xref: /linux/drivers/usb/core/urb.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 #include <linux/module.h>
2 #include <linux/string.h>
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/init.h>
6 #include <linux/usb.h>
7 #include "hcd.h"
8 
9 #define to_urb(d) container_of(d, struct urb, kref)
10 
11 static void urb_destroy(struct kref *kref)
12 {
13 	struct urb *urb = to_urb(kref);
14 	kfree(urb);
15 }
16 
17 /**
18  * usb_init_urb - initializes a urb so that it can be used by a USB driver
19  * @urb: pointer to the urb to initialize
20  *
21  * Initializes a urb so that the USB subsystem can use it properly.
22  *
23  * If a urb is created with a call to usb_alloc_urb() it is not
24  * necessary to call this function.  Only use this if you allocate the
25  * space for a struct urb on your own.  If you call this function, be
26  * careful when freeing the memory for your urb that it is no longer in
27  * use by the USB core.
28  *
29  * Only use this function if you _really_ understand what you are doing.
30  */
31 void usb_init_urb(struct urb *urb)
32 {
33 	if (urb) {
34 		memset(urb, 0, sizeof(*urb));
35 		kref_init(&urb->kref);
36 		spin_lock_init(&urb->lock);
37 	}
38 }
39 
40 /**
41  * usb_alloc_urb - creates a new urb for a USB driver to use
42  * @iso_packets: number of iso packets for this urb
43  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
44  *	valid options for this.
45  *
46  * Creates an urb for the USB driver to use, initializes a few internal
47  * structures, incrementes the usage counter, and returns a pointer to it.
48  *
49  * If no memory is available, NULL is returned.
50  *
51  * If the driver want to use this urb for interrupt, control, or bulk
52  * endpoints, pass '0' as the number of iso packets.
53  *
54  * The driver must call usb_free_urb() when it is finished with the urb.
55  */
56 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
57 {
58 	struct urb *urb;
59 
60 	urb = (struct urb *)kmalloc(sizeof(struct urb) +
61 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
62 		mem_flags);
63 	if (!urb) {
64 		err("alloc_urb: kmalloc failed");
65 		return NULL;
66 	}
67 	usb_init_urb(urb);
68 	return urb;
69 }
70 
71 /**
72  * usb_free_urb - frees the memory used by a urb when all users of it are finished
73  * @urb: pointer to the urb to free, may be NULL
74  *
75  * Must be called when a user of a urb is finished with it.  When the last user
76  * of the urb calls this function, the memory of the urb is freed.
77  *
78  * Note: The transfer buffer associated with the urb is not freed, that must be
79  * done elsewhere.
80  */
81 void usb_free_urb(struct urb *urb)
82 {
83 	if (urb)
84 		kref_put(&urb->kref, urb_destroy);
85 }
86 
87 /**
88  * usb_get_urb - increments the reference count of the urb
89  * @urb: pointer to the urb to modify, may be NULL
90  *
91  * This must be  called whenever a urb is transferred from a device driver to a
92  * host controller driver.  This allows proper reference counting to happen
93  * for urbs.
94  *
95  * A pointer to the urb with the incremented reference counter is returned.
96  */
97 struct urb * usb_get_urb(struct urb *urb)
98 {
99 	if (urb)
100 		kref_get(&urb->kref);
101 	return urb;
102 }
103 
104 
105 /*-------------------------------------------------------------------*/
106 
107 /**
108  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
109  * @urb: pointer to the urb describing the request
110  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
111  *	of valid options for this.
112  *
113  * This submits a transfer request, and transfers control of the URB
114  * describing that request to the USB subsystem.  Request completion will
115  * be indicated later, asynchronously, by calling the completion handler.
116  * The three types of completion are success, error, and unlink
117  * (a software-induced fault, also called "request cancellation").
118  *
119  * URBs may be submitted in interrupt context.
120  *
121  * The caller must have correctly initialized the URB before submitting
122  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
123  * available to ensure that most fields are correctly initialized, for
124  * the particular kind of transfer, although they will not initialize
125  * any transfer flags.
126  *
127  * Successful submissions return 0; otherwise this routine returns a
128  * negative error number.  If the submission is successful, the complete()
129  * callback from the URB will be called exactly once, when the USB core and
130  * Host Controller Driver (HCD) are finished with the URB.  When the completion
131  * function is called, control of the URB is returned to the device
132  * driver which issued the request.  The completion handler may then
133  * immediately free or reuse that URB.
134  *
135  * With few exceptions, USB device drivers should never access URB fields
136  * provided by usbcore or the HCD until its complete() is called.
137  * The exceptions relate to periodic transfer scheduling.  For both
138  * interrupt and isochronous urbs, as part of successful URB submission
139  * urb->interval is modified to reflect the actual transfer period used
140  * (normally some power of two units).  And for isochronous urbs,
141  * urb->start_frame is modified to reflect when the URB's transfers were
142  * scheduled to start.  Not all isochronous transfer scheduling policies
143  * will work, but most host controller drivers should easily handle ISO
144  * queues going from now until 10-200 msec into the future.
145  *
146  * For control endpoints, the synchronous usb_control_msg() call is
147  * often used (in non-interrupt context) instead of this call.
148  * That is often used through convenience wrappers, for the requests
149  * that are standardized in the USB 2.0 specification.  For bulk
150  * endpoints, a synchronous usb_bulk_msg() call is available.
151  *
152  * Request Queuing:
153  *
154  * URBs may be submitted to endpoints before previous ones complete, to
155  * minimize the impact of interrupt latencies and system overhead on data
156  * throughput.  With that queuing policy, an endpoint's queue would never
157  * be empty.  This is required for continuous isochronous data streams,
158  * and may also be required for some kinds of interrupt transfers. Such
159  * queuing also maximizes bandwidth utilization by letting USB controllers
160  * start work on later requests before driver software has finished the
161  * completion processing for earlier (successful) requests.
162  *
163  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
164  * than one.  This was previously a HCD-specific behavior, except for ISO
165  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
166  * after faults (transfer errors or cancellation).
167  *
168  * Reserved Bandwidth Transfers:
169  *
170  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
171  * using the interval specified in the urb.  Submitting the first urb to
172  * the endpoint reserves the bandwidth necessary to make those transfers.
173  * If the USB subsystem can't allocate sufficient bandwidth to perform
174  * the periodic request, submitting such a periodic request should fail.
175  *
176  * Device drivers must explicitly request that repetition, by ensuring that
177  * some URB is always on the endpoint's queue (except possibly for short
178  * periods during completion callacks).  When there is no longer an urb
179  * queued, the endpoint's bandwidth reservation is canceled.  This means
180  * drivers can use their completion handlers to ensure they keep bandwidth
181  * they need, by reinitializing and resubmitting the just-completed urb
182  * until the driver longer needs that periodic bandwidth.
183  *
184  * Memory Flags:
185  *
186  * The general rules for how to decide which mem_flags to use
187  * are the same as for kmalloc.  There are four
188  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
189  * GFP_ATOMIC.
190  *
191  * GFP_NOFS is not ever used, as it has not been implemented yet.
192  *
193  * GFP_ATOMIC is used when
194  *   (a) you are inside a completion handler, an interrupt, bottom half,
195  *       tasklet or timer, or
196  *   (b) you are holding a spinlock or rwlock (does not apply to
197  *       semaphores), or
198  *   (c) current->state != TASK_RUNNING, this is the case only after
199  *       you've changed it.
200  *
201  * GFP_NOIO is used in the block io path and error handling of storage
202  * devices.
203  *
204  * All other situations use GFP_KERNEL.
205  *
206  * Some more specific rules for mem_flags can be inferred, such as
207  *  (1) start_xmit, timeout, and receive methods of network drivers must
208  *      use GFP_ATOMIC (they are called with a spinlock held);
209  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
210  *      called with a spinlock held);
211  *  (3) If you use a kernel thread with a network driver you must use
212  *      GFP_NOIO, unless (b) or (c) apply;
213  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
214  *      apply or your are in a storage driver's block io path;
215  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
216  *  (6) changing firmware on a running storage or net device uses
217  *      GFP_NOIO, unless b) or c) apply
218  *
219  */
220 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
221 {
222 	int			pipe, temp, max;
223 	struct usb_device	*dev;
224 	struct usb_operations	*op;
225 	int			is_out;
226 
227 	if (!urb || urb->hcpriv || !urb->complete)
228 		return -EINVAL;
229 	if (!(dev = urb->dev) ||
230 	    (dev->state < USB_STATE_DEFAULT) ||
231 	    (!dev->bus) || (dev->devnum <= 0))
232 		return -ENODEV;
233 	if (dev->bus->controller->power.power_state.event != PM_EVENT_ON
234 			|| dev->state == USB_STATE_SUSPENDED)
235 		return -EHOSTUNREACH;
236 	if (!(op = dev->bus->op) || !op->submit_urb)
237 		return -ENODEV;
238 
239 	urb->status = -EINPROGRESS;
240 	urb->actual_length = 0;
241 	urb->bandwidth = 0;
242 
243 	/* Lots of sanity checks, so HCDs can rely on clean data
244 	 * and don't need to duplicate tests
245 	 */
246 	pipe = urb->pipe;
247 	temp = usb_pipetype (pipe);
248 	is_out = usb_pipeout (pipe);
249 
250 	if (!usb_pipecontrol (pipe) && dev->state < USB_STATE_CONFIGURED)
251 		return -ENODEV;
252 
253 	/* FIXME there should be a sharable lock protecting us against
254 	 * config/altsetting changes and disconnects, kicking in here.
255 	 * (here == before maxpacket, and eventually endpoint type,
256 	 * checks get made.)
257 	 */
258 
259 	max = usb_maxpacket (dev, pipe, is_out);
260 	if (max <= 0) {
261 		dev_dbg(&dev->dev,
262 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
263 			usb_pipeendpoint (pipe), is_out ? "out" : "in",
264 			__FUNCTION__, max);
265 		return -EMSGSIZE;
266 	}
267 
268 	/* periodic transfers limit size per frame/uframe,
269 	 * but drivers only control those sizes for ISO.
270 	 * while we're checking, initialize return status.
271 	 */
272 	if (temp == PIPE_ISOCHRONOUS) {
273 		int	n, len;
274 
275 		/* "high bandwidth" mode, 1-3 packets/uframe? */
276 		if (dev->speed == USB_SPEED_HIGH) {
277 			int	mult = 1 + ((max >> 11) & 0x03);
278 			max &= 0x07ff;
279 			max *= mult;
280 		}
281 
282 		if (urb->number_of_packets <= 0)
283 			return -EINVAL;
284 		for (n = 0; n < urb->number_of_packets; n++) {
285 			len = urb->iso_frame_desc [n].length;
286 			if (len < 0 || len > max)
287 				return -EMSGSIZE;
288 			urb->iso_frame_desc [n].status = -EXDEV;
289 			urb->iso_frame_desc [n].actual_length = 0;
290 		}
291 	}
292 
293 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
294 	if (urb->transfer_buffer_length < 0)
295 		return -EMSGSIZE;
296 
297 #ifdef DEBUG
298 	/* stuff that drivers shouldn't do, but which shouldn't
299 	 * cause problems in HCDs if they get it wrong.
300 	 */
301 	{
302 	unsigned int	orig_flags = urb->transfer_flags;
303 	unsigned int	allowed;
304 
305 	/* enforce simple/standard policy */
306 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
307 			URB_NO_INTERRUPT);
308 	switch (temp) {
309 	case PIPE_BULK:
310 		if (is_out)
311 			allowed |= URB_ZERO_PACKET;
312 		/* FALLTHROUGH */
313 	case PIPE_CONTROL:
314 		allowed |= URB_NO_FSBR;	/* only affects UHCI */
315 		/* FALLTHROUGH */
316 	default:			/* all non-iso endpoints */
317 		if (!is_out)
318 			allowed |= URB_SHORT_NOT_OK;
319 		break;
320 	case PIPE_ISOCHRONOUS:
321 		allowed |= URB_ISO_ASAP;
322 		break;
323 	}
324 	urb->transfer_flags &= allowed;
325 
326 	/* fail if submitter gave bogus flags */
327 	if (urb->transfer_flags != orig_flags) {
328 		err ("BOGUS urb flags, %x --> %x",
329 			orig_flags, urb->transfer_flags);
330 		return -EINVAL;
331 	}
332 	}
333 #endif
334 	/*
335 	 * Force periodic transfer intervals to be legal values that are
336 	 * a power of two (so HCDs don't need to).
337 	 *
338 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
339 	 * supports different values... this uses EHCI/UHCI defaults (and
340 	 * EHCI can use smaller non-default values).
341 	 */
342 	switch (temp) {
343 	case PIPE_ISOCHRONOUS:
344 	case PIPE_INTERRUPT:
345 		/* too small? */
346 		if (urb->interval <= 0)
347 			return -EINVAL;
348 		/* too big? */
349 		switch (dev->speed) {
350 		case USB_SPEED_HIGH:	/* units are microframes */
351 			// NOTE usb handles 2^15
352 			if (urb->interval > (1024 * 8))
353 				urb->interval = 1024 * 8;
354 			temp = 1024 * 8;
355 			break;
356 		case USB_SPEED_FULL:	/* units are frames/msec */
357 		case USB_SPEED_LOW:
358 			if (temp == PIPE_INTERRUPT) {
359 				if (urb->interval > 255)
360 					return -EINVAL;
361 				// NOTE ohci only handles up to 32
362 				temp = 128;
363 			} else {
364 				if (urb->interval > 1024)
365 					urb->interval = 1024;
366 				// NOTE usb and ohci handle up to 2^15
367 				temp = 1024;
368 			}
369 			break;
370 		default:
371 			return -EINVAL;
372 		}
373 		/* power of two? */
374 		while (temp > urb->interval)
375 			temp >>= 1;
376 		urb->interval = temp;
377 	}
378 
379 	return op->submit_urb (urb, mem_flags);
380 }
381 
382 /*-------------------------------------------------------------------*/
383 
384 /**
385  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
386  * @urb: pointer to urb describing a previously submitted request,
387  *	may be NULL
388  *
389  * This routine cancels an in-progress request.  URBs complete only
390  * once per submission, and may be canceled only once per submission.
391  * Successful cancellation means the requests's completion handler will
392  * be called with a status code indicating that the request has been
393  * canceled (rather than any other code) and will quickly be removed
394  * from host controller data structures.
395  *
396  * This request is always asynchronous.
397  * Success is indicated by returning -EINPROGRESS,
398  * at which time the URB will normally have been unlinked but not yet
399  * given back to the device driver.  When it is called, the completion
400  * function will see urb->status == -ECONNRESET.  Failure is indicated
401  * by any other return value.  Unlinking will fail when the URB is not
402  * currently "linked" (i.e., it was never submitted, or it was unlinked
403  * before, or the hardware is already finished with it), even if the
404  * completion handler has not yet run.
405  *
406  * Unlinking and Endpoint Queues:
407  *
408  * Host Controller Drivers (HCDs) place all the URBs for a particular
409  * endpoint in a queue.  Normally the queue advances as the controller
410  * hardware processes each request.  But when an URB terminates with an
411  * error its queue stops, at least until that URB's completion routine
412  * returns.  It is guaranteed that the queue will not restart until all
413  * its unlinked URBs have been fully retired, with their completion
414  * routines run, even if that's not until some time after the original
415  * completion handler returns.  Normally the same behavior and guarantees
416  * apply when an URB terminates because it was unlinked; however if an
417  * URB is unlinked before the hardware has started to execute it, then
418  * its queue is not guaranteed to stop until all the preceding URBs have
419  * completed.
420  *
421  * This means that USB device drivers can safely build deep queues for
422  * large or complex transfers, and clean them up reliably after any sort
423  * of aborted transfer by unlinking all pending URBs at the first fault.
424  *
425  * Note that an URB terminating early because a short packet was received
426  * will count as an error if and only if the URB_SHORT_NOT_OK flag is set.
427  * Also, that all unlinks performed in any URB completion handler must
428  * be asynchronous.
429  *
430  * Queues for isochronous endpoints are treated differently, because they
431  * advance at fixed rates.  Such queues do not stop when an URB is unlinked.
432  * An unlinked URB may leave a gap in the stream of packets.  It is undefined
433  * whether such gaps can be filled in.
434  *
435  * When a control URB terminates with an error, it is likely that the
436  * status stage of the transfer will not take place, even if it is merely
437  * a soft error resulting from a short-packet with URB_SHORT_NOT_OK set.
438  */
439 int usb_unlink_urb(struct urb *urb)
440 {
441 	if (!urb)
442 		return -EINVAL;
443 	if (!(urb->dev && urb->dev->bus && urb->dev->bus->op))
444 		return -ENODEV;
445 	return urb->dev->bus->op->unlink_urb(urb, -ECONNRESET);
446 }
447 
448 /**
449  * usb_kill_urb - cancel a transfer request and wait for it to finish
450  * @urb: pointer to URB describing a previously submitted request,
451  *	may be NULL
452  *
453  * This routine cancels an in-progress request.  It is guaranteed that
454  * upon return all completion handlers will have finished and the URB
455  * will be totally idle and available for reuse.  These features make
456  * this an ideal way to stop I/O in a disconnect() callback or close()
457  * function.  If the request has not already finished or been unlinked
458  * the completion handler will see urb->status == -ENOENT.
459  *
460  * While the routine is running, attempts to resubmit the URB will fail
461  * with error -EPERM.  Thus even if the URB's completion handler always
462  * tries to resubmit, it will not succeed and the URB will become idle.
463  *
464  * This routine may not be used in an interrupt context (such as a bottom
465  * half or a completion handler), or when holding a spinlock, or in other
466  * situations where the caller can't schedule().
467  */
468 void usb_kill_urb(struct urb *urb)
469 {
470 	might_sleep();
471 	if (!(urb && urb->dev && urb->dev->bus && urb->dev->bus->op))
472 		return;
473 	spin_lock_irq(&urb->lock);
474 	++urb->reject;
475 	spin_unlock_irq(&urb->lock);
476 
477 	urb->dev->bus->op->unlink_urb(urb, -ENOENT);
478 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
479 
480 	spin_lock_irq(&urb->lock);
481 	--urb->reject;
482 	spin_unlock_irq(&urb->lock);
483 }
484 
485 EXPORT_SYMBOL(usb_init_urb);
486 EXPORT_SYMBOL(usb_alloc_urb);
487 EXPORT_SYMBOL(usb_free_urb);
488 EXPORT_SYMBOL(usb_get_urb);
489 EXPORT_SYMBOL(usb_submit_urb);
490 EXPORT_SYMBOL(usb_unlink_urb);
491 EXPORT_SYMBOL(usb_kill_urb);
492 
493