 				urb->interval = 1024 * 8;
558 			max = 1024 * 8;
559 			break;
560 		case USB_SPEED_FULL:	/* units are frames/msec */
561 		case USB_SPEED_LOW:
562 			if (xfertype == USB_ENDPOINT_XFER_INT) {
563 				if (urb->interval > 255)
564 					return -EINVAL;
565 				/* NOTE ohci only handles up to 32 */
566 				max = 128;
567 			} else {
568 				if (urb->interval > 1024)
569 					urb->interval = 1024;
570 				/* NOTE usb and ohci handle up to 2^15 */
571 				max = 1024;
572 			}
573 			break;
574 		default:
575 			return -EINVAL;
576 		}
577 		/* Round down to a power of 2, no more than max */
578 		urb->interval = min(max, 1 << ilog2(urb->interval));
579 	}
580 
581 	return usb_hcd_submit_urb(urb, mem_flags);
582 }
583 EXPORT_SYMBOL_GPL(usb_submit_urb);
584 
585 /*-------------------------------------------------------------------*/
586 
587 /**
588  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
589  * @urb: pointer to urb describing a previously submitted request,
590  *	may be NULL
591  *
592  * This routine cancels an in-progress request.  URBs complete only once
593  * per submission, and may be canceled only once per submission.
594  * Successful cancellation means termination of @urb will be expedited
595  * and the completion handler will be called with a status code
596  * indicating that the request has been canceled (rather than any other
597  * code).
598  *
599  * Drivers should not call this routine or related routines, such as
600  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
601  * method has returned.  The disconnect function should synchronize with
602  * a driver's I/O routines to insure that all URB-related activity has
603  * completed before it returns.
604  *
605  * This request is asynchronous, however the HCD might call the ->complete()
606  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
607  * must not hold any locks that may be taken by the completion function.
608  * Success is indicated by returning -EINPROGRESS, at which time the URB will
609  * probably not yet have been given back to the device driver. When it is
610  * eventually called, the completion function will see @urb->status ==
611  * -ECONNRESET.
612  * Failure is indicated by usb_unlink_urb() returning any other value.
613  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
614  * never submitted, or it was unlinked before, or the hardware is already
615  * finished with it), even if the completion handler has not yet run.
616  *
617  * The URB must not be deallocated while this routine is running.  In
618  * particular, when a driver calls this routine, it must insure that the
619  * completion handler cannot deallocate the URB.
620  *
621  * Return: -EINPROGRESS on success. See description for other values on
622  * failure.
623  *
624  * Unlinking and Endpoint Queues:
625  *
626  * [The behaviors and guarantees described below do not apply to virtual
627  * root hubs but only to endpoint queues for physical USB devices.]
628  *
629  * Host Controller Drivers (HCDs) place all the URBs for a particular
630  * endpoint in a queue.  Normally the queue advances as the controller
631  * hardware processes each request.  But when an URB terminates with an
632  * error its queue generally stops (see below), at least until that URB's
633  * completion routine returns.  It is guaranteed that a stopped queue
634  * will not restart until all its unlinked URBs have been fully retired,
635  * with their completion routines run, even if that's not until some time
636  * after the original completion handler returns.  The same behavior and
637  * guarantee apply when an URB terminates because it was unlinked.
638  *
639  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
640  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
641  * and -EREMOTEIO.  Control endpoint queues behave the same way except
642  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
643  * for isochronous endpoints are treated differently, because they must
644  * advance at fixed rates.  Such queues do not stop when an URB
645  * encounters an error or is unlinked.  An unlinked isochronous URB may
646  * leave a gap in the stream of packets; it is undefined whether such
647  * gaps can be filled in.
648  *
649  * Note that early termination of an URB because a short packet was
650  * received will generate a -EREMOTEIO error if and only if the
651  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
652  * drivers can build deep queues for large or complex bulk transfers
653  * and clean them up reliably after any sort of aborted transfer by
654  * unlinking all pending URBs at the first fault.
655  *
656  * When a control URB terminates with an error other than -EREMOTEIO, it
657  * is quite likely that the status stage of the transfer will not take
658  * place.
659  */
660 int usb_unlink_urb(struct urb *urb)
661 {
662 	if (!urb)
663 		return -EINVAL;
664 	if (!urb->dev)
665 		return -ENODEV;
666 	if (!urb->ep)
667 		return -EIDRM;
668 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
669 }
670 EXPORT_SYMBOL_GPL(usb_unlink_urb);
671 
672 /**
673  * usb_kill_urb - cancel a transfer request and wait for it to finish
674  * @urb: pointer to URB describing a previously submitted request,
675  *	may be NULL
676  *
677  * This routine cancels an in-progress request.  It is guaranteed that
678  * upon return all completion handlers will have finished and the URB
679  * will be totally idle and available for reuse.  These features make
680  * this an ideal way to stop I/O in a disconnect() callback or close()
681  * function.  If the request has not already finished or been unlinked
682  * the completion handler will see urb->status == -ENOENT.
683  *
684  * While the routine is running, attempts to resubmit the URB will fail
685  * with error -EPERM.  Thus even if the URB's completion handler always
686  * tries to resubmit, it will not succeed and the URB will become idle.
687  *
688  * The URB must not be deallocated while this routine is running.  In
689  * particular, when a driver calls this routine, it must insure that the
690  * completion handler cannot deallocate the URB.
691  *
692  * This routine may not be used in an interrupt context (such as a bottom
693  * half or a completion handler), or when holding a spinlock, or in other
694  * situations where the caller can't schedule().
695  *
696  * This routine should not be called by a driver after its disconnect
697  * method has returned.
698  */
699 void usb_kill_urb(struct urb *urb)
700 {
701 	might_sleep();
702 	if (!(urb && urb->dev && urb->ep))
703 		return;
704 	atomic_inc(&urb->reject);
705 	/*
706 	 * Order the write of urb->reject above before the read
707 	 * of urb->use_count below.  Pairs with the barriers in
708 	 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
709 	 */
710 	smp_mb__after_atomic();
711 
712 	usb_hcd_unlink_urb(urb, -ENOENT);
713 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
714 
715 	atomic_dec(&urb->reject);
716 }
717 EXPORT_SYMBOL_GPL(usb_kill_urb);
718 
719 /**
720  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
721  * @urb: pointer to URB describing a previously submitted request,
722  *	may be NULL
723  *
724  * This routine cancels an in-progress request.  It is guaranteed that
725  * upon return all completion handlers will have finished and the URB
726  * will be totally idle and cannot be reused.  These features make
727  * this an ideal way to stop I/O in a disconnect() callback.
728  * If the request has not already finished or been unlinked
729  * the completion handler will see urb->status == -ENOENT.
730  *
731  * After and while the routine runs, attempts to resubmit the URB will fail
732  * with error -EPERM.  Thus even if the URB's completion handler always
733  * tries to resubmit, it will not succeed and the URB will become idle.
734  *
735  * The URB must not be deallocated while this routine is running.  In
736  * particular, when a driver calls this routine, it must insure that the
737  * completion handler cannot deallocate the URB.
738  *
739  * This routine may not be used in an interrupt context (such as a bottom
740  * half or a completion handler), or when holding a spinlock, or in other
741  * situations where the caller can't schedule().
742  *
743  * This routine should not be called by a driver after its disconnect
744  * method has returned.
745  */
746 void usb_poison_urb(struct urb *urb)
747 {
748 	might_sleep();
749 	if (!urb)
750 		return;
751 	atomic_inc(&urb->reject);
752 	/*
753 	 * Order the write of urb->reject above before the read
754 	 * of urb->use_count below.  Pairs with the barriers in
755 	 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
756 	 */
757 	smp_mb__after_atomic();
758 
759 	if (!urb->dev || !urb->ep)
760 		return;
761 
762 	usb_hcd_unlink_urb(urb, -ENOENT);
763 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
764 }
765 EXPORT_SYMBOL_GPL(usb_poison_urb);
766 
767 void usb_unpoison_urb(struct urb *urb)
768 {
769 	if (!urb)
770 		return;
771 
772 	atomic_dec(&urb->reject);
773 }
774 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
775 
776 /**
777  * usb_block_urb - reliably prevent further use of an URB
778  * @urb: pointer to URB to be blocked, may be NULL
779  *
780  * After the routine has run, attempts to resubmit the URB will fail
781  * with error -EPERM.  Thus even if the URB's completion handler always
782  * tries to resubmit, it will not succeed and the URB will become idle.
783  *
784  * The URB must not be deallocated while this routine is running.  In
785  * particular, when a driver calls this routine, it must insure that the
786  * completion handler cannot deallocate the URB.
787  */
788 void usb_block_urb(struct urb *urb)
789 {
790 	if (!urb)
791 		return;
792 
793 	atomic_inc(&urb->reject);
794 }
795 EXPORT_SYMBOL_GPL(usb_block_urb);
796 
797 /**
798  * usb_kill_anchored_urbs - kill all URBs associated with an anchor
799  * @anchor: anchor the requests are bound to
800  *
801  * This kills all outstanding URBs starting from the back of the queue,
802  * with guarantee that no completer callbacks will take place from the
803  * anchor after this function returns.
804  *
805  * This routine should not be called by a driver after its disconnect
806  * method has returned.
807  */
808 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
809 {
810 	struct urb *victim;
811 	int surely_empty;
812 
813 	do {
814 		spin_lock_irq(&anchor->lock);
815 		while (!list_empty(&anchor->urb_list)) {
816 			victim = list_entry(anchor->urb_list.prev,
817 					    struct urb, anchor_list);
818 			/* make sure the URB isn't freed before we kill it */
819 			usb_get_urb(victim);
820 			spin_unlock_irq(&anchor->lock);
821 			/* this will unanchor the URB */
822 			usb_kill_urb(victim);
823 			usb_put_urb(victim);
824 			spin_lock_irq(&anchor->lock);
825 		}
826 		surely_empty = usb_anchor_check_wakeup(anchor);
827 
828 		spin_unlock_irq(&anchor->lock);
829 		cpu_relax();
830 	} while (!surely_empty);
831 }
832 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
833 
834 
835 /**
836  * usb_poison_anchored_urbs - cease all traffic from an anchor
837  * @anchor: anchor the requests are bound to
838  *
839  * this allows all outstanding URBs to be poisoned starting
840  * from the back of the queue. Newly added URBs will also be
841  * poisoned
842  *
843  * This routine should not be called by a driver after its disconnect
844  * method has returned.
845  */
846 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
847 {
848 	struct urb *victim;
849 	int surely_empty;
850 
851 	do {
852 		spin_lock_irq(&anchor->lock);
853 		anchor->poisoned = 1;
854 		while (!list_empty(&anchor->urb_list)) {
855 			victim = list_entry(anchor->urb_list.prev,
856 					    struct urb, anchor_list);
857 			/* make sure the URB isn't freed before we kill it */
858 			usb_get_urb(victim);
859 			spin_unlock_irq(&anchor->lock);
860 			/* this will unanchor the URB */
861 			usb_poison_urb(victim);
862 			usb_put_urb(victim);
863 			spin_lock_irq(&anchor->lock);
864 		}
865 		surely_empty = usb_anchor_check_wakeup(anchor);
866 
867 		spin_unlock_irq(&anchor->lock);
868 		cpu_relax();
869 	} while (!surely_empty);
870 }
871 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
872 
873 /**
874  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
875  * @anchor: anchor the requests are bound to
876  *
877  * Reverses the effect of usb_poison_anchored_urbs
878  * the anchor can be used normally after it returns
879  */
880 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
881 {
882 	unsigned long flags;
883 	struct urb *lazarus;
884 
885 	spin_lock_irqsave(&anchor->lock, flags);
886 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
887 		usb_unpoison_urb(lazarus);
888 	}
889 	anchor->poisoned = 0;
890 	spin_unlock_irqrestore(&anchor->lock, flags);
891 }
892 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
893 /**
894  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
895  * @anchor: anchor the requests are bound to
896  *
897  * this allows all outstanding URBs to be unlinked starting
898  * from the back of the queue. This function is asynchronous.
899  * The unlinking is just triggered. It may happen after this
900  * function has returned.
901  *
902  * This routine should not be called by a driver after its disconnect
903  * method has returned.
904  */
905 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
906 {
907 	struct urb *victim;
908 
909 	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
910 		usb_unlink_urb(victim);
911 		usb_put_urb(victim);
912 	}
913 }
914 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
915 
916 /**
917  * usb_anchor_suspend_wakeups
918  * @anchor: the anchor you want to suspend wakeups on
919  *
920  * Call this to stop the last urb being unanchored from waking up any
921  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
922  * back path to delay waking up until after the completion handler has run.
923  */
924 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
925 {
926 	if (anchor)
927 		atomic_inc(&anchor->suspend_wakeups);
928 }
929 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
930 
931 /**
932  * usb_anchor_resume_wakeups
933  * @anchor: the anchor you want to resume wakeups on
934  *
935  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
936  * wake up any current waiters if the anchor is empty.
937  */
938 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
939 {
940 	if (!anchor)
941 		return;
942 
943 	atomic_dec(&anchor->suspend_wakeups);
944 	if (usb_anchor_check_wakeup(anchor))
945 		wake_up(&anchor->wait);
946 }
947 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
948 
949 /**
950  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
951  * @anchor: the anchor you want to become unused
952  * @timeout: how long you are willing to wait in milliseconds
953  *
954  * Call this is you want to be sure all an anchor's
955  * URBs have finished
956  *
957  * Return: Non-zero if the anchor became unused. Zero on timeout.
958  */
959 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
960 				  unsigned int timeout)
961 {
962 	return wait_event_timeout(anchor->wait,
963 				  usb_anchor_check_wakeup(anchor),
964 				  msecs_to_jiffies(timeout));
965 }
966 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
967 
968 /**
969  * usb_get_from_anchor - get an anchor's oldest urb
970  * @anchor: the anchor whose urb you want
971  *
972  * This will take the oldest urb from an anchor,
973  * unanchor and return it
974  *
975  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
976  * urbs associated with it.
977  */
978 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
979 {
980 	struct urb *victim;
981 	unsigned long flags;
982 
983 	spin_lock_irqsave(&anchor->lock, flags);
984 	if (!list_empty(&anchor->urb_list)) {
985 		victim = list_entry(anchor->urb_list.next, struct urb,
986 				    anchor_list);
987 		usb_get_urb(victim);
988 		__usb_unanchor_urb(victim, anchor);
989 	} else {
990 		victim = NULL;
991 	}
992 	spin_unlock_irqrestore(&anchor->lock, flags);
993 
994 	return victim;
995 }
996 
997 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
998 
999 /**
1000  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
1001  * @anchor: the anchor whose urbs you want to unanchor
1002  *
1003  * use this to get rid of all an anchor's urbs
1004  */
1005 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
1006 {
1007 	struct urb *victim;
1008 	unsigned long flags;
1009 	int surely_empty;
1010 
1011 	do {
1012 		spin_lock_irqsave(&anchor->lock, flags);
1013 		while (!list_empty(&anchor->urb_list)) {
1014 			victim = list_entry(anchor->urb_list.prev,
1015 					    struct urb, anchor_list);
1016 			__usb_unanchor_urb(victim, anchor);
1017 		}
1018 		surely_empty = usb_anchor_check_wakeup(anchor);
1019 
1020 		spin_unlock_irqrestore(&anchor->lock, flags);
1021 		cpu_relax();
1022 	} while (!surely_empty);
1023 }
1024 
1025 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
1026 
1027 /**
1028  * usb_anchor_empty - is an anchor empty
1029  * @anchor: the anchor you want to query
1030  *
1031  * Return: 1 if the anchor has no urbs associated with it.
1032  */
1033 int usb_anchor_empty(struct usb_anchor *anchor)
1034 {
1035 	return list_empty(&anchor->urb_list);
1036 }
1037 
1038 EXPORT_SYMBOL_GPL(usb_anchor_empty);
1039 
1040