1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/config.h> 6 #include <linux/pci.h> /* for scatterlist macros */ 7 #include <linux/usb.h> 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/timer.h> 13 #include <linux/ctype.h> 14 #include <linux/device.h> 15 #include <asm/byteorder.h> 16 #include <asm/scatterlist.h> 17 18 #include "hcd.h" /* for usbcore internals */ 19 #include "usb.h" 20 21 static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs) 22 { 23 complete((struct completion *)urb->context); 24 } 25 26 27 static void timeout_kill(unsigned long data) 28 { 29 struct urb *urb = (struct urb *) data; 30 31 usb_unlink_urb(urb); 32 } 33 34 // Starts urb and waits for completion or timeout 35 // note that this call is NOT interruptible, while 36 // many device driver i/o requests should be interruptible 37 static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length) 38 { 39 struct completion done; 40 struct timer_list timer; 41 int status; 42 43 init_completion(&done); 44 urb->context = &done; 45 urb->actual_length = 0; 46 status = usb_submit_urb(urb, GFP_NOIO); 47 48 if (status == 0) { 49 if (timeout > 0) { 50 init_timer(&timer); 51 timer.expires = jiffies + msecs_to_jiffies(timeout); 52 timer.data = (unsigned long)urb; 53 timer.function = timeout_kill; 54 /* grr. timeout _should_ include submit delays. */ 55 add_timer(&timer); 56 } 57 wait_for_completion(&done); 58 status = urb->status; 59 /* note: HCDs return ETIMEDOUT for other reasons too */ 60 if (status == -ECONNRESET) { 61 dev_dbg(&urb->dev->dev, 62 "%s timed out on ep%d%s len=%d/%d\n", 63 current->comm, 64 usb_pipeendpoint(urb->pipe), 65 usb_pipein(urb->pipe) ? "in" : "out", 66 urb->actual_length, 67 urb->transfer_buffer_length 68 ); 69 if (urb->actual_length > 0) 70 status = 0; 71 else 72 status = -ETIMEDOUT; 73 } 74 if (timeout > 0) 75 del_timer_sync(&timer); 76 } 77 78 if (actual_length) 79 *actual_length = urb->actual_length; 80 usb_free_urb(urb); 81 return status; 82 } 83 84 /*-------------------------------------------------------------------*/ 85 // returns status (negative) or length (positive) 86 static int usb_internal_control_msg(struct usb_device *usb_dev, 87 unsigned int pipe, 88 struct usb_ctrlrequest *cmd, 89 void *data, int len, int timeout) 90 { 91 struct urb *urb; 92 int retv; 93 int length; 94 95 urb = usb_alloc_urb(0, GFP_NOIO); 96 if (!urb) 97 return -ENOMEM; 98 99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 100 len, usb_api_blocking_completion, NULL); 101 102 retv = usb_start_wait_urb(urb, timeout, &length); 103 if (retv < 0) 104 return retv; 105 else 106 return length; 107 } 108 109 /** 110 * usb_control_msg - Builds a control urb, sends it off and waits for completion 111 * @dev: pointer to the usb device to send the message to 112 * @pipe: endpoint "pipe" to send the message to 113 * @request: USB message request value 114 * @requesttype: USB message request type value 115 * @value: USB message value 116 * @index: USB message index value 117 * @data: pointer to the data to send 118 * @size: length in bytes of the data to send 119 * @timeout: time in msecs to wait for the message to complete before 120 * timing out (if 0 the wait is forever) 121 * Context: !in_interrupt () 122 * 123 * This function sends a simple control message to a specified endpoint 124 * and waits for the message to complete, or timeout. 125 * 126 * If successful, it returns the number of bytes transferred, otherwise a negative error number. 127 * 128 * Don't use this function from within an interrupt context, like a 129 * bottom half handler. If you need an asynchronous message, or need to send 130 * a message from within interrupt context, use usb_submit_urb() 131 * If a thread in your driver uses this call, make sure your disconnect() 132 * method can wait for it to complete. Since you don't have a handle on 133 * the URB used, you can't cancel the request. 134 */ 135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, 136 __u16 value, __u16 index, void *data, __u16 size, int timeout) 137 { 138 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 139 int ret; 140 141 if (!dr) 142 return -ENOMEM; 143 144 dr->bRequestType= requesttype; 145 dr->bRequest = request; 146 dr->wValue = cpu_to_le16p(&value); 147 dr->wIndex = cpu_to_le16p(&index); 148 dr->wLength = cpu_to_le16p(&size); 149 150 //dbg("usb_control_msg"); 151 152 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 153 154 kfree(dr); 155 156 return ret; 157 } 158 159 160 /** 161 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 162 * @usb_dev: pointer to the usb device to send the message to 163 * @pipe: endpoint "pipe" to send the message to 164 * @data: pointer to the data to send 165 * @len: length in bytes of the data to send 166 * @actual_length: pointer to a location to put the actual length transferred in bytes 167 * @timeout: time in msecs to wait for the message to complete before 168 * timing out (if 0 the wait is forever) 169 * Context: !in_interrupt () 170 * 171 * This function sends a simple interrupt message to a specified endpoint and 172 * waits for the message to complete, or timeout. 173 * 174 * If successful, it returns 0, otherwise a negative error number. The number 175 * of actual bytes transferred will be stored in the actual_length paramater. 176 * 177 * Don't use this function from within an interrupt context, like a bottom half 178 * handler. If you need an asynchronous message, or need to send a message 179 * from within interrupt context, use usb_submit_urb() If a thread in your 180 * driver uses this call, make sure your disconnect() method can wait for it to 181 * complete. Since you don't have a handle on the URB used, you can't cancel 182 * the request. 183 */ 184 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 185 void *data, int len, int *actual_length, int timeout) 186 { 187 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 188 } 189 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 190 191 /** 192 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 193 * @usb_dev: pointer to the usb device to send the message to 194 * @pipe: endpoint "pipe" to send the message to 195 * @data: pointer to the data to send 196 * @len: length in bytes of the data to send 197 * @actual_length: pointer to a location to put the actual length transferred in bytes 198 * @timeout: time in msecs to wait for the message to complete before 199 * timing out (if 0 the wait is forever) 200 * Context: !in_interrupt () 201 * 202 * This function sends a simple bulk message to a specified endpoint 203 * and waits for the message to complete, or timeout. 204 * 205 * If successful, it returns 0, otherwise a negative error number. 206 * The number of actual bytes transferred will be stored in the 207 * actual_length paramater. 208 * 209 * Don't use this function from within an interrupt context, like a 210 * bottom half handler. If you need an asynchronous message, or need to 211 * send a message from within interrupt context, use usb_submit_urb() 212 * If a thread in your driver uses this call, make sure your disconnect() 213 * method can wait for it to complete. Since you don't have a handle on 214 * the URB used, you can't cancel the request. 215 * 216 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT 217 * ioctl, users are forced to abuse this routine by using it to submit 218 * URBs for interrupt endpoints. We will take the liberty of creating 219 * an interrupt URB (with the default interval) if the target is an 220 * interrupt endpoint. 221 */ 222 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 223 void *data, int len, int *actual_length, int timeout) 224 { 225 struct urb *urb; 226 struct usb_host_endpoint *ep; 227 228 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 229 [usb_pipeendpoint(pipe)]; 230 if (!ep || len < 0) 231 return -EINVAL; 232 233 urb = usb_alloc_urb(0, GFP_KERNEL); 234 if (!urb) 235 return -ENOMEM; 236 237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 238 USB_ENDPOINT_XFER_INT) { 239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 240 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 241 usb_api_blocking_completion, NULL, 242 ep->desc.bInterval); 243 } else 244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 245 usb_api_blocking_completion, NULL); 246 247 return usb_start_wait_urb(urb, timeout, actual_length); 248 } 249 250 /*-------------------------------------------------------------------*/ 251 252 static void sg_clean (struct usb_sg_request *io) 253 { 254 if (io->urbs) { 255 while (io->entries--) 256 usb_free_urb (io->urbs [io->entries]); 257 kfree (io->urbs); 258 io->urbs = NULL; 259 } 260 if (io->dev->dev.dma_mask != NULL) 261 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents); 262 io->dev = NULL; 263 } 264 265 static void sg_complete (struct urb *urb, struct pt_regs *regs) 266 { 267 struct usb_sg_request *io = (struct usb_sg_request *) urb->context; 268 269 spin_lock (&io->lock); 270 271 /* In 2.5 we require hcds' endpoint queues not to progress after fault 272 * reports, until the completion callback (this!) returns. That lets 273 * device driver code (like this routine) unlink queued urbs first, 274 * if it needs to, since the HC won't work on them at all. So it's 275 * not possible for page N+1 to overwrite page N, and so on. 276 * 277 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 278 * complete before the HCD can get requests away from hardware, 279 * though never during cleanup after a hard fault. 280 */ 281 if (io->status 282 && (io->status != -ECONNRESET 283 || urb->status != -ECONNRESET) 284 && urb->actual_length) { 285 dev_err (io->dev->bus->controller, 286 "dev %s ep%d%s scatterlist error %d/%d\n", 287 io->dev->devpath, 288 usb_pipeendpoint (urb->pipe), 289 usb_pipein (urb->pipe) ? "in" : "out", 290 urb->status, io->status); 291 // BUG (); 292 } 293 294 if (io->status == 0 && urb->status && urb->status != -ECONNRESET) { 295 int i, found, status; 296 297 io->status = urb->status; 298 299 /* the previous urbs, and this one, completed already. 300 * unlink pending urbs so they won't rx/tx bad data. 301 * careful: unlink can sometimes be synchronous... 302 */ 303 spin_unlock (&io->lock); 304 for (i = 0, found = 0; i < io->entries; i++) { 305 if (!io->urbs [i] || !io->urbs [i]->dev) 306 continue; 307 if (found) { 308 status = usb_unlink_urb (io->urbs [i]); 309 if (status != -EINPROGRESS 310 && status != -ENODEV 311 && status != -EBUSY) 312 dev_err (&io->dev->dev, 313 "%s, unlink --> %d\n", 314 __FUNCTION__, status); 315 } else if (urb == io->urbs [i]) 316 found = 1; 317 } 318 spin_lock (&io->lock); 319 } 320 urb->dev = NULL; 321 322 /* on the last completion, signal usb_sg_wait() */ 323 io->bytes += urb->actual_length; 324 io->count--; 325 if (!io->count) 326 complete (&io->complete); 327 328 spin_unlock (&io->lock); 329 } 330 331 332 /** 333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 334 * @io: request block being initialized. until usb_sg_wait() returns, 335 * treat this as a pointer to an opaque block of memory, 336 * @dev: the usb device that will send or receive the data 337 * @pipe: endpoint "pipe" used to transfer the data 338 * @period: polling rate for interrupt endpoints, in frames or 339 * (for high speed endpoints) microframes; ignored for bulk 340 * @sg: scatterlist entries 341 * @nents: how many entries in the scatterlist 342 * @length: how many bytes to send from the scatterlist, or zero to 343 * send every byte identified in the list. 344 * @mem_flags: SLAB_* flags affecting memory allocations in this call 345 * 346 * Returns zero for success, else a negative errno value. This initializes a 347 * scatter/gather request, allocating resources such as I/O mappings and urb 348 * memory (except maybe memory used by USB controller drivers). 349 * 350 * The request must be issued using usb_sg_wait(), which waits for the I/O to 351 * complete (or to be canceled) and then cleans up all resources allocated by 352 * usb_sg_init(). 353 * 354 * The request may be canceled with usb_sg_cancel(), either before or after 355 * usb_sg_wait() is called. 356 */ 357 int usb_sg_init ( 358 struct usb_sg_request *io, 359 struct usb_device *dev, 360 unsigned pipe, 361 unsigned period, 362 struct scatterlist *sg, 363 int nents, 364 size_t length, 365 gfp_t mem_flags 366 ) 367 { 368 int i; 369 int urb_flags; 370 int dma; 371 372 if (!io || !dev || !sg 373 || usb_pipecontrol (pipe) 374 || usb_pipeisoc (pipe) 375 || nents <= 0) 376 return -EINVAL; 377 378 spin_lock_init (&io->lock); 379 io->dev = dev; 380 io->pipe = pipe; 381 io->sg = sg; 382 io->nents = nents; 383 384 /* not all host controllers use DMA (like the mainstream pci ones); 385 * they can use PIO (sl811) or be software over another transport. 386 */ 387 dma = (dev->dev.dma_mask != NULL); 388 if (dma) 389 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents); 390 else 391 io->entries = nents; 392 393 /* initialize all the urbs we'll use */ 394 if (io->entries <= 0) 395 return io->entries; 396 397 io->count = io->entries; 398 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags); 399 if (!io->urbs) 400 goto nomem; 401 402 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT; 403 if (usb_pipein (pipe)) 404 urb_flags |= URB_SHORT_NOT_OK; 405 406 for (i = 0; i < io->entries; i++) { 407 unsigned len; 408 409 io->urbs [i] = usb_alloc_urb (0, mem_flags); 410 if (!io->urbs [i]) { 411 io->entries = i; 412 goto nomem; 413 } 414 415 io->urbs [i]->dev = NULL; 416 io->urbs [i]->pipe = pipe; 417 io->urbs [i]->interval = period; 418 io->urbs [i]->transfer_flags = urb_flags; 419 420 io->urbs [i]->complete = sg_complete; 421 io->urbs [i]->context = io; 422 io->urbs [i]->status = -EINPROGRESS; 423 io->urbs [i]->actual_length = 0; 424 425 if (dma) { 426 /* hc may use _only_ transfer_dma */ 427 io->urbs [i]->transfer_dma = sg_dma_address (sg + i); 428 len = sg_dma_len (sg + i); 429 } else { 430 /* hc may use _only_ transfer_buffer */ 431 io->urbs [i]->transfer_buffer = 432 page_address (sg [i].page) + sg [i].offset; 433 len = sg [i].length; 434 } 435 436 if (length) { 437 len = min_t (unsigned, len, length); 438 length -= len; 439 if (length == 0) 440 io->entries = i + 1; 441 } 442 io->urbs [i]->transfer_buffer_length = len; 443 } 444 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT; 445 446 /* transaction state */ 447 io->status = 0; 448 io->bytes = 0; 449 init_completion (&io->complete); 450 return 0; 451 452 nomem: 453 sg_clean (io); 454 return -ENOMEM; 455 } 456 457 458 /** 459 * usb_sg_wait - synchronously execute scatter/gather request 460 * @io: request block handle, as initialized with usb_sg_init(). 461 * some fields become accessible when this call returns. 462 * Context: !in_interrupt () 463 * 464 * This function blocks until the specified I/O operation completes. It 465 * leverages the grouping of the related I/O requests to get good transfer 466 * rates, by queueing the requests. At higher speeds, such queuing can 467 * significantly improve USB throughput. 468 * 469 * There are three kinds of completion for this function. 470 * (1) success, where io->status is zero. The number of io->bytes 471 * transferred is as requested. 472 * (2) error, where io->status is a negative errno value. The number 473 * of io->bytes transferred before the error is usually less 474 * than requested, and can be nonzero. 475 * (3) cancellation, a type of error with status -ECONNRESET that 476 * is initiated by usb_sg_cancel(). 477 * 478 * When this function returns, all memory allocated through usb_sg_init() or 479 * this call will have been freed. The request block parameter may still be 480 * passed to usb_sg_cancel(), or it may be freed. It could also be 481 * reinitialized and then reused. 482 * 483 * Data Transfer Rates: 484 * 485 * Bulk transfers are valid for full or high speed endpoints. 486 * The best full speed data rate is 19 packets of 64 bytes each 487 * per frame, or 1216 bytes per millisecond. 488 * The best high speed data rate is 13 packets of 512 bytes each 489 * per microframe, or 52 KBytes per millisecond. 490 * 491 * The reason to use interrupt transfers through this API would most likely 492 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 493 * could be transferred. That capability is less useful for low or full 494 * speed interrupt endpoints, which allow at most one packet per millisecond, 495 * of at most 8 or 64 bytes (respectively). 496 */ 497 void usb_sg_wait (struct usb_sg_request *io) 498 { 499 int i, entries = io->entries; 500 501 /* queue the urbs. */ 502 spin_lock_irq (&io->lock); 503 for (i = 0; i < entries && !io->status; i++) { 504 int retval; 505 506 io->urbs [i]->dev = io->dev; 507 retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC); 508 509 /* after we submit, let completions or cancelations fire; 510 * we handshake using io->status. 511 */ 512 spin_unlock_irq (&io->lock); 513 switch (retval) { 514 /* maybe we retrying will recover */ 515 case -ENXIO: // hc didn't queue this one 516 case -EAGAIN: 517 case -ENOMEM: 518 io->urbs[i]->dev = NULL; 519 retval = 0; 520 i--; 521 yield (); 522 break; 523 524 /* no error? continue immediately. 525 * 526 * NOTE: to work better with UHCI (4K I/O buffer may 527 * need 3K of TDs) it may be good to limit how many 528 * URBs are queued at once; N milliseconds? 529 */ 530 case 0: 531 cpu_relax (); 532 break; 533 534 /* fail any uncompleted urbs */ 535 default: 536 io->urbs [i]->dev = NULL; 537 io->urbs [i]->status = retval; 538 dev_dbg (&io->dev->dev, "%s, submit --> %d\n", 539 __FUNCTION__, retval); 540 usb_sg_cancel (io); 541 } 542 spin_lock_irq (&io->lock); 543 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 544 io->status = retval; 545 } 546 io->count -= entries - i; 547 if (io->count == 0) 548 complete (&io->complete); 549 spin_unlock_irq (&io->lock); 550 551 /* OK, yes, this could be packaged as non-blocking. 552 * So could the submit loop above ... but it's easier to 553 * solve neither problem than to solve both! 554 */ 555 wait_for_completion (&io->complete); 556 557 sg_clean (io); 558 } 559 560 /** 561 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 562 * @io: request block, initialized with usb_sg_init() 563 * 564 * This stops a request after it has been started by usb_sg_wait(). 565 * It can also prevents one initialized by usb_sg_init() from starting, 566 * so that call just frees resources allocated to the request. 567 */ 568 void usb_sg_cancel (struct usb_sg_request *io) 569 { 570 unsigned long flags; 571 572 spin_lock_irqsave (&io->lock, flags); 573 574 /* shut everything down, if it didn't already */ 575 if (!io->status) { 576 int i; 577 578 io->status = -ECONNRESET; 579 spin_unlock (&io->lock); 580 for (i = 0; i < io->entries; i++) { 581 int retval; 582 583 if (!io->urbs [i]->dev) 584 continue; 585 retval = usb_unlink_urb (io->urbs [i]); 586 if (retval != -EINPROGRESS && retval != -EBUSY) 587 dev_warn (&io->dev->dev, "%s, unlink --> %d\n", 588 __FUNCTION__, retval); 589 } 590 spin_lock (&io->lock); 591 } 592 spin_unlock_irqrestore (&io->lock, flags); 593 } 594 595 /*-------------------------------------------------------------------*/ 596 597 /** 598 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 599 * @dev: the device whose descriptor is being retrieved 600 * @type: the descriptor type (USB_DT_*) 601 * @index: the number of the descriptor 602 * @buf: where to put the descriptor 603 * @size: how big is "buf"? 604 * Context: !in_interrupt () 605 * 606 * Gets a USB descriptor. Convenience functions exist to simplify 607 * getting some types of descriptors. Use 608 * usb_get_string() or usb_string() for USB_DT_STRING. 609 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 610 * are part of the device structure. 611 * In addition to a number of USB-standard descriptors, some 612 * devices also use class-specific or vendor-specific descriptors. 613 * 614 * This call is synchronous, and may not be used in an interrupt context. 615 * 616 * Returns the number of bytes received on success, or else the status code 617 * returned by the underlying usb_control_msg() call. 618 */ 619 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) 620 { 621 int i; 622 int result; 623 624 memset(buf,0,size); // Make sure we parse really received data 625 626 for (i = 0; i < 3; ++i) { 627 /* retry on length 0 or stall; some devices are flakey */ 628 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 629 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 630 (type << 8) + index, 0, buf, size, 631 USB_CTRL_GET_TIMEOUT); 632 if (result == 0 || result == -EPIPE) 633 continue; 634 if (result > 1 && ((u8 *)buf)[1] != type) { 635 result = -EPROTO; 636 continue; 637 } 638 break; 639 } 640 return result; 641 } 642 643 /** 644 * usb_get_string - gets a string descriptor 645 * @dev: the device whose string descriptor is being retrieved 646 * @langid: code for language chosen (from string descriptor zero) 647 * @index: the number of the descriptor 648 * @buf: where to put the string 649 * @size: how big is "buf"? 650 * Context: !in_interrupt () 651 * 652 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 653 * in little-endian byte order). 654 * The usb_string() function will often be a convenient way to turn 655 * these strings into kernel-printable form. 656 * 657 * Strings may be referenced in device, configuration, interface, or other 658 * descriptors, and could also be used in vendor-specific ways. 659 * 660 * This call is synchronous, and may not be used in an interrupt context. 661 * 662 * Returns the number of bytes received on success, or else the status code 663 * returned by the underlying usb_control_msg() call. 664 */ 665 static int usb_get_string(struct usb_device *dev, unsigned short langid, 666 unsigned char index, void *buf, int size) 667 { 668 int i; 669 int result; 670 671 for (i = 0; i < 3; ++i) { 672 /* retry on length 0 or stall; some devices are flakey */ 673 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 674 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 675 (USB_DT_STRING << 8) + index, langid, buf, size, 676 USB_CTRL_GET_TIMEOUT); 677 if (!(result == 0 || result == -EPIPE)) 678 break; 679 } 680 return result; 681 } 682 683 static void usb_try_string_workarounds(unsigned char *buf, int *length) 684 { 685 int newlength, oldlength = *length; 686 687 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 688 if (!isprint(buf[newlength]) || buf[newlength + 1]) 689 break; 690 691 if (newlength > 2) { 692 buf[0] = newlength; 693 *length = newlength; 694 } 695 } 696 697 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 698 unsigned int index, unsigned char *buf) 699 { 700 int rc; 701 702 /* Try to read the string descriptor by asking for the maximum 703 * possible number of bytes */ 704 rc = usb_get_string(dev, langid, index, buf, 255); 705 706 /* If that failed try to read the descriptor length, then 707 * ask for just that many bytes */ 708 if (rc < 2) { 709 rc = usb_get_string(dev, langid, index, buf, 2); 710 if (rc == 2) 711 rc = usb_get_string(dev, langid, index, buf, buf[0]); 712 } 713 714 if (rc >= 2) { 715 if (!buf[0] && !buf[1]) 716 usb_try_string_workarounds(buf, &rc); 717 718 /* There might be extra junk at the end of the descriptor */ 719 if (buf[0] < rc) 720 rc = buf[0]; 721 722 rc = rc - (rc & 1); /* force a multiple of two */ 723 } 724 725 if (rc < 2) 726 rc = (rc < 0 ? rc : -EINVAL); 727 728 return rc; 729 } 730 731 /** 732 * usb_string - returns ISO 8859-1 version of a string descriptor 733 * @dev: the device whose string descriptor is being retrieved 734 * @index: the number of the descriptor 735 * @buf: where to put the string 736 * @size: how big is "buf"? 737 * Context: !in_interrupt () 738 * 739 * This converts the UTF-16LE encoded strings returned by devices, from 740 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 741 * that are more usable in most kernel contexts. Note that all characters 742 * in the chosen descriptor that can't be encoded using ISO-8859-1 743 * are converted to the question mark ("?") character, and this function 744 * chooses strings in the first language supported by the device. 745 * 746 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 747 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 748 * and is appropriate for use many uses of English and several other 749 * Western European languages. (But it doesn't include the "Euro" symbol.) 750 * 751 * This call is synchronous, and may not be used in an interrupt context. 752 * 753 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 754 */ 755 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 756 { 757 unsigned char *tbuf; 758 int err; 759 unsigned int u, idx; 760 761 if (dev->state == USB_STATE_SUSPENDED) 762 return -EHOSTUNREACH; 763 if (size <= 0 || !buf || !index) 764 return -EINVAL; 765 buf[0] = 0; 766 tbuf = kmalloc(256, GFP_KERNEL); 767 if (!tbuf) 768 return -ENOMEM; 769 770 /* get langid for strings if it's not yet known */ 771 if (!dev->have_langid) { 772 err = usb_string_sub(dev, 0, 0, tbuf); 773 if (err < 0) { 774 dev_err (&dev->dev, 775 "string descriptor 0 read error: %d\n", 776 err); 777 goto errout; 778 } else if (err < 4) { 779 dev_err (&dev->dev, "string descriptor 0 too short\n"); 780 err = -EINVAL; 781 goto errout; 782 } else { 783 dev->have_langid = -1; 784 dev->string_langid = tbuf[2] | (tbuf[3]<< 8); 785 /* always use the first langid listed */ 786 dev_dbg (&dev->dev, "default language 0x%04x\n", 787 dev->string_langid); 788 } 789 } 790 791 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 792 if (err < 0) 793 goto errout; 794 795 size--; /* leave room for trailing NULL char in output buffer */ 796 for (idx = 0, u = 2; u < err; u += 2) { 797 if (idx >= size) 798 break; 799 if (tbuf[u+1]) /* high byte */ 800 buf[idx++] = '?'; /* non ISO-8859-1 character */ 801 else 802 buf[idx++] = tbuf[u]; 803 } 804 buf[idx] = 0; 805 err = idx; 806 807 if (tbuf[1] != USB_DT_STRING) 808 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf); 809 810 errout: 811 kfree(tbuf); 812 return err; 813 } 814 815 /** 816 * usb_cache_string - read a string descriptor and cache it for later use 817 * @udev: the device whose string descriptor is being read 818 * @index: the descriptor index 819 * 820 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 821 * or NULL if the index is 0 or the string could not be read. 822 */ 823 char *usb_cache_string(struct usb_device *udev, int index) 824 { 825 char *buf; 826 char *smallbuf = NULL; 827 int len; 828 829 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) { 830 if ((len = usb_string(udev, index, buf, 256)) > 0) { 831 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL) 832 return buf; 833 memcpy(smallbuf, buf, len); 834 } 835 kfree(buf); 836 } 837 return smallbuf; 838 } 839 840 /* 841 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 842 * @dev: the device whose device descriptor is being updated 843 * @size: how much of the descriptor to read 844 * Context: !in_interrupt () 845 * 846 * Updates the copy of the device descriptor stored in the device structure, 847 * which dedicates space for this purpose. Note that several fields are 848 * converted to the host CPU's byte order: the USB version (bcdUSB), and 849 * vendors product and version fields (idVendor, idProduct, and bcdDevice). 850 * That lets device drivers compare against non-byteswapped constants. 851 * 852 * Not exported, only for use by the core. If drivers really want to read 853 * the device descriptor directly, they can call usb_get_descriptor() with 854 * type = USB_DT_DEVICE and index = 0. 855 * 856 * This call is synchronous, and may not be used in an interrupt context. 857 * 858 * Returns the number of bytes received on success, or else the status code 859 * returned by the underlying usb_control_msg() call. 860 */ 861 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 862 { 863 struct usb_device_descriptor *desc; 864 int ret; 865 866 if (size > sizeof(*desc)) 867 return -EINVAL; 868 desc = kmalloc(sizeof(*desc), GFP_NOIO); 869 if (!desc) 870 return -ENOMEM; 871 872 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 873 if (ret >= 0) 874 memcpy(&dev->descriptor, desc, size); 875 kfree(desc); 876 return ret; 877 } 878 879 /** 880 * usb_get_status - issues a GET_STATUS call 881 * @dev: the device whose status is being checked 882 * @type: USB_RECIP_*; for device, interface, or endpoint 883 * @target: zero (for device), else interface or endpoint number 884 * @data: pointer to two bytes of bitmap data 885 * Context: !in_interrupt () 886 * 887 * Returns device, interface, or endpoint status. Normally only of 888 * interest to see if the device is self powered, or has enabled the 889 * remote wakeup facility; or whether a bulk or interrupt endpoint 890 * is halted ("stalled"). 891 * 892 * Bits in these status bitmaps are set using the SET_FEATURE request, 893 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 894 * function should be used to clear halt ("stall") status. 895 * 896 * This call is synchronous, and may not be used in an interrupt context. 897 * 898 * Returns the number of bytes received on success, or else the status code 899 * returned by the underlying usb_control_msg() call. 900 */ 901 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 902 { 903 int ret; 904 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 905 906 if (!status) 907 return -ENOMEM; 908 909 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 910 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 911 sizeof(*status), USB_CTRL_GET_TIMEOUT); 912 913 *(u16 *)data = *status; 914 kfree(status); 915 return ret; 916 } 917 918 /** 919 * usb_clear_halt - tells device to clear endpoint halt/stall condition 920 * @dev: device whose endpoint is halted 921 * @pipe: endpoint "pipe" being cleared 922 * Context: !in_interrupt () 923 * 924 * This is used to clear halt conditions for bulk and interrupt endpoints, 925 * as reported by URB completion status. Endpoints that are halted are 926 * sometimes referred to as being "stalled". Such endpoints are unable 927 * to transmit or receive data until the halt status is cleared. Any URBs 928 * queued for such an endpoint should normally be unlinked by the driver 929 * before clearing the halt condition, as described in sections 5.7.5 930 * and 5.8.5 of the USB 2.0 spec. 931 * 932 * Note that control and isochronous endpoints don't halt, although control 933 * endpoints report "protocol stall" (for unsupported requests) using the 934 * same status code used to report a true stall. 935 * 936 * This call is synchronous, and may not be used in an interrupt context. 937 * 938 * Returns zero on success, or else the status code returned by the 939 * underlying usb_control_msg() call. 940 */ 941 int usb_clear_halt(struct usb_device *dev, int pipe) 942 { 943 int result; 944 int endp = usb_pipeendpoint(pipe); 945 946 if (usb_pipein (pipe)) 947 endp |= USB_DIR_IN; 948 949 /* we don't care if it wasn't halted first. in fact some devices 950 * (like some ibmcam model 1 units) seem to expect hosts to make 951 * this request for iso endpoints, which can't halt! 952 */ 953 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 954 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 955 USB_ENDPOINT_HALT, endp, NULL, 0, 956 USB_CTRL_SET_TIMEOUT); 957 958 /* don't un-halt or force to DATA0 except on success */ 959 if (result < 0) 960 return result; 961 962 /* NOTE: seems like Microsoft and Apple don't bother verifying 963 * the clear "took", so some devices could lock up if you check... 964 * such as the Hagiwara FlashGate DUAL. So we won't bother. 965 * 966 * NOTE: make sure the logic here doesn't diverge much from 967 * the copy in usb-storage, for as long as we need two copies. 968 */ 969 970 /* toggle was reset by the clear */ 971 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 972 973 return 0; 974 } 975 976 /** 977 * usb_disable_endpoint -- Disable an endpoint by address 978 * @dev: the device whose endpoint is being disabled 979 * @epaddr: the endpoint's address. Endpoint number for output, 980 * endpoint number + USB_DIR_IN for input 981 * 982 * Deallocates hcd/hardware state for this endpoint ... and nukes all 983 * pending urbs. 984 * 985 * If the HCD hasn't registered a disable() function, this sets the 986 * endpoint's maxpacket size to 0 to prevent further submissions. 987 */ 988 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 989 { 990 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 991 struct usb_host_endpoint *ep; 992 993 if (!dev) 994 return; 995 996 if (usb_endpoint_out(epaddr)) { 997 ep = dev->ep_out[epnum]; 998 dev->ep_out[epnum] = NULL; 999 } else { 1000 ep = dev->ep_in[epnum]; 1001 dev->ep_in[epnum] = NULL; 1002 } 1003 if (ep && dev->bus && dev->bus->op && dev->bus->op->disable) 1004 dev->bus->op->disable(dev, ep); 1005 } 1006 1007 /** 1008 * usb_disable_interface -- Disable all endpoints for an interface 1009 * @dev: the device whose interface is being disabled 1010 * @intf: pointer to the interface descriptor 1011 * 1012 * Disables all the endpoints for the interface's current altsetting. 1013 */ 1014 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 1015 { 1016 struct usb_host_interface *alt = intf->cur_altsetting; 1017 int i; 1018 1019 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1020 usb_disable_endpoint(dev, 1021 alt->endpoint[i].desc.bEndpointAddress); 1022 } 1023 } 1024 1025 /* 1026 * usb_disable_device - Disable all the endpoints for a USB device 1027 * @dev: the device whose endpoints are being disabled 1028 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1029 * 1030 * Disables all the device's endpoints, potentially including endpoint 0. 1031 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1032 * pending urbs) and usbcore state for the interfaces, so that usbcore 1033 * must usb_set_configuration() before any interfaces could be used. 1034 */ 1035 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1036 { 1037 int i; 1038 1039 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__, 1040 skip_ep0 ? "non-ep0" : "all"); 1041 for (i = skip_ep0; i < 16; ++i) { 1042 usb_disable_endpoint(dev, i); 1043 usb_disable_endpoint(dev, i + USB_DIR_IN); 1044 } 1045 dev->toggle[0] = dev->toggle[1] = 0; 1046 1047 /* getting rid of interfaces will disconnect 1048 * any drivers bound to them (a key side effect) 1049 */ 1050 if (dev->actconfig) { 1051 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1052 struct usb_interface *interface; 1053 1054 /* remove this interface if it has been registered */ 1055 interface = dev->actconfig->interface[i]; 1056 if (!device_is_registered(&interface->dev)) 1057 continue; 1058 dev_dbg (&dev->dev, "unregistering interface %s\n", 1059 interface->dev.bus_id); 1060 usb_remove_sysfs_intf_files(interface); 1061 device_del (&interface->dev); 1062 } 1063 1064 /* Now that the interfaces are unbound, nobody should 1065 * try to access them. 1066 */ 1067 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1068 put_device (&dev->actconfig->interface[i]->dev); 1069 dev->actconfig->interface[i] = NULL; 1070 } 1071 dev->actconfig = NULL; 1072 if (dev->state == USB_STATE_CONFIGURED) 1073 usb_set_device_state(dev, USB_STATE_ADDRESS); 1074 } 1075 } 1076 1077 1078 /* 1079 * usb_enable_endpoint - Enable an endpoint for USB communications 1080 * @dev: the device whose interface is being enabled 1081 * @ep: the endpoint 1082 * 1083 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1084 * For control endpoints, both the input and output sides are handled. 1085 */ 1086 static void 1087 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1088 { 1089 unsigned int epaddr = ep->desc.bEndpointAddress; 1090 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1091 int is_control; 1092 1093 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) 1094 == USB_ENDPOINT_XFER_CONTROL); 1095 if (usb_endpoint_out(epaddr) || is_control) { 1096 usb_settoggle(dev, epnum, 1, 0); 1097 dev->ep_out[epnum] = ep; 1098 } 1099 if (!usb_endpoint_out(epaddr) || is_control) { 1100 usb_settoggle(dev, epnum, 0, 0); 1101 dev->ep_in[epnum] = ep; 1102 } 1103 } 1104 1105 /* 1106 * usb_enable_interface - Enable all the endpoints for an interface 1107 * @dev: the device whose interface is being enabled 1108 * @intf: pointer to the interface descriptor 1109 * 1110 * Enables all the endpoints for the interface's current altsetting. 1111 */ 1112 static void usb_enable_interface(struct usb_device *dev, 1113 struct usb_interface *intf) 1114 { 1115 struct usb_host_interface *alt = intf->cur_altsetting; 1116 int i; 1117 1118 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1119 usb_enable_endpoint(dev, &alt->endpoint[i]); 1120 } 1121 1122 /** 1123 * usb_set_interface - Makes a particular alternate setting be current 1124 * @dev: the device whose interface is being updated 1125 * @interface: the interface being updated 1126 * @alternate: the setting being chosen. 1127 * Context: !in_interrupt () 1128 * 1129 * This is used to enable data transfers on interfaces that may not 1130 * be enabled by default. Not all devices support such configurability. 1131 * Only the driver bound to an interface may change its setting. 1132 * 1133 * Within any given configuration, each interface may have several 1134 * alternative settings. These are often used to control levels of 1135 * bandwidth consumption. For example, the default setting for a high 1136 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1137 * while interrupt transfers of up to 3KBytes per microframe are legal. 1138 * Also, isochronous endpoints may never be part of an 1139 * interface's default setting. To access such bandwidth, alternate 1140 * interface settings must be made current. 1141 * 1142 * Note that in the Linux USB subsystem, bandwidth associated with 1143 * an endpoint in a given alternate setting is not reserved until an URB 1144 * is submitted that needs that bandwidth. Some other operating systems 1145 * allocate bandwidth early, when a configuration is chosen. 1146 * 1147 * This call is synchronous, and may not be used in an interrupt context. 1148 * Also, drivers must not change altsettings while urbs are scheduled for 1149 * endpoints in that interface; all such urbs must first be completed 1150 * (perhaps forced by unlinking). 1151 * 1152 * Returns zero on success, or else the status code returned by the 1153 * underlying usb_control_msg() call. 1154 */ 1155 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1156 { 1157 struct usb_interface *iface; 1158 struct usb_host_interface *alt; 1159 int ret; 1160 int manual = 0; 1161 1162 if (dev->state == USB_STATE_SUSPENDED) 1163 return -EHOSTUNREACH; 1164 1165 iface = usb_ifnum_to_if(dev, interface); 1166 if (!iface) { 1167 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1168 interface); 1169 return -EINVAL; 1170 } 1171 1172 alt = usb_altnum_to_altsetting(iface, alternate); 1173 if (!alt) { 1174 warn("selecting invalid altsetting %d", alternate); 1175 return -EINVAL; 1176 } 1177 1178 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1179 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1180 alternate, interface, NULL, 0, 5000); 1181 1182 /* 9.4.10 says devices don't need this and are free to STALL the 1183 * request if the interface only has one alternate setting. 1184 */ 1185 if (ret == -EPIPE && iface->num_altsetting == 1) { 1186 dev_dbg(&dev->dev, 1187 "manual set_interface for iface %d, alt %d\n", 1188 interface, alternate); 1189 manual = 1; 1190 } else if (ret < 0) 1191 return ret; 1192 1193 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1194 * when they implement async or easily-killable versions of this or 1195 * other "should-be-internal" functions (like clear_halt). 1196 * should hcd+usbcore postprocess control requests? 1197 */ 1198 1199 /* prevent submissions using previous endpoint settings */ 1200 if (device_is_registered(&iface->dev)) 1201 usb_remove_sysfs_intf_files(iface); 1202 usb_disable_interface(dev, iface); 1203 1204 iface->cur_altsetting = alt; 1205 1206 /* If the interface only has one altsetting and the device didn't 1207 * accept the request, we attempt to carry out the equivalent action 1208 * by manually clearing the HALT feature for each endpoint in the 1209 * new altsetting. 1210 */ 1211 if (manual) { 1212 int i; 1213 1214 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1215 unsigned int epaddr = 1216 alt->endpoint[i].desc.bEndpointAddress; 1217 unsigned int pipe = 1218 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr) 1219 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN); 1220 1221 usb_clear_halt(dev, pipe); 1222 } 1223 } 1224 1225 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1226 * 1227 * Note: 1228 * Despite EP0 is always present in all interfaces/AS, the list of 1229 * endpoints from the descriptor does not contain EP0. Due to its 1230 * omnipresence one might expect EP0 being considered "affected" by 1231 * any SetInterface request and hence assume toggles need to be reset. 1232 * However, EP0 toggles are re-synced for every individual transfer 1233 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1234 * (Likewise, EP0 never "halts" on well designed devices.) 1235 */ 1236 usb_enable_interface(dev, iface); 1237 if (device_is_registered(&iface->dev)) 1238 usb_create_sysfs_intf_files(iface); 1239 1240 return 0; 1241 } 1242 1243 /** 1244 * usb_reset_configuration - lightweight device reset 1245 * @dev: the device whose configuration is being reset 1246 * 1247 * This issues a standard SET_CONFIGURATION request to the device using 1248 * the current configuration. The effect is to reset most USB-related 1249 * state in the device, including interface altsettings (reset to zero), 1250 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1251 * endpoints). Other usbcore state is unchanged, including bindings of 1252 * usb device drivers to interfaces. 1253 * 1254 * Because this affects multiple interfaces, avoid using this with composite 1255 * (multi-interface) devices. Instead, the driver for each interface may 1256 * use usb_set_interface() on the interfaces it claims. Be careful though; 1257 * some devices don't support the SET_INTERFACE request, and others won't 1258 * reset all the interface state (notably data toggles). Resetting the whole 1259 * configuration would affect other drivers' interfaces. 1260 * 1261 * The caller must own the device lock. 1262 * 1263 * Returns zero on success, else a negative error code. 1264 */ 1265 int usb_reset_configuration(struct usb_device *dev) 1266 { 1267 int i, retval; 1268 struct usb_host_config *config; 1269 1270 if (dev->state == USB_STATE_SUSPENDED) 1271 return -EHOSTUNREACH; 1272 1273 /* caller must have locked the device and must own 1274 * the usb bus readlock (so driver bindings are stable); 1275 * calls during probe() are fine 1276 */ 1277 1278 for (i = 1; i < 16; ++i) { 1279 usb_disable_endpoint(dev, i); 1280 usb_disable_endpoint(dev, i + USB_DIR_IN); 1281 } 1282 1283 config = dev->actconfig; 1284 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1285 USB_REQ_SET_CONFIGURATION, 0, 1286 config->desc.bConfigurationValue, 0, 1287 NULL, 0, USB_CTRL_SET_TIMEOUT); 1288 if (retval < 0) 1289 return retval; 1290 1291 dev->toggle[0] = dev->toggle[1] = 0; 1292 1293 /* re-init hc/hcd interface/endpoint state */ 1294 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1295 struct usb_interface *intf = config->interface[i]; 1296 struct usb_host_interface *alt; 1297 1298 if (device_is_registered(&intf->dev)) 1299 usb_remove_sysfs_intf_files(intf); 1300 alt = usb_altnum_to_altsetting(intf, 0); 1301 1302 /* No altsetting 0? We'll assume the first altsetting. 1303 * We could use a GetInterface call, but if a device is 1304 * so non-compliant that it doesn't have altsetting 0 1305 * then I wouldn't trust its reply anyway. 1306 */ 1307 if (!alt) 1308 alt = &intf->altsetting[0]; 1309 1310 intf->cur_altsetting = alt; 1311 usb_enable_interface(dev, intf); 1312 if (device_is_registered(&intf->dev)) 1313 usb_create_sysfs_intf_files(intf); 1314 } 1315 return 0; 1316 } 1317 1318 static void release_interface(struct device *dev) 1319 { 1320 struct usb_interface *intf = to_usb_interface(dev); 1321 struct usb_interface_cache *intfc = 1322 altsetting_to_usb_interface_cache(intf->altsetting); 1323 1324 kref_put(&intfc->ref, usb_release_interface_cache); 1325 kfree(intf); 1326 } 1327 1328 /* 1329 * usb_set_configuration - Makes a particular device setting be current 1330 * @dev: the device whose configuration is being updated 1331 * @configuration: the configuration being chosen. 1332 * Context: !in_interrupt(), caller owns the device lock 1333 * 1334 * This is used to enable non-default device modes. Not all devices 1335 * use this kind of configurability; many devices only have one 1336 * configuration. 1337 * 1338 * USB device configurations may affect Linux interoperability, 1339 * power consumption and the functionality available. For example, 1340 * the default configuration is limited to using 100mA of bus power, 1341 * so that when certain device functionality requires more power, 1342 * and the device is bus powered, that functionality should be in some 1343 * non-default device configuration. Other device modes may also be 1344 * reflected as configuration options, such as whether two ISDN 1345 * channels are available independently; and choosing between open 1346 * standard device protocols (like CDC) or proprietary ones. 1347 * 1348 * Note that USB has an additional level of device configurability, 1349 * associated with interfaces. That configurability is accessed using 1350 * usb_set_interface(). 1351 * 1352 * This call is synchronous. The calling context must be able to sleep, 1353 * must own the device lock, and must not hold the driver model's USB 1354 * bus rwsem; usb device driver probe() methods cannot use this routine. 1355 * 1356 * Returns zero on success, or else the status code returned by the 1357 * underlying call that failed. On successful completion, each interface 1358 * in the original device configuration has been destroyed, and each one 1359 * in the new configuration has been probed by all relevant usb device 1360 * drivers currently known to the kernel. 1361 */ 1362 int usb_set_configuration(struct usb_device *dev, int configuration) 1363 { 1364 int i, ret; 1365 struct usb_host_config *cp = NULL; 1366 struct usb_interface **new_interfaces = NULL; 1367 int n, nintf; 1368 1369 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1370 if (dev->config[i].desc.bConfigurationValue == configuration) { 1371 cp = &dev->config[i]; 1372 break; 1373 } 1374 } 1375 if ((!cp && configuration != 0)) 1376 return -EINVAL; 1377 1378 /* The USB spec says configuration 0 means unconfigured. 1379 * But if a device includes a configuration numbered 0, 1380 * we will accept it as a correctly configured state. 1381 */ 1382 if (cp && configuration == 0) 1383 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1384 1385 if (dev->state == USB_STATE_SUSPENDED) 1386 return -EHOSTUNREACH; 1387 1388 /* Allocate memory for new interfaces before doing anything else, 1389 * so that if we run out then nothing will have changed. */ 1390 n = nintf = 0; 1391 if (cp) { 1392 nintf = cp->desc.bNumInterfaces; 1393 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1394 GFP_KERNEL); 1395 if (!new_interfaces) { 1396 dev_err(&dev->dev, "Out of memory"); 1397 return -ENOMEM; 1398 } 1399 1400 for (; n < nintf; ++n) { 1401 new_interfaces[n] = kzalloc( 1402 sizeof(struct usb_interface), 1403 GFP_KERNEL); 1404 if (!new_interfaces[n]) { 1405 dev_err(&dev->dev, "Out of memory"); 1406 ret = -ENOMEM; 1407 free_interfaces: 1408 while (--n >= 0) 1409 kfree(new_interfaces[n]); 1410 kfree(new_interfaces); 1411 return ret; 1412 } 1413 } 1414 1415 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1416 if (i < 0) 1417 dev_warn(&dev->dev, "new config #%d exceeds power " 1418 "limit by %dmA\n", 1419 configuration, -i); 1420 } 1421 1422 /* if it's already configured, clear out old state first. 1423 * getting rid of old interfaces means unbinding their drivers. 1424 */ 1425 if (dev->state != USB_STATE_ADDRESS) 1426 usb_disable_device (dev, 1); // Skip ep0 1427 1428 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1429 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1430 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) { 1431 1432 /* All the old state is gone, so what else can we do? 1433 * The device is probably useless now anyway. 1434 */ 1435 cp = NULL; 1436 } 1437 1438 dev->actconfig = cp; 1439 if (!cp) { 1440 usb_set_device_state(dev, USB_STATE_ADDRESS); 1441 goto free_interfaces; 1442 } 1443 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1444 1445 /* Initialize the new interface structures and the 1446 * hc/hcd/usbcore interface/endpoint state. 1447 */ 1448 for (i = 0; i < nintf; ++i) { 1449 struct usb_interface_cache *intfc; 1450 struct usb_interface *intf; 1451 struct usb_host_interface *alt; 1452 1453 cp->interface[i] = intf = new_interfaces[i]; 1454 intfc = cp->intf_cache[i]; 1455 intf->altsetting = intfc->altsetting; 1456 intf->num_altsetting = intfc->num_altsetting; 1457 kref_get(&intfc->ref); 1458 1459 alt = usb_altnum_to_altsetting(intf, 0); 1460 1461 /* No altsetting 0? We'll assume the first altsetting. 1462 * We could use a GetInterface call, but if a device is 1463 * so non-compliant that it doesn't have altsetting 0 1464 * then I wouldn't trust its reply anyway. 1465 */ 1466 if (!alt) 1467 alt = &intf->altsetting[0]; 1468 1469 intf->cur_altsetting = alt; 1470 usb_enable_interface(dev, intf); 1471 intf->dev.parent = &dev->dev; 1472 intf->dev.driver = NULL; 1473 intf->dev.bus = &usb_bus_type; 1474 intf->dev.dma_mask = dev->dev.dma_mask; 1475 intf->dev.release = release_interface; 1476 device_initialize (&intf->dev); 1477 mark_quiesced(intf); 1478 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d", 1479 dev->bus->busnum, dev->devpath, 1480 configuration, alt->desc.bInterfaceNumber); 1481 } 1482 kfree(new_interfaces); 1483 1484 if (cp->string == NULL) 1485 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1486 1487 /* Now that all the interfaces are set up, register them 1488 * to trigger binding of drivers to interfaces. probe() 1489 * routines may install different altsettings and may 1490 * claim() any interfaces not yet bound. Many class drivers 1491 * need that: CDC, audio, video, etc. 1492 */ 1493 for (i = 0; i < nintf; ++i) { 1494 struct usb_interface *intf = cp->interface[i]; 1495 1496 dev_dbg (&dev->dev, 1497 "adding %s (config #%d, interface %d)\n", 1498 intf->dev.bus_id, configuration, 1499 intf->cur_altsetting->desc.bInterfaceNumber); 1500 ret = device_add (&intf->dev); 1501 if (ret != 0) { 1502 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1503 intf->dev.bus_id, ret); 1504 continue; 1505 } 1506 usb_create_sysfs_intf_files (intf); 1507 } 1508 1509 return 0; 1510 } 1511 1512 // synchronous request completion model 1513 EXPORT_SYMBOL(usb_control_msg); 1514 EXPORT_SYMBOL(usb_bulk_msg); 1515 1516 EXPORT_SYMBOL(usb_sg_init); 1517 EXPORT_SYMBOL(usb_sg_cancel); 1518 EXPORT_SYMBOL(usb_sg_wait); 1519 1520 // synchronous control message convenience routines 1521 EXPORT_SYMBOL(usb_get_descriptor); 1522 EXPORT_SYMBOL(usb_get_status); 1523 EXPORT_SYMBOL(usb_string); 1524 1525 // synchronous calls that also maintain usbcore state 1526 EXPORT_SYMBOL(usb_clear_halt); 1527 EXPORT_SYMBOL(usb_reset_configuration); 1528 EXPORT_SYMBOL(usb_set_interface); 1529 1530