xref: /linux/drivers/usb/core/message.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/config.h>
6 #include <linux/pci.h>	/* for scatterlist macros */
7 #include <linux/usb.h>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/timer.h>
13 #include <linux/ctype.h>
14 #include <linux/device.h>
15 #include <asm/byteorder.h>
16 #include <asm/scatterlist.h>
17 
18 #include "hcd.h"	/* for usbcore internals */
19 #include "usb.h"
20 
21 static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs)
22 {
23 	complete((struct completion *)urb->context);
24 }
25 
26 
27 static void timeout_kill(unsigned long data)
28 {
29 	struct urb	*urb = (struct urb *) data;
30 
31 	usb_unlink_urb(urb);
32 }
33 
34 // Starts urb and waits for completion or timeout
35 // note that this call is NOT interruptible, while
36 // many device driver i/o requests should be interruptible
37 static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length)
38 {
39 	struct completion	done;
40 	struct timer_list	timer;
41 	int			status;
42 
43 	init_completion(&done);
44 	urb->context = &done;
45 	urb->actual_length = 0;
46 	status = usb_submit_urb(urb, GFP_NOIO);
47 
48 	if (status == 0) {
49 		if (timeout > 0) {
50 			init_timer(&timer);
51 			timer.expires = jiffies + msecs_to_jiffies(timeout);
52 			timer.data = (unsigned long)urb;
53 			timer.function = timeout_kill;
54 			/* grr.  timeout _should_ include submit delays. */
55 			add_timer(&timer);
56 		}
57 		wait_for_completion(&done);
58 		status = urb->status;
59 		/* note:  HCDs return ETIMEDOUT for other reasons too */
60 		if (status == -ECONNRESET) {
61 			dev_dbg(&urb->dev->dev,
62 				"%s timed out on ep%d%s len=%d/%d\n",
63 				current->comm,
64 				usb_pipeendpoint(urb->pipe),
65 				usb_pipein(urb->pipe) ? "in" : "out",
66 				urb->actual_length,
67 				urb->transfer_buffer_length
68 				);
69 			if (urb->actual_length > 0)
70 				status = 0;
71 			else
72 				status = -ETIMEDOUT;
73 		}
74 		if (timeout > 0)
75 			del_timer_sync(&timer);
76 	}
77 
78 	if (actual_length)
79 		*actual_length = urb->actual_length;
80 	usb_free_urb(urb);
81 	return status;
82 }
83 
84 /*-------------------------------------------------------------------*/
85 // returns status (negative) or length (positive)
86 static int usb_internal_control_msg(struct usb_device *usb_dev,
87 				    unsigned int pipe,
88 				    struct usb_ctrlrequest *cmd,
89 				    void *data, int len, int timeout)
90 {
91 	struct urb *urb;
92 	int retv;
93 	int length;
94 
95 	urb = usb_alloc_urb(0, GFP_NOIO);
96 	if (!urb)
97 		return -ENOMEM;
98 
99 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
100 			     len, usb_api_blocking_completion, NULL);
101 
102 	retv = usb_start_wait_urb(urb, timeout, &length);
103 	if (retv < 0)
104 		return retv;
105 	else
106 		return length;
107 }
108 
109 /**
110  *	usb_control_msg - Builds a control urb, sends it off and waits for completion
111  *	@dev: pointer to the usb device to send the message to
112  *	@pipe: endpoint "pipe" to send the message to
113  *	@request: USB message request value
114  *	@requesttype: USB message request type value
115  *	@value: USB message value
116  *	@index: USB message index value
117  *	@data: pointer to the data to send
118  *	@size: length in bytes of the data to send
119  *	@timeout: time in msecs to wait for the message to complete before
120  *		timing out (if 0 the wait is forever)
121  *	Context: !in_interrupt ()
122  *
123  *	This function sends a simple control message to a specified endpoint
124  *	and waits for the message to complete, or timeout.
125  *
126  *	If successful, it returns the number of bytes transferred, otherwise a negative error number.
127  *
128  *	Don't use this function from within an interrupt context, like a
129  *	bottom half handler.  If you need an asynchronous message, or need to send
130  *	a message from within interrupt context, use usb_submit_urb()
131  *      If a thread in your driver uses this call, make sure your disconnect()
132  *      method can wait for it to complete.  Since you don't have a handle on
133  *      the URB used, you can't cancel the request.
134  */
135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
136 			 __u16 value, __u16 index, void *data, __u16 size, int timeout)
137 {
138 	struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 	int ret;
140 
141 	if (!dr)
142 		return -ENOMEM;
143 
144 	dr->bRequestType= requesttype;
145 	dr->bRequest = request;
146 	dr->wValue = cpu_to_le16p(&value);
147 	dr->wIndex = cpu_to_le16p(&index);
148 	dr->wLength = cpu_to_le16p(&size);
149 
150 	//dbg("usb_control_msg");
151 
152 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153 
154 	kfree(dr);
155 
156 	return ret;
157 }
158 
159 
160 /**
161  *	usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
162  *	@usb_dev: pointer to the usb device to send the message to
163  *	@pipe: endpoint "pipe" to send the message to
164  *	@data: pointer to the data to send
165  *	@len: length in bytes of the data to send
166  *	@actual_length: pointer to a location to put the actual length transferred in bytes
167  *	@timeout: time in msecs to wait for the message to complete before
168  *		timing out (if 0 the wait is forever)
169  *	Context: !in_interrupt ()
170  *
171  *	This function sends a simple bulk message to a specified endpoint
172  *	and waits for the message to complete, or timeout.
173  *
174  *	If successful, it returns 0, otherwise a negative error number.
175  *	The number of actual bytes transferred will be stored in the
176  *	actual_length paramater.
177  *
178  *	Don't use this function from within an interrupt context, like a
179  *	bottom half handler.  If you need an asynchronous message, or need to
180  *	send a message from within interrupt context, use usb_submit_urb()
181  *      If a thread in your driver uses this call, make sure your disconnect()
182  *      method can wait for it to complete.  Since you don't have a handle on
183  *      the URB used, you can't cancel the request.
184  *
185  *	Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
186  *	ioctl, users are forced to abuse this routine by using it to submit
187  *	URBs for interrupt endpoints.  We will take the liberty of creating
188  *	an interrupt URB (with the default interval) if the target is an
189  *	interrupt endpoint.
190  */
191 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
192 			void *data, int len, int *actual_length, int timeout)
193 {
194 	struct urb *urb;
195 	struct usb_host_endpoint *ep;
196 
197 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
198 			[usb_pipeendpoint(pipe)];
199 	if (!ep || len < 0)
200 		return -EINVAL;
201 
202 	urb = usb_alloc_urb(0, GFP_KERNEL);
203 	if (!urb)
204 		return -ENOMEM;
205 
206 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
207 			USB_ENDPOINT_XFER_INT) {
208 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
209 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
210 				usb_api_blocking_completion, NULL,
211 				ep->desc.bInterval);
212 	} else
213 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
214 				usb_api_blocking_completion, NULL);
215 
216 	return usb_start_wait_urb(urb, timeout, actual_length);
217 }
218 
219 /*-------------------------------------------------------------------*/
220 
221 static void sg_clean (struct usb_sg_request *io)
222 {
223 	if (io->urbs) {
224 		while (io->entries--)
225 			usb_free_urb (io->urbs [io->entries]);
226 		kfree (io->urbs);
227 		io->urbs = NULL;
228 	}
229 	if (io->dev->dev.dma_mask != NULL)
230 		usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
231 	io->dev = NULL;
232 }
233 
234 static void sg_complete (struct urb *urb, struct pt_regs *regs)
235 {
236 	struct usb_sg_request	*io = (struct usb_sg_request *) urb->context;
237 
238 	spin_lock (&io->lock);
239 
240 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
241 	 * reports, until the completion callback (this!) returns.  That lets
242 	 * device driver code (like this routine) unlink queued urbs first,
243 	 * if it needs to, since the HC won't work on them at all.  So it's
244 	 * not possible for page N+1 to overwrite page N, and so on.
245 	 *
246 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
247 	 * complete before the HCD can get requests away from hardware,
248 	 * though never during cleanup after a hard fault.
249 	 */
250 	if (io->status
251 			&& (io->status != -ECONNRESET
252 				|| urb->status != -ECONNRESET)
253 			&& urb->actual_length) {
254 		dev_err (io->dev->bus->controller,
255 			"dev %s ep%d%s scatterlist error %d/%d\n",
256 			io->dev->devpath,
257 			usb_pipeendpoint (urb->pipe),
258 			usb_pipein (urb->pipe) ? "in" : "out",
259 			urb->status, io->status);
260 		// BUG ();
261 	}
262 
263 	if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
264 		int		i, found, status;
265 
266 		io->status = urb->status;
267 
268 		/* the previous urbs, and this one, completed already.
269 		 * unlink pending urbs so they won't rx/tx bad data.
270 		 * careful: unlink can sometimes be synchronous...
271 		 */
272 		spin_unlock (&io->lock);
273 		for (i = 0, found = 0; i < io->entries; i++) {
274 			if (!io->urbs [i] || !io->urbs [i]->dev)
275 				continue;
276 			if (found) {
277 				status = usb_unlink_urb (io->urbs [i]);
278 				if (status != -EINPROGRESS
279 						&& status != -ENODEV
280 						&& status != -EBUSY)
281 					dev_err (&io->dev->dev,
282 						"%s, unlink --> %d\n",
283 						__FUNCTION__, status);
284 			} else if (urb == io->urbs [i])
285 				found = 1;
286 		}
287 		spin_lock (&io->lock);
288 	}
289 	urb->dev = NULL;
290 
291 	/* on the last completion, signal usb_sg_wait() */
292 	io->bytes += urb->actual_length;
293 	io->count--;
294 	if (!io->count)
295 		complete (&io->complete);
296 
297 	spin_unlock (&io->lock);
298 }
299 
300 
301 /**
302  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
303  * @io: request block being initialized.  until usb_sg_wait() returns,
304  *	treat this as a pointer to an opaque block of memory,
305  * @dev: the usb device that will send or receive the data
306  * @pipe: endpoint "pipe" used to transfer the data
307  * @period: polling rate for interrupt endpoints, in frames or
308  * 	(for high speed endpoints) microframes; ignored for bulk
309  * @sg: scatterlist entries
310  * @nents: how many entries in the scatterlist
311  * @length: how many bytes to send from the scatterlist, or zero to
312  * 	send every byte identified in the list.
313  * @mem_flags: SLAB_* flags affecting memory allocations in this call
314  *
315  * Returns zero for success, else a negative errno value.  This initializes a
316  * scatter/gather request, allocating resources such as I/O mappings and urb
317  * memory (except maybe memory used by USB controller drivers).
318  *
319  * The request must be issued using usb_sg_wait(), which waits for the I/O to
320  * complete (or to be canceled) and then cleans up all resources allocated by
321  * usb_sg_init().
322  *
323  * The request may be canceled with usb_sg_cancel(), either before or after
324  * usb_sg_wait() is called.
325  */
326 int usb_sg_init (
327 	struct usb_sg_request	*io,
328 	struct usb_device	*dev,
329 	unsigned		pipe,
330 	unsigned		period,
331 	struct scatterlist	*sg,
332 	int			nents,
333 	size_t			length,
334 	gfp_t			mem_flags
335 )
336 {
337 	int			i;
338 	int			urb_flags;
339 	int			dma;
340 
341 	if (!io || !dev || !sg
342 			|| usb_pipecontrol (pipe)
343 			|| usb_pipeisoc (pipe)
344 			|| nents <= 0)
345 		return -EINVAL;
346 
347 	spin_lock_init (&io->lock);
348 	io->dev = dev;
349 	io->pipe = pipe;
350 	io->sg = sg;
351 	io->nents = nents;
352 
353 	/* not all host controllers use DMA (like the mainstream pci ones);
354 	 * they can use PIO (sl811) or be software over another transport.
355 	 */
356 	dma = (dev->dev.dma_mask != NULL);
357 	if (dma)
358 		io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
359 	else
360 		io->entries = nents;
361 
362 	/* initialize all the urbs we'll use */
363 	if (io->entries <= 0)
364 		return io->entries;
365 
366 	io->count = io->entries;
367 	io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
368 	if (!io->urbs)
369 		goto nomem;
370 
371 	urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
372 	if (usb_pipein (pipe))
373 		urb_flags |= URB_SHORT_NOT_OK;
374 
375 	for (i = 0; i < io->entries; i++) {
376 		unsigned		len;
377 
378 		io->urbs [i] = usb_alloc_urb (0, mem_flags);
379 		if (!io->urbs [i]) {
380 			io->entries = i;
381 			goto nomem;
382 		}
383 
384 		io->urbs [i]->dev = NULL;
385 		io->urbs [i]->pipe = pipe;
386 		io->urbs [i]->interval = period;
387 		io->urbs [i]->transfer_flags = urb_flags;
388 
389 		io->urbs [i]->complete = sg_complete;
390 		io->urbs [i]->context = io;
391 		io->urbs [i]->status = -EINPROGRESS;
392 		io->urbs [i]->actual_length = 0;
393 
394 		if (dma) {
395 			/* hc may use _only_ transfer_dma */
396 			io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
397 			len = sg_dma_len (sg + i);
398 		} else {
399 			/* hc may use _only_ transfer_buffer */
400 			io->urbs [i]->transfer_buffer =
401 				page_address (sg [i].page) + sg [i].offset;
402 			len = sg [i].length;
403 		}
404 
405 		if (length) {
406 			len = min_t (unsigned, len, length);
407 			length -= len;
408 			if (length == 0)
409 				io->entries = i + 1;
410 		}
411 		io->urbs [i]->transfer_buffer_length = len;
412 	}
413 	io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
414 
415 	/* transaction state */
416 	io->status = 0;
417 	io->bytes = 0;
418 	init_completion (&io->complete);
419 	return 0;
420 
421 nomem:
422 	sg_clean (io);
423 	return -ENOMEM;
424 }
425 
426 
427 /**
428  * usb_sg_wait - synchronously execute scatter/gather request
429  * @io: request block handle, as initialized with usb_sg_init().
430  * 	some fields become accessible when this call returns.
431  * Context: !in_interrupt ()
432  *
433  * This function blocks until the specified I/O operation completes.  It
434  * leverages the grouping of the related I/O requests to get good transfer
435  * rates, by queueing the requests.  At higher speeds, such queuing can
436  * significantly improve USB throughput.
437  *
438  * There are three kinds of completion for this function.
439  * (1) success, where io->status is zero.  The number of io->bytes
440  *     transferred is as requested.
441  * (2) error, where io->status is a negative errno value.  The number
442  *     of io->bytes transferred before the error is usually less
443  *     than requested, and can be nonzero.
444  * (3) cancellation, a type of error with status -ECONNRESET that
445  *     is initiated by usb_sg_cancel().
446  *
447  * When this function returns, all memory allocated through usb_sg_init() or
448  * this call will have been freed.  The request block parameter may still be
449  * passed to usb_sg_cancel(), or it may be freed.  It could also be
450  * reinitialized and then reused.
451  *
452  * Data Transfer Rates:
453  *
454  * Bulk transfers are valid for full or high speed endpoints.
455  * The best full speed data rate is 19 packets of 64 bytes each
456  * per frame, or 1216 bytes per millisecond.
457  * The best high speed data rate is 13 packets of 512 bytes each
458  * per microframe, or 52 KBytes per millisecond.
459  *
460  * The reason to use interrupt transfers through this API would most likely
461  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
462  * could be transferred.  That capability is less useful for low or full
463  * speed interrupt endpoints, which allow at most one packet per millisecond,
464  * of at most 8 or 64 bytes (respectively).
465  */
466 void usb_sg_wait (struct usb_sg_request *io)
467 {
468 	int		i, entries = io->entries;
469 
470 	/* queue the urbs.  */
471 	spin_lock_irq (&io->lock);
472 	for (i = 0; i < entries && !io->status; i++) {
473 		int	retval;
474 
475 		io->urbs [i]->dev = io->dev;
476 		retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC);
477 
478 		/* after we submit, let completions or cancelations fire;
479 		 * we handshake using io->status.
480 		 */
481 		spin_unlock_irq (&io->lock);
482 		switch (retval) {
483 			/* maybe we retrying will recover */
484 		case -ENXIO:	// hc didn't queue this one
485 		case -EAGAIN:
486 		case -ENOMEM:
487 			io->urbs[i]->dev = NULL;
488 			retval = 0;
489 			i--;
490 			yield ();
491 			break;
492 
493 			/* no error? continue immediately.
494 			 *
495 			 * NOTE: to work better with UHCI (4K I/O buffer may
496 			 * need 3K of TDs) it may be good to limit how many
497 			 * URBs are queued at once; N milliseconds?
498 			 */
499 		case 0:
500 			cpu_relax ();
501 			break;
502 
503 			/* fail any uncompleted urbs */
504 		default:
505 			io->urbs [i]->dev = NULL;
506 			io->urbs [i]->status = retval;
507 			dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
508 				__FUNCTION__, retval);
509 			usb_sg_cancel (io);
510 		}
511 		spin_lock_irq (&io->lock);
512 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
513 			io->status = retval;
514 	}
515 	io->count -= entries - i;
516 	if (io->count == 0)
517 		complete (&io->complete);
518 	spin_unlock_irq (&io->lock);
519 
520 	/* OK, yes, this could be packaged as non-blocking.
521 	 * So could the submit loop above ... but it's easier to
522 	 * solve neither problem than to solve both!
523 	 */
524 	wait_for_completion (&io->complete);
525 
526 	sg_clean (io);
527 }
528 
529 /**
530  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
531  * @io: request block, initialized with usb_sg_init()
532  *
533  * This stops a request after it has been started by usb_sg_wait().
534  * It can also prevents one initialized by usb_sg_init() from starting,
535  * so that call just frees resources allocated to the request.
536  */
537 void usb_sg_cancel (struct usb_sg_request *io)
538 {
539 	unsigned long	flags;
540 
541 	spin_lock_irqsave (&io->lock, flags);
542 
543 	/* shut everything down, if it didn't already */
544 	if (!io->status) {
545 		int	i;
546 
547 		io->status = -ECONNRESET;
548 		spin_unlock (&io->lock);
549 		for (i = 0; i < io->entries; i++) {
550 			int	retval;
551 
552 			if (!io->urbs [i]->dev)
553 				continue;
554 			retval = usb_unlink_urb (io->urbs [i]);
555 			if (retval != -EINPROGRESS && retval != -EBUSY)
556 				dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
557 					__FUNCTION__, retval);
558 		}
559 		spin_lock (&io->lock);
560 	}
561 	spin_unlock_irqrestore (&io->lock, flags);
562 }
563 
564 /*-------------------------------------------------------------------*/
565 
566 /**
567  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
568  * @dev: the device whose descriptor is being retrieved
569  * @type: the descriptor type (USB_DT_*)
570  * @index: the number of the descriptor
571  * @buf: where to put the descriptor
572  * @size: how big is "buf"?
573  * Context: !in_interrupt ()
574  *
575  * Gets a USB descriptor.  Convenience functions exist to simplify
576  * getting some types of descriptors.  Use
577  * usb_get_string() or usb_string() for USB_DT_STRING.
578  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
579  * are part of the device structure.
580  * In addition to a number of USB-standard descriptors, some
581  * devices also use class-specific or vendor-specific descriptors.
582  *
583  * This call is synchronous, and may not be used in an interrupt context.
584  *
585  * Returns the number of bytes received on success, or else the status code
586  * returned by the underlying usb_control_msg() call.
587  */
588 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
589 {
590 	int i;
591 	int result;
592 
593 	memset(buf,0,size);	// Make sure we parse really received data
594 
595 	for (i = 0; i < 3; ++i) {
596 		/* retry on length 0 or stall; some devices are flakey */
597 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
598 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
599 				(type << 8) + index, 0, buf, size,
600 				USB_CTRL_GET_TIMEOUT);
601 		if (result == 0 || result == -EPIPE)
602 			continue;
603 		if (result > 1 && ((u8 *)buf)[1] != type) {
604 			result = -EPROTO;
605 			continue;
606 		}
607 		break;
608 	}
609 	return result;
610 }
611 
612 /**
613  * usb_get_string - gets a string descriptor
614  * @dev: the device whose string descriptor is being retrieved
615  * @langid: code for language chosen (from string descriptor zero)
616  * @index: the number of the descriptor
617  * @buf: where to put the string
618  * @size: how big is "buf"?
619  * Context: !in_interrupt ()
620  *
621  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
622  * in little-endian byte order).
623  * The usb_string() function will often be a convenient way to turn
624  * these strings into kernel-printable form.
625  *
626  * Strings may be referenced in device, configuration, interface, or other
627  * descriptors, and could also be used in vendor-specific ways.
628  *
629  * This call is synchronous, and may not be used in an interrupt context.
630  *
631  * Returns the number of bytes received on success, or else the status code
632  * returned by the underlying usb_control_msg() call.
633  */
634 int usb_get_string(struct usb_device *dev, unsigned short langid,
635 		unsigned char index, void *buf, int size)
636 {
637 	int i;
638 	int result;
639 
640 	for (i = 0; i < 3; ++i) {
641 		/* retry on length 0 or stall; some devices are flakey */
642 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
643 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
644 			(USB_DT_STRING << 8) + index, langid, buf, size,
645 			USB_CTRL_GET_TIMEOUT);
646 		if (!(result == 0 || result == -EPIPE))
647 			break;
648 	}
649 	return result;
650 }
651 
652 static void usb_try_string_workarounds(unsigned char *buf, int *length)
653 {
654 	int newlength, oldlength = *length;
655 
656 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
657 		if (!isprint(buf[newlength]) || buf[newlength + 1])
658 			break;
659 
660 	if (newlength > 2) {
661 		buf[0] = newlength;
662 		*length = newlength;
663 	}
664 }
665 
666 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
667 		unsigned int index, unsigned char *buf)
668 {
669 	int rc;
670 
671 	/* Try to read the string descriptor by asking for the maximum
672 	 * possible number of bytes */
673 	rc = usb_get_string(dev, langid, index, buf, 255);
674 
675 	/* If that failed try to read the descriptor length, then
676 	 * ask for just that many bytes */
677 	if (rc < 2) {
678 		rc = usb_get_string(dev, langid, index, buf, 2);
679 		if (rc == 2)
680 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
681 	}
682 
683 	if (rc >= 2) {
684 		if (!buf[0] && !buf[1])
685 			usb_try_string_workarounds(buf, &rc);
686 
687 		/* There might be extra junk at the end of the descriptor */
688 		if (buf[0] < rc)
689 			rc = buf[0];
690 
691 		rc = rc - (rc & 1); /* force a multiple of two */
692 	}
693 
694 	if (rc < 2)
695 		rc = (rc < 0 ? rc : -EINVAL);
696 
697 	return rc;
698 }
699 
700 /**
701  * usb_string - returns ISO 8859-1 version of a string descriptor
702  * @dev: the device whose string descriptor is being retrieved
703  * @index: the number of the descriptor
704  * @buf: where to put the string
705  * @size: how big is "buf"?
706  * Context: !in_interrupt ()
707  *
708  * This converts the UTF-16LE encoded strings returned by devices, from
709  * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
710  * that are more usable in most kernel contexts.  Note that all characters
711  * in the chosen descriptor that can't be encoded using ISO-8859-1
712  * are converted to the question mark ("?") character, and this function
713  * chooses strings in the first language supported by the device.
714  *
715  * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
716  * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
717  * and is appropriate for use many uses of English and several other
718  * Western European languages.  (But it doesn't include the "Euro" symbol.)
719  *
720  * This call is synchronous, and may not be used in an interrupt context.
721  *
722  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
723  */
724 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
725 {
726 	unsigned char *tbuf;
727 	int err;
728 	unsigned int u, idx;
729 
730 	if (dev->state == USB_STATE_SUSPENDED)
731 		return -EHOSTUNREACH;
732 	if (size <= 0 || !buf || !index)
733 		return -EINVAL;
734 	buf[0] = 0;
735 	tbuf = kmalloc(256, GFP_KERNEL);
736 	if (!tbuf)
737 		return -ENOMEM;
738 
739 	/* get langid for strings if it's not yet known */
740 	if (!dev->have_langid) {
741 		err = usb_string_sub(dev, 0, 0, tbuf);
742 		if (err < 0) {
743 			dev_err (&dev->dev,
744 				"string descriptor 0 read error: %d\n",
745 				err);
746 			goto errout;
747 		} else if (err < 4) {
748 			dev_err (&dev->dev, "string descriptor 0 too short\n");
749 			err = -EINVAL;
750 			goto errout;
751 		} else {
752 			dev->have_langid = -1;
753 			dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
754 				/* always use the first langid listed */
755 			dev_dbg (&dev->dev, "default language 0x%04x\n",
756 				dev->string_langid);
757 		}
758 	}
759 
760 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
761 	if (err < 0)
762 		goto errout;
763 
764 	size--;		/* leave room for trailing NULL char in output buffer */
765 	for (idx = 0, u = 2; u < err; u += 2) {
766 		if (idx >= size)
767 			break;
768 		if (tbuf[u+1])			/* high byte */
769 			buf[idx++] = '?';  /* non ISO-8859-1 character */
770 		else
771 			buf[idx++] = tbuf[u];
772 	}
773 	buf[idx] = 0;
774 	err = idx;
775 
776 	if (tbuf[1] != USB_DT_STRING)
777 		dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
778 
779  errout:
780 	kfree(tbuf);
781 	return err;
782 }
783 
784 /**
785  * usb_cache_string - read a string descriptor and cache it for later use
786  * @udev: the device whose string descriptor is being read
787  * @index: the descriptor index
788  *
789  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
790  * or NULL if the index is 0 or the string could not be read.
791  */
792 char *usb_cache_string(struct usb_device *udev, int index)
793 {
794 	char *buf;
795 	char *smallbuf = NULL;
796 	int len;
797 
798 	if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
799 		if ((len = usb_string(udev, index, buf, 256)) > 0) {
800 			if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
801 				return buf;
802 			memcpy(smallbuf, buf, len);
803 		}
804 		kfree(buf);
805 	}
806 	return smallbuf;
807 }
808 
809 /*
810  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
811  * @dev: the device whose device descriptor is being updated
812  * @size: how much of the descriptor to read
813  * Context: !in_interrupt ()
814  *
815  * Updates the copy of the device descriptor stored in the device structure,
816  * which dedicates space for this purpose.  Note that several fields are
817  * converted to the host CPU's byte order:  the USB version (bcdUSB), and
818  * vendors product and version fields (idVendor, idProduct, and bcdDevice).
819  * That lets device drivers compare against non-byteswapped constants.
820  *
821  * Not exported, only for use by the core.  If drivers really want to read
822  * the device descriptor directly, they can call usb_get_descriptor() with
823  * type = USB_DT_DEVICE and index = 0.
824  *
825  * This call is synchronous, and may not be used in an interrupt context.
826  *
827  * Returns the number of bytes received on success, or else the status code
828  * returned by the underlying usb_control_msg() call.
829  */
830 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
831 {
832 	struct usb_device_descriptor *desc;
833 	int ret;
834 
835 	if (size > sizeof(*desc))
836 		return -EINVAL;
837 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
838 	if (!desc)
839 		return -ENOMEM;
840 
841 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
842 	if (ret >= 0)
843 		memcpy(&dev->descriptor, desc, size);
844 	kfree(desc);
845 	return ret;
846 }
847 
848 /**
849  * usb_get_status - issues a GET_STATUS call
850  * @dev: the device whose status is being checked
851  * @type: USB_RECIP_*; for device, interface, or endpoint
852  * @target: zero (for device), else interface or endpoint number
853  * @data: pointer to two bytes of bitmap data
854  * Context: !in_interrupt ()
855  *
856  * Returns device, interface, or endpoint status.  Normally only of
857  * interest to see if the device is self powered, or has enabled the
858  * remote wakeup facility; or whether a bulk or interrupt endpoint
859  * is halted ("stalled").
860  *
861  * Bits in these status bitmaps are set using the SET_FEATURE request,
862  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
863  * function should be used to clear halt ("stall") status.
864  *
865  * This call is synchronous, and may not be used in an interrupt context.
866  *
867  * Returns the number of bytes received on success, or else the status code
868  * returned by the underlying usb_control_msg() call.
869  */
870 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
871 {
872 	int ret;
873 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
874 
875 	if (!status)
876 		return -ENOMEM;
877 
878 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
879 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
880 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
881 
882 	*(u16 *)data = *status;
883 	kfree(status);
884 	return ret;
885 }
886 
887 /**
888  * usb_clear_halt - tells device to clear endpoint halt/stall condition
889  * @dev: device whose endpoint is halted
890  * @pipe: endpoint "pipe" being cleared
891  * Context: !in_interrupt ()
892  *
893  * This is used to clear halt conditions for bulk and interrupt endpoints,
894  * as reported by URB completion status.  Endpoints that are halted are
895  * sometimes referred to as being "stalled".  Such endpoints are unable
896  * to transmit or receive data until the halt status is cleared.  Any URBs
897  * queued for such an endpoint should normally be unlinked by the driver
898  * before clearing the halt condition, as described in sections 5.7.5
899  * and 5.8.5 of the USB 2.0 spec.
900  *
901  * Note that control and isochronous endpoints don't halt, although control
902  * endpoints report "protocol stall" (for unsupported requests) using the
903  * same status code used to report a true stall.
904  *
905  * This call is synchronous, and may not be used in an interrupt context.
906  *
907  * Returns zero on success, or else the status code returned by the
908  * underlying usb_control_msg() call.
909  */
910 int usb_clear_halt(struct usb_device *dev, int pipe)
911 {
912 	int result;
913 	int endp = usb_pipeendpoint(pipe);
914 
915 	if (usb_pipein (pipe))
916 		endp |= USB_DIR_IN;
917 
918 	/* we don't care if it wasn't halted first. in fact some devices
919 	 * (like some ibmcam model 1 units) seem to expect hosts to make
920 	 * this request for iso endpoints, which can't halt!
921 	 */
922 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
923 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
924 		USB_ENDPOINT_HALT, endp, NULL, 0,
925 		USB_CTRL_SET_TIMEOUT);
926 
927 	/* don't un-halt or force to DATA0 except on success */
928 	if (result < 0)
929 		return result;
930 
931 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
932 	 * the clear "took", so some devices could lock up if you check...
933 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
934 	 *
935 	 * NOTE:  make sure the logic here doesn't diverge much from
936 	 * the copy in usb-storage, for as long as we need two copies.
937 	 */
938 
939 	/* toggle was reset by the clear */
940 	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
941 
942 	return 0;
943 }
944 
945 /**
946  * usb_disable_endpoint -- Disable an endpoint by address
947  * @dev: the device whose endpoint is being disabled
948  * @epaddr: the endpoint's address.  Endpoint number for output,
949  *	endpoint number + USB_DIR_IN for input
950  *
951  * Deallocates hcd/hardware state for this endpoint ... and nukes all
952  * pending urbs.
953  *
954  * If the HCD hasn't registered a disable() function, this sets the
955  * endpoint's maxpacket size to 0 to prevent further submissions.
956  */
957 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
958 {
959 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
960 	struct usb_host_endpoint *ep;
961 
962 	if (!dev)
963 		return;
964 
965 	if (usb_endpoint_out(epaddr)) {
966 		ep = dev->ep_out[epnum];
967 		dev->ep_out[epnum] = NULL;
968 	} else {
969 		ep = dev->ep_in[epnum];
970 		dev->ep_in[epnum] = NULL;
971 	}
972 	if (ep && dev->bus && dev->bus->op && dev->bus->op->disable)
973 		dev->bus->op->disable(dev, ep);
974 }
975 
976 /**
977  * usb_disable_interface -- Disable all endpoints for an interface
978  * @dev: the device whose interface is being disabled
979  * @intf: pointer to the interface descriptor
980  *
981  * Disables all the endpoints for the interface's current altsetting.
982  */
983 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
984 {
985 	struct usb_host_interface *alt = intf->cur_altsetting;
986 	int i;
987 
988 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
989 		usb_disable_endpoint(dev,
990 				alt->endpoint[i].desc.bEndpointAddress);
991 	}
992 }
993 
994 /*
995  * usb_disable_device - Disable all the endpoints for a USB device
996  * @dev: the device whose endpoints are being disabled
997  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
998  *
999  * Disables all the device's endpoints, potentially including endpoint 0.
1000  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1001  * pending urbs) and usbcore state for the interfaces, so that usbcore
1002  * must usb_set_configuration() before any interfaces could be used.
1003  */
1004 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1005 {
1006 	int i;
1007 
1008 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1009 			skip_ep0 ? "non-ep0" : "all");
1010 	for (i = skip_ep0; i < 16; ++i) {
1011 		usb_disable_endpoint(dev, i);
1012 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1013 	}
1014 	dev->toggle[0] = dev->toggle[1] = 0;
1015 
1016 	/* getting rid of interfaces will disconnect
1017 	 * any drivers bound to them (a key side effect)
1018 	 */
1019 	if (dev->actconfig) {
1020 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1021 			struct usb_interface	*interface;
1022 
1023 			/* remove this interface if it has been registered */
1024 			interface = dev->actconfig->interface[i];
1025 			if (!device_is_registered(&interface->dev))
1026 				continue;
1027 			dev_dbg (&dev->dev, "unregistering interface %s\n",
1028 				interface->dev.bus_id);
1029 			usb_remove_sysfs_intf_files(interface);
1030 			device_del (&interface->dev);
1031 		}
1032 
1033 		/* Now that the interfaces are unbound, nobody should
1034 		 * try to access them.
1035 		 */
1036 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1037 			put_device (&dev->actconfig->interface[i]->dev);
1038 			dev->actconfig->interface[i] = NULL;
1039 		}
1040 		dev->actconfig = NULL;
1041 		if (dev->state == USB_STATE_CONFIGURED)
1042 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1043 	}
1044 }
1045 
1046 
1047 /*
1048  * usb_enable_endpoint - Enable an endpoint for USB communications
1049  * @dev: the device whose interface is being enabled
1050  * @ep: the endpoint
1051  *
1052  * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1053  * For control endpoints, both the input and output sides are handled.
1054  */
1055 static void
1056 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1057 {
1058 	unsigned int epaddr = ep->desc.bEndpointAddress;
1059 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1060 	int is_control;
1061 
1062 	is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1063 			== USB_ENDPOINT_XFER_CONTROL);
1064 	if (usb_endpoint_out(epaddr) || is_control) {
1065 		usb_settoggle(dev, epnum, 1, 0);
1066 		dev->ep_out[epnum] = ep;
1067 	}
1068 	if (!usb_endpoint_out(epaddr) || is_control) {
1069 		usb_settoggle(dev, epnum, 0, 0);
1070 		dev->ep_in[epnum] = ep;
1071 	}
1072 }
1073 
1074 /*
1075  * usb_enable_interface - Enable all the endpoints for an interface
1076  * @dev: the device whose interface is being enabled
1077  * @intf: pointer to the interface descriptor
1078  *
1079  * Enables all the endpoints for the interface's current altsetting.
1080  */
1081 static void usb_enable_interface(struct usb_device *dev,
1082 				 struct usb_interface *intf)
1083 {
1084 	struct usb_host_interface *alt = intf->cur_altsetting;
1085 	int i;
1086 
1087 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1088 		usb_enable_endpoint(dev, &alt->endpoint[i]);
1089 }
1090 
1091 /**
1092  * usb_set_interface - Makes a particular alternate setting be current
1093  * @dev: the device whose interface is being updated
1094  * @interface: the interface being updated
1095  * @alternate: the setting being chosen.
1096  * Context: !in_interrupt ()
1097  *
1098  * This is used to enable data transfers on interfaces that may not
1099  * be enabled by default.  Not all devices support such configurability.
1100  * Only the driver bound to an interface may change its setting.
1101  *
1102  * Within any given configuration, each interface may have several
1103  * alternative settings.  These are often used to control levels of
1104  * bandwidth consumption.  For example, the default setting for a high
1105  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1106  * while interrupt transfers of up to 3KBytes per microframe are legal.
1107  * Also, isochronous endpoints may never be part of an
1108  * interface's default setting.  To access such bandwidth, alternate
1109  * interface settings must be made current.
1110  *
1111  * Note that in the Linux USB subsystem, bandwidth associated with
1112  * an endpoint in a given alternate setting is not reserved until an URB
1113  * is submitted that needs that bandwidth.  Some other operating systems
1114  * allocate bandwidth early, when a configuration is chosen.
1115  *
1116  * This call is synchronous, and may not be used in an interrupt context.
1117  * Also, drivers must not change altsettings while urbs are scheduled for
1118  * endpoints in that interface; all such urbs must first be completed
1119  * (perhaps forced by unlinking).
1120  *
1121  * Returns zero on success, or else the status code returned by the
1122  * underlying usb_control_msg() call.
1123  */
1124 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1125 {
1126 	struct usb_interface *iface;
1127 	struct usb_host_interface *alt;
1128 	int ret;
1129 	int manual = 0;
1130 
1131 	if (dev->state == USB_STATE_SUSPENDED)
1132 		return -EHOSTUNREACH;
1133 
1134 	iface = usb_ifnum_to_if(dev, interface);
1135 	if (!iface) {
1136 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1137 			interface);
1138 		return -EINVAL;
1139 	}
1140 
1141 	alt = usb_altnum_to_altsetting(iface, alternate);
1142 	if (!alt) {
1143 		warn("selecting invalid altsetting %d", alternate);
1144 		return -EINVAL;
1145 	}
1146 
1147 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1148 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1149 				   alternate, interface, NULL, 0, 5000);
1150 
1151 	/* 9.4.10 says devices don't need this and are free to STALL the
1152 	 * request if the interface only has one alternate setting.
1153 	 */
1154 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1155 		dev_dbg(&dev->dev,
1156 			"manual set_interface for iface %d, alt %d\n",
1157 			interface, alternate);
1158 		manual = 1;
1159 	} else if (ret < 0)
1160 		return ret;
1161 
1162 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1163 	 * when they implement async or easily-killable versions of this or
1164 	 * other "should-be-internal" functions (like clear_halt).
1165 	 * should hcd+usbcore postprocess control requests?
1166 	 */
1167 
1168 	/* prevent submissions using previous endpoint settings */
1169 	if (device_is_registered(&iface->dev))
1170 		usb_remove_sysfs_intf_files(iface);
1171 	usb_disable_interface(dev, iface);
1172 
1173 	iface->cur_altsetting = alt;
1174 
1175 	/* If the interface only has one altsetting and the device didn't
1176 	 * accept the request, we attempt to carry out the equivalent action
1177 	 * by manually clearing the HALT feature for each endpoint in the
1178 	 * new altsetting.
1179 	 */
1180 	if (manual) {
1181 		int i;
1182 
1183 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1184 			unsigned int epaddr =
1185 				alt->endpoint[i].desc.bEndpointAddress;
1186 			unsigned int pipe =
1187 	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1188 	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1189 
1190 			usb_clear_halt(dev, pipe);
1191 		}
1192 	}
1193 
1194 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1195 	 *
1196 	 * Note:
1197 	 * Despite EP0 is always present in all interfaces/AS, the list of
1198 	 * endpoints from the descriptor does not contain EP0. Due to its
1199 	 * omnipresence one might expect EP0 being considered "affected" by
1200 	 * any SetInterface request and hence assume toggles need to be reset.
1201 	 * However, EP0 toggles are re-synced for every individual transfer
1202 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1203 	 * (Likewise, EP0 never "halts" on well designed devices.)
1204 	 */
1205 	usb_enable_interface(dev, iface);
1206 	if (device_is_registered(&iface->dev))
1207 		usb_create_sysfs_intf_files(iface);
1208 
1209 	return 0;
1210 }
1211 
1212 /**
1213  * usb_reset_configuration - lightweight device reset
1214  * @dev: the device whose configuration is being reset
1215  *
1216  * This issues a standard SET_CONFIGURATION request to the device using
1217  * the current configuration.  The effect is to reset most USB-related
1218  * state in the device, including interface altsettings (reset to zero),
1219  * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1220  * endpoints).  Other usbcore state is unchanged, including bindings of
1221  * usb device drivers to interfaces.
1222  *
1223  * Because this affects multiple interfaces, avoid using this with composite
1224  * (multi-interface) devices.  Instead, the driver for each interface may
1225  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1226  * some devices don't support the SET_INTERFACE request, and others won't
1227  * reset all the interface state (notably data toggles).  Resetting the whole
1228  * configuration would affect other drivers' interfaces.
1229  *
1230  * The caller must own the device lock.
1231  *
1232  * Returns zero on success, else a negative error code.
1233  */
1234 int usb_reset_configuration(struct usb_device *dev)
1235 {
1236 	int			i, retval;
1237 	struct usb_host_config	*config;
1238 
1239 	if (dev->state == USB_STATE_SUSPENDED)
1240 		return -EHOSTUNREACH;
1241 
1242 	/* caller must have locked the device and must own
1243 	 * the usb bus readlock (so driver bindings are stable);
1244 	 * calls during probe() are fine
1245 	 */
1246 
1247 	for (i = 1; i < 16; ++i) {
1248 		usb_disable_endpoint(dev, i);
1249 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1250 	}
1251 
1252 	config = dev->actconfig;
1253 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1254 			USB_REQ_SET_CONFIGURATION, 0,
1255 			config->desc.bConfigurationValue, 0,
1256 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1257 	if (retval < 0)
1258 		return retval;
1259 
1260 	dev->toggle[0] = dev->toggle[1] = 0;
1261 
1262 	/* re-init hc/hcd interface/endpoint state */
1263 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1264 		struct usb_interface *intf = config->interface[i];
1265 		struct usb_host_interface *alt;
1266 
1267 		if (device_is_registered(&intf->dev))
1268 			usb_remove_sysfs_intf_files(intf);
1269 		alt = usb_altnum_to_altsetting(intf, 0);
1270 
1271 		/* No altsetting 0?  We'll assume the first altsetting.
1272 		 * We could use a GetInterface call, but if a device is
1273 		 * so non-compliant that it doesn't have altsetting 0
1274 		 * then I wouldn't trust its reply anyway.
1275 		 */
1276 		if (!alt)
1277 			alt = &intf->altsetting[0];
1278 
1279 		intf->cur_altsetting = alt;
1280 		usb_enable_interface(dev, intf);
1281 		if (device_is_registered(&intf->dev))
1282 			usb_create_sysfs_intf_files(intf);
1283 	}
1284 	return 0;
1285 }
1286 
1287 static void release_interface(struct device *dev)
1288 {
1289 	struct usb_interface *intf = to_usb_interface(dev);
1290 	struct usb_interface_cache *intfc =
1291 			altsetting_to_usb_interface_cache(intf->altsetting);
1292 
1293 	kref_put(&intfc->ref, usb_release_interface_cache);
1294 	kfree(intf);
1295 }
1296 
1297 /*
1298  * usb_set_configuration - Makes a particular device setting be current
1299  * @dev: the device whose configuration is being updated
1300  * @configuration: the configuration being chosen.
1301  * Context: !in_interrupt(), caller owns the device lock
1302  *
1303  * This is used to enable non-default device modes.  Not all devices
1304  * use this kind of configurability; many devices only have one
1305  * configuration.
1306  *
1307  * USB device configurations may affect Linux interoperability,
1308  * power consumption and the functionality available.  For example,
1309  * the default configuration is limited to using 100mA of bus power,
1310  * so that when certain device functionality requires more power,
1311  * and the device is bus powered, that functionality should be in some
1312  * non-default device configuration.  Other device modes may also be
1313  * reflected as configuration options, such as whether two ISDN
1314  * channels are available independently; and choosing between open
1315  * standard device protocols (like CDC) or proprietary ones.
1316  *
1317  * Note that USB has an additional level of device configurability,
1318  * associated with interfaces.  That configurability is accessed using
1319  * usb_set_interface().
1320  *
1321  * This call is synchronous. The calling context must be able to sleep,
1322  * must own the device lock, and must not hold the driver model's USB
1323  * bus rwsem; usb device driver probe() methods cannot use this routine.
1324  *
1325  * Returns zero on success, or else the status code returned by the
1326  * underlying call that failed.  On successful completion, each interface
1327  * in the original device configuration has been destroyed, and each one
1328  * in the new configuration has been probed by all relevant usb device
1329  * drivers currently known to the kernel.
1330  */
1331 int usb_set_configuration(struct usb_device *dev, int configuration)
1332 {
1333 	int i, ret;
1334 	struct usb_host_config *cp = NULL;
1335 	struct usb_interface **new_interfaces = NULL;
1336 	int n, nintf;
1337 
1338 	for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1339 		if (dev->config[i].desc.bConfigurationValue == configuration) {
1340 			cp = &dev->config[i];
1341 			break;
1342 		}
1343 	}
1344 	if ((!cp && configuration != 0))
1345 		return -EINVAL;
1346 
1347 	/* The USB spec says configuration 0 means unconfigured.
1348 	 * But if a device includes a configuration numbered 0,
1349 	 * we will accept it as a correctly configured state.
1350 	 */
1351 	if (cp && configuration == 0)
1352 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1353 
1354 	if (dev->state == USB_STATE_SUSPENDED)
1355 		return -EHOSTUNREACH;
1356 
1357 	/* Allocate memory for new interfaces before doing anything else,
1358 	 * so that if we run out then nothing will have changed. */
1359 	n = nintf = 0;
1360 	if (cp) {
1361 		nintf = cp->desc.bNumInterfaces;
1362 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1363 				GFP_KERNEL);
1364 		if (!new_interfaces) {
1365 			dev_err(&dev->dev, "Out of memory");
1366 			return -ENOMEM;
1367 		}
1368 
1369 		for (; n < nintf; ++n) {
1370 			new_interfaces[n] = kzalloc(
1371 					sizeof(struct usb_interface),
1372 					GFP_KERNEL);
1373 			if (!new_interfaces[n]) {
1374 				dev_err(&dev->dev, "Out of memory");
1375 				ret = -ENOMEM;
1376 free_interfaces:
1377 				while (--n >= 0)
1378 					kfree(new_interfaces[n]);
1379 				kfree(new_interfaces);
1380 				return ret;
1381 			}
1382 		}
1383 	}
1384 
1385 	/* if it's already configured, clear out old state first.
1386 	 * getting rid of old interfaces means unbinding their drivers.
1387 	 */
1388 	if (dev->state != USB_STATE_ADDRESS)
1389 		usb_disable_device (dev, 1);	// Skip ep0
1390 
1391 	i = dev->bus_mA - cp->desc.bMaxPower * 2;
1392 	if (i < 0)
1393 		dev_warn(&dev->dev, "new config #%d exceeds power "
1394 				"limit by %dmA\n",
1395 				configuration, -i);
1396 
1397 	if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1398 			USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1399 			NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0)
1400 		goto free_interfaces;
1401 
1402 	dev->actconfig = cp;
1403 	if (!cp)
1404 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1405 	else {
1406 		usb_set_device_state(dev, USB_STATE_CONFIGURED);
1407 
1408 		/* Initialize the new interface structures and the
1409 		 * hc/hcd/usbcore interface/endpoint state.
1410 		 */
1411 		for (i = 0; i < nintf; ++i) {
1412 			struct usb_interface_cache *intfc;
1413 			struct usb_interface *intf;
1414 			struct usb_host_interface *alt;
1415 
1416 			cp->interface[i] = intf = new_interfaces[i];
1417 			intfc = cp->intf_cache[i];
1418 			intf->altsetting = intfc->altsetting;
1419 			intf->num_altsetting = intfc->num_altsetting;
1420 			kref_get(&intfc->ref);
1421 
1422 			alt = usb_altnum_to_altsetting(intf, 0);
1423 
1424 			/* No altsetting 0?  We'll assume the first altsetting.
1425 			 * We could use a GetInterface call, but if a device is
1426 			 * so non-compliant that it doesn't have altsetting 0
1427 			 * then I wouldn't trust its reply anyway.
1428 			 */
1429 			if (!alt)
1430 				alt = &intf->altsetting[0];
1431 
1432 			intf->cur_altsetting = alt;
1433 			usb_enable_interface(dev, intf);
1434 			intf->dev.parent = &dev->dev;
1435 			intf->dev.driver = NULL;
1436 			intf->dev.bus = &usb_bus_type;
1437 			intf->dev.dma_mask = dev->dev.dma_mask;
1438 			intf->dev.release = release_interface;
1439 			device_initialize (&intf->dev);
1440 			mark_quiesced(intf);
1441 			sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1442 				 dev->bus->busnum, dev->devpath,
1443 				 configuration,
1444 				 alt->desc.bInterfaceNumber);
1445 		}
1446 		kfree(new_interfaces);
1447 
1448 		if (cp->string == NULL)
1449 			cp->string = usb_cache_string(dev,
1450 					cp->desc.iConfiguration);
1451 
1452 		/* Now that all the interfaces are set up, register them
1453 		 * to trigger binding of drivers to interfaces.  probe()
1454 		 * routines may install different altsettings and may
1455 		 * claim() any interfaces not yet bound.  Many class drivers
1456 		 * need that: CDC, audio, video, etc.
1457 		 */
1458 		for (i = 0; i < nintf; ++i) {
1459 			struct usb_interface *intf = cp->interface[i];
1460 
1461 			dev_dbg (&dev->dev,
1462 				"adding %s (config #%d, interface %d)\n",
1463 				intf->dev.bus_id, configuration,
1464 				intf->cur_altsetting->desc.bInterfaceNumber);
1465 			ret = device_add (&intf->dev);
1466 			if (ret != 0) {
1467 				dev_err(&dev->dev,
1468 					"device_add(%s) --> %d\n",
1469 					intf->dev.bus_id,
1470 					ret);
1471 				continue;
1472 			}
1473 			usb_create_sysfs_intf_files (intf);
1474 		}
1475 	}
1476 
1477 	return 0;
1478 }
1479 
1480 // synchronous request completion model
1481 EXPORT_SYMBOL(usb_control_msg);
1482 EXPORT_SYMBOL(usb_bulk_msg);
1483 
1484 EXPORT_SYMBOL(usb_sg_init);
1485 EXPORT_SYMBOL(usb_sg_cancel);
1486 EXPORT_SYMBOL(usb_sg_wait);
1487 
1488 // synchronous control message convenience routines
1489 EXPORT_SYMBOL(usb_get_descriptor);
1490 EXPORT_SYMBOL(usb_get_status);
1491 EXPORT_SYMBOL(usb_get_string);
1492 EXPORT_SYMBOL(usb_string);
1493 
1494 // synchronous calls that also maintain usbcore state
1495 EXPORT_SYMBOL(usb_clear_halt);
1496 EXPORT_SYMBOL(usb_reset_configuration);
1497 EXPORT_SYMBOL(usb_set_interface);
1498 
1499