xref: /linux/drivers/usb/core/message.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/config.h>
6 #include <linux/pci.h>	/* for scatterlist macros */
7 #include <linux/usb.h>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/timer.h>
13 #include <linux/ctype.h>
14 #include <linux/device.h>
15 #include <asm/byteorder.h>
16 #include <asm/scatterlist.h>
17 
18 #include "hcd.h"	/* for usbcore internals */
19 #include "usb.h"
20 
21 static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs)
22 {
23 	complete((struct completion *)urb->context);
24 }
25 
26 
27 static void timeout_kill(unsigned long data)
28 {
29 	struct urb	*urb = (struct urb *) data;
30 
31 	usb_unlink_urb(urb);
32 }
33 
34 // Starts urb and waits for completion or timeout
35 // note that this call is NOT interruptible, while
36 // many device driver i/o requests should be interruptible
37 static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length)
38 {
39 	struct completion	done;
40 	struct timer_list	timer;
41 	int			status;
42 
43 	init_completion(&done);
44 	urb->context = &done;
45 	urb->actual_length = 0;
46 	status = usb_submit_urb(urb, GFP_NOIO);
47 
48 	if (status == 0) {
49 		if (timeout > 0) {
50 			init_timer(&timer);
51 			timer.expires = jiffies + msecs_to_jiffies(timeout);
52 			timer.data = (unsigned long)urb;
53 			timer.function = timeout_kill;
54 			/* grr.  timeout _should_ include submit delays. */
55 			add_timer(&timer);
56 		}
57 		wait_for_completion(&done);
58 		status = urb->status;
59 		/* note:  HCDs return ETIMEDOUT for other reasons too */
60 		if (status == -ECONNRESET) {
61 			dev_dbg(&urb->dev->dev,
62 				"%s timed out on ep%d%s len=%d/%d\n",
63 				current->comm,
64 				usb_pipeendpoint(urb->pipe),
65 				usb_pipein(urb->pipe) ? "in" : "out",
66 				urb->actual_length,
67 				urb->transfer_buffer_length
68 				);
69 			if (urb->actual_length > 0)
70 				status = 0;
71 			else
72 				status = -ETIMEDOUT;
73 		}
74 		if (timeout > 0)
75 			del_timer_sync(&timer);
76 	}
77 
78 	if (actual_length)
79 		*actual_length = urb->actual_length;
80 	usb_free_urb(urb);
81 	return status;
82 }
83 
84 /*-------------------------------------------------------------------*/
85 // returns status (negative) or length (positive)
86 static int usb_internal_control_msg(struct usb_device *usb_dev,
87 				    unsigned int pipe,
88 				    struct usb_ctrlrequest *cmd,
89 				    void *data, int len, int timeout)
90 {
91 	struct urb *urb;
92 	int retv;
93 	int length;
94 
95 	urb = usb_alloc_urb(0, GFP_NOIO);
96 	if (!urb)
97 		return -ENOMEM;
98 
99 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
100 			     len, usb_api_blocking_completion, NULL);
101 
102 	retv = usb_start_wait_urb(urb, timeout, &length);
103 	if (retv < 0)
104 		return retv;
105 	else
106 		return length;
107 }
108 
109 /**
110  *	usb_control_msg - Builds a control urb, sends it off and waits for completion
111  *	@dev: pointer to the usb device to send the message to
112  *	@pipe: endpoint "pipe" to send the message to
113  *	@request: USB message request value
114  *	@requesttype: USB message request type value
115  *	@value: USB message value
116  *	@index: USB message index value
117  *	@data: pointer to the data to send
118  *	@size: length in bytes of the data to send
119  *	@timeout: time in msecs to wait for the message to complete before
120  *		timing out (if 0 the wait is forever)
121  *	Context: !in_interrupt ()
122  *
123  *	This function sends a simple control message to a specified endpoint
124  *	and waits for the message to complete, or timeout.
125  *
126  *	If successful, it returns the number of bytes transferred, otherwise a negative error number.
127  *
128  *	Don't use this function from within an interrupt context, like a
129  *	bottom half handler.  If you need an asynchronous message, or need to send
130  *	a message from within interrupt context, use usb_submit_urb()
131  *      If a thread in your driver uses this call, make sure your disconnect()
132  *      method can wait for it to complete.  Since you don't have a handle on
133  *      the URB used, you can't cancel the request.
134  */
135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
136 			 __u16 value, __u16 index, void *data, __u16 size, int timeout)
137 {
138 	struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 	int ret;
140 
141 	if (!dr)
142 		return -ENOMEM;
143 
144 	dr->bRequestType= requesttype;
145 	dr->bRequest = request;
146 	dr->wValue = cpu_to_le16p(&value);
147 	dr->wIndex = cpu_to_le16p(&index);
148 	dr->wLength = cpu_to_le16p(&size);
149 
150 	//dbg("usb_control_msg");
151 
152 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153 
154 	kfree(dr);
155 
156 	return ret;
157 }
158 
159 
160 /**
161  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
162  * @usb_dev: pointer to the usb device to send the message to
163  * @pipe: endpoint "pipe" to send the message to
164  * @data: pointer to the data to send
165  * @len: length in bytes of the data to send
166  * @actual_length: pointer to a location to put the actual length transferred in bytes
167  * @timeout: time in msecs to wait for the message to complete before
168  *	timing out (if 0 the wait is forever)
169  * Context: !in_interrupt ()
170  *
171  * This function sends a simple interrupt message to a specified endpoint and
172  * waits for the message to complete, or timeout.
173  *
174  * If successful, it returns 0, otherwise a negative error number.  The number
175  * of actual bytes transferred will be stored in the actual_length paramater.
176  *
177  * Don't use this function from within an interrupt context, like a bottom half
178  * handler.  If you need an asynchronous message, or need to send a message
179  * from within interrupt context, use usb_submit_urb() If a thread in your
180  * driver uses this call, make sure your disconnect() method can wait for it to
181  * complete.  Since you don't have a handle on the URB used, you can't cancel
182  * the request.
183  */
184 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
185 		      void *data, int len, int *actual_length, int timeout)
186 {
187 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
188 }
189 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
190 
191 /**
192  *	usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
193  *	@usb_dev: pointer to the usb device to send the message to
194  *	@pipe: endpoint "pipe" to send the message to
195  *	@data: pointer to the data to send
196  *	@len: length in bytes of the data to send
197  *	@actual_length: pointer to a location to put the actual length transferred in bytes
198  *	@timeout: time in msecs to wait for the message to complete before
199  *		timing out (if 0 the wait is forever)
200  *	Context: !in_interrupt ()
201  *
202  *	This function sends a simple bulk message to a specified endpoint
203  *	and waits for the message to complete, or timeout.
204  *
205  *	If successful, it returns 0, otherwise a negative error number.
206  *	The number of actual bytes transferred will be stored in the
207  *	actual_length paramater.
208  *
209  *	Don't use this function from within an interrupt context, like a
210  *	bottom half handler.  If you need an asynchronous message, or need to
211  *	send a message from within interrupt context, use usb_submit_urb()
212  *      If a thread in your driver uses this call, make sure your disconnect()
213  *      method can wait for it to complete.  Since you don't have a handle on
214  *      the URB used, you can't cancel the request.
215  *
216  *	Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
217  *	ioctl, users are forced to abuse this routine by using it to submit
218  *	URBs for interrupt endpoints.  We will take the liberty of creating
219  *	an interrupt URB (with the default interval) if the target is an
220  *	interrupt endpoint.
221  */
222 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
223 			void *data, int len, int *actual_length, int timeout)
224 {
225 	struct urb *urb;
226 	struct usb_host_endpoint *ep;
227 
228 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
229 			[usb_pipeendpoint(pipe)];
230 	if (!ep || len < 0)
231 		return -EINVAL;
232 
233 	urb = usb_alloc_urb(0, GFP_KERNEL);
234 	if (!urb)
235 		return -ENOMEM;
236 
237 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 			USB_ENDPOINT_XFER_INT) {
239 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 				usb_api_blocking_completion, NULL,
242 				ep->desc.bInterval);
243 	} else
244 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 				usb_api_blocking_completion, NULL);
246 
247 	return usb_start_wait_urb(urb, timeout, actual_length);
248 }
249 
250 /*-------------------------------------------------------------------*/
251 
252 static void sg_clean (struct usb_sg_request *io)
253 {
254 	if (io->urbs) {
255 		while (io->entries--)
256 			usb_free_urb (io->urbs [io->entries]);
257 		kfree (io->urbs);
258 		io->urbs = NULL;
259 	}
260 	if (io->dev->dev.dma_mask != NULL)
261 		usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
262 	io->dev = NULL;
263 }
264 
265 static void sg_complete (struct urb *urb, struct pt_regs *regs)
266 {
267 	struct usb_sg_request	*io = (struct usb_sg_request *) urb->context;
268 
269 	spin_lock (&io->lock);
270 
271 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
272 	 * reports, until the completion callback (this!) returns.  That lets
273 	 * device driver code (like this routine) unlink queued urbs first,
274 	 * if it needs to, since the HC won't work on them at all.  So it's
275 	 * not possible for page N+1 to overwrite page N, and so on.
276 	 *
277 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 	 * complete before the HCD can get requests away from hardware,
279 	 * though never during cleanup after a hard fault.
280 	 */
281 	if (io->status
282 			&& (io->status != -ECONNRESET
283 				|| urb->status != -ECONNRESET)
284 			&& urb->actual_length) {
285 		dev_err (io->dev->bus->controller,
286 			"dev %s ep%d%s scatterlist error %d/%d\n",
287 			io->dev->devpath,
288 			usb_pipeendpoint (urb->pipe),
289 			usb_pipein (urb->pipe) ? "in" : "out",
290 			urb->status, io->status);
291 		// BUG ();
292 	}
293 
294 	if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
295 		int		i, found, status;
296 
297 		io->status = urb->status;
298 
299 		/* the previous urbs, and this one, completed already.
300 		 * unlink pending urbs so they won't rx/tx bad data.
301 		 * careful: unlink can sometimes be synchronous...
302 		 */
303 		spin_unlock (&io->lock);
304 		for (i = 0, found = 0; i < io->entries; i++) {
305 			if (!io->urbs [i] || !io->urbs [i]->dev)
306 				continue;
307 			if (found) {
308 				status = usb_unlink_urb (io->urbs [i]);
309 				if (status != -EINPROGRESS
310 						&& status != -ENODEV
311 						&& status != -EBUSY)
312 					dev_err (&io->dev->dev,
313 						"%s, unlink --> %d\n",
314 						__FUNCTION__, status);
315 			} else if (urb == io->urbs [i])
316 				found = 1;
317 		}
318 		spin_lock (&io->lock);
319 	}
320 	urb->dev = NULL;
321 
322 	/* on the last completion, signal usb_sg_wait() */
323 	io->bytes += urb->actual_length;
324 	io->count--;
325 	if (!io->count)
326 		complete (&io->complete);
327 
328 	spin_unlock (&io->lock);
329 }
330 
331 
332 /**
333  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334  * @io: request block being initialized.  until usb_sg_wait() returns,
335  *	treat this as a pointer to an opaque block of memory,
336  * @dev: the usb device that will send or receive the data
337  * @pipe: endpoint "pipe" used to transfer the data
338  * @period: polling rate for interrupt endpoints, in frames or
339  * 	(for high speed endpoints) microframes; ignored for bulk
340  * @sg: scatterlist entries
341  * @nents: how many entries in the scatterlist
342  * @length: how many bytes to send from the scatterlist, or zero to
343  * 	send every byte identified in the list.
344  * @mem_flags: SLAB_* flags affecting memory allocations in this call
345  *
346  * Returns zero for success, else a negative errno value.  This initializes a
347  * scatter/gather request, allocating resources such as I/O mappings and urb
348  * memory (except maybe memory used by USB controller drivers).
349  *
350  * The request must be issued using usb_sg_wait(), which waits for the I/O to
351  * complete (or to be canceled) and then cleans up all resources allocated by
352  * usb_sg_init().
353  *
354  * The request may be canceled with usb_sg_cancel(), either before or after
355  * usb_sg_wait() is called.
356  */
357 int usb_sg_init (
358 	struct usb_sg_request	*io,
359 	struct usb_device	*dev,
360 	unsigned		pipe,
361 	unsigned		period,
362 	struct scatterlist	*sg,
363 	int			nents,
364 	size_t			length,
365 	gfp_t			mem_flags
366 )
367 {
368 	int			i;
369 	int			urb_flags;
370 	int			dma;
371 
372 	if (!io || !dev || !sg
373 			|| usb_pipecontrol (pipe)
374 			|| usb_pipeisoc (pipe)
375 			|| nents <= 0)
376 		return -EINVAL;
377 
378 	spin_lock_init (&io->lock);
379 	io->dev = dev;
380 	io->pipe = pipe;
381 	io->sg = sg;
382 	io->nents = nents;
383 
384 	/* not all host controllers use DMA (like the mainstream pci ones);
385 	 * they can use PIO (sl811) or be software over another transport.
386 	 */
387 	dma = (dev->dev.dma_mask != NULL);
388 	if (dma)
389 		io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
390 	else
391 		io->entries = nents;
392 
393 	/* initialize all the urbs we'll use */
394 	if (io->entries <= 0)
395 		return io->entries;
396 
397 	io->count = io->entries;
398 	io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
399 	if (!io->urbs)
400 		goto nomem;
401 
402 	urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
403 	if (usb_pipein (pipe))
404 		urb_flags |= URB_SHORT_NOT_OK;
405 
406 	for (i = 0; i < io->entries; i++) {
407 		unsigned		len;
408 
409 		io->urbs [i] = usb_alloc_urb (0, mem_flags);
410 		if (!io->urbs [i]) {
411 			io->entries = i;
412 			goto nomem;
413 		}
414 
415 		io->urbs [i]->dev = NULL;
416 		io->urbs [i]->pipe = pipe;
417 		io->urbs [i]->interval = period;
418 		io->urbs [i]->transfer_flags = urb_flags;
419 
420 		io->urbs [i]->complete = sg_complete;
421 		io->urbs [i]->context = io;
422 		io->urbs [i]->status = -EINPROGRESS;
423 		io->urbs [i]->actual_length = 0;
424 
425 		if (dma) {
426 			/* hc may use _only_ transfer_dma */
427 			io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
428 			len = sg_dma_len (sg + i);
429 		} else {
430 			/* hc may use _only_ transfer_buffer */
431 			io->urbs [i]->transfer_buffer =
432 				page_address (sg [i].page) + sg [i].offset;
433 			len = sg [i].length;
434 		}
435 
436 		if (length) {
437 			len = min_t (unsigned, len, length);
438 			length -= len;
439 			if (length == 0)
440 				io->entries = i + 1;
441 		}
442 		io->urbs [i]->transfer_buffer_length = len;
443 	}
444 	io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
445 
446 	/* transaction state */
447 	io->status = 0;
448 	io->bytes = 0;
449 	init_completion (&io->complete);
450 	return 0;
451 
452 nomem:
453 	sg_clean (io);
454 	return -ENOMEM;
455 }
456 
457 
458 /**
459  * usb_sg_wait - synchronously execute scatter/gather request
460  * @io: request block handle, as initialized with usb_sg_init().
461  * 	some fields become accessible when this call returns.
462  * Context: !in_interrupt ()
463  *
464  * This function blocks until the specified I/O operation completes.  It
465  * leverages the grouping of the related I/O requests to get good transfer
466  * rates, by queueing the requests.  At higher speeds, such queuing can
467  * significantly improve USB throughput.
468  *
469  * There are three kinds of completion for this function.
470  * (1) success, where io->status is zero.  The number of io->bytes
471  *     transferred is as requested.
472  * (2) error, where io->status is a negative errno value.  The number
473  *     of io->bytes transferred before the error is usually less
474  *     than requested, and can be nonzero.
475  * (3) cancellation, a type of error with status -ECONNRESET that
476  *     is initiated by usb_sg_cancel().
477  *
478  * When this function returns, all memory allocated through usb_sg_init() or
479  * this call will have been freed.  The request block parameter may still be
480  * passed to usb_sg_cancel(), or it may be freed.  It could also be
481  * reinitialized and then reused.
482  *
483  * Data Transfer Rates:
484  *
485  * Bulk transfers are valid for full or high speed endpoints.
486  * The best full speed data rate is 19 packets of 64 bytes each
487  * per frame, or 1216 bytes per millisecond.
488  * The best high speed data rate is 13 packets of 512 bytes each
489  * per microframe, or 52 KBytes per millisecond.
490  *
491  * The reason to use interrupt transfers through this API would most likely
492  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
493  * could be transferred.  That capability is less useful for low or full
494  * speed interrupt endpoints, which allow at most one packet per millisecond,
495  * of at most 8 or 64 bytes (respectively).
496  */
497 void usb_sg_wait (struct usb_sg_request *io)
498 {
499 	int		i, entries = io->entries;
500 
501 	/* queue the urbs.  */
502 	spin_lock_irq (&io->lock);
503 	for (i = 0; i < entries && !io->status; i++) {
504 		int	retval;
505 
506 		io->urbs [i]->dev = io->dev;
507 		retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC);
508 
509 		/* after we submit, let completions or cancelations fire;
510 		 * we handshake using io->status.
511 		 */
512 		spin_unlock_irq (&io->lock);
513 		switch (retval) {
514 			/* maybe we retrying will recover */
515 		case -ENXIO:	// hc didn't queue this one
516 		case -EAGAIN:
517 		case -ENOMEM:
518 			io->urbs[i]->dev = NULL;
519 			retval = 0;
520 			i--;
521 			yield ();
522 			break;
523 
524 			/* no error? continue immediately.
525 			 *
526 			 * NOTE: to work better with UHCI (4K I/O buffer may
527 			 * need 3K of TDs) it may be good to limit how many
528 			 * URBs are queued at once; N milliseconds?
529 			 */
530 		case 0:
531 			cpu_relax ();
532 			break;
533 
534 			/* fail any uncompleted urbs */
535 		default:
536 			io->urbs [i]->dev = NULL;
537 			io->urbs [i]->status = retval;
538 			dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
539 				__FUNCTION__, retval);
540 			usb_sg_cancel (io);
541 		}
542 		spin_lock_irq (&io->lock);
543 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
544 			io->status = retval;
545 	}
546 	io->count -= entries - i;
547 	if (io->count == 0)
548 		complete (&io->complete);
549 	spin_unlock_irq (&io->lock);
550 
551 	/* OK, yes, this could be packaged as non-blocking.
552 	 * So could the submit loop above ... but it's easier to
553 	 * solve neither problem than to solve both!
554 	 */
555 	wait_for_completion (&io->complete);
556 
557 	sg_clean (io);
558 }
559 
560 /**
561  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
562  * @io: request block, initialized with usb_sg_init()
563  *
564  * This stops a request after it has been started by usb_sg_wait().
565  * It can also prevents one initialized by usb_sg_init() from starting,
566  * so that call just frees resources allocated to the request.
567  */
568 void usb_sg_cancel (struct usb_sg_request *io)
569 {
570 	unsigned long	flags;
571 
572 	spin_lock_irqsave (&io->lock, flags);
573 
574 	/* shut everything down, if it didn't already */
575 	if (!io->status) {
576 		int	i;
577 
578 		io->status = -ECONNRESET;
579 		spin_unlock (&io->lock);
580 		for (i = 0; i < io->entries; i++) {
581 			int	retval;
582 
583 			if (!io->urbs [i]->dev)
584 				continue;
585 			retval = usb_unlink_urb (io->urbs [i]);
586 			if (retval != -EINPROGRESS && retval != -EBUSY)
587 				dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
588 					__FUNCTION__, retval);
589 		}
590 		spin_lock (&io->lock);
591 	}
592 	spin_unlock_irqrestore (&io->lock, flags);
593 }
594 
595 /*-------------------------------------------------------------------*/
596 
597 /**
598  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
599  * @dev: the device whose descriptor is being retrieved
600  * @type: the descriptor type (USB_DT_*)
601  * @index: the number of the descriptor
602  * @buf: where to put the descriptor
603  * @size: how big is "buf"?
604  * Context: !in_interrupt ()
605  *
606  * Gets a USB descriptor.  Convenience functions exist to simplify
607  * getting some types of descriptors.  Use
608  * usb_get_string() or usb_string() for USB_DT_STRING.
609  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
610  * are part of the device structure.
611  * In addition to a number of USB-standard descriptors, some
612  * devices also use class-specific or vendor-specific descriptors.
613  *
614  * This call is synchronous, and may not be used in an interrupt context.
615  *
616  * Returns the number of bytes received on success, or else the status code
617  * returned by the underlying usb_control_msg() call.
618  */
619 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
620 {
621 	int i;
622 	int result;
623 
624 	memset(buf,0,size);	// Make sure we parse really received data
625 
626 	for (i = 0; i < 3; ++i) {
627 		/* retry on length 0 or stall; some devices are flakey */
628 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
629 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
630 				(type << 8) + index, 0, buf, size,
631 				USB_CTRL_GET_TIMEOUT);
632 		if (result == 0 || result == -EPIPE)
633 			continue;
634 		if (result > 1 && ((u8 *)buf)[1] != type) {
635 			result = -EPROTO;
636 			continue;
637 		}
638 		break;
639 	}
640 	return result;
641 }
642 
643 /**
644  * usb_get_string - gets a string descriptor
645  * @dev: the device whose string descriptor is being retrieved
646  * @langid: code for language chosen (from string descriptor zero)
647  * @index: the number of the descriptor
648  * @buf: where to put the string
649  * @size: how big is "buf"?
650  * Context: !in_interrupt ()
651  *
652  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
653  * in little-endian byte order).
654  * The usb_string() function will often be a convenient way to turn
655  * these strings into kernel-printable form.
656  *
657  * Strings may be referenced in device, configuration, interface, or other
658  * descriptors, and could also be used in vendor-specific ways.
659  *
660  * This call is synchronous, and may not be used in an interrupt context.
661  *
662  * Returns the number of bytes received on success, or else the status code
663  * returned by the underlying usb_control_msg() call.
664  */
665 static int usb_get_string(struct usb_device *dev, unsigned short langid,
666 			  unsigned char index, void *buf, int size)
667 {
668 	int i;
669 	int result;
670 
671 	for (i = 0; i < 3; ++i) {
672 		/* retry on length 0 or stall; some devices are flakey */
673 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
674 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
675 			(USB_DT_STRING << 8) + index, langid, buf, size,
676 			USB_CTRL_GET_TIMEOUT);
677 		if (!(result == 0 || result == -EPIPE))
678 			break;
679 	}
680 	return result;
681 }
682 
683 static void usb_try_string_workarounds(unsigned char *buf, int *length)
684 {
685 	int newlength, oldlength = *length;
686 
687 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
688 		if (!isprint(buf[newlength]) || buf[newlength + 1])
689 			break;
690 
691 	if (newlength > 2) {
692 		buf[0] = newlength;
693 		*length = newlength;
694 	}
695 }
696 
697 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
698 		unsigned int index, unsigned char *buf)
699 {
700 	int rc;
701 
702 	/* Try to read the string descriptor by asking for the maximum
703 	 * possible number of bytes */
704 	rc = usb_get_string(dev, langid, index, buf, 255);
705 
706 	/* If that failed try to read the descriptor length, then
707 	 * ask for just that many bytes */
708 	if (rc < 2) {
709 		rc = usb_get_string(dev, langid, index, buf, 2);
710 		if (rc == 2)
711 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
712 	}
713 
714 	if (rc >= 2) {
715 		if (!buf[0] && !buf[1])
716 			usb_try_string_workarounds(buf, &rc);
717 
718 		/* There might be extra junk at the end of the descriptor */
719 		if (buf[0] < rc)
720 			rc = buf[0];
721 
722 		rc = rc - (rc & 1); /* force a multiple of two */
723 	}
724 
725 	if (rc < 2)
726 		rc = (rc < 0 ? rc : -EINVAL);
727 
728 	return rc;
729 }
730 
731 /**
732  * usb_string - returns ISO 8859-1 version of a string descriptor
733  * @dev: the device whose string descriptor is being retrieved
734  * @index: the number of the descriptor
735  * @buf: where to put the string
736  * @size: how big is "buf"?
737  * Context: !in_interrupt ()
738  *
739  * This converts the UTF-16LE encoded strings returned by devices, from
740  * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
741  * that are more usable in most kernel contexts.  Note that all characters
742  * in the chosen descriptor that can't be encoded using ISO-8859-1
743  * are converted to the question mark ("?") character, and this function
744  * chooses strings in the first language supported by the device.
745  *
746  * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
747  * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
748  * and is appropriate for use many uses of English and several other
749  * Western European languages.  (But it doesn't include the "Euro" symbol.)
750  *
751  * This call is synchronous, and may not be used in an interrupt context.
752  *
753  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
754  */
755 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
756 {
757 	unsigned char *tbuf;
758 	int err;
759 	unsigned int u, idx;
760 
761 	if (dev->state == USB_STATE_SUSPENDED)
762 		return -EHOSTUNREACH;
763 	if (size <= 0 || !buf || !index)
764 		return -EINVAL;
765 	buf[0] = 0;
766 	tbuf = kmalloc(256, GFP_KERNEL);
767 	if (!tbuf)
768 		return -ENOMEM;
769 
770 	/* get langid for strings if it's not yet known */
771 	if (!dev->have_langid) {
772 		err = usb_string_sub(dev, 0, 0, tbuf);
773 		if (err < 0) {
774 			dev_err (&dev->dev,
775 				"string descriptor 0 read error: %d\n",
776 				err);
777 			goto errout;
778 		} else if (err < 4) {
779 			dev_err (&dev->dev, "string descriptor 0 too short\n");
780 			err = -EINVAL;
781 			goto errout;
782 		} else {
783 			dev->have_langid = -1;
784 			dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
785 				/* always use the first langid listed */
786 			dev_dbg (&dev->dev, "default language 0x%04x\n",
787 				dev->string_langid);
788 		}
789 	}
790 
791 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
792 	if (err < 0)
793 		goto errout;
794 
795 	size--;		/* leave room for trailing NULL char in output buffer */
796 	for (idx = 0, u = 2; u < err; u += 2) {
797 		if (idx >= size)
798 			break;
799 		if (tbuf[u+1])			/* high byte */
800 			buf[idx++] = '?';  /* non ISO-8859-1 character */
801 		else
802 			buf[idx++] = tbuf[u];
803 	}
804 	buf[idx] = 0;
805 	err = idx;
806 
807 	if (tbuf[1] != USB_DT_STRING)
808 		dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
809 
810  errout:
811 	kfree(tbuf);
812 	return err;
813 }
814 
815 /**
816  * usb_cache_string - read a string descriptor and cache it for later use
817  * @udev: the device whose string descriptor is being read
818  * @index: the descriptor index
819  *
820  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
821  * or NULL if the index is 0 or the string could not be read.
822  */
823 char *usb_cache_string(struct usb_device *udev, int index)
824 {
825 	char *buf;
826 	char *smallbuf = NULL;
827 	int len;
828 
829 	if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
830 		if ((len = usb_string(udev, index, buf, 256)) > 0) {
831 			if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
832 				return buf;
833 			memcpy(smallbuf, buf, len);
834 		}
835 		kfree(buf);
836 	}
837 	return smallbuf;
838 }
839 
840 /*
841  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
842  * @dev: the device whose device descriptor is being updated
843  * @size: how much of the descriptor to read
844  * Context: !in_interrupt ()
845  *
846  * Updates the copy of the device descriptor stored in the device structure,
847  * which dedicates space for this purpose.  Note that several fields are
848  * converted to the host CPU's byte order:  the USB version (bcdUSB), and
849  * vendors product and version fields (idVendor, idProduct, and bcdDevice).
850  * That lets device drivers compare against non-byteswapped constants.
851  *
852  * Not exported, only for use by the core.  If drivers really want to read
853  * the device descriptor directly, they can call usb_get_descriptor() with
854  * type = USB_DT_DEVICE and index = 0.
855  *
856  * This call is synchronous, and may not be used in an interrupt context.
857  *
858  * Returns the number of bytes received on success, or else the status code
859  * returned by the underlying usb_control_msg() call.
860  */
861 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
862 {
863 	struct usb_device_descriptor *desc;
864 	int ret;
865 
866 	if (size > sizeof(*desc))
867 		return -EINVAL;
868 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
869 	if (!desc)
870 		return -ENOMEM;
871 
872 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
873 	if (ret >= 0)
874 		memcpy(&dev->descriptor, desc, size);
875 	kfree(desc);
876 	return ret;
877 }
878 
879 /**
880  * usb_get_status - issues a GET_STATUS call
881  * @dev: the device whose status is being checked
882  * @type: USB_RECIP_*; for device, interface, or endpoint
883  * @target: zero (for device), else interface or endpoint number
884  * @data: pointer to two bytes of bitmap data
885  * Context: !in_interrupt ()
886  *
887  * Returns device, interface, or endpoint status.  Normally only of
888  * interest to see if the device is self powered, or has enabled the
889  * remote wakeup facility; or whether a bulk or interrupt endpoint
890  * is halted ("stalled").
891  *
892  * Bits in these status bitmaps are set using the SET_FEATURE request,
893  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
894  * function should be used to clear halt ("stall") status.
895  *
896  * This call is synchronous, and may not be used in an interrupt context.
897  *
898  * Returns the number of bytes received on success, or else the status code
899  * returned by the underlying usb_control_msg() call.
900  */
901 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
902 {
903 	int ret;
904 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
905 
906 	if (!status)
907 		return -ENOMEM;
908 
909 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
910 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
911 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
912 
913 	*(u16 *)data = *status;
914 	kfree(status);
915 	return ret;
916 }
917 
918 /**
919  * usb_clear_halt - tells device to clear endpoint halt/stall condition
920  * @dev: device whose endpoint is halted
921  * @pipe: endpoint "pipe" being cleared
922  * Context: !in_interrupt ()
923  *
924  * This is used to clear halt conditions for bulk and interrupt endpoints,
925  * as reported by URB completion status.  Endpoints that are halted are
926  * sometimes referred to as being "stalled".  Such endpoints are unable
927  * to transmit or receive data until the halt status is cleared.  Any URBs
928  * queued for such an endpoint should normally be unlinked by the driver
929  * before clearing the halt condition, as described in sections 5.7.5
930  * and 5.8.5 of the USB 2.0 spec.
931  *
932  * Note that control and isochronous endpoints don't halt, although control
933  * endpoints report "protocol stall" (for unsupported requests) using the
934  * same status code used to report a true stall.
935  *
936  * This call is synchronous, and may not be used in an interrupt context.
937  *
938  * Returns zero on success, or else the status code returned by the
939  * underlying usb_control_msg() call.
940  */
941 int usb_clear_halt(struct usb_device *dev, int pipe)
942 {
943 	int result;
944 	int endp = usb_pipeendpoint(pipe);
945 
946 	if (usb_pipein (pipe))
947 		endp |= USB_DIR_IN;
948 
949 	/* we don't care if it wasn't halted first. in fact some devices
950 	 * (like some ibmcam model 1 units) seem to expect hosts to make
951 	 * this request for iso endpoints, which can't halt!
952 	 */
953 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
954 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
955 		USB_ENDPOINT_HALT, endp, NULL, 0,
956 		USB_CTRL_SET_TIMEOUT);
957 
958 	/* don't un-halt or force to DATA0 except on success */
959 	if (result < 0)
960 		return result;
961 
962 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
963 	 * the clear "took", so some devices could lock up if you check...
964 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
965 	 *
966 	 * NOTE:  make sure the logic here doesn't diverge much from
967 	 * the copy in usb-storage, for as long as we need two copies.
968 	 */
969 
970 	/* toggle was reset by the clear */
971 	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
972 
973 	return 0;
974 }
975 
976 /**
977  * usb_disable_endpoint -- Disable an endpoint by address
978  * @dev: the device whose endpoint is being disabled
979  * @epaddr: the endpoint's address.  Endpoint number for output,
980  *	endpoint number + USB_DIR_IN for input
981  *
982  * Deallocates hcd/hardware state for this endpoint ... and nukes all
983  * pending urbs.
984  *
985  * If the HCD hasn't registered a disable() function, this sets the
986  * endpoint's maxpacket size to 0 to prevent further submissions.
987  */
988 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
989 {
990 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
991 	struct usb_host_endpoint *ep;
992 
993 	if (!dev)
994 		return;
995 
996 	if (usb_endpoint_out(epaddr)) {
997 		ep = dev->ep_out[epnum];
998 		dev->ep_out[epnum] = NULL;
999 	} else {
1000 		ep = dev->ep_in[epnum];
1001 		dev->ep_in[epnum] = NULL;
1002 	}
1003 	if (ep && dev->bus && dev->bus->op && dev->bus->op->disable)
1004 		dev->bus->op->disable(dev, ep);
1005 }
1006 
1007 /**
1008  * usb_disable_interface -- Disable all endpoints for an interface
1009  * @dev: the device whose interface is being disabled
1010  * @intf: pointer to the interface descriptor
1011  *
1012  * Disables all the endpoints for the interface's current altsetting.
1013  */
1014 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1015 {
1016 	struct usb_host_interface *alt = intf->cur_altsetting;
1017 	int i;
1018 
1019 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1020 		usb_disable_endpoint(dev,
1021 				alt->endpoint[i].desc.bEndpointAddress);
1022 	}
1023 }
1024 
1025 /*
1026  * usb_disable_device - Disable all the endpoints for a USB device
1027  * @dev: the device whose endpoints are being disabled
1028  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1029  *
1030  * Disables all the device's endpoints, potentially including endpoint 0.
1031  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1032  * pending urbs) and usbcore state for the interfaces, so that usbcore
1033  * must usb_set_configuration() before any interfaces could be used.
1034  */
1035 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1036 {
1037 	int i;
1038 
1039 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1040 			skip_ep0 ? "non-ep0" : "all");
1041 	for (i = skip_ep0; i < 16; ++i) {
1042 		usb_disable_endpoint(dev, i);
1043 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1044 	}
1045 	dev->toggle[0] = dev->toggle[1] = 0;
1046 
1047 	/* getting rid of interfaces will disconnect
1048 	 * any drivers bound to them (a key side effect)
1049 	 */
1050 	if (dev->actconfig) {
1051 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1052 			struct usb_interface	*interface;
1053 
1054 			/* remove this interface if it has been registered */
1055 			interface = dev->actconfig->interface[i];
1056 			if (!device_is_registered(&interface->dev))
1057 				continue;
1058 			dev_dbg (&dev->dev, "unregistering interface %s\n",
1059 				interface->dev.bus_id);
1060 			usb_remove_sysfs_intf_files(interface);
1061 			device_del (&interface->dev);
1062 		}
1063 
1064 		/* Now that the interfaces are unbound, nobody should
1065 		 * try to access them.
1066 		 */
1067 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1068 			put_device (&dev->actconfig->interface[i]->dev);
1069 			dev->actconfig->interface[i] = NULL;
1070 		}
1071 		dev->actconfig = NULL;
1072 		if (dev->state == USB_STATE_CONFIGURED)
1073 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1074 	}
1075 }
1076 
1077 
1078 /*
1079  * usb_enable_endpoint - Enable an endpoint for USB communications
1080  * @dev: the device whose interface is being enabled
1081  * @ep: the endpoint
1082  *
1083  * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1084  * For control endpoints, both the input and output sides are handled.
1085  */
1086 static void
1087 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1088 {
1089 	unsigned int epaddr = ep->desc.bEndpointAddress;
1090 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1091 	int is_control;
1092 
1093 	is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1094 			== USB_ENDPOINT_XFER_CONTROL);
1095 	if (usb_endpoint_out(epaddr) || is_control) {
1096 		usb_settoggle(dev, epnum, 1, 0);
1097 		dev->ep_out[epnum] = ep;
1098 	}
1099 	if (!usb_endpoint_out(epaddr) || is_control) {
1100 		usb_settoggle(dev, epnum, 0, 0);
1101 		dev->ep_in[epnum] = ep;
1102 	}
1103 }
1104 
1105 /*
1106  * usb_enable_interface - Enable all the endpoints for an interface
1107  * @dev: the device whose interface is being enabled
1108  * @intf: pointer to the interface descriptor
1109  *
1110  * Enables all the endpoints for the interface's current altsetting.
1111  */
1112 static void usb_enable_interface(struct usb_device *dev,
1113 				 struct usb_interface *intf)
1114 {
1115 	struct usb_host_interface *alt = intf->cur_altsetting;
1116 	int i;
1117 
1118 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1119 		usb_enable_endpoint(dev, &alt->endpoint[i]);
1120 }
1121 
1122 /**
1123  * usb_set_interface - Makes a particular alternate setting be current
1124  * @dev: the device whose interface is being updated
1125  * @interface: the interface being updated
1126  * @alternate: the setting being chosen.
1127  * Context: !in_interrupt ()
1128  *
1129  * This is used to enable data transfers on interfaces that may not
1130  * be enabled by default.  Not all devices support such configurability.
1131  * Only the driver bound to an interface may change its setting.
1132  *
1133  * Within any given configuration, each interface may have several
1134  * alternative settings.  These are often used to control levels of
1135  * bandwidth consumption.  For example, the default setting for a high
1136  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1137  * while interrupt transfers of up to 3KBytes per microframe are legal.
1138  * Also, isochronous endpoints may never be part of an
1139  * interface's default setting.  To access such bandwidth, alternate
1140  * interface settings must be made current.
1141  *
1142  * Note that in the Linux USB subsystem, bandwidth associated with
1143  * an endpoint in a given alternate setting is not reserved until an URB
1144  * is submitted that needs that bandwidth.  Some other operating systems
1145  * allocate bandwidth early, when a configuration is chosen.
1146  *
1147  * This call is synchronous, and may not be used in an interrupt context.
1148  * Also, drivers must not change altsettings while urbs are scheduled for
1149  * endpoints in that interface; all such urbs must first be completed
1150  * (perhaps forced by unlinking).
1151  *
1152  * Returns zero on success, or else the status code returned by the
1153  * underlying usb_control_msg() call.
1154  */
1155 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1156 {
1157 	struct usb_interface *iface;
1158 	struct usb_host_interface *alt;
1159 	int ret;
1160 	int manual = 0;
1161 
1162 	if (dev->state == USB_STATE_SUSPENDED)
1163 		return -EHOSTUNREACH;
1164 
1165 	iface = usb_ifnum_to_if(dev, interface);
1166 	if (!iface) {
1167 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1168 			interface);
1169 		return -EINVAL;
1170 	}
1171 
1172 	alt = usb_altnum_to_altsetting(iface, alternate);
1173 	if (!alt) {
1174 		warn("selecting invalid altsetting %d", alternate);
1175 		return -EINVAL;
1176 	}
1177 
1178 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1179 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1180 				   alternate, interface, NULL, 0, 5000);
1181 
1182 	/* 9.4.10 says devices don't need this and are free to STALL the
1183 	 * request if the interface only has one alternate setting.
1184 	 */
1185 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1186 		dev_dbg(&dev->dev,
1187 			"manual set_interface for iface %d, alt %d\n",
1188 			interface, alternate);
1189 		manual = 1;
1190 	} else if (ret < 0)
1191 		return ret;
1192 
1193 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1194 	 * when they implement async or easily-killable versions of this or
1195 	 * other "should-be-internal" functions (like clear_halt).
1196 	 * should hcd+usbcore postprocess control requests?
1197 	 */
1198 
1199 	/* prevent submissions using previous endpoint settings */
1200 	if (device_is_registered(&iface->dev))
1201 		usb_remove_sysfs_intf_files(iface);
1202 	usb_disable_interface(dev, iface);
1203 
1204 	iface->cur_altsetting = alt;
1205 
1206 	/* If the interface only has one altsetting and the device didn't
1207 	 * accept the request, we attempt to carry out the equivalent action
1208 	 * by manually clearing the HALT feature for each endpoint in the
1209 	 * new altsetting.
1210 	 */
1211 	if (manual) {
1212 		int i;
1213 
1214 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1215 			unsigned int epaddr =
1216 				alt->endpoint[i].desc.bEndpointAddress;
1217 			unsigned int pipe =
1218 	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1219 	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1220 
1221 			usb_clear_halt(dev, pipe);
1222 		}
1223 	}
1224 
1225 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1226 	 *
1227 	 * Note:
1228 	 * Despite EP0 is always present in all interfaces/AS, the list of
1229 	 * endpoints from the descriptor does not contain EP0. Due to its
1230 	 * omnipresence one might expect EP0 being considered "affected" by
1231 	 * any SetInterface request and hence assume toggles need to be reset.
1232 	 * However, EP0 toggles are re-synced for every individual transfer
1233 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1234 	 * (Likewise, EP0 never "halts" on well designed devices.)
1235 	 */
1236 	usb_enable_interface(dev, iface);
1237 	if (device_is_registered(&iface->dev))
1238 		usb_create_sysfs_intf_files(iface);
1239 
1240 	return 0;
1241 }
1242 
1243 /**
1244  * usb_reset_configuration - lightweight device reset
1245  * @dev: the device whose configuration is being reset
1246  *
1247  * This issues a standard SET_CONFIGURATION request to the device using
1248  * the current configuration.  The effect is to reset most USB-related
1249  * state in the device, including interface altsettings (reset to zero),
1250  * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1251  * endpoints).  Other usbcore state is unchanged, including bindings of
1252  * usb device drivers to interfaces.
1253  *
1254  * Because this affects multiple interfaces, avoid using this with composite
1255  * (multi-interface) devices.  Instead, the driver for each interface may
1256  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1257  * some devices don't support the SET_INTERFACE request, and others won't
1258  * reset all the interface state (notably data toggles).  Resetting the whole
1259  * configuration would affect other drivers' interfaces.
1260  *
1261  * The caller must own the device lock.
1262  *
1263  * Returns zero on success, else a negative error code.
1264  */
1265 int usb_reset_configuration(struct usb_device *dev)
1266 {
1267 	int			i, retval;
1268 	struct usb_host_config	*config;
1269 
1270 	if (dev->state == USB_STATE_SUSPENDED)
1271 		return -EHOSTUNREACH;
1272 
1273 	/* caller must have locked the device and must own
1274 	 * the usb bus readlock (so driver bindings are stable);
1275 	 * calls during probe() are fine
1276 	 */
1277 
1278 	for (i = 1; i < 16; ++i) {
1279 		usb_disable_endpoint(dev, i);
1280 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1281 	}
1282 
1283 	config = dev->actconfig;
1284 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1285 			USB_REQ_SET_CONFIGURATION, 0,
1286 			config->desc.bConfigurationValue, 0,
1287 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1288 	if (retval < 0)
1289 		return retval;
1290 
1291 	dev->toggle[0] = dev->toggle[1] = 0;
1292 
1293 	/* re-init hc/hcd interface/endpoint state */
1294 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1295 		struct usb_interface *intf = config->interface[i];
1296 		struct usb_host_interface *alt;
1297 
1298 		if (device_is_registered(&intf->dev))
1299 			usb_remove_sysfs_intf_files(intf);
1300 		alt = usb_altnum_to_altsetting(intf, 0);
1301 
1302 		/* No altsetting 0?  We'll assume the first altsetting.
1303 		 * We could use a GetInterface call, but if a device is
1304 		 * so non-compliant that it doesn't have altsetting 0
1305 		 * then I wouldn't trust its reply anyway.
1306 		 */
1307 		if (!alt)
1308 			alt = &intf->altsetting[0];
1309 
1310 		intf->cur_altsetting = alt;
1311 		usb_enable_interface(dev, intf);
1312 		if (device_is_registered(&intf->dev))
1313 			usb_create_sysfs_intf_files(intf);
1314 	}
1315 	return 0;
1316 }
1317 
1318 static void release_interface(struct device *dev)
1319 {
1320 	struct usb_interface *intf = to_usb_interface(dev);
1321 	struct usb_interface_cache *intfc =
1322 			altsetting_to_usb_interface_cache(intf->altsetting);
1323 
1324 	kref_put(&intfc->ref, usb_release_interface_cache);
1325 	kfree(intf);
1326 }
1327 
1328 /*
1329  * usb_set_configuration - Makes a particular device setting be current
1330  * @dev: the device whose configuration is being updated
1331  * @configuration: the configuration being chosen.
1332  * Context: !in_interrupt(), caller owns the device lock
1333  *
1334  * This is used to enable non-default device modes.  Not all devices
1335  * use this kind of configurability; many devices only have one
1336  * configuration.
1337  *
1338  * USB device configurations may affect Linux interoperability,
1339  * power consumption and the functionality available.  For example,
1340  * the default configuration is limited to using 100mA of bus power,
1341  * so that when certain device functionality requires more power,
1342  * and the device is bus powered, that functionality should be in some
1343  * non-default device configuration.  Other device modes may also be
1344  * reflected as configuration options, such as whether two ISDN
1345  * channels are available independently; and choosing between open
1346  * standard device protocols (like CDC) or proprietary ones.
1347  *
1348  * Note that USB has an additional level of device configurability,
1349  * associated with interfaces.  That configurability is accessed using
1350  * usb_set_interface().
1351  *
1352  * This call is synchronous. The calling context must be able to sleep,
1353  * must own the device lock, and must not hold the driver model's USB
1354  * bus rwsem; usb device driver probe() methods cannot use this routine.
1355  *
1356  * Returns zero on success, or else the status code returned by the
1357  * underlying call that failed.  On successful completion, each interface
1358  * in the original device configuration has been destroyed, and each one
1359  * in the new configuration has been probed by all relevant usb device
1360  * drivers currently known to the kernel.
1361  */
1362 int usb_set_configuration(struct usb_device *dev, int configuration)
1363 {
1364 	int i, ret;
1365 	struct usb_host_config *cp = NULL;
1366 	struct usb_interface **new_interfaces = NULL;
1367 	int n, nintf;
1368 
1369 	for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1370 		if (dev->config[i].desc.bConfigurationValue == configuration) {
1371 			cp = &dev->config[i];
1372 			break;
1373 		}
1374 	}
1375 	if ((!cp && configuration != 0))
1376 		return -EINVAL;
1377 
1378 	/* The USB spec says configuration 0 means unconfigured.
1379 	 * But if a device includes a configuration numbered 0,
1380 	 * we will accept it as a correctly configured state.
1381 	 */
1382 	if (cp && configuration == 0)
1383 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1384 
1385 	if (dev->state == USB_STATE_SUSPENDED)
1386 		return -EHOSTUNREACH;
1387 
1388 	/* Allocate memory for new interfaces before doing anything else,
1389 	 * so that if we run out then nothing will have changed. */
1390 	n = nintf = 0;
1391 	if (cp) {
1392 		nintf = cp->desc.bNumInterfaces;
1393 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1394 				GFP_KERNEL);
1395 		if (!new_interfaces) {
1396 			dev_err(&dev->dev, "Out of memory");
1397 			return -ENOMEM;
1398 		}
1399 
1400 		for (; n < nintf; ++n) {
1401 			new_interfaces[n] = kzalloc(
1402 					sizeof(struct usb_interface),
1403 					GFP_KERNEL);
1404 			if (!new_interfaces[n]) {
1405 				dev_err(&dev->dev, "Out of memory");
1406 				ret = -ENOMEM;
1407 free_interfaces:
1408 				while (--n >= 0)
1409 					kfree(new_interfaces[n]);
1410 				kfree(new_interfaces);
1411 				return ret;
1412 			}
1413 		}
1414 
1415 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1416 		if (i < 0)
1417 			dev_warn(&dev->dev, "new config #%d exceeds power "
1418 					"limit by %dmA\n",
1419 					configuration, -i);
1420 	}
1421 
1422 	/* if it's already configured, clear out old state first.
1423 	 * getting rid of old interfaces means unbinding their drivers.
1424 	 */
1425 	if (dev->state != USB_STATE_ADDRESS)
1426 		usb_disable_device (dev, 1);	// Skip ep0
1427 
1428 	if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1429 			USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1430 			NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) {
1431 
1432 		/* All the old state is gone, so what else can we do?
1433 		 * The device is probably useless now anyway.
1434 		 */
1435 		cp = NULL;
1436 	}
1437 
1438 	dev->actconfig = cp;
1439 	if (!cp) {
1440 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1441 		goto free_interfaces;
1442 	}
1443 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1444 
1445 	/* Initialize the new interface structures and the
1446 	 * hc/hcd/usbcore interface/endpoint state.
1447 	 */
1448 	for (i = 0; i < nintf; ++i) {
1449 		struct usb_interface_cache *intfc;
1450 		struct usb_interface *intf;
1451 		struct usb_host_interface *alt;
1452 
1453 		cp->interface[i] = intf = new_interfaces[i];
1454 		intfc = cp->intf_cache[i];
1455 		intf->altsetting = intfc->altsetting;
1456 		intf->num_altsetting = intfc->num_altsetting;
1457 		kref_get(&intfc->ref);
1458 
1459 		alt = usb_altnum_to_altsetting(intf, 0);
1460 
1461 		/* No altsetting 0?  We'll assume the first altsetting.
1462 		 * We could use a GetInterface call, but if a device is
1463 		 * so non-compliant that it doesn't have altsetting 0
1464 		 * then I wouldn't trust its reply anyway.
1465 		 */
1466 		if (!alt)
1467 			alt = &intf->altsetting[0];
1468 
1469 		intf->cur_altsetting = alt;
1470 		usb_enable_interface(dev, intf);
1471 		intf->dev.parent = &dev->dev;
1472 		intf->dev.driver = NULL;
1473 		intf->dev.bus = &usb_bus_type;
1474 		intf->dev.dma_mask = dev->dev.dma_mask;
1475 		intf->dev.release = release_interface;
1476 		device_initialize (&intf->dev);
1477 		mark_quiesced(intf);
1478 		sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1479 			 dev->bus->busnum, dev->devpath,
1480 			 configuration, alt->desc.bInterfaceNumber);
1481 	}
1482 	kfree(new_interfaces);
1483 
1484 	if (cp->string == NULL)
1485 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1486 
1487 	/* Now that all the interfaces are set up, register them
1488 	 * to trigger binding of drivers to interfaces.  probe()
1489 	 * routines may install different altsettings and may
1490 	 * claim() any interfaces not yet bound.  Many class drivers
1491 	 * need that: CDC, audio, video, etc.
1492 	 */
1493 	for (i = 0; i < nintf; ++i) {
1494 		struct usb_interface *intf = cp->interface[i];
1495 
1496 		dev_dbg (&dev->dev,
1497 			"adding %s (config #%d, interface %d)\n",
1498 			intf->dev.bus_id, configuration,
1499 			intf->cur_altsetting->desc.bInterfaceNumber);
1500 		ret = device_add (&intf->dev);
1501 		if (ret != 0) {
1502 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1503 				intf->dev.bus_id, ret);
1504 			continue;
1505 		}
1506 		usb_create_sysfs_intf_files (intf);
1507 	}
1508 
1509 	return 0;
1510 }
1511 
1512 // synchronous request completion model
1513 EXPORT_SYMBOL(usb_control_msg);
1514 EXPORT_SYMBOL(usb_bulk_msg);
1515 
1516 EXPORT_SYMBOL(usb_sg_init);
1517 EXPORT_SYMBOL(usb_sg_cancel);
1518 EXPORT_SYMBOL(usb_sg_wait);
1519 
1520 // synchronous control message convenience routines
1521 EXPORT_SYMBOL(usb_get_descriptor);
1522 EXPORT_SYMBOL(usb_get_status);
1523 EXPORT_SYMBOL(usb_string);
1524 
1525 // synchronous calls that also maintain usbcore state
1526 EXPORT_SYMBOL(usb_clear_halt);
1527 EXPORT_SYMBOL(usb_reset_configuration);
1528 EXPORT_SYMBOL(usb_set_interface);
1529 
1530