1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/config.h> 6 #include <linux/pci.h> /* for scatterlist macros */ 7 #include <linux/usb.h> 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/timer.h> 13 #include <linux/ctype.h> 14 #include <linux/device.h> 15 #include <asm/byteorder.h> 16 #include <asm/scatterlist.h> 17 18 #include "hcd.h" /* for usbcore internals */ 19 #include "usb.h" 20 21 static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs) 22 { 23 complete((struct completion *)urb->context); 24 } 25 26 27 static void timeout_kill(unsigned long data) 28 { 29 struct urb *urb = (struct urb *) data; 30 31 usb_unlink_urb(urb); 32 } 33 34 // Starts urb and waits for completion or timeout 35 // note that this call is NOT interruptible, while 36 // many device driver i/o requests should be interruptible 37 static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length) 38 { 39 struct completion done; 40 struct timer_list timer; 41 int status; 42 43 init_completion(&done); 44 urb->context = &done; 45 urb->actual_length = 0; 46 status = usb_submit_urb(urb, GFP_NOIO); 47 48 if (status == 0) { 49 if (timeout > 0) { 50 init_timer(&timer); 51 timer.expires = jiffies + msecs_to_jiffies(timeout); 52 timer.data = (unsigned long)urb; 53 timer.function = timeout_kill; 54 /* grr. timeout _should_ include submit delays. */ 55 add_timer(&timer); 56 } 57 wait_for_completion(&done); 58 status = urb->status; 59 /* note: HCDs return ETIMEDOUT for other reasons too */ 60 if (status == -ECONNRESET) { 61 dev_dbg(&urb->dev->dev, 62 "%s timed out on ep%d%s len=%d/%d\n", 63 current->comm, 64 usb_pipeendpoint(urb->pipe), 65 usb_pipein(urb->pipe) ? "in" : "out", 66 urb->actual_length, 67 urb->transfer_buffer_length 68 ); 69 if (urb->actual_length > 0) 70 status = 0; 71 else 72 status = -ETIMEDOUT; 73 } 74 if (timeout > 0) 75 del_timer_sync(&timer); 76 } 77 78 if (actual_length) 79 *actual_length = urb->actual_length; 80 usb_free_urb(urb); 81 return status; 82 } 83 84 /*-------------------------------------------------------------------*/ 85 // returns status (negative) or length (positive) 86 static int usb_internal_control_msg(struct usb_device *usb_dev, 87 unsigned int pipe, 88 struct usb_ctrlrequest *cmd, 89 void *data, int len, int timeout) 90 { 91 struct urb *urb; 92 int retv; 93 int length; 94 95 urb = usb_alloc_urb(0, GFP_NOIO); 96 if (!urb) 97 return -ENOMEM; 98 99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 100 len, usb_api_blocking_completion, NULL); 101 102 retv = usb_start_wait_urb(urb, timeout, &length); 103 if (retv < 0) 104 return retv; 105 else 106 return length; 107 } 108 109 /** 110 * usb_control_msg - Builds a control urb, sends it off and waits for completion 111 * @dev: pointer to the usb device to send the message to 112 * @pipe: endpoint "pipe" to send the message to 113 * @request: USB message request value 114 * @requesttype: USB message request type value 115 * @value: USB message value 116 * @index: USB message index value 117 * @data: pointer to the data to send 118 * @size: length in bytes of the data to send 119 * @timeout: time in msecs to wait for the message to complete before 120 * timing out (if 0 the wait is forever) 121 * Context: !in_interrupt () 122 * 123 * This function sends a simple control message to a specified endpoint 124 * and waits for the message to complete, or timeout. 125 * 126 * If successful, it returns the number of bytes transferred, otherwise a negative error number. 127 * 128 * Don't use this function from within an interrupt context, like a 129 * bottom half handler. If you need an asynchronous message, or need to send 130 * a message from within interrupt context, use usb_submit_urb() 131 * If a thread in your driver uses this call, make sure your disconnect() 132 * method can wait for it to complete. Since you don't have a handle on 133 * the URB used, you can't cancel the request. 134 */ 135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, 136 __u16 value, __u16 index, void *data, __u16 size, int timeout) 137 { 138 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 139 int ret; 140 141 if (!dr) 142 return -ENOMEM; 143 144 dr->bRequestType= requesttype; 145 dr->bRequest = request; 146 dr->wValue = cpu_to_le16p(&value); 147 dr->wIndex = cpu_to_le16p(&index); 148 dr->wLength = cpu_to_le16p(&size); 149 150 //dbg("usb_control_msg"); 151 152 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 153 154 kfree(dr); 155 156 return ret; 157 } 158 159 160 /** 161 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 162 * @usb_dev: pointer to the usb device to send the message to 163 * @pipe: endpoint "pipe" to send the message to 164 * @data: pointer to the data to send 165 * @len: length in bytes of the data to send 166 * @actual_length: pointer to a location to put the actual length transferred in bytes 167 * @timeout: time in msecs to wait for the message to complete before 168 * timing out (if 0 the wait is forever) 169 * Context: !in_interrupt () 170 * 171 * This function sends a simple bulk message to a specified endpoint 172 * and waits for the message to complete, or timeout. 173 * 174 * If successful, it returns 0, otherwise a negative error number. 175 * The number of actual bytes transferred will be stored in the 176 * actual_length paramater. 177 * 178 * Don't use this function from within an interrupt context, like a 179 * bottom half handler. If you need an asynchronous message, or need to 180 * send a message from within interrupt context, use usb_submit_urb() 181 * If a thread in your driver uses this call, make sure your disconnect() 182 * method can wait for it to complete. Since you don't have a handle on 183 * the URB used, you can't cancel the request. 184 * 185 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT 186 * ioctl, users are forced to abuse this routine by using it to submit 187 * URBs for interrupt endpoints. We will take the liberty of creating 188 * an interrupt URB (with the default interval) if the target is an 189 * interrupt endpoint. 190 */ 191 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 192 void *data, int len, int *actual_length, int timeout) 193 { 194 struct urb *urb; 195 struct usb_host_endpoint *ep; 196 197 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 198 [usb_pipeendpoint(pipe)]; 199 if (!ep || len < 0) 200 return -EINVAL; 201 202 urb = usb_alloc_urb(0, GFP_KERNEL); 203 if (!urb) 204 return -ENOMEM; 205 206 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 207 USB_ENDPOINT_XFER_INT) { 208 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 209 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 210 usb_api_blocking_completion, NULL, 211 ep->desc.bInterval); 212 } else 213 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 214 usb_api_blocking_completion, NULL); 215 216 return usb_start_wait_urb(urb, timeout, actual_length); 217 } 218 219 /*-------------------------------------------------------------------*/ 220 221 static void sg_clean (struct usb_sg_request *io) 222 { 223 if (io->urbs) { 224 while (io->entries--) 225 usb_free_urb (io->urbs [io->entries]); 226 kfree (io->urbs); 227 io->urbs = NULL; 228 } 229 if (io->dev->dev.dma_mask != NULL) 230 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents); 231 io->dev = NULL; 232 } 233 234 static void sg_complete (struct urb *urb, struct pt_regs *regs) 235 { 236 struct usb_sg_request *io = (struct usb_sg_request *) urb->context; 237 238 spin_lock (&io->lock); 239 240 /* In 2.5 we require hcds' endpoint queues not to progress after fault 241 * reports, until the completion callback (this!) returns. That lets 242 * device driver code (like this routine) unlink queued urbs first, 243 * if it needs to, since the HC won't work on them at all. So it's 244 * not possible for page N+1 to overwrite page N, and so on. 245 * 246 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 247 * complete before the HCD can get requests away from hardware, 248 * though never during cleanup after a hard fault. 249 */ 250 if (io->status 251 && (io->status != -ECONNRESET 252 || urb->status != -ECONNRESET) 253 && urb->actual_length) { 254 dev_err (io->dev->bus->controller, 255 "dev %s ep%d%s scatterlist error %d/%d\n", 256 io->dev->devpath, 257 usb_pipeendpoint (urb->pipe), 258 usb_pipein (urb->pipe) ? "in" : "out", 259 urb->status, io->status); 260 // BUG (); 261 } 262 263 if (io->status == 0 && urb->status && urb->status != -ECONNRESET) { 264 int i, found, status; 265 266 io->status = urb->status; 267 268 /* the previous urbs, and this one, completed already. 269 * unlink pending urbs so they won't rx/tx bad data. 270 * careful: unlink can sometimes be synchronous... 271 */ 272 spin_unlock (&io->lock); 273 for (i = 0, found = 0; i < io->entries; i++) { 274 if (!io->urbs [i] || !io->urbs [i]->dev) 275 continue; 276 if (found) { 277 status = usb_unlink_urb (io->urbs [i]); 278 if (status != -EINPROGRESS 279 && status != -ENODEV 280 && status != -EBUSY) 281 dev_err (&io->dev->dev, 282 "%s, unlink --> %d\n", 283 __FUNCTION__, status); 284 } else if (urb == io->urbs [i]) 285 found = 1; 286 } 287 spin_lock (&io->lock); 288 } 289 urb->dev = NULL; 290 291 /* on the last completion, signal usb_sg_wait() */ 292 io->bytes += urb->actual_length; 293 io->count--; 294 if (!io->count) 295 complete (&io->complete); 296 297 spin_unlock (&io->lock); 298 } 299 300 301 /** 302 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 303 * @io: request block being initialized. until usb_sg_wait() returns, 304 * treat this as a pointer to an opaque block of memory, 305 * @dev: the usb device that will send or receive the data 306 * @pipe: endpoint "pipe" used to transfer the data 307 * @period: polling rate for interrupt endpoints, in frames or 308 * (for high speed endpoints) microframes; ignored for bulk 309 * @sg: scatterlist entries 310 * @nents: how many entries in the scatterlist 311 * @length: how many bytes to send from the scatterlist, or zero to 312 * send every byte identified in the list. 313 * @mem_flags: SLAB_* flags affecting memory allocations in this call 314 * 315 * Returns zero for success, else a negative errno value. This initializes a 316 * scatter/gather request, allocating resources such as I/O mappings and urb 317 * memory (except maybe memory used by USB controller drivers). 318 * 319 * The request must be issued using usb_sg_wait(), which waits for the I/O to 320 * complete (or to be canceled) and then cleans up all resources allocated by 321 * usb_sg_init(). 322 * 323 * The request may be canceled with usb_sg_cancel(), either before or after 324 * usb_sg_wait() is called. 325 */ 326 int usb_sg_init ( 327 struct usb_sg_request *io, 328 struct usb_device *dev, 329 unsigned pipe, 330 unsigned period, 331 struct scatterlist *sg, 332 int nents, 333 size_t length, 334 gfp_t mem_flags 335 ) 336 { 337 int i; 338 int urb_flags; 339 int dma; 340 341 if (!io || !dev || !sg 342 || usb_pipecontrol (pipe) 343 || usb_pipeisoc (pipe) 344 || nents <= 0) 345 return -EINVAL; 346 347 spin_lock_init (&io->lock); 348 io->dev = dev; 349 io->pipe = pipe; 350 io->sg = sg; 351 io->nents = nents; 352 353 /* not all host controllers use DMA (like the mainstream pci ones); 354 * they can use PIO (sl811) or be software over another transport. 355 */ 356 dma = (dev->dev.dma_mask != NULL); 357 if (dma) 358 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents); 359 else 360 io->entries = nents; 361 362 /* initialize all the urbs we'll use */ 363 if (io->entries <= 0) 364 return io->entries; 365 366 io->count = io->entries; 367 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags); 368 if (!io->urbs) 369 goto nomem; 370 371 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT; 372 if (usb_pipein (pipe)) 373 urb_flags |= URB_SHORT_NOT_OK; 374 375 for (i = 0; i < io->entries; i++) { 376 unsigned len; 377 378 io->urbs [i] = usb_alloc_urb (0, mem_flags); 379 if (!io->urbs [i]) { 380 io->entries = i; 381 goto nomem; 382 } 383 384 io->urbs [i]->dev = NULL; 385 io->urbs [i]->pipe = pipe; 386 io->urbs [i]->interval = period; 387 io->urbs [i]->transfer_flags = urb_flags; 388 389 io->urbs [i]->complete = sg_complete; 390 io->urbs [i]->context = io; 391 io->urbs [i]->status = -EINPROGRESS; 392 io->urbs [i]->actual_length = 0; 393 394 if (dma) { 395 /* hc may use _only_ transfer_dma */ 396 io->urbs [i]->transfer_dma = sg_dma_address (sg + i); 397 len = sg_dma_len (sg + i); 398 } else { 399 /* hc may use _only_ transfer_buffer */ 400 io->urbs [i]->transfer_buffer = 401 page_address (sg [i].page) + sg [i].offset; 402 len = sg [i].length; 403 } 404 405 if (length) { 406 len = min_t (unsigned, len, length); 407 length -= len; 408 if (length == 0) 409 io->entries = i + 1; 410 } 411 io->urbs [i]->transfer_buffer_length = len; 412 } 413 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT; 414 415 /* transaction state */ 416 io->status = 0; 417 io->bytes = 0; 418 init_completion (&io->complete); 419 return 0; 420 421 nomem: 422 sg_clean (io); 423 return -ENOMEM; 424 } 425 426 427 /** 428 * usb_sg_wait - synchronously execute scatter/gather request 429 * @io: request block handle, as initialized with usb_sg_init(). 430 * some fields become accessible when this call returns. 431 * Context: !in_interrupt () 432 * 433 * This function blocks until the specified I/O operation completes. It 434 * leverages the grouping of the related I/O requests to get good transfer 435 * rates, by queueing the requests. At higher speeds, such queuing can 436 * significantly improve USB throughput. 437 * 438 * There are three kinds of completion for this function. 439 * (1) success, where io->status is zero. The number of io->bytes 440 * transferred is as requested. 441 * (2) error, where io->status is a negative errno value. The number 442 * of io->bytes transferred before the error is usually less 443 * than requested, and can be nonzero. 444 * (3) cancellation, a type of error with status -ECONNRESET that 445 * is initiated by usb_sg_cancel(). 446 * 447 * When this function returns, all memory allocated through usb_sg_init() or 448 * this call will have been freed. The request block parameter may still be 449 * passed to usb_sg_cancel(), or it may be freed. It could also be 450 * reinitialized and then reused. 451 * 452 * Data Transfer Rates: 453 * 454 * Bulk transfers are valid for full or high speed endpoints. 455 * The best full speed data rate is 19 packets of 64 bytes each 456 * per frame, or 1216 bytes per millisecond. 457 * The best high speed data rate is 13 packets of 512 bytes each 458 * per microframe, or 52 KBytes per millisecond. 459 * 460 * The reason to use interrupt transfers through this API would most likely 461 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 462 * could be transferred. That capability is less useful for low or full 463 * speed interrupt endpoints, which allow at most one packet per millisecond, 464 * of at most 8 or 64 bytes (respectively). 465 */ 466 void usb_sg_wait (struct usb_sg_request *io) 467 { 468 int i, entries = io->entries; 469 470 /* queue the urbs. */ 471 spin_lock_irq (&io->lock); 472 for (i = 0; i < entries && !io->status; i++) { 473 int retval; 474 475 io->urbs [i]->dev = io->dev; 476 retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC); 477 478 /* after we submit, let completions or cancelations fire; 479 * we handshake using io->status. 480 */ 481 spin_unlock_irq (&io->lock); 482 switch (retval) { 483 /* maybe we retrying will recover */ 484 case -ENXIO: // hc didn't queue this one 485 case -EAGAIN: 486 case -ENOMEM: 487 io->urbs[i]->dev = NULL; 488 retval = 0; 489 i--; 490 yield (); 491 break; 492 493 /* no error? continue immediately. 494 * 495 * NOTE: to work better with UHCI (4K I/O buffer may 496 * need 3K of TDs) it may be good to limit how many 497 * URBs are queued at once; N milliseconds? 498 */ 499 case 0: 500 cpu_relax (); 501 break; 502 503 /* fail any uncompleted urbs */ 504 default: 505 io->urbs [i]->dev = NULL; 506 io->urbs [i]->status = retval; 507 dev_dbg (&io->dev->dev, "%s, submit --> %d\n", 508 __FUNCTION__, retval); 509 usb_sg_cancel (io); 510 } 511 spin_lock_irq (&io->lock); 512 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 513 io->status = retval; 514 } 515 io->count -= entries - i; 516 if (io->count == 0) 517 complete (&io->complete); 518 spin_unlock_irq (&io->lock); 519 520 /* OK, yes, this could be packaged as non-blocking. 521 * So could the submit loop above ... but it's easier to 522 * solve neither problem than to solve both! 523 */ 524 wait_for_completion (&io->complete); 525 526 sg_clean (io); 527 } 528 529 /** 530 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 531 * @io: request block, initialized with usb_sg_init() 532 * 533 * This stops a request after it has been started by usb_sg_wait(). 534 * It can also prevents one initialized by usb_sg_init() from starting, 535 * so that call just frees resources allocated to the request. 536 */ 537 void usb_sg_cancel (struct usb_sg_request *io) 538 { 539 unsigned long flags; 540 541 spin_lock_irqsave (&io->lock, flags); 542 543 /* shut everything down, if it didn't already */ 544 if (!io->status) { 545 int i; 546 547 io->status = -ECONNRESET; 548 spin_unlock (&io->lock); 549 for (i = 0; i < io->entries; i++) { 550 int retval; 551 552 if (!io->urbs [i]->dev) 553 continue; 554 retval = usb_unlink_urb (io->urbs [i]); 555 if (retval != -EINPROGRESS && retval != -EBUSY) 556 dev_warn (&io->dev->dev, "%s, unlink --> %d\n", 557 __FUNCTION__, retval); 558 } 559 spin_lock (&io->lock); 560 } 561 spin_unlock_irqrestore (&io->lock, flags); 562 } 563 564 /*-------------------------------------------------------------------*/ 565 566 /** 567 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 568 * @dev: the device whose descriptor is being retrieved 569 * @type: the descriptor type (USB_DT_*) 570 * @index: the number of the descriptor 571 * @buf: where to put the descriptor 572 * @size: how big is "buf"? 573 * Context: !in_interrupt () 574 * 575 * Gets a USB descriptor. Convenience functions exist to simplify 576 * getting some types of descriptors. Use 577 * usb_get_string() or usb_string() for USB_DT_STRING. 578 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 579 * are part of the device structure. 580 * In addition to a number of USB-standard descriptors, some 581 * devices also use class-specific or vendor-specific descriptors. 582 * 583 * This call is synchronous, and may not be used in an interrupt context. 584 * 585 * Returns the number of bytes received on success, or else the status code 586 * returned by the underlying usb_control_msg() call. 587 */ 588 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) 589 { 590 int i; 591 int result; 592 593 memset(buf,0,size); // Make sure we parse really received data 594 595 for (i = 0; i < 3; ++i) { 596 /* retry on length 0 or stall; some devices are flakey */ 597 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 598 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 599 (type << 8) + index, 0, buf, size, 600 USB_CTRL_GET_TIMEOUT); 601 if (result == 0 || result == -EPIPE) 602 continue; 603 if (result > 1 && ((u8 *)buf)[1] != type) { 604 result = -EPROTO; 605 continue; 606 } 607 break; 608 } 609 return result; 610 } 611 612 /** 613 * usb_get_string - gets a string descriptor 614 * @dev: the device whose string descriptor is being retrieved 615 * @langid: code for language chosen (from string descriptor zero) 616 * @index: the number of the descriptor 617 * @buf: where to put the string 618 * @size: how big is "buf"? 619 * Context: !in_interrupt () 620 * 621 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 622 * in little-endian byte order). 623 * The usb_string() function will often be a convenient way to turn 624 * these strings into kernel-printable form. 625 * 626 * Strings may be referenced in device, configuration, interface, or other 627 * descriptors, and could also be used in vendor-specific ways. 628 * 629 * This call is synchronous, and may not be used in an interrupt context. 630 * 631 * Returns the number of bytes received on success, or else the status code 632 * returned by the underlying usb_control_msg() call. 633 */ 634 int usb_get_string(struct usb_device *dev, unsigned short langid, 635 unsigned char index, void *buf, int size) 636 { 637 int i; 638 int result; 639 640 for (i = 0; i < 3; ++i) { 641 /* retry on length 0 or stall; some devices are flakey */ 642 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 643 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 644 (USB_DT_STRING << 8) + index, langid, buf, size, 645 USB_CTRL_GET_TIMEOUT); 646 if (!(result == 0 || result == -EPIPE)) 647 break; 648 } 649 return result; 650 } 651 652 static void usb_try_string_workarounds(unsigned char *buf, int *length) 653 { 654 int newlength, oldlength = *length; 655 656 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 657 if (!isprint(buf[newlength]) || buf[newlength + 1]) 658 break; 659 660 if (newlength > 2) { 661 buf[0] = newlength; 662 *length = newlength; 663 } 664 } 665 666 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 667 unsigned int index, unsigned char *buf) 668 { 669 int rc; 670 671 /* Try to read the string descriptor by asking for the maximum 672 * possible number of bytes */ 673 rc = usb_get_string(dev, langid, index, buf, 255); 674 675 /* If that failed try to read the descriptor length, then 676 * ask for just that many bytes */ 677 if (rc < 2) { 678 rc = usb_get_string(dev, langid, index, buf, 2); 679 if (rc == 2) 680 rc = usb_get_string(dev, langid, index, buf, buf[0]); 681 } 682 683 if (rc >= 2) { 684 if (!buf[0] && !buf[1]) 685 usb_try_string_workarounds(buf, &rc); 686 687 /* There might be extra junk at the end of the descriptor */ 688 if (buf[0] < rc) 689 rc = buf[0]; 690 691 rc = rc - (rc & 1); /* force a multiple of two */ 692 } 693 694 if (rc < 2) 695 rc = (rc < 0 ? rc : -EINVAL); 696 697 return rc; 698 } 699 700 /** 701 * usb_string - returns ISO 8859-1 version of a string descriptor 702 * @dev: the device whose string descriptor is being retrieved 703 * @index: the number of the descriptor 704 * @buf: where to put the string 705 * @size: how big is "buf"? 706 * Context: !in_interrupt () 707 * 708 * This converts the UTF-16LE encoded strings returned by devices, from 709 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 710 * that are more usable in most kernel contexts. Note that all characters 711 * in the chosen descriptor that can't be encoded using ISO-8859-1 712 * are converted to the question mark ("?") character, and this function 713 * chooses strings in the first language supported by the device. 714 * 715 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 716 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 717 * and is appropriate for use many uses of English and several other 718 * Western European languages. (But it doesn't include the "Euro" symbol.) 719 * 720 * This call is synchronous, and may not be used in an interrupt context. 721 * 722 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 723 */ 724 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 725 { 726 unsigned char *tbuf; 727 int err; 728 unsigned int u, idx; 729 730 if (dev->state == USB_STATE_SUSPENDED) 731 return -EHOSTUNREACH; 732 if (size <= 0 || !buf || !index) 733 return -EINVAL; 734 buf[0] = 0; 735 tbuf = kmalloc(256, GFP_KERNEL); 736 if (!tbuf) 737 return -ENOMEM; 738 739 /* get langid for strings if it's not yet known */ 740 if (!dev->have_langid) { 741 err = usb_string_sub(dev, 0, 0, tbuf); 742 if (err < 0) { 743 dev_err (&dev->dev, 744 "string descriptor 0 read error: %d\n", 745 err); 746 goto errout; 747 } else if (err < 4) { 748 dev_err (&dev->dev, "string descriptor 0 too short\n"); 749 err = -EINVAL; 750 goto errout; 751 } else { 752 dev->have_langid = -1; 753 dev->string_langid = tbuf[2] | (tbuf[3]<< 8); 754 /* always use the first langid listed */ 755 dev_dbg (&dev->dev, "default language 0x%04x\n", 756 dev->string_langid); 757 } 758 } 759 760 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 761 if (err < 0) 762 goto errout; 763 764 size--; /* leave room for trailing NULL char in output buffer */ 765 for (idx = 0, u = 2; u < err; u += 2) { 766 if (idx >= size) 767 break; 768 if (tbuf[u+1]) /* high byte */ 769 buf[idx++] = '?'; /* non ISO-8859-1 character */ 770 else 771 buf[idx++] = tbuf[u]; 772 } 773 buf[idx] = 0; 774 err = idx; 775 776 if (tbuf[1] != USB_DT_STRING) 777 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf); 778 779 errout: 780 kfree(tbuf); 781 return err; 782 } 783 784 /** 785 * usb_cache_string - read a string descriptor and cache it for later use 786 * @udev: the device whose string descriptor is being read 787 * @index: the descriptor index 788 * 789 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 790 * or NULL if the index is 0 or the string could not be read. 791 */ 792 char *usb_cache_string(struct usb_device *udev, int index) 793 { 794 char *buf; 795 char *smallbuf = NULL; 796 int len; 797 798 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) { 799 if ((len = usb_string(udev, index, buf, 256)) > 0) { 800 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL) 801 return buf; 802 memcpy(smallbuf, buf, len); 803 } 804 kfree(buf); 805 } 806 return smallbuf; 807 } 808 809 /* 810 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 811 * @dev: the device whose device descriptor is being updated 812 * @size: how much of the descriptor to read 813 * Context: !in_interrupt () 814 * 815 * Updates the copy of the device descriptor stored in the device structure, 816 * which dedicates space for this purpose. Note that several fields are 817 * converted to the host CPU's byte order: the USB version (bcdUSB), and 818 * vendors product and version fields (idVendor, idProduct, and bcdDevice). 819 * That lets device drivers compare against non-byteswapped constants. 820 * 821 * Not exported, only for use by the core. If drivers really want to read 822 * the device descriptor directly, they can call usb_get_descriptor() with 823 * type = USB_DT_DEVICE and index = 0. 824 * 825 * This call is synchronous, and may not be used in an interrupt context. 826 * 827 * Returns the number of bytes received on success, or else the status code 828 * returned by the underlying usb_control_msg() call. 829 */ 830 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 831 { 832 struct usb_device_descriptor *desc; 833 int ret; 834 835 if (size > sizeof(*desc)) 836 return -EINVAL; 837 desc = kmalloc(sizeof(*desc), GFP_NOIO); 838 if (!desc) 839 return -ENOMEM; 840 841 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 842 if (ret >= 0) 843 memcpy(&dev->descriptor, desc, size); 844 kfree(desc); 845 return ret; 846 } 847 848 /** 849 * usb_get_status - issues a GET_STATUS call 850 * @dev: the device whose status is being checked 851 * @type: USB_RECIP_*; for device, interface, or endpoint 852 * @target: zero (for device), else interface or endpoint number 853 * @data: pointer to two bytes of bitmap data 854 * Context: !in_interrupt () 855 * 856 * Returns device, interface, or endpoint status. Normally only of 857 * interest to see if the device is self powered, or has enabled the 858 * remote wakeup facility; or whether a bulk or interrupt endpoint 859 * is halted ("stalled"). 860 * 861 * Bits in these status bitmaps are set using the SET_FEATURE request, 862 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 863 * function should be used to clear halt ("stall") status. 864 * 865 * This call is synchronous, and may not be used in an interrupt context. 866 * 867 * Returns the number of bytes received on success, or else the status code 868 * returned by the underlying usb_control_msg() call. 869 */ 870 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 871 { 872 int ret; 873 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 874 875 if (!status) 876 return -ENOMEM; 877 878 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 879 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 880 sizeof(*status), USB_CTRL_GET_TIMEOUT); 881 882 *(u16 *)data = *status; 883 kfree(status); 884 return ret; 885 } 886 887 /** 888 * usb_clear_halt - tells device to clear endpoint halt/stall condition 889 * @dev: device whose endpoint is halted 890 * @pipe: endpoint "pipe" being cleared 891 * Context: !in_interrupt () 892 * 893 * This is used to clear halt conditions for bulk and interrupt endpoints, 894 * as reported by URB completion status. Endpoints that are halted are 895 * sometimes referred to as being "stalled". Such endpoints are unable 896 * to transmit or receive data until the halt status is cleared. Any URBs 897 * queued for such an endpoint should normally be unlinked by the driver 898 * before clearing the halt condition, as described in sections 5.7.5 899 * and 5.8.5 of the USB 2.0 spec. 900 * 901 * Note that control and isochronous endpoints don't halt, although control 902 * endpoints report "protocol stall" (for unsupported requests) using the 903 * same status code used to report a true stall. 904 * 905 * This call is synchronous, and may not be used in an interrupt context. 906 * 907 * Returns zero on success, or else the status code returned by the 908 * underlying usb_control_msg() call. 909 */ 910 int usb_clear_halt(struct usb_device *dev, int pipe) 911 { 912 int result; 913 int endp = usb_pipeendpoint(pipe); 914 915 if (usb_pipein (pipe)) 916 endp |= USB_DIR_IN; 917 918 /* we don't care if it wasn't halted first. in fact some devices 919 * (like some ibmcam model 1 units) seem to expect hosts to make 920 * this request for iso endpoints, which can't halt! 921 */ 922 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 923 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 924 USB_ENDPOINT_HALT, endp, NULL, 0, 925 USB_CTRL_SET_TIMEOUT); 926 927 /* don't un-halt or force to DATA0 except on success */ 928 if (result < 0) 929 return result; 930 931 /* NOTE: seems like Microsoft and Apple don't bother verifying 932 * the clear "took", so some devices could lock up if you check... 933 * such as the Hagiwara FlashGate DUAL. So we won't bother. 934 * 935 * NOTE: make sure the logic here doesn't diverge much from 936 * the copy in usb-storage, for as long as we need two copies. 937 */ 938 939 /* toggle was reset by the clear */ 940 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 941 942 return 0; 943 } 944 945 /** 946 * usb_disable_endpoint -- Disable an endpoint by address 947 * @dev: the device whose endpoint is being disabled 948 * @epaddr: the endpoint's address. Endpoint number for output, 949 * endpoint number + USB_DIR_IN for input 950 * 951 * Deallocates hcd/hardware state for this endpoint ... and nukes all 952 * pending urbs. 953 * 954 * If the HCD hasn't registered a disable() function, this sets the 955 * endpoint's maxpacket size to 0 to prevent further submissions. 956 */ 957 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 958 { 959 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 960 struct usb_host_endpoint *ep; 961 962 if (!dev) 963 return; 964 965 if (usb_endpoint_out(epaddr)) { 966 ep = dev->ep_out[epnum]; 967 dev->ep_out[epnum] = NULL; 968 } else { 969 ep = dev->ep_in[epnum]; 970 dev->ep_in[epnum] = NULL; 971 } 972 if (ep && dev->bus && dev->bus->op && dev->bus->op->disable) 973 dev->bus->op->disable(dev, ep); 974 } 975 976 /** 977 * usb_disable_interface -- Disable all endpoints for an interface 978 * @dev: the device whose interface is being disabled 979 * @intf: pointer to the interface descriptor 980 * 981 * Disables all the endpoints for the interface's current altsetting. 982 */ 983 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 984 { 985 struct usb_host_interface *alt = intf->cur_altsetting; 986 int i; 987 988 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 989 usb_disable_endpoint(dev, 990 alt->endpoint[i].desc.bEndpointAddress); 991 } 992 } 993 994 /* 995 * usb_disable_device - Disable all the endpoints for a USB device 996 * @dev: the device whose endpoints are being disabled 997 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 998 * 999 * Disables all the device's endpoints, potentially including endpoint 0. 1000 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1001 * pending urbs) and usbcore state for the interfaces, so that usbcore 1002 * must usb_set_configuration() before any interfaces could be used. 1003 */ 1004 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1005 { 1006 int i; 1007 1008 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__, 1009 skip_ep0 ? "non-ep0" : "all"); 1010 for (i = skip_ep0; i < 16; ++i) { 1011 usb_disable_endpoint(dev, i); 1012 usb_disable_endpoint(dev, i + USB_DIR_IN); 1013 } 1014 dev->toggle[0] = dev->toggle[1] = 0; 1015 1016 /* getting rid of interfaces will disconnect 1017 * any drivers bound to them (a key side effect) 1018 */ 1019 if (dev->actconfig) { 1020 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1021 struct usb_interface *interface; 1022 1023 /* remove this interface if it has been registered */ 1024 interface = dev->actconfig->interface[i]; 1025 if (!device_is_registered(&interface->dev)) 1026 continue; 1027 dev_dbg (&dev->dev, "unregistering interface %s\n", 1028 interface->dev.bus_id); 1029 usb_remove_sysfs_intf_files(interface); 1030 device_del (&interface->dev); 1031 } 1032 1033 /* Now that the interfaces are unbound, nobody should 1034 * try to access them. 1035 */ 1036 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1037 put_device (&dev->actconfig->interface[i]->dev); 1038 dev->actconfig->interface[i] = NULL; 1039 } 1040 dev->actconfig = NULL; 1041 if (dev->state == USB_STATE_CONFIGURED) 1042 usb_set_device_state(dev, USB_STATE_ADDRESS); 1043 } 1044 } 1045 1046 1047 /* 1048 * usb_enable_endpoint - Enable an endpoint for USB communications 1049 * @dev: the device whose interface is being enabled 1050 * @ep: the endpoint 1051 * 1052 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1053 * For control endpoints, both the input and output sides are handled. 1054 */ 1055 static void 1056 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1057 { 1058 unsigned int epaddr = ep->desc.bEndpointAddress; 1059 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1060 int is_control; 1061 1062 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) 1063 == USB_ENDPOINT_XFER_CONTROL); 1064 if (usb_endpoint_out(epaddr) || is_control) { 1065 usb_settoggle(dev, epnum, 1, 0); 1066 dev->ep_out[epnum] = ep; 1067 } 1068 if (!usb_endpoint_out(epaddr) || is_control) { 1069 usb_settoggle(dev, epnum, 0, 0); 1070 dev->ep_in[epnum] = ep; 1071 } 1072 } 1073 1074 /* 1075 * usb_enable_interface - Enable all the endpoints for an interface 1076 * @dev: the device whose interface is being enabled 1077 * @intf: pointer to the interface descriptor 1078 * 1079 * Enables all the endpoints for the interface's current altsetting. 1080 */ 1081 static void usb_enable_interface(struct usb_device *dev, 1082 struct usb_interface *intf) 1083 { 1084 struct usb_host_interface *alt = intf->cur_altsetting; 1085 int i; 1086 1087 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1088 usb_enable_endpoint(dev, &alt->endpoint[i]); 1089 } 1090 1091 /** 1092 * usb_set_interface - Makes a particular alternate setting be current 1093 * @dev: the device whose interface is being updated 1094 * @interface: the interface being updated 1095 * @alternate: the setting being chosen. 1096 * Context: !in_interrupt () 1097 * 1098 * This is used to enable data transfers on interfaces that may not 1099 * be enabled by default. Not all devices support such configurability. 1100 * Only the driver bound to an interface may change its setting. 1101 * 1102 * Within any given configuration, each interface may have several 1103 * alternative settings. These are often used to control levels of 1104 * bandwidth consumption. For example, the default setting for a high 1105 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1106 * while interrupt transfers of up to 3KBytes per microframe are legal. 1107 * Also, isochronous endpoints may never be part of an 1108 * interface's default setting. To access such bandwidth, alternate 1109 * interface settings must be made current. 1110 * 1111 * Note that in the Linux USB subsystem, bandwidth associated with 1112 * an endpoint in a given alternate setting is not reserved until an URB 1113 * is submitted that needs that bandwidth. Some other operating systems 1114 * allocate bandwidth early, when a configuration is chosen. 1115 * 1116 * This call is synchronous, and may not be used in an interrupt context. 1117 * Also, drivers must not change altsettings while urbs are scheduled for 1118 * endpoints in that interface; all such urbs must first be completed 1119 * (perhaps forced by unlinking). 1120 * 1121 * Returns zero on success, or else the status code returned by the 1122 * underlying usb_control_msg() call. 1123 */ 1124 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1125 { 1126 struct usb_interface *iface; 1127 struct usb_host_interface *alt; 1128 int ret; 1129 int manual = 0; 1130 1131 if (dev->state == USB_STATE_SUSPENDED) 1132 return -EHOSTUNREACH; 1133 1134 iface = usb_ifnum_to_if(dev, interface); 1135 if (!iface) { 1136 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1137 interface); 1138 return -EINVAL; 1139 } 1140 1141 alt = usb_altnum_to_altsetting(iface, alternate); 1142 if (!alt) { 1143 warn("selecting invalid altsetting %d", alternate); 1144 return -EINVAL; 1145 } 1146 1147 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1148 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1149 alternate, interface, NULL, 0, 5000); 1150 1151 /* 9.4.10 says devices don't need this and are free to STALL the 1152 * request if the interface only has one alternate setting. 1153 */ 1154 if (ret == -EPIPE && iface->num_altsetting == 1) { 1155 dev_dbg(&dev->dev, 1156 "manual set_interface for iface %d, alt %d\n", 1157 interface, alternate); 1158 manual = 1; 1159 } else if (ret < 0) 1160 return ret; 1161 1162 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1163 * when they implement async or easily-killable versions of this or 1164 * other "should-be-internal" functions (like clear_halt). 1165 * should hcd+usbcore postprocess control requests? 1166 */ 1167 1168 /* prevent submissions using previous endpoint settings */ 1169 if (device_is_registered(&iface->dev)) 1170 usb_remove_sysfs_intf_files(iface); 1171 usb_disable_interface(dev, iface); 1172 1173 iface->cur_altsetting = alt; 1174 1175 /* If the interface only has one altsetting and the device didn't 1176 * accept the request, we attempt to carry out the equivalent action 1177 * by manually clearing the HALT feature for each endpoint in the 1178 * new altsetting. 1179 */ 1180 if (manual) { 1181 int i; 1182 1183 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1184 unsigned int epaddr = 1185 alt->endpoint[i].desc.bEndpointAddress; 1186 unsigned int pipe = 1187 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr) 1188 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN); 1189 1190 usb_clear_halt(dev, pipe); 1191 } 1192 } 1193 1194 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1195 * 1196 * Note: 1197 * Despite EP0 is always present in all interfaces/AS, the list of 1198 * endpoints from the descriptor does not contain EP0. Due to its 1199 * omnipresence one might expect EP0 being considered "affected" by 1200 * any SetInterface request and hence assume toggles need to be reset. 1201 * However, EP0 toggles are re-synced for every individual transfer 1202 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1203 * (Likewise, EP0 never "halts" on well designed devices.) 1204 */ 1205 usb_enable_interface(dev, iface); 1206 if (device_is_registered(&iface->dev)) 1207 usb_create_sysfs_intf_files(iface); 1208 1209 return 0; 1210 } 1211 1212 /** 1213 * usb_reset_configuration - lightweight device reset 1214 * @dev: the device whose configuration is being reset 1215 * 1216 * This issues a standard SET_CONFIGURATION request to the device using 1217 * the current configuration. The effect is to reset most USB-related 1218 * state in the device, including interface altsettings (reset to zero), 1219 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1220 * endpoints). Other usbcore state is unchanged, including bindings of 1221 * usb device drivers to interfaces. 1222 * 1223 * Because this affects multiple interfaces, avoid using this with composite 1224 * (multi-interface) devices. Instead, the driver for each interface may 1225 * use usb_set_interface() on the interfaces it claims. Be careful though; 1226 * some devices don't support the SET_INTERFACE request, and others won't 1227 * reset all the interface state (notably data toggles). Resetting the whole 1228 * configuration would affect other drivers' interfaces. 1229 * 1230 * The caller must own the device lock. 1231 * 1232 * Returns zero on success, else a negative error code. 1233 */ 1234 int usb_reset_configuration(struct usb_device *dev) 1235 { 1236 int i, retval; 1237 struct usb_host_config *config; 1238 1239 if (dev->state == USB_STATE_SUSPENDED) 1240 return -EHOSTUNREACH; 1241 1242 /* caller must have locked the device and must own 1243 * the usb bus readlock (so driver bindings are stable); 1244 * calls during probe() are fine 1245 */ 1246 1247 for (i = 1; i < 16; ++i) { 1248 usb_disable_endpoint(dev, i); 1249 usb_disable_endpoint(dev, i + USB_DIR_IN); 1250 } 1251 1252 config = dev->actconfig; 1253 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1254 USB_REQ_SET_CONFIGURATION, 0, 1255 config->desc.bConfigurationValue, 0, 1256 NULL, 0, USB_CTRL_SET_TIMEOUT); 1257 if (retval < 0) 1258 return retval; 1259 1260 dev->toggle[0] = dev->toggle[1] = 0; 1261 1262 /* re-init hc/hcd interface/endpoint state */ 1263 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1264 struct usb_interface *intf = config->interface[i]; 1265 struct usb_host_interface *alt; 1266 1267 if (device_is_registered(&intf->dev)) 1268 usb_remove_sysfs_intf_files(intf); 1269 alt = usb_altnum_to_altsetting(intf, 0); 1270 1271 /* No altsetting 0? We'll assume the first altsetting. 1272 * We could use a GetInterface call, but if a device is 1273 * so non-compliant that it doesn't have altsetting 0 1274 * then I wouldn't trust its reply anyway. 1275 */ 1276 if (!alt) 1277 alt = &intf->altsetting[0]; 1278 1279 intf->cur_altsetting = alt; 1280 usb_enable_interface(dev, intf); 1281 if (device_is_registered(&intf->dev)) 1282 usb_create_sysfs_intf_files(intf); 1283 } 1284 return 0; 1285 } 1286 1287 static void release_interface(struct device *dev) 1288 { 1289 struct usb_interface *intf = to_usb_interface(dev); 1290 struct usb_interface_cache *intfc = 1291 altsetting_to_usb_interface_cache(intf->altsetting); 1292 1293 kref_put(&intfc->ref, usb_release_interface_cache); 1294 kfree(intf); 1295 } 1296 1297 /* 1298 * usb_set_configuration - Makes a particular device setting be current 1299 * @dev: the device whose configuration is being updated 1300 * @configuration: the configuration being chosen. 1301 * Context: !in_interrupt(), caller owns the device lock 1302 * 1303 * This is used to enable non-default device modes. Not all devices 1304 * use this kind of configurability; many devices only have one 1305 * configuration. 1306 * 1307 * USB device configurations may affect Linux interoperability, 1308 * power consumption and the functionality available. For example, 1309 * the default configuration is limited to using 100mA of bus power, 1310 * so that when certain device functionality requires more power, 1311 * and the device is bus powered, that functionality should be in some 1312 * non-default device configuration. Other device modes may also be 1313 * reflected as configuration options, such as whether two ISDN 1314 * channels are available independently; and choosing between open 1315 * standard device protocols (like CDC) or proprietary ones. 1316 * 1317 * Note that USB has an additional level of device configurability, 1318 * associated with interfaces. That configurability is accessed using 1319 * usb_set_interface(). 1320 * 1321 * This call is synchronous. The calling context must be able to sleep, 1322 * must own the device lock, and must not hold the driver model's USB 1323 * bus rwsem; usb device driver probe() methods cannot use this routine. 1324 * 1325 * Returns zero on success, or else the status code returned by the 1326 * underlying call that failed. On successful completion, each interface 1327 * in the original device configuration has been destroyed, and each one 1328 * in the new configuration has been probed by all relevant usb device 1329 * drivers currently known to the kernel. 1330 */ 1331 int usb_set_configuration(struct usb_device *dev, int configuration) 1332 { 1333 int i, ret; 1334 struct usb_host_config *cp = NULL; 1335 struct usb_interface **new_interfaces = NULL; 1336 int n, nintf; 1337 1338 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1339 if (dev->config[i].desc.bConfigurationValue == configuration) { 1340 cp = &dev->config[i]; 1341 break; 1342 } 1343 } 1344 if ((!cp && configuration != 0)) 1345 return -EINVAL; 1346 1347 /* The USB spec says configuration 0 means unconfigured. 1348 * But if a device includes a configuration numbered 0, 1349 * we will accept it as a correctly configured state. 1350 */ 1351 if (cp && configuration == 0) 1352 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1353 1354 if (dev->state == USB_STATE_SUSPENDED) 1355 return -EHOSTUNREACH; 1356 1357 /* Allocate memory for new interfaces before doing anything else, 1358 * so that if we run out then nothing will have changed. */ 1359 n = nintf = 0; 1360 if (cp) { 1361 nintf = cp->desc.bNumInterfaces; 1362 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1363 GFP_KERNEL); 1364 if (!new_interfaces) { 1365 dev_err(&dev->dev, "Out of memory"); 1366 return -ENOMEM; 1367 } 1368 1369 for (; n < nintf; ++n) { 1370 new_interfaces[n] = kzalloc( 1371 sizeof(struct usb_interface), 1372 GFP_KERNEL); 1373 if (!new_interfaces[n]) { 1374 dev_err(&dev->dev, "Out of memory"); 1375 ret = -ENOMEM; 1376 free_interfaces: 1377 while (--n >= 0) 1378 kfree(new_interfaces[n]); 1379 kfree(new_interfaces); 1380 return ret; 1381 } 1382 } 1383 } 1384 1385 /* if it's already configured, clear out old state first. 1386 * getting rid of old interfaces means unbinding their drivers. 1387 */ 1388 if (dev->state != USB_STATE_ADDRESS) 1389 usb_disable_device (dev, 1); // Skip ep0 1390 1391 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1392 if (i < 0) 1393 dev_warn(&dev->dev, "new config #%d exceeds power " 1394 "limit by %dmA\n", 1395 configuration, -i); 1396 1397 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1398 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1399 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) 1400 goto free_interfaces; 1401 1402 dev->actconfig = cp; 1403 if (!cp) 1404 usb_set_device_state(dev, USB_STATE_ADDRESS); 1405 else { 1406 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1407 1408 /* Initialize the new interface structures and the 1409 * hc/hcd/usbcore interface/endpoint state. 1410 */ 1411 for (i = 0; i < nintf; ++i) { 1412 struct usb_interface_cache *intfc; 1413 struct usb_interface *intf; 1414 struct usb_host_interface *alt; 1415 1416 cp->interface[i] = intf = new_interfaces[i]; 1417 intfc = cp->intf_cache[i]; 1418 intf->altsetting = intfc->altsetting; 1419 intf->num_altsetting = intfc->num_altsetting; 1420 kref_get(&intfc->ref); 1421 1422 alt = usb_altnum_to_altsetting(intf, 0); 1423 1424 /* No altsetting 0? We'll assume the first altsetting. 1425 * We could use a GetInterface call, but if a device is 1426 * so non-compliant that it doesn't have altsetting 0 1427 * then I wouldn't trust its reply anyway. 1428 */ 1429 if (!alt) 1430 alt = &intf->altsetting[0]; 1431 1432 intf->cur_altsetting = alt; 1433 usb_enable_interface(dev, intf); 1434 intf->dev.parent = &dev->dev; 1435 intf->dev.driver = NULL; 1436 intf->dev.bus = &usb_bus_type; 1437 intf->dev.dma_mask = dev->dev.dma_mask; 1438 intf->dev.release = release_interface; 1439 device_initialize (&intf->dev); 1440 mark_quiesced(intf); 1441 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d", 1442 dev->bus->busnum, dev->devpath, 1443 configuration, 1444 alt->desc.bInterfaceNumber); 1445 } 1446 kfree(new_interfaces); 1447 1448 if (cp->string == NULL) 1449 cp->string = usb_cache_string(dev, 1450 cp->desc.iConfiguration); 1451 1452 /* Now that all the interfaces are set up, register them 1453 * to trigger binding of drivers to interfaces. probe() 1454 * routines may install different altsettings and may 1455 * claim() any interfaces not yet bound. Many class drivers 1456 * need that: CDC, audio, video, etc. 1457 */ 1458 for (i = 0; i < nintf; ++i) { 1459 struct usb_interface *intf = cp->interface[i]; 1460 1461 dev_dbg (&dev->dev, 1462 "adding %s (config #%d, interface %d)\n", 1463 intf->dev.bus_id, configuration, 1464 intf->cur_altsetting->desc.bInterfaceNumber); 1465 ret = device_add (&intf->dev); 1466 if (ret != 0) { 1467 dev_err(&dev->dev, 1468 "device_add(%s) --> %d\n", 1469 intf->dev.bus_id, 1470 ret); 1471 continue; 1472 } 1473 usb_create_sysfs_intf_files (intf); 1474 } 1475 } 1476 1477 return 0; 1478 } 1479 1480 // synchronous request completion model 1481 EXPORT_SYMBOL(usb_control_msg); 1482 EXPORT_SYMBOL(usb_bulk_msg); 1483 1484 EXPORT_SYMBOL(usb_sg_init); 1485 EXPORT_SYMBOL(usb_sg_cancel); 1486 EXPORT_SYMBOL(usb_sg_wait); 1487 1488 // synchronous control message convenience routines 1489 EXPORT_SYMBOL(usb_get_descriptor); 1490 EXPORT_SYMBOL(usb_get_status); 1491 EXPORT_SYMBOL(usb_get_string); 1492 EXPORT_SYMBOL(usb_string); 1493 1494 // synchronous calls that also maintain usbcore state 1495 EXPORT_SYMBOL(usb_clear_halt); 1496 EXPORT_SYMBOL(usb_reset_configuration); 1497 EXPORT_SYMBOL(usb_set_interface); 1498 1499