xref: /linux/drivers/usb/core/message.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <linux/usb/quirks.h>
15 #include <asm/byteorder.h>
16 #include <asm/scatterlist.h>
17 
18 #include "hcd.h"	/* for usbcore internals */
19 #include "usb.h"
20 
21 static void usb_api_blocking_completion(struct urb *urb)
22 {
23 	complete((struct completion *)urb->context);
24 }
25 
26 
27 /*
28  * Starts urb and waits for completion or timeout. Note that this call
29  * is NOT interruptible. Many device driver i/o requests should be
30  * interruptible and therefore these drivers should implement their
31  * own interruptible routines.
32  */
33 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
34 {
35 	struct completion done;
36 	unsigned long expire;
37 	int status;
38 
39 	init_completion(&done);
40 	urb->context = &done;
41 	urb->actual_length = 0;
42 	status = usb_submit_urb(urb, GFP_NOIO);
43 	if (unlikely(status))
44 		goto out;
45 
46 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
47 	if (!wait_for_completion_timeout(&done, expire)) {
48 
49 		dev_dbg(&urb->dev->dev,
50 			"%s timed out on ep%d%s len=%d/%d\n",
51 			current->comm,
52 			usb_pipeendpoint(urb->pipe),
53 			usb_pipein(urb->pipe) ? "in" : "out",
54 			urb->actual_length,
55 			urb->transfer_buffer_length);
56 
57 		usb_kill_urb(urb);
58 		status = urb->status == -ENOENT ? -ETIMEDOUT : urb->status;
59 	} else
60 		status = urb->status;
61 out:
62 	if (actual_length)
63 		*actual_length = urb->actual_length;
64 
65 	usb_free_urb(urb);
66 	return status;
67 }
68 
69 /*-------------------------------------------------------------------*/
70 // returns status (negative) or length (positive)
71 static int usb_internal_control_msg(struct usb_device *usb_dev,
72 				    unsigned int pipe,
73 				    struct usb_ctrlrequest *cmd,
74 				    void *data, int len, int timeout)
75 {
76 	struct urb *urb;
77 	int retv;
78 	int length;
79 
80 	urb = usb_alloc_urb(0, GFP_NOIO);
81 	if (!urb)
82 		return -ENOMEM;
83 
84 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
85 			     len, usb_api_blocking_completion, NULL);
86 
87 	retv = usb_start_wait_urb(urb, timeout, &length);
88 	if (retv < 0)
89 		return retv;
90 	else
91 		return length;
92 }
93 
94 /**
95  *	usb_control_msg - Builds a control urb, sends it off and waits for completion
96  *	@dev: pointer to the usb device to send the message to
97  *	@pipe: endpoint "pipe" to send the message to
98  *	@request: USB message request value
99  *	@requesttype: USB message request type value
100  *	@value: USB message value
101  *	@index: USB message index value
102  *	@data: pointer to the data to send
103  *	@size: length in bytes of the data to send
104  *	@timeout: time in msecs to wait for the message to complete before
105  *		timing out (if 0 the wait is forever)
106  *	Context: !in_interrupt ()
107  *
108  *	This function sends a simple control message to a specified endpoint
109  *	and waits for the message to complete, or timeout.
110  *
111  *	If successful, it returns the number of bytes transferred, otherwise a negative error number.
112  *
113  *	Don't use this function from within an interrupt context, like a
114  *	bottom half handler.  If you need an asynchronous message, or need to send
115  *	a message from within interrupt context, use usb_submit_urb()
116  *      If a thread in your driver uses this call, make sure your disconnect()
117  *      method can wait for it to complete.  Since you don't have a handle on
118  *      the URB used, you can't cancel the request.
119  */
120 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
121 			 __u16 value, __u16 index, void *data, __u16 size, int timeout)
122 {
123 	struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
124 	int ret;
125 
126 	if (!dr)
127 		return -ENOMEM;
128 
129 	dr->bRequestType= requesttype;
130 	dr->bRequest = request;
131 	dr->wValue = cpu_to_le16p(&value);
132 	dr->wIndex = cpu_to_le16p(&index);
133 	dr->wLength = cpu_to_le16p(&size);
134 
135 	//dbg("usb_control_msg");
136 
137 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
138 
139 	kfree(dr);
140 
141 	return ret;
142 }
143 
144 
145 /**
146  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
147  * @usb_dev: pointer to the usb device to send the message to
148  * @pipe: endpoint "pipe" to send the message to
149  * @data: pointer to the data to send
150  * @len: length in bytes of the data to send
151  * @actual_length: pointer to a location to put the actual length transferred in bytes
152  * @timeout: time in msecs to wait for the message to complete before
153  *	timing out (if 0 the wait is forever)
154  * Context: !in_interrupt ()
155  *
156  * This function sends a simple interrupt message to a specified endpoint and
157  * waits for the message to complete, or timeout.
158  *
159  * If successful, it returns 0, otherwise a negative error number.  The number
160  * of actual bytes transferred will be stored in the actual_length paramater.
161  *
162  * Don't use this function from within an interrupt context, like a bottom half
163  * handler.  If you need an asynchronous message, or need to send a message
164  * from within interrupt context, use usb_submit_urb() If a thread in your
165  * driver uses this call, make sure your disconnect() method can wait for it to
166  * complete.  Since you don't have a handle on the URB used, you can't cancel
167  * the request.
168  */
169 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
170 		      void *data, int len, int *actual_length, int timeout)
171 {
172 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
173 }
174 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
175 
176 /**
177  *	usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
178  *	@usb_dev: pointer to the usb device to send the message to
179  *	@pipe: endpoint "pipe" to send the message to
180  *	@data: pointer to the data to send
181  *	@len: length in bytes of the data to send
182  *	@actual_length: pointer to a location to put the actual length transferred in bytes
183  *	@timeout: time in msecs to wait for the message to complete before
184  *		timing out (if 0 the wait is forever)
185  *	Context: !in_interrupt ()
186  *
187  *	This function sends a simple bulk message to a specified endpoint
188  *	and waits for the message to complete, or timeout.
189  *
190  *	If successful, it returns 0, otherwise a negative error number.
191  *	The number of actual bytes transferred will be stored in the
192  *	actual_length paramater.
193  *
194  *	Don't use this function from within an interrupt context, like a
195  *	bottom half handler.  If you need an asynchronous message, or need to
196  *	send a message from within interrupt context, use usb_submit_urb()
197  *      If a thread in your driver uses this call, make sure your disconnect()
198  *      method can wait for it to complete.  Since you don't have a handle on
199  *      the URB used, you can't cancel the request.
200  *
201  *	Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
202  *	ioctl, users are forced to abuse this routine by using it to submit
203  *	URBs for interrupt endpoints.  We will take the liberty of creating
204  *	an interrupt URB (with the default interval) if the target is an
205  *	interrupt endpoint.
206  */
207 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
208 			void *data, int len, int *actual_length, int timeout)
209 {
210 	struct urb *urb;
211 	struct usb_host_endpoint *ep;
212 
213 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
214 			[usb_pipeendpoint(pipe)];
215 	if (!ep || len < 0)
216 		return -EINVAL;
217 
218 	urb = usb_alloc_urb(0, GFP_KERNEL);
219 	if (!urb)
220 		return -ENOMEM;
221 
222 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
223 			USB_ENDPOINT_XFER_INT) {
224 		int interval;
225 
226 		if (usb_dev->speed == USB_SPEED_HIGH)
227 			interval = 1 << min(15, ep->desc.bInterval - 1);
228 		else
229 			interval = ep->desc.bInterval;
230 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
231 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
232 				usb_api_blocking_completion, NULL, interval);
233 	} else
234 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
235 				usb_api_blocking_completion, NULL);
236 
237 	return usb_start_wait_urb(urb, timeout, actual_length);
238 }
239 
240 /*-------------------------------------------------------------------*/
241 
242 static void sg_clean (struct usb_sg_request *io)
243 {
244 	if (io->urbs) {
245 		while (io->entries--)
246 			usb_free_urb (io->urbs [io->entries]);
247 		kfree (io->urbs);
248 		io->urbs = NULL;
249 	}
250 	if (io->dev->dev.dma_mask != NULL)
251 		usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
252 	io->dev = NULL;
253 }
254 
255 static void sg_complete (struct urb *urb)
256 {
257 	struct usb_sg_request	*io = urb->context;
258 
259 	spin_lock (&io->lock);
260 
261 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
262 	 * reports, until the completion callback (this!) returns.  That lets
263 	 * device driver code (like this routine) unlink queued urbs first,
264 	 * if it needs to, since the HC won't work on them at all.  So it's
265 	 * not possible for page N+1 to overwrite page N, and so on.
266 	 *
267 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
268 	 * complete before the HCD can get requests away from hardware,
269 	 * though never during cleanup after a hard fault.
270 	 */
271 	if (io->status
272 			&& (io->status != -ECONNRESET
273 				|| urb->status != -ECONNRESET)
274 			&& urb->actual_length) {
275 		dev_err (io->dev->bus->controller,
276 			"dev %s ep%d%s scatterlist error %d/%d\n",
277 			io->dev->devpath,
278 			usb_pipeendpoint (urb->pipe),
279 			usb_pipein (urb->pipe) ? "in" : "out",
280 			urb->status, io->status);
281 		// BUG ();
282 	}
283 
284 	if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
285 		int		i, found, status;
286 
287 		io->status = urb->status;
288 
289 		/* the previous urbs, and this one, completed already.
290 		 * unlink pending urbs so they won't rx/tx bad data.
291 		 * careful: unlink can sometimes be synchronous...
292 		 */
293 		spin_unlock (&io->lock);
294 		for (i = 0, found = 0; i < io->entries; i++) {
295 			if (!io->urbs [i] || !io->urbs [i]->dev)
296 				continue;
297 			if (found) {
298 				status = usb_unlink_urb (io->urbs [i]);
299 				if (status != -EINPROGRESS
300 						&& status != -ENODEV
301 						&& status != -EBUSY)
302 					dev_err (&io->dev->dev,
303 						"%s, unlink --> %d\n",
304 						__FUNCTION__, status);
305 			} else if (urb == io->urbs [i])
306 				found = 1;
307 		}
308 		spin_lock (&io->lock);
309 	}
310 	urb->dev = NULL;
311 
312 	/* on the last completion, signal usb_sg_wait() */
313 	io->bytes += urb->actual_length;
314 	io->count--;
315 	if (!io->count)
316 		complete (&io->complete);
317 
318 	spin_unlock (&io->lock);
319 }
320 
321 
322 /**
323  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
324  * @io: request block being initialized.  until usb_sg_wait() returns,
325  *	treat this as a pointer to an opaque block of memory,
326  * @dev: the usb device that will send or receive the data
327  * @pipe: endpoint "pipe" used to transfer the data
328  * @period: polling rate for interrupt endpoints, in frames or
329  * 	(for high speed endpoints) microframes; ignored for bulk
330  * @sg: scatterlist entries
331  * @nents: how many entries in the scatterlist
332  * @length: how many bytes to send from the scatterlist, or zero to
333  * 	send every byte identified in the list.
334  * @mem_flags: SLAB_* flags affecting memory allocations in this call
335  *
336  * Returns zero for success, else a negative errno value.  This initializes a
337  * scatter/gather request, allocating resources such as I/O mappings and urb
338  * memory (except maybe memory used by USB controller drivers).
339  *
340  * The request must be issued using usb_sg_wait(), which waits for the I/O to
341  * complete (or to be canceled) and then cleans up all resources allocated by
342  * usb_sg_init().
343  *
344  * The request may be canceled with usb_sg_cancel(), either before or after
345  * usb_sg_wait() is called.
346  */
347 int usb_sg_init (
348 	struct usb_sg_request	*io,
349 	struct usb_device	*dev,
350 	unsigned		pipe,
351 	unsigned		period,
352 	struct scatterlist	*sg,
353 	int			nents,
354 	size_t			length,
355 	gfp_t			mem_flags
356 )
357 {
358 	int			i;
359 	int			urb_flags;
360 	int			dma;
361 
362 	if (!io || !dev || !sg
363 			|| usb_pipecontrol (pipe)
364 			|| usb_pipeisoc (pipe)
365 			|| nents <= 0)
366 		return -EINVAL;
367 
368 	spin_lock_init (&io->lock);
369 	io->dev = dev;
370 	io->pipe = pipe;
371 	io->sg = sg;
372 	io->nents = nents;
373 
374 	/* not all host controllers use DMA (like the mainstream pci ones);
375 	 * they can use PIO (sl811) or be software over another transport.
376 	 */
377 	dma = (dev->dev.dma_mask != NULL);
378 	if (dma)
379 		io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
380 	else
381 		io->entries = nents;
382 
383 	/* initialize all the urbs we'll use */
384 	if (io->entries <= 0)
385 		return io->entries;
386 
387 	io->count = io->entries;
388 	io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
389 	if (!io->urbs)
390 		goto nomem;
391 
392 	urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
393 	if (usb_pipein (pipe))
394 		urb_flags |= URB_SHORT_NOT_OK;
395 
396 	for (i = 0; i < io->entries; i++) {
397 		unsigned		len;
398 
399 		io->urbs [i] = usb_alloc_urb (0, mem_flags);
400 		if (!io->urbs [i]) {
401 			io->entries = i;
402 			goto nomem;
403 		}
404 
405 		io->urbs [i]->dev = NULL;
406 		io->urbs [i]->pipe = pipe;
407 		io->urbs [i]->interval = period;
408 		io->urbs [i]->transfer_flags = urb_flags;
409 
410 		io->urbs [i]->complete = sg_complete;
411 		io->urbs [i]->context = io;
412 		io->urbs [i]->status = -EINPROGRESS;
413 		io->urbs [i]->actual_length = 0;
414 
415 		/*
416 		 * Some systems need to revert to PIO when DMA is temporarily
417 		 * unavailable.  For their sakes, both transfer_buffer and
418 		 * transfer_dma are set when possible.  However this can only
419 		 * work on systems without HIGHMEM, since DMA buffers located
420 		 * in high memory are not directly addressable by the CPU for
421 		 * PIO ... so when HIGHMEM is in use, transfer_buffer is NULL
422 		 * to prevent stale pointers and to help spot bugs.
423 		 */
424 		if (dma) {
425 			io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
426 			len = sg_dma_len (sg + i);
427 #ifdef CONFIG_HIGHMEM
428 			io->urbs[i]->transfer_buffer = NULL;
429 #else
430 			io->urbs[i]->transfer_buffer =
431 				page_address(sg[i].page) + sg[i].offset;
432 #endif
433 		} else {
434 			/* hc may use _only_ transfer_buffer */
435 			io->urbs [i]->transfer_buffer =
436 				page_address (sg [i].page) + sg [i].offset;
437 			len = sg [i].length;
438 		}
439 
440 		if (length) {
441 			len = min_t (unsigned, len, length);
442 			length -= len;
443 			if (length == 0)
444 				io->entries = i + 1;
445 		}
446 		io->urbs [i]->transfer_buffer_length = len;
447 	}
448 	io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
449 
450 	/* transaction state */
451 	io->status = 0;
452 	io->bytes = 0;
453 	init_completion (&io->complete);
454 	return 0;
455 
456 nomem:
457 	sg_clean (io);
458 	return -ENOMEM;
459 }
460 
461 
462 /**
463  * usb_sg_wait - synchronously execute scatter/gather request
464  * @io: request block handle, as initialized with usb_sg_init().
465  * 	some fields become accessible when this call returns.
466  * Context: !in_interrupt ()
467  *
468  * This function blocks until the specified I/O operation completes.  It
469  * leverages the grouping of the related I/O requests to get good transfer
470  * rates, by queueing the requests.  At higher speeds, such queuing can
471  * significantly improve USB throughput.
472  *
473  * There are three kinds of completion for this function.
474  * (1) success, where io->status is zero.  The number of io->bytes
475  *     transferred is as requested.
476  * (2) error, where io->status is a negative errno value.  The number
477  *     of io->bytes transferred before the error is usually less
478  *     than requested, and can be nonzero.
479  * (3) cancellation, a type of error with status -ECONNRESET that
480  *     is initiated by usb_sg_cancel().
481  *
482  * When this function returns, all memory allocated through usb_sg_init() or
483  * this call will have been freed.  The request block parameter may still be
484  * passed to usb_sg_cancel(), or it may be freed.  It could also be
485  * reinitialized and then reused.
486  *
487  * Data Transfer Rates:
488  *
489  * Bulk transfers are valid for full or high speed endpoints.
490  * The best full speed data rate is 19 packets of 64 bytes each
491  * per frame, or 1216 bytes per millisecond.
492  * The best high speed data rate is 13 packets of 512 bytes each
493  * per microframe, or 52 KBytes per millisecond.
494  *
495  * The reason to use interrupt transfers through this API would most likely
496  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
497  * could be transferred.  That capability is less useful for low or full
498  * speed interrupt endpoints, which allow at most one packet per millisecond,
499  * of at most 8 or 64 bytes (respectively).
500  */
501 void usb_sg_wait (struct usb_sg_request *io)
502 {
503 	int		i, entries = io->entries;
504 
505 	/* queue the urbs.  */
506 	spin_lock_irq (&io->lock);
507 	for (i = 0; i < entries && !io->status; i++) {
508 		int	retval;
509 
510 		io->urbs [i]->dev = io->dev;
511 		retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC);
512 
513 		/* after we submit, let completions or cancelations fire;
514 		 * we handshake using io->status.
515 		 */
516 		spin_unlock_irq (&io->lock);
517 		switch (retval) {
518 			/* maybe we retrying will recover */
519 		case -ENXIO:	// hc didn't queue this one
520 		case -EAGAIN:
521 		case -ENOMEM:
522 			io->urbs[i]->dev = NULL;
523 			retval = 0;
524 			i--;
525 			yield ();
526 			break;
527 
528 			/* no error? continue immediately.
529 			 *
530 			 * NOTE: to work better with UHCI (4K I/O buffer may
531 			 * need 3K of TDs) it may be good to limit how many
532 			 * URBs are queued at once; N milliseconds?
533 			 */
534 		case 0:
535 			cpu_relax ();
536 			break;
537 
538 			/* fail any uncompleted urbs */
539 		default:
540 			io->urbs [i]->dev = NULL;
541 			io->urbs [i]->status = retval;
542 			dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
543 				__FUNCTION__, retval);
544 			usb_sg_cancel (io);
545 		}
546 		spin_lock_irq (&io->lock);
547 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
548 			io->status = retval;
549 	}
550 	io->count -= entries - i;
551 	if (io->count == 0)
552 		complete (&io->complete);
553 	spin_unlock_irq (&io->lock);
554 
555 	/* OK, yes, this could be packaged as non-blocking.
556 	 * So could the submit loop above ... but it's easier to
557 	 * solve neither problem than to solve both!
558 	 */
559 	wait_for_completion (&io->complete);
560 
561 	sg_clean (io);
562 }
563 
564 /**
565  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
566  * @io: request block, initialized with usb_sg_init()
567  *
568  * This stops a request after it has been started by usb_sg_wait().
569  * It can also prevents one initialized by usb_sg_init() from starting,
570  * so that call just frees resources allocated to the request.
571  */
572 void usb_sg_cancel (struct usb_sg_request *io)
573 {
574 	unsigned long	flags;
575 
576 	spin_lock_irqsave (&io->lock, flags);
577 
578 	/* shut everything down, if it didn't already */
579 	if (!io->status) {
580 		int	i;
581 
582 		io->status = -ECONNRESET;
583 		spin_unlock (&io->lock);
584 		for (i = 0; i < io->entries; i++) {
585 			int	retval;
586 
587 			if (!io->urbs [i]->dev)
588 				continue;
589 			retval = usb_unlink_urb (io->urbs [i]);
590 			if (retval != -EINPROGRESS && retval != -EBUSY)
591 				dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
592 					__FUNCTION__, retval);
593 		}
594 		spin_lock (&io->lock);
595 	}
596 	spin_unlock_irqrestore (&io->lock, flags);
597 }
598 
599 /*-------------------------------------------------------------------*/
600 
601 /**
602  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
603  * @dev: the device whose descriptor is being retrieved
604  * @type: the descriptor type (USB_DT_*)
605  * @index: the number of the descriptor
606  * @buf: where to put the descriptor
607  * @size: how big is "buf"?
608  * Context: !in_interrupt ()
609  *
610  * Gets a USB descriptor.  Convenience functions exist to simplify
611  * getting some types of descriptors.  Use
612  * usb_get_string() or usb_string() for USB_DT_STRING.
613  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
614  * are part of the device structure.
615  * In addition to a number of USB-standard descriptors, some
616  * devices also use class-specific or vendor-specific descriptors.
617  *
618  * This call is synchronous, and may not be used in an interrupt context.
619  *
620  * Returns the number of bytes received on success, or else the status code
621  * returned by the underlying usb_control_msg() call.
622  */
623 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
624 {
625 	int i;
626 	int result;
627 
628 	memset(buf,0,size);	// Make sure we parse really received data
629 
630 	for (i = 0; i < 3; ++i) {
631 		/* retry on length 0 or stall; some devices are flakey */
632 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
633 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
634 				(type << 8) + index, 0, buf, size,
635 				USB_CTRL_GET_TIMEOUT);
636 		if (result == 0 || result == -EPIPE)
637 			continue;
638 		if (result > 1 && ((u8 *)buf)[1] != type) {
639 			result = -EPROTO;
640 			continue;
641 		}
642 		break;
643 	}
644 	return result;
645 }
646 
647 /**
648  * usb_get_string - gets a string descriptor
649  * @dev: the device whose string descriptor is being retrieved
650  * @langid: code for language chosen (from string descriptor zero)
651  * @index: the number of the descriptor
652  * @buf: where to put the string
653  * @size: how big is "buf"?
654  * Context: !in_interrupt ()
655  *
656  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
657  * in little-endian byte order).
658  * The usb_string() function will often be a convenient way to turn
659  * these strings into kernel-printable form.
660  *
661  * Strings may be referenced in device, configuration, interface, or other
662  * descriptors, and could also be used in vendor-specific ways.
663  *
664  * This call is synchronous, and may not be used in an interrupt context.
665  *
666  * Returns the number of bytes received on success, or else the status code
667  * returned by the underlying usb_control_msg() call.
668  */
669 static int usb_get_string(struct usb_device *dev, unsigned short langid,
670 			  unsigned char index, void *buf, int size)
671 {
672 	int i;
673 	int result;
674 
675 	for (i = 0; i < 3; ++i) {
676 		/* retry on length 0 or stall; some devices are flakey */
677 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
678 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
679 			(USB_DT_STRING << 8) + index, langid, buf, size,
680 			USB_CTRL_GET_TIMEOUT);
681 		if (!(result == 0 || result == -EPIPE))
682 			break;
683 	}
684 	return result;
685 }
686 
687 static void usb_try_string_workarounds(unsigned char *buf, int *length)
688 {
689 	int newlength, oldlength = *length;
690 
691 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
692 		if (!isprint(buf[newlength]) || buf[newlength + 1])
693 			break;
694 
695 	if (newlength > 2) {
696 		buf[0] = newlength;
697 		*length = newlength;
698 	}
699 }
700 
701 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
702 		unsigned int index, unsigned char *buf)
703 {
704 	int rc;
705 
706 	/* Try to read the string descriptor by asking for the maximum
707 	 * possible number of bytes */
708 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
709 		rc = -EIO;
710 	else
711 		rc = usb_get_string(dev, langid, index, buf, 255);
712 
713 	/* If that failed try to read the descriptor length, then
714 	 * ask for just that many bytes */
715 	if (rc < 2) {
716 		rc = usb_get_string(dev, langid, index, buf, 2);
717 		if (rc == 2)
718 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
719 	}
720 
721 	if (rc >= 2) {
722 		if (!buf[0] && !buf[1])
723 			usb_try_string_workarounds(buf, &rc);
724 
725 		/* There might be extra junk at the end of the descriptor */
726 		if (buf[0] < rc)
727 			rc = buf[0];
728 
729 		rc = rc - (rc & 1); /* force a multiple of two */
730 	}
731 
732 	if (rc < 2)
733 		rc = (rc < 0 ? rc : -EINVAL);
734 
735 	return rc;
736 }
737 
738 /**
739  * usb_string - returns ISO 8859-1 version of a string descriptor
740  * @dev: the device whose string descriptor is being retrieved
741  * @index: the number of the descriptor
742  * @buf: where to put the string
743  * @size: how big is "buf"?
744  * Context: !in_interrupt ()
745  *
746  * This converts the UTF-16LE encoded strings returned by devices, from
747  * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
748  * that are more usable in most kernel contexts.  Note that all characters
749  * in the chosen descriptor that can't be encoded using ISO-8859-1
750  * are converted to the question mark ("?") character, and this function
751  * chooses strings in the first language supported by the device.
752  *
753  * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
754  * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
755  * and is appropriate for use many uses of English and several other
756  * Western European languages.  (But it doesn't include the "Euro" symbol.)
757  *
758  * This call is synchronous, and may not be used in an interrupt context.
759  *
760  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
761  */
762 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
763 {
764 	unsigned char *tbuf;
765 	int err;
766 	unsigned int u, idx;
767 
768 	if (dev->state == USB_STATE_SUSPENDED)
769 		return -EHOSTUNREACH;
770 	if (size <= 0 || !buf || !index)
771 		return -EINVAL;
772 	buf[0] = 0;
773 	tbuf = kmalloc(256, GFP_KERNEL);
774 	if (!tbuf)
775 		return -ENOMEM;
776 
777 	/* get langid for strings if it's not yet known */
778 	if (!dev->have_langid) {
779 		err = usb_string_sub(dev, 0, 0, tbuf);
780 		if (err < 0) {
781 			dev_err (&dev->dev,
782 				"string descriptor 0 read error: %d\n",
783 				err);
784 			goto errout;
785 		} else if (err < 4) {
786 			dev_err (&dev->dev, "string descriptor 0 too short\n");
787 			err = -EINVAL;
788 			goto errout;
789 		} else {
790 			dev->have_langid = 1;
791 			dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
792 				/* always use the first langid listed */
793 			dev_dbg (&dev->dev, "default language 0x%04x\n",
794 				dev->string_langid);
795 		}
796 	}
797 
798 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
799 	if (err < 0)
800 		goto errout;
801 
802 	size--;		/* leave room for trailing NULL char in output buffer */
803 	for (idx = 0, u = 2; u < err; u += 2) {
804 		if (idx >= size)
805 			break;
806 		if (tbuf[u+1])			/* high byte */
807 			buf[idx++] = '?';  /* non ISO-8859-1 character */
808 		else
809 			buf[idx++] = tbuf[u];
810 	}
811 	buf[idx] = 0;
812 	err = idx;
813 
814 	if (tbuf[1] != USB_DT_STRING)
815 		dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
816 
817  errout:
818 	kfree(tbuf);
819 	return err;
820 }
821 
822 /**
823  * usb_cache_string - read a string descriptor and cache it for later use
824  * @udev: the device whose string descriptor is being read
825  * @index: the descriptor index
826  *
827  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
828  * or NULL if the index is 0 or the string could not be read.
829  */
830 char *usb_cache_string(struct usb_device *udev, int index)
831 {
832 	char *buf;
833 	char *smallbuf = NULL;
834 	int len;
835 
836 	if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
837 		if ((len = usb_string(udev, index, buf, 256)) > 0) {
838 			if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
839 				return buf;
840 			memcpy(smallbuf, buf, len);
841 		}
842 		kfree(buf);
843 	}
844 	return smallbuf;
845 }
846 
847 /*
848  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
849  * @dev: the device whose device descriptor is being updated
850  * @size: how much of the descriptor to read
851  * Context: !in_interrupt ()
852  *
853  * Updates the copy of the device descriptor stored in the device structure,
854  * which dedicates space for this purpose.
855  *
856  * Not exported, only for use by the core.  If drivers really want to read
857  * the device descriptor directly, they can call usb_get_descriptor() with
858  * type = USB_DT_DEVICE and index = 0.
859  *
860  * This call is synchronous, and may not be used in an interrupt context.
861  *
862  * Returns the number of bytes received on success, or else the status code
863  * returned by the underlying usb_control_msg() call.
864  */
865 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
866 {
867 	struct usb_device_descriptor *desc;
868 	int ret;
869 
870 	if (size > sizeof(*desc))
871 		return -EINVAL;
872 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
873 	if (!desc)
874 		return -ENOMEM;
875 
876 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
877 	if (ret >= 0)
878 		memcpy(&dev->descriptor, desc, size);
879 	kfree(desc);
880 	return ret;
881 }
882 
883 /**
884  * usb_get_status - issues a GET_STATUS call
885  * @dev: the device whose status is being checked
886  * @type: USB_RECIP_*; for device, interface, or endpoint
887  * @target: zero (for device), else interface or endpoint number
888  * @data: pointer to two bytes of bitmap data
889  * Context: !in_interrupt ()
890  *
891  * Returns device, interface, or endpoint status.  Normally only of
892  * interest to see if the device is self powered, or has enabled the
893  * remote wakeup facility; or whether a bulk or interrupt endpoint
894  * is halted ("stalled").
895  *
896  * Bits in these status bitmaps are set using the SET_FEATURE request,
897  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
898  * function should be used to clear halt ("stall") status.
899  *
900  * This call is synchronous, and may not be used in an interrupt context.
901  *
902  * Returns the number of bytes received on success, or else the status code
903  * returned by the underlying usb_control_msg() call.
904  */
905 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
906 {
907 	int ret;
908 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
909 
910 	if (!status)
911 		return -ENOMEM;
912 
913 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
914 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
915 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
916 
917 	*(u16 *)data = *status;
918 	kfree(status);
919 	return ret;
920 }
921 
922 /**
923  * usb_clear_halt - tells device to clear endpoint halt/stall condition
924  * @dev: device whose endpoint is halted
925  * @pipe: endpoint "pipe" being cleared
926  * Context: !in_interrupt ()
927  *
928  * This is used to clear halt conditions for bulk and interrupt endpoints,
929  * as reported by URB completion status.  Endpoints that are halted are
930  * sometimes referred to as being "stalled".  Such endpoints are unable
931  * to transmit or receive data until the halt status is cleared.  Any URBs
932  * queued for such an endpoint should normally be unlinked by the driver
933  * before clearing the halt condition, as described in sections 5.7.5
934  * and 5.8.5 of the USB 2.0 spec.
935  *
936  * Note that control and isochronous endpoints don't halt, although control
937  * endpoints report "protocol stall" (for unsupported requests) using the
938  * same status code used to report a true stall.
939  *
940  * This call is synchronous, and may not be used in an interrupt context.
941  *
942  * Returns zero on success, or else the status code returned by the
943  * underlying usb_control_msg() call.
944  */
945 int usb_clear_halt(struct usb_device *dev, int pipe)
946 {
947 	int result;
948 	int endp = usb_pipeendpoint(pipe);
949 
950 	if (usb_pipein (pipe))
951 		endp |= USB_DIR_IN;
952 
953 	/* we don't care if it wasn't halted first. in fact some devices
954 	 * (like some ibmcam model 1 units) seem to expect hosts to make
955 	 * this request for iso endpoints, which can't halt!
956 	 */
957 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
958 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
959 		USB_ENDPOINT_HALT, endp, NULL, 0,
960 		USB_CTRL_SET_TIMEOUT);
961 
962 	/* don't un-halt or force to DATA0 except on success */
963 	if (result < 0)
964 		return result;
965 
966 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
967 	 * the clear "took", so some devices could lock up if you check...
968 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
969 	 *
970 	 * NOTE:  make sure the logic here doesn't diverge much from
971 	 * the copy in usb-storage, for as long as we need two copies.
972 	 */
973 
974 	/* toggle was reset by the clear */
975 	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
976 
977 	return 0;
978 }
979 
980 /**
981  * usb_disable_endpoint -- Disable an endpoint by address
982  * @dev: the device whose endpoint is being disabled
983  * @epaddr: the endpoint's address.  Endpoint number for output,
984  *	endpoint number + USB_DIR_IN for input
985  *
986  * Deallocates hcd/hardware state for this endpoint ... and nukes all
987  * pending urbs.
988  *
989  * If the HCD hasn't registered a disable() function, this sets the
990  * endpoint's maxpacket size to 0 to prevent further submissions.
991  */
992 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
993 {
994 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
995 	struct usb_host_endpoint *ep;
996 
997 	if (!dev)
998 		return;
999 
1000 	if (usb_endpoint_out(epaddr)) {
1001 		ep = dev->ep_out[epnum];
1002 		dev->ep_out[epnum] = NULL;
1003 	} else {
1004 		ep = dev->ep_in[epnum];
1005 		dev->ep_in[epnum] = NULL;
1006 	}
1007 	if (ep && dev->bus)
1008 		usb_hcd_endpoint_disable(dev, ep);
1009 }
1010 
1011 /**
1012  * usb_disable_interface -- Disable all endpoints for an interface
1013  * @dev: the device whose interface is being disabled
1014  * @intf: pointer to the interface descriptor
1015  *
1016  * Disables all the endpoints for the interface's current altsetting.
1017  */
1018 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1019 {
1020 	struct usb_host_interface *alt = intf->cur_altsetting;
1021 	int i;
1022 
1023 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1024 		usb_disable_endpoint(dev,
1025 				alt->endpoint[i].desc.bEndpointAddress);
1026 	}
1027 }
1028 
1029 /*
1030  * usb_disable_device - Disable all the endpoints for a USB device
1031  * @dev: the device whose endpoints are being disabled
1032  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1033  *
1034  * Disables all the device's endpoints, potentially including endpoint 0.
1035  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1036  * pending urbs) and usbcore state for the interfaces, so that usbcore
1037  * must usb_set_configuration() before any interfaces could be used.
1038  */
1039 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1040 {
1041 	int i;
1042 
1043 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1044 			skip_ep0 ? "non-ep0" : "all");
1045 	for (i = skip_ep0; i < 16; ++i) {
1046 		usb_disable_endpoint(dev, i);
1047 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1048 	}
1049 	dev->toggle[0] = dev->toggle[1] = 0;
1050 
1051 	/* getting rid of interfaces will disconnect
1052 	 * any drivers bound to them (a key side effect)
1053 	 */
1054 	if (dev->actconfig) {
1055 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1056 			struct usb_interface	*interface;
1057 
1058 			/* remove this interface if it has been registered */
1059 			interface = dev->actconfig->interface[i];
1060 			if (!device_is_registered(&interface->dev))
1061 				continue;
1062 			dev_dbg (&dev->dev, "unregistering interface %s\n",
1063 				interface->dev.bus_id);
1064 			usb_remove_sysfs_intf_files(interface);
1065 			device_del (&interface->dev);
1066 		}
1067 
1068 		/* Now that the interfaces are unbound, nobody should
1069 		 * try to access them.
1070 		 */
1071 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1072 			put_device (&dev->actconfig->interface[i]->dev);
1073 			dev->actconfig->interface[i] = NULL;
1074 		}
1075 		dev->actconfig = NULL;
1076 		if (dev->state == USB_STATE_CONFIGURED)
1077 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1078 	}
1079 }
1080 
1081 
1082 /*
1083  * usb_enable_endpoint - Enable an endpoint for USB communications
1084  * @dev: the device whose interface is being enabled
1085  * @ep: the endpoint
1086  *
1087  * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1088  * For control endpoints, both the input and output sides are handled.
1089  */
1090 static void
1091 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1092 {
1093 	unsigned int epaddr = ep->desc.bEndpointAddress;
1094 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1095 	int is_control;
1096 
1097 	is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1098 			== USB_ENDPOINT_XFER_CONTROL);
1099 	if (usb_endpoint_out(epaddr) || is_control) {
1100 		usb_settoggle(dev, epnum, 1, 0);
1101 		dev->ep_out[epnum] = ep;
1102 	}
1103 	if (!usb_endpoint_out(epaddr) || is_control) {
1104 		usb_settoggle(dev, epnum, 0, 0);
1105 		dev->ep_in[epnum] = ep;
1106 	}
1107 }
1108 
1109 /*
1110  * usb_enable_interface - Enable all the endpoints for an interface
1111  * @dev: the device whose interface is being enabled
1112  * @intf: pointer to the interface descriptor
1113  *
1114  * Enables all the endpoints for the interface's current altsetting.
1115  */
1116 static void usb_enable_interface(struct usb_device *dev,
1117 				 struct usb_interface *intf)
1118 {
1119 	struct usb_host_interface *alt = intf->cur_altsetting;
1120 	int i;
1121 
1122 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1123 		usb_enable_endpoint(dev, &alt->endpoint[i]);
1124 }
1125 
1126 /**
1127  * usb_set_interface - Makes a particular alternate setting be current
1128  * @dev: the device whose interface is being updated
1129  * @interface: the interface being updated
1130  * @alternate: the setting being chosen.
1131  * Context: !in_interrupt ()
1132  *
1133  * This is used to enable data transfers on interfaces that may not
1134  * be enabled by default.  Not all devices support such configurability.
1135  * Only the driver bound to an interface may change its setting.
1136  *
1137  * Within any given configuration, each interface may have several
1138  * alternative settings.  These are often used to control levels of
1139  * bandwidth consumption.  For example, the default setting for a high
1140  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1141  * while interrupt transfers of up to 3KBytes per microframe are legal.
1142  * Also, isochronous endpoints may never be part of an
1143  * interface's default setting.  To access such bandwidth, alternate
1144  * interface settings must be made current.
1145  *
1146  * Note that in the Linux USB subsystem, bandwidth associated with
1147  * an endpoint in a given alternate setting is not reserved until an URB
1148  * is submitted that needs that bandwidth.  Some other operating systems
1149  * allocate bandwidth early, when a configuration is chosen.
1150  *
1151  * This call is synchronous, and may not be used in an interrupt context.
1152  * Also, drivers must not change altsettings while urbs are scheduled for
1153  * endpoints in that interface; all such urbs must first be completed
1154  * (perhaps forced by unlinking).
1155  *
1156  * Returns zero on success, or else the status code returned by the
1157  * underlying usb_control_msg() call.
1158  */
1159 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1160 {
1161 	struct usb_interface *iface;
1162 	struct usb_host_interface *alt;
1163 	int ret;
1164 	int manual = 0;
1165 
1166 	if (dev->state == USB_STATE_SUSPENDED)
1167 		return -EHOSTUNREACH;
1168 
1169 	iface = usb_ifnum_to_if(dev, interface);
1170 	if (!iface) {
1171 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1172 			interface);
1173 		return -EINVAL;
1174 	}
1175 
1176 	alt = usb_altnum_to_altsetting(iface, alternate);
1177 	if (!alt) {
1178 		warn("selecting invalid altsetting %d", alternate);
1179 		return -EINVAL;
1180 	}
1181 
1182 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1183 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1184 				   alternate, interface, NULL, 0, 5000);
1185 
1186 	/* 9.4.10 says devices don't need this and are free to STALL the
1187 	 * request if the interface only has one alternate setting.
1188 	 */
1189 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1190 		dev_dbg(&dev->dev,
1191 			"manual set_interface for iface %d, alt %d\n",
1192 			interface, alternate);
1193 		manual = 1;
1194 	} else if (ret < 0)
1195 		return ret;
1196 
1197 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1198 	 * when they implement async or easily-killable versions of this or
1199 	 * other "should-be-internal" functions (like clear_halt).
1200 	 * should hcd+usbcore postprocess control requests?
1201 	 */
1202 
1203 	/* prevent submissions using previous endpoint settings */
1204 	if (device_is_registered(&iface->dev))
1205 		usb_remove_sysfs_intf_files(iface);
1206 	usb_disable_interface(dev, iface);
1207 
1208 	iface->cur_altsetting = alt;
1209 
1210 	/* If the interface only has one altsetting and the device didn't
1211 	 * accept the request, we attempt to carry out the equivalent action
1212 	 * by manually clearing the HALT feature for each endpoint in the
1213 	 * new altsetting.
1214 	 */
1215 	if (manual) {
1216 		int i;
1217 
1218 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1219 			unsigned int epaddr =
1220 				alt->endpoint[i].desc.bEndpointAddress;
1221 			unsigned int pipe =
1222 	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1223 	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1224 
1225 			usb_clear_halt(dev, pipe);
1226 		}
1227 	}
1228 
1229 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1230 	 *
1231 	 * Note:
1232 	 * Despite EP0 is always present in all interfaces/AS, the list of
1233 	 * endpoints from the descriptor does not contain EP0. Due to its
1234 	 * omnipresence one might expect EP0 being considered "affected" by
1235 	 * any SetInterface request and hence assume toggles need to be reset.
1236 	 * However, EP0 toggles are re-synced for every individual transfer
1237 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1238 	 * (Likewise, EP0 never "halts" on well designed devices.)
1239 	 */
1240 	usb_enable_interface(dev, iface);
1241 	if (device_is_registered(&iface->dev))
1242 		usb_create_sysfs_intf_files(iface);
1243 
1244 	return 0;
1245 }
1246 
1247 /**
1248  * usb_reset_configuration - lightweight device reset
1249  * @dev: the device whose configuration is being reset
1250  *
1251  * This issues a standard SET_CONFIGURATION request to the device using
1252  * the current configuration.  The effect is to reset most USB-related
1253  * state in the device, including interface altsettings (reset to zero),
1254  * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1255  * endpoints).  Other usbcore state is unchanged, including bindings of
1256  * usb device drivers to interfaces.
1257  *
1258  * Because this affects multiple interfaces, avoid using this with composite
1259  * (multi-interface) devices.  Instead, the driver for each interface may
1260  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1261  * some devices don't support the SET_INTERFACE request, and others won't
1262  * reset all the interface state (notably data toggles).  Resetting the whole
1263  * configuration would affect other drivers' interfaces.
1264  *
1265  * The caller must own the device lock.
1266  *
1267  * Returns zero on success, else a negative error code.
1268  */
1269 int usb_reset_configuration(struct usb_device *dev)
1270 {
1271 	int			i, retval;
1272 	struct usb_host_config	*config;
1273 
1274 	if (dev->state == USB_STATE_SUSPENDED)
1275 		return -EHOSTUNREACH;
1276 
1277 	/* caller must have locked the device and must own
1278 	 * the usb bus readlock (so driver bindings are stable);
1279 	 * calls during probe() are fine
1280 	 */
1281 
1282 	for (i = 1; i < 16; ++i) {
1283 		usb_disable_endpoint(dev, i);
1284 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1285 	}
1286 
1287 	config = dev->actconfig;
1288 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1289 			USB_REQ_SET_CONFIGURATION, 0,
1290 			config->desc.bConfigurationValue, 0,
1291 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1292 	if (retval < 0)
1293 		return retval;
1294 
1295 	dev->toggle[0] = dev->toggle[1] = 0;
1296 
1297 	/* re-init hc/hcd interface/endpoint state */
1298 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1299 		struct usb_interface *intf = config->interface[i];
1300 		struct usb_host_interface *alt;
1301 
1302 		if (device_is_registered(&intf->dev))
1303 			usb_remove_sysfs_intf_files(intf);
1304 		alt = usb_altnum_to_altsetting(intf, 0);
1305 
1306 		/* No altsetting 0?  We'll assume the first altsetting.
1307 		 * We could use a GetInterface call, but if a device is
1308 		 * so non-compliant that it doesn't have altsetting 0
1309 		 * then I wouldn't trust its reply anyway.
1310 		 */
1311 		if (!alt)
1312 			alt = &intf->altsetting[0];
1313 
1314 		intf->cur_altsetting = alt;
1315 		usb_enable_interface(dev, intf);
1316 		if (device_is_registered(&intf->dev))
1317 			usb_create_sysfs_intf_files(intf);
1318 	}
1319 	return 0;
1320 }
1321 
1322 void usb_release_interface(struct device *dev)
1323 {
1324 	struct usb_interface *intf = to_usb_interface(dev);
1325 	struct usb_interface_cache *intfc =
1326 			altsetting_to_usb_interface_cache(intf->altsetting);
1327 
1328 	kref_put(&intfc->ref, usb_release_interface_cache);
1329 	kfree(intf);
1330 }
1331 
1332 #ifdef	CONFIG_HOTPLUG
1333 static int usb_if_uevent(struct device *dev, char **envp, int num_envp,
1334 		 char *buffer, int buffer_size)
1335 {
1336 	struct usb_device *usb_dev;
1337 	struct usb_interface *intf;
1338 	struct usb_host_interface *alt;
1339 	int i = 0;
1340 	int length = 0;
1341 
1342 	if (!dev)
1343 		return -ENODEV;
1344 
1345 	/* driver is often null here; dev_dbg() would oops */
1346 	pr_debug ("usb %s: uevent\n", dev->bus_id);
1347 
1348 	intf = to_usb_interface(dev);
1349 	usb_dev = interface_to_usbdev(intf);
1350 	alt = intf->cur_altsetting;
1351 
1352 	if (add_uevent_var(envp, num_envp, &i,
1353 		   buffer, buffer_size, &length,
1354 		   "INTERFACE=%d/%d/%d",
1355 		   alt->desc.bInterfaceClass,
1356 		   alt->desc.bInterfaceSubClass,
1357 		   alt->desc.bInterfaceProtocol))
1358 		return -ENOMEM;
1359 
1360 	if (add_uevent_var(envp, num_envp, &i,
1361 		   buffer, buffer_size, &length,
1362 		   "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1363 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1364 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1365 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1366 		   usb_dev->descriptor.bDeviceClass,
1367 		   usb_dev->descriptor.bDeviceSubClass,
1368 		   usb_dev->descriptor.bDeviceProtocol,
1369 		   alt->desc.bInterfaceClass,
1370 		   alt->desc.bInterfaceSubClass,
1371 		   alt->desc.bInterfaceProtocol))
1372 		return -ENOMEM;
1373 
1374 	envp[i] = NULL;
1375 	return 0;
1376 }
1377 
1378 #else
1379 
1380 static int usb_if_uevent(struct device *dev, char **envp,
1381 			 int num_envp, char *buffer, int buffer_size)
1382 {
1383 	return -ENODEV;
1384 }
1385 #endif	/* CONFIG_HOTPLUG */
1386 
1387 struct device_type usb_if_device_type = {
1388 	.name =		"usb_interface",
1389 	.release =	usb_release_interface,
1390 	.uevent =	usb_if_uevent,
1391 };
1392 
1393 /*
1394  * usb_set_configuration - Makes a particular device setting be current
1395  * @dev: the device whose configuration is being updated
1396  * @configuration: the configuration being chosen.
1397  * Context: !in_interrupt(), caller owns the device lock
1398  *
1399  * This is used to enable non-default device modes.  Not all devices
1400  * use this kind of configurability; many devices only have one
1401  * configuration.
1402  *
1403  * @configuration is the value of the configuration to be installed.
1404  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1405  * must be non-zero; a value of zero indicates that the device in
1406  * unconfigured.  However some devices erroneously use 0 as one of their
1407  * configuration values.  To help manage such devices, this routine will
1408  * accept @configuration = -1 as indicating the device should be put in
1409  * an unconfigured state.
1410  *
1411  * USB device configurations may affect Linux interoperability,
1412  * power consumption and the functionality available.  For example,
1413  * the default configuration is limited to using 100mA of bus power,
1414  * so that when certain device functionality requires more power,
1415  * and the device is bus powered, that functionality should be in some
1416  * non-default device configuration.  Other device modes may also be
1417  * reflected as configuration options, such as whether two ISDN
1418  * channels are available independently; and choosing between open
1419  * standard device protocols (like CDC) or proprietary ones.
1420  *
1421  * Note that USB has an additional level of device configurability,
1422  * associated with interfaces.  That configurability is accessed using
1423  * usb_set_interface().
1424  *
1425  * This call is synchronous. The calling context must be able to sleep,
1426  * must own the device lock, and must not hold the driver model's USB
1427  * bus mutex; usb device driver probe() methods cannot use this routine.
1428  *
1429  * Returns zero on success, or else the status code returned by the
1430  * underlying call that failed.  On successful completion, each interface
1431  * in the original device configuration has been destroyed, and each one
1432  * in the new configuration has been probed by all relevant usb device
1433  * drivers currently known to the kernel.
1434  */
1435 int usb_set_configuration(struct usb_device *dev, int configuration)
1436 {
1437 	int i, ret;
1438 	struct usb_host_config *cp = NULL;
1439 	struct usb_interface **new_interfaces = NULL;
1440 	int n, nintf;
1441 
1442 	if (configuration == -1)
1443 		configuration = 0;
1444 	else {
1445 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1446 			if (dev->config[i].desc.bConfigurationValue ==
1447 					configuration) {
1448 				cp = &dev->config[i];
1449 				break;
1450 			}
1451 		}
1452 	}
1453 	if ((!cp && configuration != 0))
1454 		return -EINVAL;
1455 
1456 	/* The USB spec says configuration 0 means unconfigured.
1457 	 * But if a device includes a configuration numbered 0,
1458 	 * we will accept it as a correctly configured state.
1459 	 * Use -1 if you really want to unconfigure the device.
1460 	 */
1461 	if (cp && configuration == 0)
1462 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1463 
1464 	/* Allocate memory for new interfaces before doing anything else,
1465 	 * so that if we run out then nothing will have changed. */
1466 	n = nintf = 0;
1467 	if (cp) {
1468 		nintf = cp->desc.bNumInterfaces;
1469 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1470 				GFP_KERNEL);
1471 		if (!new_interfaces) {
1472 			dev_err(&dev->dev, "Out of memory");
1473 			return -ENOMEM;
1474 		}
1475 
1476 		for (; n < nintf; ++n) {
1477 			new_interfaces[n] = kzalloc(
1478 					sizeof(struct usb_interface),
1479 					GFP_KERNEL);
1480 			if (!new_interfaces[n]) {
1481 				dev_err(&dev->dev, "Out of memory");
1482 				ret = -ENOMEM;
1483 free_interfaces:
1484 				while (--n >= 0)
1485 					kfree(new_interfaces[n]);
1486 				kfree(new_interfaces);
1487 				return ret;
1488 			}
1489 		}
1490 
1491 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1492 		if (i < 0)
1493 			dev_warn(&dev->dev, "new config #%d exceeds power "
1494 					"limit by %dmA\n",
1495 					configuration, -i);
1496 	}
1497 
1498 	/* Wake up the device so we can send it the Set-Config request */
1499 	ret = usb_autoresume_device(dev);
1500 	if (ret)
1501 		goto free_interfaces;
1502 
1503 	/* if it's already configured, clear out old state first.
1504 	 * getting rid of old interfaces means unbinding their drivers.
1505 	 */
1506 	if (dev->state != USB_STATE_ADDRESS)
1507 		usb_disable_device (dev, 1);	// Skip ep0
1508 
1509 	if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1510 			USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1511 			NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) {
1512 
1513 		/* All the old state is gone, so what else can we do?
1514 		 * The device is probably useless now anyway.
1515 		 */
1516 		cp = NULL;
1517 	}
1518 
1519 	dev->actconfig = cp;
1520 	if (!cp) {
1521 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1522 		usb_autosuspend_device(dev);
1523 		goto free_interfaces;
1524 	}
1525 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1526 
1527 	/* Initialize the new interface structures and the
1528 	 * hc/hcd/usbcore interface/endpoint state.
1529 	 */
1530 	for (i = 0; i < nintf; ++i) {
1531 		struct usb_interface_cache *intfc;
1532 		struct usb_interface *intf;
1533 		struct usb_host_interface *alt;
1534 
1535 		cp->interface[i] = intf = new_interfaces[i];
1536 		intfc = cp->intf_cache[i];
1537 		intf->altsetting = intfc->altsetting;
1538 		intf->num_altsetting = intfc->num_altsetting;
1539 		kref_get(&intfc->ref);
1540 
1541 		alt = usb_altnum_to_altsetting(intf, 0);
1542 
1543 		/* No altsetting 0?  We'll assume the first altsetting.
1544 		 * We could use a GetInterface call, but if a device is
1545 		 * so non-compliant that it doesn't have altsetting 0
1546 		 * then I wouldn't trust its reply anyway.
1547 		 */
1548 		if (!alt)
1549 			alt = &intf->altsetting[0];
1550 
1551 		intf->cur_altsetting = alt;
1552 		usb_enable_interface(dev, intf);
1553 		intf->dev.parent = &dev->dev;
1554 		intf->dev.driver = NULL;
1555 		intf->dev.bus = &usb_bus_type;
1556 		intf->dev.type = &usb_if_device_type;
1557 		intf->dev.dma_mask = dev->dev.dma_mask;
1558 		device_initialize (&intf->dev);
1559 		mark_quiesced(intf);
1560 		sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1561 			 dev->bus->busnum, dev->devpath,
1562 			 configuration, alt->desc.bInterfaceNumber);
1563 	}
1564 	kfree(new_interfaces);
1565 
1566 	if (cp->string == NULL)
1567 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1568 
1569 	/* Now that all the interfaces are set up, register them
1570 	 * to trigger binding of drivers to interfaces.  probe()
1571 	 * routines may install different altsettings and may
1572 	 * claim() any interfaces not yet bound.  Many class drivers
1573 	 * need that: CDC, audio, video, etc.
1574 	 */
1575 	for (i = 0; i < nintf; ++i) {
1576 		struct usb_interface *intf = cp->interface[i];
1577 
1578 		dev_dbg (&dev->dev,
1579 			"adding %s (config #%d, interface %d)\n",
1580 			intf->dev.bus_id, configuration,
1581 			intf->cur_altsetting->desc.bInterfaceNumber);
1582 		ret = device_add (&intf->dev);
1583 		if (ret != 0) {
1584 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1585 				intf->dev.bus_id, ret);
1586 			continue;
1587 		}
1588 		usb_create_sysfs_intf_files (intf);
1589 	}
1590 
1591 	usb_autosuspend_device(dev);
1592 	return 0;
1593 }
1594 
1595 struct set_config_request {
1596 	struct usb_device	*udev;
1597 	int			config;
1598 	struct work_struct	work;
1599 };
1600 
1601 /* Worker routine for usb_driver_set_configuration() */
1602 static void driver_set_config_work(struct work_struct *work)
1603 {
1604 	struct set_config_request *req =
1605 		container_of(work, struct set_config_request, work);
1606 
1607 	usb_lock_device(req->udev);
1608 	usb_set_configuration(req->udev, req->config);
1609 	usb_unlock_device(req->udev);
1610 	usb_put_dev(req->udev);
1611 	kfree(req);
1612 }
1613 
1614 /**
1615  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1616  * @udev: the device whose configuration is being updated
1617  * @config: the configuration being chosen.
1618  * Context: In process context, must be able to sleep
1619  *
1620  * Device interface drivers are not allowed to change device configurations.
1621  * This is because changing configurations will destroy the interface the
1622  * driver is bound to and create new ones; it would be like a floppy-disk
1623  * driver telling the computer to replace the floppy-disk drive with a
1624  * tape drive!
1625  *
1626  * Still, in certain specialized circumstances the need may arise.  This
1627  * routine gets around the normal restrictions by using a work thread to
1628  * submit the change-config request.
1629  *
1630  * Returns 0 if the request was succesfully queued, error code otherwise.
1631  * The caller has no way to know whether the queued request will eventually
1632  * succeed.
1633  */
1634 int usb_driver_set_configuration(struct usb_device *udev, int config)
1635 {
1636 	struct set_config_request *req;
1637 
1638 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1639 	if (!req)
1640 		return -ENOMEM;
1641 	req->udev = udev;
1642 	req->config = config;
1643 	INIT_WORK(&req->work, driver_set_config_work);
1644 
1645 	usb_get_dev(udev);
1646 	schedule_work(&req->work);
1647 	return 0;
1648 }
1649 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1650 
1651 // synchronous request completion model
1652 EXPORT_SYMBOL(usb_control_msg);
1653 EXPORT_SYMBOL(usb_bulk_msg);
1654 
1655 EXPORT_SYMBOL(usb_sg_init);
1656 EXPORT_SYMBOL(usb_sg_cancel);
1657 EXPORT_SYMBOL(usb_sg_wait);
1658 
1659 // synchronous control message convenience routines
1660 EXPORT_SYMBOL(usb_get_descriptor);
1661 EXPORT_SYMBOL(usb_get_status);
1662 EXPORT_SYMBOL(usb_string);
1663 
1664 // synchronous calls that also maintain usbcore state
1665 EXPORT_SYMBOL(usb_clear_halt);
1666 EXPORT_SYMBOL(usb_reset_configuration);
1667 EXPORT_SYMBOL(usb_set_interface);
1668 
1669