1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/nls.h> 14 #include <linux/device.h> 15 #include <linux/scatterlist.h> 16 #include <linux/usb/quirks.h> 17 #include <linux/usb/hcd.h> /* for usbcore internals */ 18 #include <asm/byteorder.h> 19 20 #include "usb.h" 21 22 static void cancel_async_set_config(struct usb_device *udev); 23 24 struct api_context { 25 struct completion done; 26 int status; 27 }; 28 29 static void usb_api_blocking_completion(struct urb *urb) 30 { 31 struct api_context *ctx = urb->context; 32 33 ctx->status = urb->status; 34 complete(&ctx->done); 35 } 36 37 38 /* 39 * Starts urb and waits for completion or timeout. Note that this call 40 * is NOT interruptible. Many device driver i/o requests should be 41 * interruptible and therefore these drivers should implement their 42 * own interruptible routines. 43 */ 44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 45 { 46 struct api_context ctx; 47 unsigned long expire; 48 int retval; 49 50 init_completion(&ctx.done); 51 urb->context = &ctx; 52 urb->actual_length = 0; 53 retval = usb_submit_urb(urb, GFP_NOIO); 54 if (unlikely(retval)) 55 goto out; 56 57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 58 if (!wait_for_completion_timeout(&ctx.done, expire)) { 59 usb_kill_urb(urb); 60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 61 62 dev_dbg(&urb->dev->dev, 63 "%s timed out on ep%d%s len=%u/%u\n", 64 current->comm, 65 usb_endpoint_num(&urb->ep->desc), 66 usb_urb_dir_in(urb) ? "in" : "out", 67 urb->actual_length, 68 urb->transfer_buffer_length); 69 } else 70 retval = ctx.status; 71 out: 72 if (actual_length) 73 *actual_length = urb->actual_length; 74 75 usb_free_urb(urb); 76 return retval; 77 } 78 79 /*-------------------------------------------------------------------*/ 80 /* returns status (negative) or length (positive) */ 81 static int usb_internal_control_msg(struct usb_device *usb_dev, 82 unsigned int pipe, 83 struct usb_ctrlrequest *cmd, 84 void *data, int len, int timeout) 85 { 86 struct urb *urb; 87 int retv; 88 int length; 89 90 urb = usb_alloc_urb(0, GFP_NOIO); 91 if (!urb) 92 return -ENOMEM; 93 94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 95 len, usb_api_blocking_completion, NULL); 96 97 retv = usb_start_wait_urb(urb, timeout, &length); 98 if (retv < 0) 99 return retv; 100 else 101 return length; 102 } 103 104 /** 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion 106 * @dev: pointer to the usb device to send the message to 107 * @pipe: endpoint "pipe" to send the message to 108 * @request: USB message request value 109 * @requesttype: USB message request type value 110 * @value: USB message value 111 * @index: USB message index value 112 * @data: pointer to the data to send 113 * @size: length in bytes of the data to send 114 * @timeout: time in msecs to wait for the message to complete before timing 115 * out (if 0 the wait is forever) 116 * 117 * Context: !in_interrupt () 118 * 119 * This function sends a simple control message to a specified endpoint and 120 * waits for the message to complete, or timeout. 121 * 122 * If successful, it returns the number of bytes transferred, otherwise a 123 * negative error number. 124 * 125 * Don't use this function from within an interrupt context, like a bottom half 126 * handler. If you need an asynchronous message, or need to send a message 127 * from within interrupt context, use usb_submit_urb(). 128 * If a thread in your driver uses this call, make sure your disconnect() 129 * method can wait for it to complete. Since you don't have a handle on the 130 * URB used, you can't cancel the request. 131 */ 132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 133 __u8 requesttype, __u16 value, __u16 index, void *data, 134 __u16 size, int timeout) 135 { 136 struct usb_ctrlrequest *dr; 137 int ret; 138 139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 140 if (!dr) 141 return -ENOMEM; 142 143 dr->bRequestType = requesttype; 144 dr->bRequest = request; 145 dr->wValue = cpu_to_le16(value); 146 dr->wIndex = cpu_to_le16(index); 147 dr->wLength = cpu_to_le16(size); 148 149 /* dbg("usb_control_msg"); */ 150 151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 152 153 kfree(dr); 154 155 return ret; 156 } 157 EXPORT_SYMBOL_GPL(usb_control_msg); 158 159 /** 160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 161 * @usb_dev: pointer to the usb device to send the message to 162 * @pipe: endpoint "pipe" to send the message to 163 * @data: pointer to the data to send 164 * @len: length in bytes of the data to send 165 * @actual_length: pointer to a location to put the actual length transferred 166 * in bytes 167 * @timeout: time in msecs to wait for the message to complete before 168 * timing out (if 0 the wait is forever) 169 * 170 * Context: !in_interrupt () 171 * 172 * This function sends a simple interrupt message to a specified endpoint and 173 * waits for the message to complete, or timeout. 174 * 175 * If successful, it returns 0, otherwise a negative error number. The number 176 * of actual bytes transferred will be stored in the actual_length paramater. 177 * 178 * Don't use this function from within an interrupt context, like a bottom half 179 * handler. If you need an asynchronous message, or need to send a message 180 * from within interrupt context, use usb_submit_urb() If a thread in your 181 * driver uses this call, make sure your disconnect() method can wait for it to 182 * complete. Since you don't have a handle on the URB used, you can't cancel 183 * the request. 184 */ 185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 186 void *data, int len, int *actual_length, int timeout) 187 { 188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 189 } 190 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 191 192 /** 193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 194 * @usb_dev: pointer to the usb device to send the message to 195 * @pipe: endpoint "pipe" to send the message to 196 * @data: pointer to the data to send 197 * @len: length in bytes of the data to send 198 * @actual_length: pointer to a location to put the actual length transferred 199 * in bytes 200 * @timeout: time in msecs to wait for the message to complete before 201 * timing out (if 0 the wait is forever) 202 * 203 * Context: !in_interrupt () 204 * 205 * This function sends a simple bulk message to a specified endpoint 206 * and waits for the message to complete, or timeout. 207 * 208 * If successful, it returns 0, otherwise a negative error number. The number 209 * of actual bytes transferred will be stored in the actual_length paramater. 210 * 211 * Don't use this function from within an interrupt context, like a bottom half 212 * handler. If you need an asynchronous message, or need to send a message 213 * from within interrupt context, use usb_submit_urb() If a thread in your 214 * driver uses this call, make sure your disconnect() method can wait for it to 215 * complete. Since you don't have a handle on the URB used, you can't cancel 216 * the request. 217 * 218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 219 * users are forced to abuse this routine by using it to submit URBs for 220 * interrupt endpoints. We will take the liberty of creating an interrupt URB 221 * (with the default interval) if the target is an interrupt endpoint. 222 */ 223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 224 void *data, int len, int *actual_length, int timeout) 225 { 226 struct urb *urb; 227 struct usb_host_endpoint *ep; 228 229 ep = usb_pipe_endpoint(usb_dev, pipe); 230 if (!ep || len < 0) 231 return -EINVAL; 232 233 urb = usb_alloc_urb(0, GFP_KERNEL); 234 if (!urb) 235 return -ENOMEM; 236 237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 238 USB_ENDPOINT_XFER_INT) { 239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 240 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 241 usb_api_blocking_completion, NULL, 242 ep->desc.bInterval); 243 } else 244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 245 usb_api_blocking_completion, NULL); 246 247 return usb_start_wait_urb(urb, timeout, actual_length); 248 } 249 EXPORT_SYMBOL_GPL(usb_bulk_msg); 250 251 /*-------------------------------------------------------------------*/ 252 253 static void sg_clean(struct usb_sg_request *io) 254 { 255 if (io->urbs) { 256 while (io->entries--) 257 usb_free_urb(io->urbs [io->entries]); 258 kfree(io->urbs); 259 io->urbs = NULL; 260 } 261 io->dev = NULL; 262 } 263 264 static void sg_complete(struct urb *urb) 265 { 266 struct usb_sg_request *io = urb->context; 267 int status = urb->status; 268 269 spin_lock(&io->lock); 270 271 /* In 2.5 we require hcds' endpoint queues not to progress after fault 272 * reports, until the completion callback (this!) returns. That lets 273 * device driver code (like this routine) unlink queued urbs first, 274 * if it needs to, since the HC won't work on them at all. So it's 275 * not possible for page N+1 to overwrite page N, and so on. 276 * 277 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 278 * complete before the HCD can get requests away from hardware, 279 * though never during cleanup after a hard fault. 280 */ 281 if (io->status 282 && (io->status != -ECONNRESET 283 || status != -ECONNRESET) 284 && urb->actual_length) { 285 dev_err(io->dev->bus->controller, 286 "dev %s ep%d%s scatterlist error %d/%d\n", 287 io->dev->devpath, 288 usb_endpoint_num(&urb->ep->desc), 289 usb_urb_dir_in(urb) ? "in" : "out", 290 status, io->status); 291 /* BUG (); */ 292 } 293 294 if (io->status == 0 && status && status != -ECONNRESET) { 295 int i, found, retval; 296 297 io->status = status; 298 299 /* the previous urbs, and this one, completed already. 300 * unlink pending urbs so they won't rx/tx bad data. 301 * careful: unlink can sometimes be synchronous... 302 */ 303 spin_unlock(&io->lock); 304 for (i = 0, found = 0; i < io->entries; i++) { 305 if (!io->urbs [i] || !io->urbs [i]->dev) 306 continue; 307 if (found) { 308 retval = usb_unlink_urb(io->urbs [i]); 309 if (retval != -EINPROGRESS && 310 retval != -ENODEV && 311 retval != -EBUSY) 312 dev_err(&io->dev->dev, 313 "%s, unlink --> %d\n", 314 __func__, retval); 315 } else if (urb == io->urbs [i]) 316 found = 1; 317 } 318 spin_lock(&io->lock); 319 } 320 urb->dev = NULL; 321 322 /* on the last completion, signal usb_sg_wait() */ 323 io->bytes += urb->actual_length; 324 io->count--; 325 if (!io->count) 326 complete(&io->complete); 327 328 spin_unlock(&io->lock); 329 } 330 331 332 /** 333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 334 * @io: request block being initialized. until usb_sg_wait() returns, 335 * treat this as a pointer to an opaque block of memory, 336 * @dev: the usb device that will send or receive the data 337 * @pipe: endpoint "pipe" used to transfer the data 338 * @period: polling rate for interrupt endpoints, in frames or 339 * (for high speed endpoints) microframes; ignored for bulk 340 * @sg: scatterlist entries 341 * @nents: how many entries in the scatterlist 342 * @length: how many bytes to send from the scatterlist, or zero to 343 * send every byte identified in the list. 344 * @mem_flags: SLAB_* flags affecting memory allocations in this call 345 * 346 * Returns zero for success, else a negative errno value. This initializes a 347 * scatter/gather request, allocating resources such as I/O mappings and urb 348 * memory (except maybe memory used by USB controller drivers). 349 * 350 * The request must be issued using usb_sg_wait(), which waits for the I/O to 351 * complete (or to be canceled) and then cleans up all resources allocated by 352 * usb_sg_init(). 353 * 354 * The request may be canceled with usb_sg_cancel(), either before or after 355 * usb_sg_wait() is called. 356 */ 357 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 358 unsigned pipe, unsigned period, struct scatterlist *sg, 359 int nents, size_t length, gfp_t mem_flags) 360 { 361 int i; 362 int urb_flags; 363 int use_sg; 364 365 if (!io || !dev || !sg 366 || usb_pipecontrol(pipe) 367 || usb_pipeisoc(pipe) 368 || nents <= 0) 369 return -EINVAL; 370 371 spin_lock_init(&io->lock); 372 io->dev = dev; 373 io->pipe = pipe; 374 375 if (dev->bus->sg_tablesize > 0) { 376 use_sg = true; 377 io->entries = 1; 378 } else { 379 use_sg = false; 380 io->entries = nents; 381 } 382 383 /* initialize all the urbs we'll use */ 384 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags); 385 if (!io->urbs) 386 goto nomem; 387 388 urb_flags = URB_NO_INTERRUPT; 389 if (usb_pipein(pipe)) 390 urb_flags |= URB_SHORT_NOT_OK; 391 392 for_each_sg(sg, sg, io->entries, i) { 393 struct urb *urb; 394 unsigned len; 395 396 urb = usb_alloc_urb(0, mem_flags); 397 if (!urb) { 398 io->entries = i; 399 goto nomem; 400 } 401 io->urbs[i] = urb; 402 403 urb->dev = NULL; 404 urb->pipe = pipe; 405 urb->interval = period; 406 urb->transfer_flags = urb_flags; 407 urb->complete = sg_complete; 408 urb->context = io; 409 urb->sg = sg; 410 411 if (use_sg) { 412 /* There is no single transfer buffer */ 413 urb->transfer_buffer = NULL; 414 urb->num_sgs = nents; 415 416 /* A length of zero means transfer the whole sg list */ 417 len = length; 418 if (len == 0) { 419 struct scatterlist *sg2; 420 int j; 421 422 for_each_sg(sg, sg2, nents, j) 423 len += sg2->length; 424 } 425 } else { 426 /* 427 * Some systems can't use DMA; they use PIO instead. 428 * For their sakes, transfer_buffer is set whenever 429 * possible. 430 */ 431 if (!PageHighMem(sg_page(sg))) 432 urb->transfer_buffer = sg_virt(sg); 433 else 434 urb->transfer_buffer = NULL; 435 436 len = sg->length; 437 if (length) { 438 len = min_t(size_t, len, length); 439 length -= len; 440 if (length == 0) 441 io->entries = i + 1; 442 } 443 } 444 urb->transfer_buffer_length = len; 445 } 446 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 447 448 /* transaction state */ 449 io->count = io->entries; 450 io->status = 0; 451 io->bytes = 0; 452 init_completion(&io->complete); 453 return 0; 454 455 nomem: 456 sg_clean(io); 457 return -ENOMEM; 458 } 459 EXPORT_SYMBOL_GPL(usb_sg_init); 460 461 /** 462 * usb_sg_wait - synchronously execute scatter/gather request 463 * @io: request block handle, as initialized with usb_sg_init(). 464 * some fields become accessible when this call returns. 465 * Context: !in_interrupt () 466 * 467 * This function blocks until the specified I/O operation completes. It 468 * leverages the grouping of the related I/O requests to get good transfer 469 * rates, by queueing the requests. At higher speeds, such queuing can 470 * significantly improve USB throughput. 471 * 472 * There are three kinds of completion for this function. 473 * (1) success, where io->status is zero. The number of io->bytes 474 * transferred is as requested. 475 * (2) error, where io->status is a negative errno value. The number 476 * of io->bytes transferred before the error is usually less 477 * than requested, and can be nonzero. 478 * (3) cancellation, a type of error with status -ECONNRESET that 479 * is initiated by usb_sg_cancel(). 480 * 481 * When this function returns, all memory allocated through usb_sg_init() or 482 * this call will have been freed. The request block parameter may still be 483 * passed to usb_sg_cancel(), or it may be freed. It could also be 484 * reinitialized and then reused. 485 * 486 * Data Transfer Rates: 487 * 488 * Bulk transfers are valid for full or high speed endpoints. 489 * The best full speed data rate is 19 packets of 64 bytes each 490 * per frame, or 1216 bytes per millisecond. 491 * The best high speed data rate is 13 packets of 512 bytes each 492 * per microframe, or 52 KBytes per millisecond. 493 * 494 * The reason to use interrupt transfers through this API would most likely 495 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 496 * could be transferred. That capability is less useful for low or full 497 * speed interrupt endpoints, which allow at most one packet per millisecond, 498 * of at most 8 or 64 bytes (respectively). 499 * 500 * It is not necessary to call this function to reserve bandwidth for devices 501 * under an xHCI host controller, as the bandwidth is reserved when the 502 * configuration or interface alt setting is selected. 503 */ 504 void usb_sg_wait(struct usb_sg_request *io) 505 { 506 int i; 507 int entries = io->entries; 508 509 /* queue the urbs. */ 510 spin_lock_irq(&io->lock); 511 i = 0; 512 while (i < entries && !io->status) { 513 int retval; 514 515 io->urbs[i]->dev = io->dev; 516 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC); 517 518 /* after we submit, let completions or cancelations fire; 519 * we handshake using io->status. 520 */ 521 spin_unlock_irq(&io->lock); 522 switch (retval) { 523 /* maybe we retrying will recover */ 524 case -ENXIO: /* hc didn't queue this one */ 525 case -EAGAIN: 526 case -ENOMEM: 527 io->urbs[i]->dev = NULL; 528 retval = 0; 529 yield(); 530 break; 531 532 /* no error? continue immediately. 533 * 534 * NOTE: to work better with UHCI (4K I/O buffer may 535 * need 3K of TDs) it may be good to limit how many 536 * URBs are queued at once; N milliseconds? 537 */ 538 case 0: 539 ++i; 540 cpu_relax(); 541 break; 542 543 /* fail any uncompleted urbs */ 544 default: 545 io->urbs[i]->dev = NULL; 546 io->urbs[i]->status = retval; 547 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 548 __func__, retval); 549 usb_sg_cancel(io); 550 } 551 spin_lock_irq(&io->lock); 552 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 553 io->status = retval; 554 } 555 io->count -= entries - i; 556 if (io->count == 0) 557 complete(&io->complete); 558 spin_unlock_irq(&io->lock); 559 560 /* OK, yes, this could be packaged as non-blocking. 561 * So could the submit loop above ... but it's easier to 562 * solve neither problem than to solve both! 563 */ 564 wait_for_completion(&io->complete); 565 566 sg_clean(io); 567 } 568 EXPORT_SYMBOL_GPL(usb_sg_wait); 569 570 /** 571 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 572 * @io: request block, initialized with usb_sg_init() 573 * 574 * This stops a request after it has been started by usb_sg_wait(). 575 * It can also prevents one initialized by usb_sg_init() from starting, 576 * so that call just frees resources allocated to the request. 577 */ 578 void usb_sg_cancel(struct usb_sg_request *io) 579 { 580 unsigned long flags; 581 582 spin_lock_irqsave(&io->lock, flags); 583 584 /* shut everything down, if it didn't already */ 585 if (!io->status) { 586 int i; 587 588 io->status = -ECONNRESET; 589 spin_unlock(&io->lock); 590 for (i = 0; i < io->entries; i++) { 591 int retval; 592 593 if (!io->urbs [i]->dev) 594 continue; 595 retval = usb_unlink_urb(io->urbs [i]); 596 if (retval != -EINPROGRESS && retval != -EBUSY) 597 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 598 __func__, retval); 599 } 600 spin_lock(&io->lock); 601 } 602 spin_unlock_irqrestore(&io->lock, flags); 603 } 604 EXPORT_SYMBOL_GPL(usb_sg_cancel); 605 606 /*-------------------------------------------------------------------*/ 607 608 /** 609 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 610 * @dev: the device whose descriptor is being retrieved 611 * @type: the descriptor type (USB_DT_*) 612 * @index: the number of the descriptor 613 * @buf: where to put the descriptor 614 * @size: how big is "buf"? 615 * Context: !in_interrupt () 616 * 617 * Gets a USB descriptor. Convenience functions exist to simplify 618 * getting some types of descriptors. Use 619 * usb_get_string() or usb_string() for USB_DT_STRING. 620 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 621 * are part of the device structure. 622 * In addition to a number of USB-standard descriptors, some 623 * devices also use class-specific or vendor-specific descriptors. 624 * 625 * This call is synchronous, and may not be used in an interrupt context. 626 * 627 * Returns the number of bytes received on success, or else the status code 628 * returned by the underlying usb_control_msg() call. 629 */ 630 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 631 unsigned char index, void *buf, int size) 632 { 633 int i; 634 int result; 635 636 memset(buf, 0, size); /* Make sure we parse really received data */ 637 638 for (i = 0; i < 3; ++i) { 639 /* retry on length 0 or error; some devices are flakey */ 640 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 641 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 642 (type << 8) + index, 0, buf, size, 643 USB_CTRL_GET_TIMEOUT); 644 if (result <= 0 && result != -ETIMEDOUT) 645 continue; 646 if (result > 1 && ((u8 *)buf)[1] != type) { 647 result = -ENODATA; 648 continue; 649 } 650 break; 651 } 652 return result; 653 } 654 EXPORT_SYMBOL_GPL(usb_get_descriptor); 655 656 /** 657 * usb_get_string - gets a string descriptor 658 * @dev: the device whose string descriptor is being retrieved 659 * @langid: code for language chosen (from string descriptor zero) 660 * @index: the number of the descriptor 661 * @buf: where to put the string 662 * @size: how big is "buf"? 663 * Context: !in_interrupt () 664 * 665 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 666 * in little-endian byte order). 667 * The usb_string() function will often be a convenient way to turn 668 * these strings into kernel-printable form. 669 * 670 * Strings may be referenced in device, configuration, interface, or other 671 * descriptors, and could also be used in vendor-specific ways. 672 * 673 * This call is synchronous, and may not be used in an interrupt context. 674 * 675 * Returns the number of bytes received on success, or else the status code 676 * returned by the underlying usb_control_msg() call. 677 */ 678 static int usb_get_string(struct usb_device *dev, unsigned short langid, 679 unsigned char index, void *buf, int size) 680 { 681 int i; 682 int result; 683 684 for (i = 0; i < 3; ++i) { 685 /* retry on length 0 or stall; some devices are flakey */ 686 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 687 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 688 (USB_DT_STRING << 8) + index, langid, buf, size, 689 USB_CTRL_GET_TIMEOUT); 690 if (result == 0 || result == -EPIPE) 691 continue; 692 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 693 result = -ENODATA; 694 continue; 695 } 696 break; 697 } 698 return result; 699 } 700 701 static void usb_try_string_workarounds(unsigned char *buf, int *length) 702 { 703 int newlength, oldlength = *length; 704 705 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 706 if (!isprint(buf[newlength]) || buf[newlength + 1]) 707 break; 708 709 if (newlength > 2) { 710 buf[0] = newlength; 711 *length = newlength; 712 } 713 } 714 715 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 716 unsigned int index, unsigned char *buf) 717 { 718 int rc; 719 720 /* Try to read the string descriptor by asking for the maximum 721 * possible number of bytes */ 722 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 723 rc = -EIO; 724 else 725 rc = usb_get_string(dev, langid, index, buf, 255); 726 727 /* If that failed try to read the descriptor length, then 728 * ask for just that many bytes */ 729 if (rc < 2) { 730 rc = usb_get_string(dev, langid, index, buf, 2); 731 if (rc == 2) 732 rc = usb_get_string(dev, langid, index, buf, buf[0]); 733 } 734 735 if (rc >= 2) { 736 if (!buf[0] && !buf[1]) 737 usb_try_string_workarounds(buf, &rc); 738 739 /* There might be extra junk at the end of the descriptor */ 740 if (buf[0] < rc) 741 rc = buf[0]; 742 743 rc = rc - (rc & 1); /* force a multiple of two */ 744 } 745 746 if (rc < 2) 747 rc = (rc < 0 ? rc : -EINVAL); 748 749 return rc; 750 } 751 752 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 753 { 754 int err; 755 756 if (dev->have_langid) 757 return 0; 758 759 if (dev->string_langid < 0) 760 return -EPIPE; 761 762 err = usb_string_sub(dev, 0, 0, tbuf); 763 764 /* If the string was reported but is malformed, default to english 765 * (0x0409) */ 766 if (err == -ENODATA || (err > 0 && err < 4)) { 767 dev->string_langid = 0x0409; 768 dev->have_langid = 1; 769 dev_err(&dev->dev, 770 "string descriptor 0 malformed (err = %d), " 771 "defaulting to 0x%04x\n", 772 err, dev->string_langid); 773 return 0; 774 } 775 776 /* In case of all other errors, we assume the device is not able to 777 * deal with strings at all. Set string_langid to -1 in order to 778 * prevent any string to be retrieved from the device */ 779 if (err < 0) { 780 dev_err(&dev->dev, "string descriptor 0 read error: %d\n", 781 err); 782 dev->string_langid = -1; 783 return -EPIPE; 784 } 785 786 /* always use the first langid listed */ 787 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 788 dev->have_langid = 1; 789 dev_dbg(&dev->dev, "default language 0x%04x\n", 790 dev->string_langid); 791 return 0; 792 } 793 794 /** 795 * usb_string - returns UTF-8 version of a string descriptor 796 * @dev: the device whose string descriptor is being retrieved 797 * @index: the number of the descriptor 798 * @buf: where to put the string 799 * @size: how big is "buf"? 800 * Context: !in_interrupt () 801 * 802 * This converts the UTF-16LE encoded strings returned by devices, from 803 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 804 * that are more usable in most kernel contexts. Note that this function 805 * chooses strings in the first language supported by the device. 806 * 807 * This call is synchronous, and may not be used in an interrupt context. 808 * 809 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 810 */ 811 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 812 { 813 unsigned char *tbuf; 814 int err; 815 816 if (dev->state == USB_STATE_SUSPENDED) 817 return -EHOSTUNREACH; 818 if (size <= 0 || !buf || !index) 819 return -EINVAL; 820 buf[0] = 0; 821 tbuf = kmalloc(256, GFP_NOIO); 822 if (!tbuf) 823 return -ENOMEM; 824 825 err = usb_get_langid(dev, tbuf); 826 if (err < 0) 827 goto errout; 828 829 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 830 if (err < 0) 831 goto errout; 832 833 size--; /* leave room for trailing NULL char in output buffer */ 834 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 835 UTF16_LITTLE_ENDIAN, buf, size); 836 buf[err] = 0; 837 838 if (tbuf[1] != USB_DT_STRING) 839 dev_dbg(&dev->dev, 840 "wrong descriptor type %02x for string %d (\"%s\")\n", 841 tbuf[1], index, buf); 842 843 errout: 844 kfree(tbuf); 845 return err; 846 } 847 EXPORT_SYMBOL_GPL(usb_string); 848 849 /* one UTF-8-encoded 16-bit character has at most three bytes */ 850 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 851 852 /** 853 * usb_cache_string - read a string descriptor and cache it for later use 854 * @udev: the device whose string descriptor is being read 855 * @index: the descriptor index 856 * 857 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 858 * or NULL if the index is 0 or the string could not be read. 859 */ 860 char *usb_cache_string(struct usb_device *udev, int index) 861 { 862 char *buf; 863 char *smallbuf = NULL; 864 int len; 865 866 if (index <= 0) 867 return NULL; 868 869 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 870 if (buf) { 871 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 872 if (len > 0) { 873 smallbuf = kmalloc(++len, GFP_NOIO); 874 if (!smallbuf) 875 return buf; 876 memcpy(smallbuf, buf, len); 877 } 878 kfree(buf); 879 } 880 return smallbuf; 881 } 882 883 /* 884 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 885 * @dev: the device whose device descriptor is being updated 886 * @size: how much of the descriptor to read 887 * Context: !in_interrupt () 888 * 889 * Updates the copy of the device descriptor stored in the device structure, 890 * which dedicates space for this purpose. 891 * 892 * Not exported, only for use by the core. If drivers really want to read 893 * the device descriptor directly, they can call usb_get_descriptor() with 894 * type = USB_DT_DEVICE and index = 0. 895 * 896 * This call is synchronous, and may not be used in an interrupt context. 897 * 898 * Returns the number of bytes received on success, or else the status code 899 * returned by the underlying usb_control_msg() call. 900 */ 901 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 902 { 903 struct usb_device_descriptor *desc; 904 int ret; 905 906 if (size > sizeof(*desc)) 907 return -EINVAL; 908 desc = kmalloc(sizeof(*desc), GFP_NOIO); 909 if (!desc) 910 return -ENOMEM; 911 912 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 913 if (ret >= 0) 914 memcpy(&dev->descriptor, desc, size); 915 kfree(desc); 916 return ret; 917 } 918 919 /** 920 * usb_get_status - issues a GET_STATUS call 921 * @dev: the device whose status is being checked 922 * @type: USB_RECIP_*; for device, interface, or endpoint 923 * @target: zero (for device), else interface or endpoint number 924 * @data: pointer to two bytes of bitmap data 925 * Context: !in_interrupt () 926 * 927 * Returns device, interface, or endpoint status. Normally only of 928 * interest to see if the device is self powered, or has enabled the 929 * remote wakeup facility; or whether a bulk or interrupt endpoint 930 * is halted ("stalled"). 931 * 932 * Bits in these status bitmaps are set using the SET_FEATURE request, 933 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 934 * function should be used to clear halt ("stall") status. 935 * 936 * This call is synchronous, and may not be used in an interrupt context. 937 * 938 * Returns the number of bytes received on success, or else the status code 939 * returned by the underlying usb_control_msg() call. 940 */ 941 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 942 { 943 int ret; 944 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 945 946 if (!status) 947 return -ENOMEM; 948 949 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 950 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 951 sizeof(*status), USB_CTRL_GET_TIMEOUT); 952 953 *(u16 *)data = *status; 954 kfree(status); 955 return ret; 956 } 957 EXPORT_SYMBOL_GPL(usb_get_status); 958 959 /** 960 * usb_clear_halt - tells device to clear endpoint halt/stall condition 961 * @dev: device whose endpoint is halted 962 * @pipe: endpoint "pipe" being cleared 963 * Context: !in_interrupt () 964 * 965 * This is used to clear halt conditions for bulk and interrupt endpoints, 966 * as reported by URB completion status. Endpoints that are halted are 967 * sometimes referred to as being "stalled". Such endpoints are unable 968 * to transmit or receive data until the halt status is cleared. Any URBs 969 * queued for such an endpoint should normally be unlinked by the driver 970 * before clearing the halt condition, as described in sections 5.7.5 971 * and 5.8.5 of the USB 2.0 spec. 972 * 973 * Note that control and isochronous endpoints don't halt, although control 974 * endpoints report "protocol stall" (for unsupported requests) using the 975 * same status code used to report a true stall. 976 * 977 * This call is synchronous, and may not be used in an interrupt context. 978 * 979 * Returns zero on success, or else the status code returned by the 980 * underlying usb_control_msg() call. 981 */ 982 int usb_clear_halt(struct usb_device *dev, int pipe) 983 { 984 int result; 985 int endp = usb_pipeendpoint(pipe); 986 987 if (usb_pipein(pipe)) 988 endp |= USB_DIR_IN; 989 990 /* we don't care if it wasn't halted first. in fact some devices 991 * (like some ibmcam model 1 units) seem to expect hosts to make 992 * this request for iso endpoints, which can't halt! 993 */ 994 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 995 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 996 USB_ENDPOINT_HALT, endp, NULL, 0, 997 USB_CTRL_SET_TIMEOUT); 998 999 /* don't un-halt or force to DATA0 except on success */ 1000 if (result < 0) 1001 return result; 1002 1003 /* NOTE: seems like Microsoft and Apple don't bother verifying 1004 * the clear "took", so some devices could lock up if you check... 1005 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1006 * 1007 * NOTE: make sure the logic here doesn't diverge much from 1008 * the copy in usb-storage, for as long as we need two copies. 1009 */ 1010 1011 usb_reset_endpoint(dev, endp); 1012 1013 return 0; 1014 } 1015 EXPORT_SYMBOL_GPL(usb_clear_halt); 1016 1017 static int create_intf_ep_devs(struct usb_interface *intf) 1018 { 1019 struct usb_device *udev = interface_to_usbdev(intf); 1020 struct usb_host_interface *alt = intf->cur_altsetting; 1021 int i; 1022 1023 if (intf->ep_devs_created || intf->unregistering) 1024 return 0; 1025 1026 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1027 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1028 intf->ep_devs_created = 1; 1029 return 0; 1030 } 1031 1032 static void remove_intf_ep_devs(struct usb_interface *intf) 1033 { 1034 struct usb_host_interface *alt = intf->cur_altsetting; 1035 int i; 1036 1037 if (!intf->ep_devs_created) 1038 return; 1039 1040 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1041 usb_remove_ep_devs(&alt->endpoint[i]); 1042 intf->ep_devs_created = 0; 1043 } 1044 1045 /** 1046 * usb_disable_endpoint -- Disable an endpoint by address 1047 * @dev: the device whose endpoint is being disabled 1048 * @epaddr: the endpoint's address. Endpoint number for output, 1049 * endpoint number + USB_DIR_IN for input 1050 * @reset_hardware: flag to erase any endpoint state stored in the 1051 * controller hardware 1052 * 1053 * Disables the endpoint for URB submission and nukes all pending URBs. 1054 * If @reset_hardware is set then also deallocates hcd/hardware state 1055 * for the endpoint. 1056 */ 1057 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1058 bool reset_hardware) 1059 { 1060 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1061 struct usb_host_endpoint *ep; 1062 1063 if (!dev) 1064 return; 1065 1066 if (usb_endpoint_out(epaddr)) { 1067 ep = dev->ep_out[epnum]; 1068 if (reset_hardware) 1069 dev->ep_out[epnum] = NULL; 1070 } else { 1071 ep = dev->ep_in[epnum]; 1072 if (reset_hardware) 1073 dev->ep_in[epnum] = NULL; 1074 } 1075 if (ep) { 1076 ep->enabled = 0; 1077 usb_hcd_flush_endpoint(dev, ep); 1078 if (reset_hardware) 1079 usb_hcd_disable_endpoint(dev, ep); 1080 } 1081 } 1082 1083 /** 1084 * usb_reset_endpoint - Reset an endpoint's state. 1085 * @dev: the device whose endpoint is to be reset 1086 * @epaddr: the endpoint's address. Endpoint number for output, 1087 * endpoint number + USB_DIR_IN for input 1088 * 1089 * Resets any host-side endpoint state such as the toggle bit, 1090 * sequence number or current window. 1091 */ 1092 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1093 { 1094 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1095 struct usb_host_endpoint *ep; 1096 1097 if (usb_endpoint_out(epaddr)) 1098 ep = dev->ep_out[epnum]; 1099 else 1100 ep = dev->ep_in[epnum]; 1101 if (ep) 1102 usb_hcd_reset_endpoint(dev, ep); 1103 } 1104 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1105 1106 1107 /** 1108 * usb_disable_interface -- Disable all endpoints for an interface 1109 * @dev: the device whose interface is being disabled 1110 * @intf: pointer to the interface descriptor 1111 * @reset_hardware: flag to erase any endpoint state stored in the 1112 * controller hardware 1113 * 1114 * Disables all the endpoints for the interface's current altsetting. 1115 */ 1116 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1117 bool reset_hardware) 1118 { 1119 struct usb_host_interface *alt = intf->cur_altsetting; 1120 int i; 1121 1122 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1123 usb_disable_endpoint(dev, 1124 alt->endpoint[i].desc.bEndpointAddress, 1125 reset_hardware); 1126 } 1127 } 1128 1129 /** 1130 * usb_disable_device - Disable all the endpoints for a USB device 1131 * @dev: the device whose endpoints are being disabled 1132 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1133 * 1134 * Disables all the device's endpoints, potentially including endpoint 0. 1135 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1136 * pending urbs) and usbcore state for the interfaces, so that usbcore 1137 * must usb_set_configuration() before any interfaces could be used. 1138 * 1139 * Must be called with hcd->bandwidth_mutex held. 1140 */ 1141 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1142 { 1143 int i; 1144 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1145 1146 /* getting rid of interfaces will disconnect 1147 * any drivers bound to them (a key side effect) 1148 */ 1149 if (dev->actconfig) { 1150 /* 1151 * FIXME: In order to avoid self-deadlock involving the 1152 * bandwidth_mutex, we have to mark all the interfaces 1153 * before unregistering any of them. 1154 */ 1155 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1156 dev->actconfig->interface[i]->unregistering = 1; 1157 1158 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1159 struct usb_interface *interface; 1160 1161 /* remove this interface if it has been registered */ 1162 interface = dev->actconfig->interface[i]; 1163 if (!device_is_registered(&interface->dev)) 1164 continue; 1165 dev_dbg(&dev->dev, "unregistering interface %s\n", 1166 dev_name(&interface->dev)); 1167 remove_intf_ep_devs(interface); 1168 device_del(&interface->dev); 1169 } 1170 1171 /* Now that the interfaces are unbound, nobody should 1172 * try to access them. 1173 */ 1174 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1175 put_device(&dev->actconfig->interface[i]->dev); 1176 dev->actconfig->interface[i] = NULL; 1177 } 1178 dev->actconfig = NULL; 1179 if (dev->state == USB_STATE_CONFIGURED) 1180 usb_set_device_state(dev, USB_STATE_ADDRESS); 1181 } 1182 1183 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1184 skip_ep0 ? "non-ep0" : "all"); 1185 if (hcd->driver->check_bandwidth) { 1186 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1187 for (i = skip_ep0; i < 16; ++i) { 1188 usb_disable_endpoint(dev, i, false); 1189 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1190 } 1191 /* Remove endpoints from the host controller internal state */ 1192 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1193 /* Second pass: remove endpoint pointers */ 1194 } 1195 for (i = skip_ep0; i < 16; ++i) { 1196 usb_disable_endpoint(dev, i, true); 1197 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1198 } 1199 } 1200 1201 /** 1202 * usb_enable_endpoint - Enable an endpoint for USB communications 1203 * @dev: the device whose interface is being enabled 1204 * @ep: the endpoint 1205 * @reset_ep: flag to reset the endpoint state 1206 * 1207 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1208 * For control endpoints, both the input and output sides are handled. 1209 */ 1210 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1211 bool reset_ep) 1212 { 1213 int epnum = usb_endpoint_num(&ep->desc); 1214 int is_out = usb_endpoint_dir_out(&ep->desc); 1215 int is_control = usb_endpoint_xfer_control(&ep->desc); 1216 1217 if (reset_ep) 1218 usb_hcd_reset_endpoint(dev, ep); 1219 if (is_out || is_control) 1220 dev->ep_out[epnum] = ep; 1221 if (!is_out || is_control) 1222 dev->ep_in[epnum] = ep; 1223 ep->enabled = 1; 1224 } 1225 1226 /** 1227 * usb_enable_interface - Enable all the endpoints for an interface 1228 * @dev: the device whose interface is being enabled 1229 * @intf: pointer to the interface descriptor 1230 * @reset_eps: flag to reset the endpoints' state 1231 * 1232 * Enables all the endpoints for the interface's current altsetting. 1233 */ 1234 void usb_enable_interface(struct usb_device *dev, 1235 struct usb_interface *intf, bool reset_eps) 1236 { 1237 struct usb_host_interface *alt = intf->cur_altsetting; 1238 int i; 1239 1240 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1241 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1242 } 1243 1244 /** 1245 * usb_set_interface - Makes a particular alternate setting be current 1246 * @dev: the device whose interface is being updated 1247 * @interface: the interface being updated 1248 * @alternate: the setting being chosen. 1249 * Context: !in_interrupt () 1250 * 1251 * This is used to enable data transfers on interfaces that may not 1252 * be enabled by default. Not all devices support such configurability. 1253 * Only the driver bound to an interface may change its setting. 1254 * 1255 * Within any given configuration, each interface may have several 1256 * alternative settings. These are often used to control levels of 1257 * bandwidth consumption. For example, the default setting for a high 1258 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1259 * while interrupt transfers of up to 3KBytes per microframe are legal. 1260 * Also, isochronous endpoints may never be part of an 1261 * interface's default setting. To access such bandwidth, alternate 1262 * interface settings must be made current. 1263 * 1264 * Note that in the Linux USB subsystem, bandwidth associated with 1265 * an endpoint in a given alternate setting is not reserved until an URB 1266 * is submitted that needs that bandwidth. Some other operating systems 1267 * allocate bandwidth early, when a configuration is chosen. 1268 * 1269 * This call is synchronous, and may not be used in an interrupt context. 1270 * Also, drivers must not change altsettings while urbs are scheduled for 1271 * endpoints in that interface; all such urbs must first be completed 1272 * (perhaps forced by unlinking). 1273 * 1274 * Returns zero on success, or else the status code returned by the 1275 * underlying usb_control_msg() call. 1276 */ 1277 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1278 { 1279 struct usb_interface *iface; 1280 struct usb_host_interface *alt; 1281 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1282 int ret; 1283 int manual = 0; 1284 unsigned int epaddr; 1285 unsigned int pipe; 1286 1287 if (dev->state == USB_STATE_SUSPENDED) 1288 return -EHOSTUNREACH; 1289 1290 iface = usb_ifnum_to_if(dev, interface); 1291 if (!iface) { 1292 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1293 interface); 1294 return -EINVAL; 1295 } 1296 if (iface->unregistering) 1297 return -ENODEV; 1298 1299 alt = usb_altnum_to_altsetting(iface, alternate); 1300 if (!alt) { 1301 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1302 alternate); 1303 return -EINVAL; 1304 } 1305 1306 /* Make sure we have enough bandwidth for this alternate interface. 1307 * Remove the current alt setting and add the new alt setting. 1308 */ 1309 mutex_lock(hcd->bandwidth_mutex); 1310 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1311 if (ret < 0) { 1312 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1313 alternate); 1314 mutex_unlock(hcd->bandwidth_mutex); 1315 return ret; 1316 } 1317 1318 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1319 ret = -EPIPE; 1320 else 1321 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1322 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1323 alternate, interface, NULL, 0, 5000); 1324 1325 /* 9.4.10 says devices don't need this and are free to STALL the 1326 * request if the interface only has one alternate setting. 1327 */ 1328 if (ret == -EPIPE && iface->num_altsetting == 1) { 1329 dev_dbg(&dev->dev, 1330 "manual set_interface for iface %d, alt %d\n", 1331 interface, alternate); 1332 manual = 1; 1333 } else if (ret < 0) { 1334 /* Re-instate the old alt setting */ 1335 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1336 mutex_unlock(hcd->bandwidth_mutex); 1337 return ret; 1338 } 1339 mutex_unlock(hcd->bandwidth_mutex); 1340 1341 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1342 * when they implement async or easily-killable versions of this or 1343 * other "should-be-internal" functions (like clear_halt). 1344 * should hcd+usbcore postprocess control requests? 1345 */ 1346 1347 /* prevent submissions using previous endpoint settings */ 1348 if (iface->cur_altsetting != alt) { 1349 remove_intf_ep_devs(iface); 1350 usb_remove_sysfs_intf_files(iface); 1351 } 1352 usb_disable_interface(dev, iface, true); 1353 1354 iface->cur_altsetting = alt; 1355 1356 /* If the interface only has one altsetting and the device didn't 1357 * accept the request, we attempt to carry out the equivalent action 1358 * by manually clearing the HALT feature for each endpoint in the 1359 * new altsetting. 1360 */ 1361 if (manual) { 1362 int i; 1363 1364 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1365 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1366 pipe = __create_pipe(dev, 1367 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1368 (usb_endpoint_out(epaddr) ? 1369 USB_DIR_OUT : USB_DIR_IN); 1370 1371 usb_clear_halt(dev, pipe); 1372 } 1373 } 1374 1375 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1376 * 1377 * Note: 1378 * Despite EP0 is always present in all interfaces/AS, the list of 1379 * endpoints from the descriptor does not contain EP0. Due to its 1380 * omnipresence one might expect EP0 being considered "affected" by 1381 * any SetInterface request and hence assume toggles need to be reset. 1382 * However, EP0 toggles are re-synced for every individual transfer 1383 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1384 * (Likewise, EP0 never "halts" on well designed devices.) 1385 */ 1386 usb_enable_interface(dev, iface, true); 1387 if (device_is_registered(&iface->dev)) { 1388 usb_create_sysfs_intf_files(iface); 1389 create_intf_ep_devs(iface); 1390 } 1391 return 0; 1392 } 1393 EXPORT_SYMBOL_GPL(usb_set_interface); 1394 1395 /** 1396 * usb_reset_configuration - lightweight device reset 1397 * @dev: the device whose configuration is being reset 1398 * 1399 * This issues a standard SET_CONFIGURATION request to the device using 1400 * the current configuration. The effect is to reset most USB-related 1401 * state in the device, including interface altsettings (reset to zero), 1402 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1403 * endpoints). Other usbcore state is unchanged, including bindings of 1404 * usb device drivers to interfaces. 1405 * 1406 * Because this affects multiple interfaces, avoid using this with composite 1407 * (multi-interface) devices. Instead, the driver for each interface may 1408 * use usb_set_interface() on the interfaces it claims. Be careful though; 1409 * some devices don't support the SET_INTERFACE request, and others won't 1410 * reset all the interface state (notably endpoint state). Resetting the whole 1411 * configuration would affect other drivers' interfaces. 1412 * 1413 * The caller must own the device lock. 1414 * 1415 * Returns zero on success, else a negative error code. 1416 */ 1417 int usb_reset_configuration(struct usb_device *dev) 1418 { 1419 int i, retval; 1420 struct usb_host_config *config; 1421 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1422 1423 if (dev->state == USB_STATE_SUSPENDED) 1424 return -EHOSTUNREACH; 1425 1426 /* caller must have locked the device and must own 1427 * the usb bus readlock (so driver bindings are stable); 1428 * calls during probe() are fine 1429 */ 1430 1431 for (i = 1; i < 16; ++i) { 1432 usb_disable_endpoint(dev, i, true); 1433 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1434 } 1435 1436 config = dev->actconfig; 1437 retval = 0; 1438 mutex_lock(hcd->bandwidth_mutex); 1439 /* Make sure we have enough bandwidth for each alternate setting 0 */ 1440 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1441 struct usb_interface *intf = config->interface[i]; 1442 struct usb_host_interface *alt; 1443 1444 alt = usb_altnum_to_altsetting(intf, 0); 1445 if (!alt) 1446 alt = &intf->altsetting[0]; 1447 if (alt != intf->cur_altsetting) 1448 retval = usb_hcd_alloc_bandwidth(dev, NULL, 1449 intf->cur_altsetting, alt); 1450 if (retval < 0) 1451 break; 1452 } 1453 /* If not, reinstate the old alternate settings */ 1454 if (retval < 0) { 1455 reset_old_alts: 1456 for (i--; i >= 0; i--) { 1457 struct usb_interface *intf = config->interface[i]; 1458 struct usb_host_interface *alt; 1459 1460 alt = usb_altnum_to_altsetting(intf, 0); 1461 if (!alt) 1462 alt = &intf->altsetting[0]; 1463 if (alt != intf->cur_altsetting) 1464 usb_hcd_alloc_bandwidth(dev, NULL, 1465 alt, intf->cur_altsetting); 1466 } 1467 mutex_unlock(hcd->bandwidth_mutex); 1468 return retval; 1469 } 1470 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1471 USB_REQ_SET_CONFIGURATION, 0, 1472 config->desc.bConfigurationValue, 0, 1473 NULL, 0, USB_CTRL_SET_TIMEOUT); 1474 if (retval < 0) 1475 goto reset_old_alts; 1476 mutex_unlock(hcd->bandwidth_mutex); 1477 1478 /* re-init hc/hcd interface/endpoint state */ 1479 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1480 struct usb_interface *intf = config->interface[i]; 1481 struct usb_host_interface *alt; 1482 1483 alt = usb_altnum_to_altsetting(intf, 0); 1484 1485 /* No altsetting 0? We'll assume the first altsetting. 1486 * We could use a GetInterface call, but if a device is 1487 * so non-compliant that it doesn't have altsetting 0 1488 * then I wouldn't trust its reply anyway. 1489 */ 1490 if (!alt) 1491 alt = &intf->altsetting[0]; 1492 1493 if (alt != intf->cur_altsetting) { 1494 remove_intf_ep_devs(intf); 1495 usb_remove_sysfs_intf_files(intf); 1496 } 1497 intf->cur_altsetting = alt; 1498 usb_enable_interface(dev, intf, true); 1499 if (device_is_registered(&intf->dev)) { 1500 usb_create_sysfs_intf_files(intf); 1501 create_intf_ep_devs(intf); 1502 } 1503 } 1504 return 0; 1505 } 1506 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1507 1508 static void usb_release_interface(struct device *dev) 1509 { 1510 struct usb_interface *intf = to_usb_interface(dev); 1511 struct usb_interface_cache *intfc = 1512 altsetting_to_usb_interface_cache(intf->altsetting); 1513 1514 kref_put(&intfc->ref, usb_release_interface_cache); 1515 kfree(intf); 1516 } 1517 1518 #ifdef CONFIG_HOTPLUG 1519 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1520 { 1521 struct usb_device *usb_dev; 1522 struct usb_interface *intf; 1523 struct usb_host_interface *alt; 1524 1525 intf = to_usb_interface(dev); 1526 usb_dev = interface_to_usbdev(intf); 1527 alt = intf->cur_altsetting; 1528 1529 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1530 alt->desc.bInterfaceClass, 1531 alt->desc.bInterfaceSubClass, 1532 alt->desc.bInterfaceProtocol)) 1533 return -ENOMEM; 1534 1535 if (add_uevent_var(env, 1536 "MODALIAS=usb:" 1537 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1538 le16_to_cpu(usb_dev->descriptor.idVendor), 1539 le16_to_cpu(usb_dev->descriptor.idProduct), 1540 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1541 usb_dev->descriptor.bDeviceClass, 1542 usb_dev->descriptor.bDeviceSubClass, 1543 usb_dev->descriptor.bDeviceProtocol, 1544 alt->desc.bInterfaceClass, 1545 alt->desc.bInterfaceSubClass, 1546 alt->desc.bInterfaceProtocol)) 1547 return -ENOMEM; 1548 1549 return 0; 1550 } 1551 1552 #else 1553 1554 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1555 { 1556 return -ENODEV; 1557 } 1558 #endif /* CONFIG_HOTPLUG */ 1559 1560 struct device_type usb_if_device_type = { 1561 .name = "usb_interface", 1562 .release = usb_release_interface, 1563 .uevent = usb_if_uevent, 1564 }; 1565 1566 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1567 struct usb_host_config *config, 1568 u8 inum) 1569 { 1570 struct usb_interface_assoc_descriptor *retval = NULL; 1571 struct usb_interface_assoc_descriptor *intf_assoc; 1572 int first_intf; 1573 int last_intf; 1574 int i; 1575 1576 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1577 intf_assoc = config->intf_assoc[i]; 1578 if (intf_assoc->bInterfaceCount == 0) 1579 continue; 1580 1581 first_intf = intf_assoc->bFirstInterface; 1582 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1583 if (inum >= first_intf && inum <= last_intf) { 1584 if (!retval) 1585 retval = intf_assoc; 1586 else 1587 dev_err(&dev->dev, "Interface #%d referenced" 1588 " by multiple IADs\n", inum); 1589 } 1590 } 1591 1592 return retval; 1593 } 1594 1595 1596 /* 1597 * Internal function to queue a device reset 1598 * 1599 * This is initialized into the workstruct in 'struct 1600 * usb_device->reset_ws' that is launched by 1601 * message.c:usb_set_configuration() when initializing each 'struct 1602 * usb_interface'. 1603 * 1604 * It is safe to get the USB device without reference counts because 1605 * the life cycle of @iface is bound to the life cycle of @udev. Then, 1606 * this function will be ran only if @iface is alive (and before 1607 * freeing it any scheduled instances of it will have been cancelled). 1608 * 1609 * We need to set a flag (usb_dev->reset_running) because when we call 1610 * the reset, the interfaces might be unbound. The current interface 1611 * cannot try to remove the queued work as it would cause a deadlock 1612 * (you cannot remove your work from within your executing 1613 * workqueue). This flag lets it know, so that 1614 * usb_cancel_queued_reset() doesn't try to do it. 1615 * 1616 * See usb_queue_reset_device() for more details 1617 */ 1618 static void __usb_queue_reset_device(struct work_struct *ws) 1619 { 1620 int rc; 1621 struct usb_interface *iface = 1622 container_of(ws, struct usb_interface, reset_ws); 1623 struct usb_device *udev = interface_to_usbdev(iface); 1624 1625 rc = usb_lock_device_for_reset(udev, iface); 1626 if (rc >= 0) { 1627 iface->reset_running = 1; 1628 usb_reset_device(udev); 1629 iface->reset_running = 0; 1630 usb_unlock_device(udev); 1631 } 1632 } 1633 1634 1635 /* 1636 * usb_set_configuration - Makes a particular device setting be current 1637 * @dev: the device whose configuration is being updated 1638 * @configuration: the configuration being chosen. 1639 * Context: !in_interrupt(), caller owns the device lock 1640 * 1641 * This is used to enable non-default device modes. Not all devices 1642 * use this kind of configurability; many devices only have one 1643 * configuration. 1644 * 1645 * @configuration is the value of the configuration to be installed. 1646 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1647 * must be non-zero; a value of zero indicates that the device in 1648 * unconfigured. However some devices erroneously use 0 as one of their 1649 * configuration values. To help manage such devices, this routine will 1650 * accept @configuration = -1 as indicating the device should be put in 1651 * an unconfigured state. 1652 * 1653 * USB device configurations may affect Linux interoperability, 1654 * power consumption and the functionality available. For example, 1655 * the default configuration is limited to using 100mA of bus power, 1656 * so that when certain device functionality requires more power, 1657 * and the device is bus powered, that functionality should be in some 1658 * non-default device configuration. Other device modes may also be 1659 * reflected as configuration options, such as whether two ISDN 1660 * channels are available independently; and choosing between open 1661 * standard device protocols (like CDC) or proprietary ones. 1662 * 1663 * Note that a non-authorized device (dev->authorized == 0) will only 1664 * be put in unconfigured mode. 1665 * 1666 * Note that USB has an additional level of device configurability, 1667 * associated with interfaces. That configurability is accessed using 1668 * usb_set_interface(). 1669 * 1670 * This call is synchronous. The calling context must be able to sleep, 1671 * must own the device lock, and must not hold the driver model's USB 1672 * bus mutex; usb interface driver probe() methods cannot use this routine. 1673 * 1674 * Returns zero on success, or else the status code returned by the 1675 * underlying call that failed. On successful completion, each interface 1676 * in the original device configuration has been destroyed, and each one 1677 * in the new configuration has been probed by all relevant usb device 1678 * drivers currently known to the kernel. 1679 */ 1680 int usb_set_configuration(struct usb_device *dev, int configuration) 1681 { 1682 int i, ret; 1683 struct usb_host_config *cp = NULL; 1684 struct usb_interface **new_interfaces = NULL; 1685 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1686 int n, nintf; 1687 1688 if (dev->authorized == 0 || configuration == -1) 1689 configuration = 0; 1690 else { 1691 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1692 if (dev->config[i].desc.bConfigurationValue == 1693 configuration) { 1694 cp = &dev->config[i]; 1695 break; 1696 } 1697 } 1698 } 1699 if ((!cp && configuration != 0)) 1700 return -EINVAL; 1701 1702 /* The USB spec says configuration 0 means unconfigured. 1703 * But if a device includes a configuration numbered 0, 1704 * we will accept it as a correctly configured state. 1705 * Use -1 if you really want to unconfigure the device. 1706 */ 1707 if (cp && configuration == 0) 1708 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1709 1710 /* Allocate memory for new interfaces before doing anything else, 1711 * so that if we run out then nothing will have changed. */ 1712 n = nintf = 0; 1713 if (cp) { 1714 nintf = cp->desc.bNumInterfaces; 1715 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1716 GFP_NOIO); 1717 if (!new_interfaces) { 1718 dev_err(&dev->dev, "Out of memory\n"); 1719 return -ENOMEM; 1720 } 1721 1722 for (; n < nintf; ++n) { 1723 new_interfaces[n] = kzalloc( 1724 sizeof(struct usb_interface), 1725 GFP_NOIO); 1726 if (!new_interfaces[n]) { 1727 dev_err(&dev->dev, "Out of memory\n"); 1728 ret = -ENOMEM; 1729 free_interfaces: 1730 while (--n >= 0) 1731 kfree(new_interfaces[n]); 1732 kfree(new_interfaces); 1733 return ret; 1734 } 1735 } 1736 1737 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1738 if (i < 0) 1739 dev_warn(&dev->dev, "new config #%d exceeds power " 1740 "limit by %dmA\n", 1741 configuration, -i); 1742 } 1743 1744 /* Wake up the device so we can send it the Set-Config request */ 1745 ret = usb_autoresume_device(dev); 1746 if (ret) 1747 goto free_interfaces; 1748 1749 /* if it's already configured, clear out old state first. 1750 * getting rid of old interfaces means unbinding their drivers. 1751 */ 1752 mutex_lock(hcd->bandwidth_mutex); 1753 if (dev->state != USB_STATE_ADDRESS) 1754 usb_disable_device(dev, 1); /* Skip ep0 */ 1755 1756 /* Get rid of pending async Set-Config requests for this device */ 1757 cancel_async_set_config(dev); 1758 1759 /* Make sure we have bandwidth (and available HCD resources) for this 1760 * configuration. Remove endpoints from the schedule if we're dropping 1761 * this configuration to set configuration 0. After this point, the 1762 * host controller will not allow submissions to dropped endpoints. If 1763 * this call fails, the device state is unchanged. 1764 */ 1765 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 1766 if (ret < 0) { 1767 mutex_unlock(hcd->bandwidth_mutex); 1768 usb_autosuspend_device(dev); 1769 goto free_interfaces; 1770 } 1771 1772 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1773 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1774 NULL, 0, USB_CTRL_SET_TIMEOUT); 1775 if (ret < 0) { 1776 /* All the old state is gone, so what else can we do? 1777 * The device is probably useless now anyway. 1778 */ 1779 cp = NULL; 1780 } 1781 1782 dev->actconfig = cp; 1783 if (!cp) { 1784 usb_set_device_state(dev, USB_STATE_ADDRESS); 1785 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1786 mutex_unlock(hcd->bandwidth_mutex); 1787 usb_autosuspend_device(dev); 1788 goto free_interfaces; 1789 } 1790 mutex_unlock(hcd->bandwidth_mutex); 1791 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1792 1793 /* Initialize the new interface structures and the 1794 * hc/hcd/usbcore interface/endpoint state. 1795 */ 1796 for (i = 0; i < nintf; ++i) { 1797 struct usb_interface_cache *intfc; 1798 struct usb_interface *intf; 1799 struct usb_host_interface *alt; 1800 1801 cp->interface[i] = intf = new_interfaces[i]; 1802 intfc = cp->intf_cache[i]; 1803 intf->altsetting = intfc->altsetting; 1804 intf->num_altsetting = intfc->num_altsetting; 1805 intf->intf_assoc = find_iad(dev, cp, i); 1806 kref_get(&intfc->ref); 1807 1808 alt = usb_altnum_to_altsetting(intf, 0); 1809 1810 /* No altsetting 0? We'll assume the first altsetting. 1811 * We could use a GetInterface call, but if a device is 1812 * so non-compliant that it doesn't have altsetting 0 1813 * then I wouldn't trust its reply anyway. 1814 */ 1815 if (!alt) 1816 alt = &intf->altsetting[0]; 1817 1818 intf->cur_altsetting = alt; 1819 usb_enable_interface(dev, intf, true); 1820 intf->dev.parent = &dev->dev; 1821 intf->dev.driver = NULL; 1822 intf->dev.bus = &usb_bus_type; 1823 intf->dev.type = &usb_if_device_type; 1824 intf->dev.groups = usb_interface_groups; 1825 intf->dev.dma_mask = dev->dev.dma_mask; 1826 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1827 intf->minor = -1; 1828 device_initialize(&intf->dev); 1829 pm_runtime_no_callbacks(&intf->dev); 1830 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1831 dev->bus->busnum, dev->devpath, 1832 configuration, alt->desc.bInterfaceNumber); 1833 } 1834 kfree(new_interfaces); 1835 1836 if (cp->string == NULL && 1837 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1838 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1839 1840 /* Now that all the interfaces are set up, register them 1841 * to trigger binding of drivers to interfaces. probe() 1842 * routines may install different altsettings and may 1843 * claim() any interfaces not yet bound. Many class drivers 1844 * need that: CDC, audio, video, etc. 1845 */ 1846 for (i = 0; i < nintf; ++i) { 1847 struct usb_interface *intf = cp->interface[i]; 1848 1849 dev_dbg(&dev->dev, 1850 "adding %s (config #%d, interface %d)\n", 1851 dev_name(&intf->dev), configuration, 1852 intf->cur_altsetting->desc.bInterfaceNumber); 1853 device_enable_async_suspend(&intf->dev); 1854 ret = device_add(&intf->dev); 1855 if (ret != 0) { 1856 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1857 dev_name(&intf->dev), ret); 1858 continue; 1859 } 1860 create_intf_ep_devs(intf); 1861 } 1862 1863 usb_autosuspend_device(dev); 1864 return 0; 1865 } 1866 1867 static LIST_HEAD(set_config_list); 1868 static DEFINE_SPINLOCK(set_config_lock); 1869 1870 struct set_config_request { 1871 struct usb_device *udev; 1872 int config; 1873 struct work_struct work; 1874 struct list_head node; 1875 }; 1876 1877 /* Worker routine for usb_driver_set_configuration() */ 1878 static void driver_set_config_work(struct work_struct *work) 1879 { 1880 struct set_config_request *req = 1881 container_of(work, struct set_config_request, work); 1882 struct usb_device *udev = req->udev; 1883 1884 usb_lock_device(udev); 1885 spin_lock(&set_config_lock); 1886 list_del(&req->node); 1887 spin_unlock(&set_config_lock); 1888 1889 if (req->config >= -1) /* Is req still valid? */ 1890 usb_set_configuration(udev, req->config); 1891 usb_unlock_device(udev); 1892 usb_put_dev(udev); 1893 kfree(req); 1894 } 1895 1896 /* Cancel pending Set-Config requests for a device whose configuration 1897 * was just changed 1898 */ 1899 static void cancel_async_set_config(struct usb_device *udev) 1900 { 1901 struct set_config_request *req; 1902 1903 spin_lock(&set_config_lock); 1904 list_for_each_entry(req, &set_config_list, node) { 1905 if (req->udev == udev) 1906 req->config = -999; /* Mark as cancelled */ 1907 } 1908 spin_unlock(&set_config_lock); 1909 } 1910 1911 /** 1912 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1913 * @udev: the device whose configuration is being updated 1914 * @config: the configuration being chosen. 1915 * Context: In process context, must be able to sleep 1916 * 1917 * Device interface drivers are not allowed to change device configurations. 1918 * This is because changing configurations will destroy the interface the 1919 * driver is bound to and create new ones; it would be like a floppy-disk 1920 * driver telling the computer to replace the floppy-disk drive with a 1921 * tape drive! 1922 * 1923 * Still, in certain specialized circumstances the need may arise. This 1924 * routine gets around the normal restrictions by using a work thread to 1925 * submit the change-config request. 1926 * 1927 * Returns 0 if the request was successfully queued, error code otherwise. 1928 * The caller has no way to know whether the queued request will eventually 1929 * succeed. 1930 */ 1931 int usb_driver_set_configuration(struct usb_device *udev, int config) 1932 { 1933 struct set_config_request *req; 1934 1935 req = kmalloc(sizeof(*req), GFP_KERNEL); 1936 if (!req) 1937 return -ENOMEM; 1938 req->udev = udev; 1939 req->config = config; 1940 INIT_WORK(&req->work, driver_set_config_work); 1941 1942 spin_lock(&set_config_lock); 1943 list_add(&req->node, &set_config_list); 1944 spin_unlock(&set_config_lock); 1945 1946 usb_get_dev(udev); 1947 schedule_work(&req->work); 1948 return 0; 1949 } 1950 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1951