1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/device.h> 14 #include <linux/usb/quirks.h> 15 #include <asm/byteorder.h> 16 #include <asm/scatterlist.h> 17 18 #include "hcd.h" /* for usbcore internals */ 19 #include "usb.h" 20 21 static void usb_api_blocking_completion(struct urb *urb) 22 { 23 complete((struct completion *)urb->context); 24 } 25 26 27 /* 28 * Starts urb and waits for completion or timeout. Note that this call 29 * is NOT interruptible. Many device driver i/o requests should be 30 * interruptible and therefore these drivers should implement their 31 * own interruptible routines. 32 */ 33 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 34 { 35 struct completion done; 36 unsigned long expire; 37 int status; 38 39 init_completion(&done); 40 urb->context = &done; 41 urb->actual_length = 0; 42 status = usb_submit_urb(urb, GFP_NOIO); 43 if (unlikely(status)) 44 goto out; 45 46 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 47 if (!wait_for_completion_timeout(&done, expire)) { 48 49 dev_dbg(&urb->dev->dev, 50 "%s timed out on ep%d%s len=%d/%d\n", 51 current->comm, 52 usb_pipeendpoint(urb->pipe), 53 usb_pipein(urb->pipe) ? "in" : "out", 54 urb->actual_length, 55 urb->transfer_buffer_length); 56 57 usb_kill_urb(urb); 58 status = urb->status == -ENOENT ? -ETIMEDOUT : urb->status; 59 } else 60 status = urb->status; 61 out: 62 if (actual_length) 63 *actual_length = urb->actual_length; 64 65 usb_free_urb(urb); 66 return status; 67 } 68 69 /*-------------------------------------------------------------------*/ 70 // returns status (negative) or length (positive) 71 static int usb_internal_control_msg(struct usb_device *usb_dev, 72 unsigned int pipe, 73 struct usb_ctrlrequest *cmd, 74 void *data, int len, int timeout) 75 { 76 struct urb *urb; 77 int retv; 78 int length; 79 80 urb = usb_alloc_urb(0, GFP_NOIO); 81 if (!urb) 82 return -ENOMEM; 83 84 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 85 len, usb_api_blocking_completion, NULL); 86 87 retv = usb_start_wait_urb(urb, timeout, &length); 88 if (retv < 0) 89 return retv; 90 else 91 return length; 92 } 93 94 /** 95 * usb_control_msg - Builds a control urb, sends it off and waits for completion 96 * @dev: pointer to the usb device to send the message to 97 * @pipe: endpoint "pipe" to send the message to 98 * @request: USB message request value 99 * @requesttype: USB message request type value 100 * @value: USB message value 101 * @index: USB message index value 102 * @data: pointer to the data to send 103 * @size: length in bytes of the data to send 104 * @timeout: time in msecs to wait for the message to complete before 105 * timing out (if 0 the wait is forever) 106 * Context: !in_interrupt () 107 * 108 * This function sends a simple control message to a specified endpoint 109 * and waits for the message to complete, or timeout. 110 * 111 * If successful, it returns the number of bytes transferred, otherwise a negative error number. 112 * 113 * Don't use this function from within an interrupt context, like a 114 * bottom half handler. If you need an asynchronous message, or need to send 115 * a message from within interrupt context, use usb_submit_urb() 116 * If a thread in your driver uses this call, make sure your disconnect() 117 * method can wait for it to complete. Since you don't have a handle on 118 * the URB used, you can't cancel the request. 119 */ 120 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, 121 __u16 value, __u16 index, void *data, __u16 size, int timeout) 122 { 123 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 124 int ret; 125 126 if (!dr) 127 return -ENOMEM; 128 129 dr->bRequestType= requesttype; 130 dr->bRequest = request; 131 dr->wValue = cpu_to_le16p(&value); 132 dr->wIndex = cpu_to_le16p(&index); 133 dr->wLength = cpu_to_le16p(&size); 134 135 //dbg("usb_control_msg"); 136 137 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 138 139 kfree(dr); 140 141 return ret; 142 } 143 144 145 /** 146 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 147 * @usb_dev: pointer to the usb device to send the message to 148 * @pipe: endpoint "pipe" to send the message to 149 * @data: pointer to the data to send 150 * @len: length in bytes of the data to send 151 * @actual_length: pointer to a location to put the actual length transferred in bytes 152 * @timeout: time in msecs to wait for the message to complete before 153 * timing out (if 0 the wait is forever) 154 * Context: !in_interrupt () 155 * 156 * This function sends a simple interrupt message to a specified endpoint and 157 * waits for the message to complete, or timeout. 158 * 159 * If successful, it returns 0, otherwise a negative error number. The number 160 * of actual bytes transferred will be stored in the actual_length paramater. 161 * 162 * Don't use this function from within an interrupt context, like a bottom half 163 * handler. If you need an asynchronous message, or need to send a message 164 * from within interrupt context, use usb_submit_urb() If a thread in your 165 * driver uses this call, make sure your disconnect() method can wait for it to 166 * complete. Since you don't have a handle on the URB used, you can't cancel 167 * the request. 168 */ 169 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 170 void *data, int len, int *actual_length, int timeout) 171 { 172 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 173 } 174 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 175 176 /** 177 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 178 * @usb_dev: pointer to the usb device to send the message to 179 * @pipe: endpoint "pipe" to send the message to 180 * @data: pointer to the data to send 181 * @len: length in bytes of the data to send 182 * @actual_length: pointer to a location to put the actual length transferred in bytes 183 * @timeout: time in msecs to wait for the message to complete before 184 * timing out (if 0 the wait is forever) 185 * Context: !in_interrupt () 186 * 187 * This function sends a simple bulk message to a specified endpoint 188 * and waits for the message to complete, or timeout. 189 * 190 * If successful, it returns 0, otherwise a negative error number. 191 * The number of actual bytes transferred will be stored in the 192 * actual_length paramater. 193 * 194 * Don't use this function from within an interrupt context, like a 195 * bottom half handler. If you need an asynchronous message, or need to 196 * send a message from within interrupt context, use usb_submit_urb() 197 * If a thread in your driver uses this call, make sure your disconnect() 198 * method can wait for it to complete. Since you don't have a handle on 199 * the URB used, you can't cancel the request. 200 * 201 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT 202 * ioctl, users are forced to abuse this routine by using it to submit 203 * URBs for interrupt endpoints. We will take the liberty of creating 204 * an interrupt URB (with the default interval) if the target is an 205 * interrupt endpoint. 206 */ 207 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 208 void *data, int len, int *actual_length, int timeout) 209 { 210 struct urb *urb; 211 struct usb_host_endpoint *ep; 212 213 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 214 [usb_pipeendpoint(pipe)]; 215 if (!ep || len < 0) 216 return -EINVAL; 217 218 urb = usb_alloc_urb(0, GFP_KERNEL); 219 if (!urb) 220 return -ENOMEM; 221 222 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 223 USB_ENDPOINT_XFER_INT) { 224 int interval; 225 226 if (usb_dev->speed == USB_SPEED_HIGH) 227 interval = 1 << min(15, ep->desc.bInterval - 1); 228 else 229 interval = ep->desc.bInterval; 230 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 231 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 232 usb_api_blocking_completion, NULL, interval); 233 } else 234 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 235 usb_api_blocking_completion, NULL); 236 237 return usb_start_wait_urb(urb, timeout, actual_length); 238 } 239 240 /*-------------------------------------------------------------------*/ 241 242 static void sg_clean (struct usb_sg_request *io) 243 { 244 if (io->urbs) { 245 while (io->entries--) 246 usb_free_urb (io->urbs [io->entries]); 247 kfree (io->urbs); 248 io->urbs = NULL; 249 } 250 if (io->dev->dev.dma_mask != NULL) 251 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents); 252 io->dev = NULL; 253 } 254 255 static void sg_complete (struct urb *urb) 256 { 257 struct usb_sg_request *io = urb->context; 258 259 spin_lock (&io->lock); 260 261 /* In 2.5 we require hcds' endpoint queues not to progress after fault 262 * reports, until the completion callback (this!) returns. That lets 263 * device driver code (like this routine) unlink queued urbs first, 264 * if it needs to, since the HC won't work on them at all. So it's 265 * not possible for page N+1 to overwrite page N, and so on. 266 * 267 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 268 * complete before the HCD can get requests away from hardware, 269 * though never during cleanup after a hard fault. 270 */ 271 if (io->status 272 && (io->status != -ECONNRESET 273 || urb->status != -ECONNRESET) 274 && urb->actual_length) { 275 dev_err (io->dev->bus->controller, 276 "dev %s ep%d%s scatterlist error %d/%d\n", 277 io->dev->devpath, 278 usb_pipeendpoint (urb->pipe), 279 usb_pipein (urb->pipe) ? "in" : "out", 280 urb->status, io->status); 281 // BUG (); 282 } 283 284 if (io->status == 0 && urb->status && urb->status != -ECONNRESET) { 285 int i, found, status; 286 287 io->status = urb->status; 288 289 /* the previous urbs, and this one, completed already. 290 * unlink pending urbs so they won't rx/tx bad data. 291 * careful: unlink can sometimes be synchronous... 292 */ 293 spin_unlock (&io->lock); 294 for (i = 0, found = 0; i < io->entries; i++) { 295 if (!io->urbs [i] || !io->urbs [i]->dev) 296 continue; 297 if (found) { 298 status = usb_unlink_urb (io->urbs [i]); 299 if (status != -EINPROGRESS 300 && status != -ENODEV 301 && status != -EBUSY) 302 dev_err (&io->dev->dev, 303 "%s, unlink --> %d\n", 304 __FUNCTION__, status); 305 } else if (urb == io->urbs [i]) 306 found = 1; 307 } 308 spin_lock (&io->lock); 309 } 310 urb->dev = NULL; 311 312 /* on the last completion, signal usb_sg_wait() */ 313 io->bytes += urb->actual_length; 314 io->count--; 315 if (!io->count) 316 complete (&io->complete); 317 318 spin_unlock (&io->lock); 319 } 320 321 322 /** 323 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 324 * @io: request block being initialized. until usb_sg_wait() returns, 325 * treat this as a pointer to an opaque block of memory, 326 * @dev: the usb device that will send or receive the data 327 * @pipe: endpoint "pipe" used to transfer the data 328 * @period: polling rate for interrupt endpoints, in frames or 329 * (for high speed endpoints) microframes; ignored for bulk 330 * @sg: scatterlist entries 331 * @nents: how many entries in the scatterlist 332 * @length: how many bytes to send from the scatterlist, or zero to 333 * send every byte identified in the list. 334 * @mem_flags: SLAB_* flags affecting memory allocations in this call 335 * 336 * Returns zero for success, else a negative errno value. This initializes a 337 * scatter/gather request, allocating resources such as I/O mappings and urb 338 * memory (except maybe memory used by USB controller drivers). 339 * 340 * The request must be issued using usb_sg_wait(), which waits for the I/O to 341 * complete (or to be canceled) and then cleans up all resources allocated by 342 * usb_sg_init(). 343 * 344 * The request may be canceled with usb_sg_cancel(), either before or after 345 * usb_sg_wait() is called. 346 */ 347 int usb_sg_init ( 348 struct usb_sg_request *io, 349 struct usb_device *dev, 350 unsigned pipe, 351 unsigned period, 352 struct scatterlist *sg, 353 int nents, 354 size_t length, 355 gfp_t mem_flags 356 ) 357 { 358 int i; 359 int urb_flags; 360 int dma; 361 362 if (!io || !dev || !sg 363 || usb_pipecontrol (pipe) 364 || usb_pipeisoc (pipe) 365 || nents <= 0) 366 return -EINVAL; 367 368 spin_lock_init (&io->lock); 369 io->dev = dev; 370 io->pipe = pipe; 371 io->sg = sg; 372 io->nents = nents; 373 374 /* not all host controllers use DMA (like the mainstream pci ones); 375 * they can use PIO (sl811) or be software over another transport. 376 */ 377 dma = (dev->dev.dma_mask != NULL); 378 if (dma) 379 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents); 380 else 381 io->entries = nents; 382 383 /* initialize all the urbs we'll use */ 384 if (io->entries <= 0) 385 return io->entries; 386 387 io->count = io->entries; 388 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags); 389 if (!io->urbs) 390 goto nomem; 391 392 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT; 393 if (usb_pipein (pipe)) 394 urb_flags |= URB_SHORT_NOT_OK; 395 396 for (i = 0; i < io->entries; i++) { 397 unsigned len; 398 399 io->urbs [i] = usb_alloc_urb (0, mem_flags); 400 if (!io->urbs [i]) { 401 io->entries = i; 402 goto nomem; 403 } 404 405 io->urbs [i]->dev = NULL; 406 io->urbs [i]->pipe = pipe; 407 io->urbs [i]->interval = period; 408 io->urbs [i]->transfer_flags = urb_flags; 409 410 io->urbs [i]->complete = sg_complete; 411 io->urbs [i]->context = io; 412 io->urbs [i]->status = -EINPROGRESS; 413 io->urbs [i]->actual_length = 0; 414 415 if (dma) { 416 /* hc may use _only_ transfer_dma */ 417 io->urbs [i]->transfer_dma = sg_dma_address (sg + i); 418 len = sg_dma_len (sg + i); 419 } else { 420 /* hc may use _only_ transfer_buffer */ 421 io->urbs [i]->transfer_buffer = 422 page_address (sg [i].page) + sg [i].offset; 423 len = sg [i].length; 424 } 425 426 if (length) { 427 len = min_t (unsigned, len, length); 428 length -= len; 429 if (length == 0) 430 io->entries = i + 1; 431 } 432 io->urbs [i]->transfer_buffer_length = len; 433 } 434 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT; 435 436 /* transaction state */ 437 io->status = 0; 438 io->bytes = 0; 439 init_completion (&io->complete); 440 return 0; 441 442 nomem: 443 sg_clean (io); 444 return -ENOMEM; 445 } 446 447 448 /** 449 * usb_sg_wait - synchronously execute scatter/gather request 450 * @io: request block handle, as initialized with usb_sg_init(). 451 * some fields become accessible when this call returns. 452 * Context: !in_interrupt () 453 * 454 * This function blocks until the specified I/O operation completes. It 455 * leverages the grouping of the related I/O requests to get good transfer 456 * rates, by queueing the requests. At higher speeds, such queuing can 457 * significantly improve USB throughput. 458 * 459 * There are three kinds of completion for this function. 460 * (1) success, where io->status is zero. The number of io->bytes 461 * transferred is as requested. 462 * (2) error, where io->status is a negative errno value. The number 463 * of io->bytes transferred before the error is usually less 464 * than requested, and can be nonzero. 465 * (3) cancellation, a type of error with status -ECONNRESET that 466 * is initiated by usb_sg_cancel(). 467 * 468 * When this function returns, all memory allocated through usb_sg_init() or 469 * this call will have been freed. The request block parameter may still be 470 * passed to usb_sg_cancel(), or it may be freed. It could also be 471 * reinitialized and then reused. 472 * 473 * Data Transfer Rates: 474 * 475 * Bulk transfers are valid for full or high speed endpoints. 476 * The best full speed data rate is 19 packets of 64 bytes each 477 * per frame, or 1216 bytes per millisecond. 478 * The best high speed data rate is 13 packets of 512 bytes each 479 * per microframe, or 52 KBytes per millisecond. 480 * 481 * The reason to use interrupt transfers through this API would most likely 482 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 483 * could be transferred. That capability is less useful for low or full 484 * speed interrupt endpoints, which allow at most one packet per millisecond, 485 * of at most 8 or 64 bytes (respectively). 486 */ 487 void usb_sg_wait (struct usb_sg_request *io) 488 { 489 int i, entries = io->entries; 490 491 /* queue the urbs. */ 492 spin_lock_irq (&io->lock); 493 for (i = 0; i < entries && !io->status; i++) { 494 int retval; 495 496 io->urbs [i]->dev = io->dev; 497 retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC); 498 499 /* after we submit, let completions or cancelations fire; 500 * we handshake using io->status. 501 */ 502 spin_unlock_irq (&io->lock); 503 switch (retval) { 504 /* maybe we retrying will recover */ 505 case -ENXIO: // hc didn't queue this one 506 case -EAGAIN: 507 case -ENOMEM: 508 io->urbs[i]->dev = NULL; 509 retval = 0; 510 i--; 511 yield (); 512 break; 513 514 /* no error? continue immediately. 515 * 516 * NOTE: to work better with UHCI (4K I/O buffer may 517 * need 3K of TDs) it may be good to limit how many 518 * URBs are queued at once; N milliseconds? 519 */ 520 case 0: 521 cpu_relax (); 522 break; 523 524 /* fail any uncompleted urbs */ 525 default: 526 io->urbs [i]->dev = NULL; 527 io->urbs [i]->status = retval; 528 dev_dbg (&io->dev->dev, "%s, submit --> %d\n", 529 __FUNCTION__, retval); 530 usb_sg_cancel (io); 531 } 532 spin_lock_irq (&io->lock); 533 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 534 io->status = retval; 535 } 536 io->count -= entries - i; 537 if (io->count == 0) 538 complete (&io->complete); 539 spin_unlock_irq (&io->lock); 540 541 /* OK, yes, this could be packaged as non-blocking. 542 * So could the submit loop above ... but it's easier to 543 * solve neither problem than to solve both! 544 */ 545 wait_for_completion (&io->complete); 546 547 sg_clean (io); 548 } 549 550 /** 551 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 552 * @io: request block, initialized with usb_sg_init() 553 * 554 * This stops a request after it has been started by usb_sg_wait(). 555 * It can also prevents one initialized by usb_sg_init() from starting, 556 * so that call just frees resources allocated to the request. 557 */ 558 void usb_sg_cancel (struct usb_sg_request *io) 559 { 560 unsigned long flags; 561 562 spin_lock_irqsave (&io->lock, flags); 563 564 /* shut everything down, if it didn't already */ 565 if (!io->status) { 566 int i; 567 568 io->status = -ECONNRESET; 569 spin_unlock (&io->lock); 570 for (i = 0; i < io->entries; i++) { 571 int retval; 572 573 if (!io->urbs [i]->dev) 574 continue; 575 retval = usb_unlink_urb (io->urbs [i]); 576 if (retval != -EINPROGRESS && retval != -EBUSY) 577 dev_warn (&io->dev->dev, "%s, unlink --> %d\n", 578 __FUNCTION__, retval); 579 } 580 spin_lock (&io->lock); 581 } 582 spin_unlock_irqrestore (&io->lock, flags); 583 } 584 585 /*-------------------------------------------------------------------*/ 586 587 /** 588 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 589 * @dev: the device whose descriptor is being retrieved 590 * @type: the descriptor type (USB_DT_*) 591 * @index: the number of the descriptor 592 * @buf: where to put the descriptor 593 * @size: how big is "buf"? 594 * Context: !in_interrupt () 595 * 596 * Gets a USB descriptor. Convenience functions exist to simplify 597 * getting some types of descriptors. Use 598 * usb_get_string() or usb_string() for USB_DT_STRING. 599 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 600 * are part of the device structure. 601 * In addition to a number of USB-standard descriptors, some 602 * devices also use class-specific or vendor-specific descriptors. 603 * 604 * This call is synchronous, and may not be used in an interrupt context. 605 * 606 * Returns the number of bytes received on success, or else the status code 607 * returned by the underlying usb_control_msg() call. 608 */ 609 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) 610 { 611 int i; 612 int result; 613 614 memset(buf,0,size); // Make sure we parse really received data 615 616 for (i = 0; i < 3; ++i) { 617 /* retry on length 0 or stall; some devices are flakey */ 618 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 619 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 620 (type << 8) + index, 0, buf, size, 621 USB_CTRL_GET_TIMEOUT); 622 if (result == 0 || result == -EPIPE) 623 continue; 624 if (result > 1 && ((u8 *)buf)[1] != type) { 625 result = -EPROTO; 626 continue; 627 } 628 break; 629 } 630 return result; 631 } 632 633 /** 634 * usb_get_string - gets a string descriptor 635 * @dev: the device whose string descriptor is being retrieved 636 * @langid: code for language chosen (from string descriptor zero) 637 * @index: the number of the descriptor 638 * @buf: where to put the string 639 * @size: how big is "buf"? 640 * Context: !in_interrupt () 641 * 642 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 643 * in little-endian byte order). 644 * The usb_string() function will often be a convenient way to turn 645 * these strings into kernel-printable form. 646 * 647 * Strings may be referenced in device, configuration, interface, or other 648 * descriptors, and could also be used in vendor-specific ways. 649 * 650 * This call is synchronous, and may not be used in an interrupt context. 651 * 652 * Returns the number of bytes received on success, or else the status code 653 * returned by the underlying usb_control_msg() call. 654 */ 655 static int usb_get_string(struct usb_device *dev, unsigned short langid, 656 unsigned char index, void *buf, int size) 657 { 658 int i; 659 int result; 660 661 for (i = 0; i < 3; ++i) { 662 /* retry on length 0 or stall; some devices are flakey */ 663 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 664 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 665 (USB_DT_STRING << 8) + index, langid, buf, size, 666 USB_CTRL_GET_TIMEOUT); 667 if (!(result == 0 || result == -EPIPE)) 668 break; 669 } 670 return result; 671 } 672 673 static void usb_try_string_workarounds(unsigned char *buf, int *length) 674 { 675 int newlength, oldlength = *length; 676 677 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 678 if (!isprint(buf[newlength]) || buf[newlength + 1]) 679 break; 680 681 if (newlength > 2) { 682 buf[0] = newlength; 683 *length = newlength; 684 } 685 } 686 687 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 688 unsigned int index, unsigned char *buf) 689 { 690 int rc; 691 692 /* Try to read the string descriptor by asking for the maximum 693 * possible number of bytes */ 694 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 695 rc = -EIO; 696 else 697 rc = usb_get_string(dev, langid, index, buf, 255); 698 699 /* If that failed try to read the descriptor length, then 700 * ask for just that many bytes */ 701 if (rc < 2) { 702 rc = usb_get_string(dev, langid, index, buf, 2); 703 if (rc == 2) 704 rc = usb_get_string(dev, langid, index, buf, buf[0]); 705 } 706 707 if (rc >= 2) { 708 if (!buf[0] && !buf[1]) 709 usb_try_string_workarounds(buf, &rc); 710 711 /* There might be extra junk at the end of the descriptor */ 712 if (buf[0] < rc) 713 rc = buf[0]; 714 715 rc = rc - (rc & 1); /* force a multiple of two */ 716 } 717 718 if (rc < 2) 719 rc = (rc < 0 ? rc : -EINVAL); 720 721 return rc; 722 } 723 724 /** 725 * usb_string - returns ISO 8859-1 version of a string descriptor 726 * @dev: the device whose string descriptor is being retrieved 727 * @index: the number of the descriptor 728 * @buf: where to put the string 729 * @size: how big is "buf"? 730 * Context: !in_interrupt () 731 * 732 * This converts the UTF-16LE encoded strings returned by devices, from 733 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 734 * that are more usable in most kernel contexts. Note that all characters 735 * in the chosen descriptor that can't be encoded using ISO-8859-1 736 * are converted to the question mark ("?") character, and this function 737 * chooses strings in the first language supported by the device. 738 * 739 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 740 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 741 * and is appropriate for use many uses of English and several other 742 * Western European languages. (But it doesn't include the "Euro" symbol.) 743 * 744 * This call is synchronous, and may not be used in an interrupt context. 745 * 746 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 747 */ 748 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 749 { 750 unsigned char *tbuf; 751 int err; 752 unsigned int u, idx; 753 754 if (dev->state == USB_STATE_SUSPENDED) 755 return -EHOSTUNREACH; 756 if (size <= 0 || !buf || !index) 757 return -EINVAL; 758 buf[0] = 0; 759 tbuf = kmalloc(256, GFP_KERNEL); 760 if (!tbuf) 761 return -ENOMEM; 762 763 /* get langid for strings if it's not yet known */ 764 if (!dev->have_langid) { 765 err = usb_string_sub(dev, 0, 0, tbuf); 766 if (err < 0) { 767 dev_err (&dev->dev, 768 "string descriptor 0 read error: %d\n", 769 err); 770 goto errout; 771 } else if (err < 4) { 772 dev_err (&dev->dev, "string descriptor 0 too short\n"); 773 err = -EINVAL; 774 goto errout; 775 } else { 776 dev->have_langid = 1; 777 dev->string_langid = tbuf[2] | (tbuf[3]<< 8); 778 /* always use the first langid listed */ 779 dev_dbg (&dev->dev, "default language 0x%04x\n", 780 dev->string_langid); 781 } 782 } 783 784 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 785 if (err < 0) 786 goto errout; 787 788 size--; /* leave room for trailing NULL char in output buffer */ 789 for (idx = 0, u = 2; u < err; u += 2) { 790 if (idx >= size) 791 break; 792 if (tbuf[u+1]) /* high byte */ 793 buf[idx++] = '?'; /* non ISO-8859-1 character */ 794 else 795 buf[idx++] = tbuf[u]; 796 } 797 buf[idx] = 0; 798 err = idx; 799 800 if (tbuf[1] != USB_DT_STRING) 801 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf); 802 803 errout: 804 kfree(tbuf); 805 return err; 806 } 807 808 /** 809 * usb_cache_string - read a string descriptor and cache it for later use 810 * @udev: the device whose string descriptor is being read 811 * @index: the descriptor index 812 * 813 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 814 * or NULL if the index is 0 or the string could not be read. 815 */ 816 char *usb_cache_string(struct usb_device *udev, int index) 817 { 818 char *buf; 819 char *smallbuf = NULL; 820 int len; 821 822 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) { 823 if ((len = usb_string(udev, index, buf, 256)) > 0) { 824 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL) 825 return buf; 826 memcpy(smallbuf, buf, len); 827 } 828 kfree(buf); 829 } 830 return smallbuf; 831 } 832 833 /* 834 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 835 * @dev: the device whose device descriptor is being updated 836 * @size: how much of the descriptor to read 837 * Context: !in_interrupt () 838 * 839 * Updates the copy of the device descriptor stored in the device structure, 840 * which dedicates space for this purpose. 841 * 842 * Not exported, only for use by the core. If drivers really want to read 843 * the device descriptor directly, they can call usb_get_descriptor() with 844 * type = USB_DT_DEVICE and index = 0. 845 * 846 * This call is synchronous, and may not be used in an interrupt context. 847 * 848 * Returns the number of bytes received on success, or else the status code 849 * returned by the underlying usb_control_msg() call. 850 */ 851 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 852 { 853 struct usb_device_descriptor *desc; 854 int ret; 855 856 if (size > sizeof(*desc)) 857 return -EINVAL; 858 desc = kmalloc(sizeof(*desc), GFP_NOIO); 859 if (!desc) 860 return -ENOMEM; 861 862 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 863 if (ret >= 0) 864 memcpy(&dev->descriptor, desc, size); 865 kfree(desc); 866 return ret; 867 } 868 869 /** 870 * usb_get_status - issues a GET_STATUS call 871 * @dev: the device whose status is being checked 872 * @type: USB_RECIP_*; for device, interface, or endpoint 873 * @target: zero (for device), else interface or endpoint number 874 * @data: pointer to two bytes of bitmap data 875 * Context: !in_interrupt () 876 * 877 * Returns device, interface, or endpoint status. Normally only of 878 * interest to see if the device is self powered, or has enabled the 879 * remote wakeup facility; or whether a bulk or interrupt endpoint 880 * is halted ("stalled"). 881 * 882 * Bits in these status bitmaps are set using the SET_FEATURE request, 883 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 884 * function should be used to clear halt ("stall") status. 885 * 886 * This call is synchronous, and may not be used in an interrupt context. 887 * 888 * Returns the number of bytes received on success, or else the status code 889 * returned by the underlying usb_control_msg() call. 890 */ 891 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 892 { 893 int ret; 894 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 895 896 if (!status) 897 return -ENOMEM; 898 899 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 900 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 901 sizeof(*status), USB_CTRL_GET_TIMEOUT); 902 903 *(u16 *)data = *status; 904 kfree(status); 905 return ret; 906 } 907 908 /** 909 * usb_clear_halt - tells device to clear endpoint halt/stall condition 910 * @dev: device whose endpoint is halted 911 * @pipe: endpoint "pipe" being cleared 912 * Context: !in_interrupt () 913 * 914 * This is used to clear halt conditions for bulk and interrupt endpoints, 915 * as reported by URB completion status. Endpoints that are halted are 916 * sometimes referred to as being "stalled". Such endpoints are unable 917 * to transmit or receive data until the halt status is cleared. Any URBs 918 * queued for such an endpoint should normally be unlinked by the driver 919 * before clearing the halt condition, as described in sections 5.7.5 920 * and 5.8.5 of the USB 2.0 spec. 921 * 922 * Note that control and isochronous endpoints don't halt, although control 923 * endpoints report "protocol stall" (for unsupported requests) using the 924 * same status code used to report a true stall. 925 * 926 * This call is synchronous, and may not be used in an interrupt context. 927 * 928 * Returns zero on success, or else the status code returned by the 929 * underlying usb_control_msg() call. 930 */ 931 int usb_clear_halt(struct usb_device *dev, int pipe) 932 { 933 int result; 934 int endp = usb_pipeendpoint(pipe); 935 936 if (usb_pipein (pipe)) 937 endp |= USB_DIR_IN; 938 939 /* we don't care if it wasn't halted first. in fact some devices 940 * (like some ibmcam model 1 units) seem to expect hosts to make 941 * this request for iso endpoints, which can't halt! 942 */ 943 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 944 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 945 USB_ENDPOINT_HALT, endp, NULL, 0, 946 USB_CTRL_SET_TIMEOUT); 947 948 /* don't un-halt or force to DATA0 except on success */ 949 if (result < 0) 950 return result; 951 952 /* NOTE: seems like Microsoft and Apple don't bother verifying 953 * the clear "took", so some devices could lock up if you check... 954 * such as the Hagiwara FlashGate DUAL. So we won't bother. 955 * 956 * NOTE: make sure the logic here doesn't diverge much from 957 * the copy in usb-storage, for as long as we need two copies. 958 */ 959 960 /* toggle was reset by the clear */ 961 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 962 963 return 0; 964 } 965 966 /** 967 * usb_disable_endpoint -- Disable an endpoint by address 968 * @dev: the device whose endpoint is being disabled 969 * @epaddr: the endpoint's address. Endpoint number for output, 970 * endpoint number + USB_DIR_IN for input 971 * 972 * Deallocates hcd/hardware state for this endpoint ... and nukes all 973 * pending urbs. 974 * 975 * If the HCD hasn't registered a disable() function, this sets the 976 * endpoint's maxpacket size to 0 to prevent further submissions. 977 */ 978 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 979 { 980 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 981 struct usb_host_endpoint *ep; 982 983 if (!dev) 984 return; 985 986 if (usb_endpoint_out(epaddr)) { 987 ep = dev->ep_out[epnum]; 988 dev->ep_out[epnum] = NULL; 989 } else { 990 ep = dev->ep_in[epnum]; 991 dev->ep_in[epnum] = NULL; 992 } 993 if (ep && dev->bus) 994 usb_hcd_endpoint_disable(dev, ep); 995 } 996 997 /** 998 * usb_disable_interface -- Disable all endpoints for an interface 999 * @dev: the device whose interface is being disabled 1000 * @intf: pointer to the interface descriptor 1001 * 1002 * Disables all the endpoints for the interface's current altsetting. 1003 */ 1004 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 1005 { 1006 struct usb_host_interface *alt = intf->cur_altsetting; 1007 int i; 1008 1009 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1010 usb_disable_endpoint(dev, 1011 alt->endpoint[i].desc.bEndpointAddress); 1012 } 1013 } 1014 1015 /* 1016 * usb_disable_device - Disable all the endpoints for a USB device 1017 * @dev: the device whose endpoints are being disabled 1018 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1019 * 1020 * Disables all the device's endpoints, potentially including endpoint 0. 1021 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1022 * pending urbs) and usbcore state for the interfaces, so that usbcore 1023 * must usb_set_configuration() before any interfaces could be used. 1024 */ 1025 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1026 { 1027 int i; 1028 1029 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__, 1030 skip_ep0 ? "non-ep0" : "all"); 1031 for (i = skip_ep0; i < 16; ++i) { 1032 usb_disable_endpoint(dev, i); 1033 usb_disable_endpoint(dev, i + USB_DIR_IN); 1034 } 1035 dev->toggle[0] = dev->toggle[1] = 0; 1036 1037 /* getting rid of interfaces will disconnect 1038 * any drivers bound to them (a key side effect) 1039 */ 1040 if (dev->actconfig) { 1041 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1042 struct usb_interface *interface; 1043 1044 /* remove this interface if it has been registered */ 1045 interface = dev->actconfig->interface[i]; 1046 if (!device_is_registered(&interface->dev)) 1047 continue; 1048 dev_dbg (&dev->dev, "unregistering interface %s\n", 1049 interface->dev.bus_id); 1050 usb_remove_sysfs_intf_files(interface); 1051 device_del (&interface->dev); 1052 } 1053 1054 /* Now that the interfaces are unbound, nobody should 1055 * try to access them. 1056 */ 1057 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1058 put_device (&dev->actconfig->interface[i]->dev); 1059 dev->actconfig->interface[i] = NULL; 1060 } 1061 dev->actconfig = NULL; 1062 if (dev->state == USB_STATE_CONFIGURED) 1063 usb_set_device_state(dev, USB_STATE_ADDRESS); 1064 } 1065 } 1066 1067 1068 /* 1069 * usb_enable_endpoint - Enable an endpoint for USB communications 1070 * @dev: the device whose interface is being enabled 1071 * @ep: the endpoint 1072 * 1073 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1074 * For control endpoints, both the input and output sides are handled. 1075 */ 1076 static void 1077 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1078 { 1079 unsigned int epaddr = ep->desc.bEndpointAddress; 1080 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1081 int is_control; 1082 1083 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) 1084 == USB_ENDPOINT_XFER_CONTROL); 1085 if (usb_endpoint_out(epaddr) || is_control) { 1086 usb_settoggle(dev, epnum, 1, 0); 1087 dev->ep_out[epnum] = ep; 1088 } 1089 if (!usb_endpoint_out(epaddr) || is_control) { 1090 usb_settoggle(dev, epnum, 0, 0); 1091 dev->ep_in[epnum] = ep; 1092 } 1093 } 1094 1095 /* 1096 * usb_enable_interface - Enable all the endpoints for an interface 1097 * @dev: the device whose interface is being enabled 1098 * @intf: pointer to the interface descriptor 1099 * 1100 * Enables all the endpoints for the interface's current altsetting. 1101 */ 1102 static void usb_enable_interface(struct usb_device *dev, 1103 struct usb_interface *intf) 1104 { 1105 struct usb_host_interface *alt = intf->cur_altsetting; 1106 int i; 1107 1108 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1109 usb_enable_endpoint(dev, &alt->endpoint[i]); 1110 } 1111 1112 /** 1113 * usb_set_interface - Makes a particular alternate setting be current 1114 * @dev: the device whose interface is being updated 1115 * @interface: the interface being updated 1116 * @alternate: the setting being chosen. 1117 * Context: !in_interrupt () 1118 * 1119 * This is used to enable data transfers on interfaces that may not 1120 * be enabled by default. Not all devices support such configurability. 1121 * Only the driver bound to an interface may change its setting. 1122 * 1123 * Within any given configuration, each interface may have several 1124 * alternative settings. These are often used to control levels of 1125 * bandwidth consumption. For example, the default setting for a high 1126 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1127 * while interrupt transfers of up to 3KBytes per microframe are legal. 1128 * Also, isochronous endpoints may never be part of an 1129 * interface's default setting. To access such bandwidth, alternate 1130 * interface settings must be made current. 1131 * 1132 * Note that in the Linux USB subsystem, bandwidth associated with 1133 * an endpoint in a given alternate setting is not reserved until an URB 1134 * is submitted that needs that bandwidth. Some other operating systems 1135 * allocate bandwidth early, when a configuration is chosen. 1136 * 1137 * This call is synchronous, and may not be used in an interrupt context. 1138 * Also, drivers must not change altsettings while urbs are scheduled for 1139 * endpoints in that interface; all such urbs must first be completed 1140 * (perhaps forced by unlinking). 1141 * 1142 * Returns zero on success, or else the status code returned by the 1143 * underlying usb_control_msg() call. 1144 */ 1145 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1146 { 1147 struct usb_interface *iface; 1148 struct usb_host_interface *alt; 1149 int ret; 1150 int manual = 0; 1151 1152 if (dev->state == USB_STATE_SUSPENDED) 1153 return -EHOSTUNREACH; 1154 1155 iface = usb_ifnum_to_if(dev, interface); 1156 if (!iface) { 1157 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1158 interface); 1159 return -EINVAL; 1160 } 1161 1162 alt = usb_altnum_to_altsetting(iface, alternate); 1163 if (!alt) { 1164 warn("selecting invalid altsetting %d", alternate); 1165 return -EINVAL; 1166 } 1167 1168 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1169 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1170 alternate, interface, NULL, 0, 5000); 1171 1172 /* 9.4.10 says devices don't need this and are free to STALL the 1173 * request if the interface only has one alternate setting. 1174 */ 1175 if (ret == -EPIPE && iface->num_altsetting == 1) { 1176 dev_dbg(&dev->dev, 1177 "manual set_interface for iface %d, alt %d\n", 1178 interface, alternate); 1179 manual = 1; 1180 } else if (ret < 0) 1181 return ret; 1182 1183 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1184 * when they implement async or easily-killable versions of this or 1185 * other "should-be-internal" functions (like clear_halt). 1186 * should hcd+usbcore postprocess control requests? 1187 */ 1188 1189 /* prevent submissions using previous endpoint settings */ 1190 if (device_is_registered(&iface->dev)) 1191 usb_remove_sysfs_intf_files(iface); 1192 usb_disable_interface(dev, iface); 1193 1194 iface->cur_altsetting = alt; 1195 1196 /* If the interface only has one altsetting and the device didn't 1197 * accept the request, we attempt to carry out the equivalent action 1198 * by manually clearing the HALT feature for each endpoint in the 1199 * new altsetting. 1200 */ 1201 if (manual) { 1202 int i; 1203 1204 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1205 unsigned int epaddr = 1206 alt->endpoint[i].desc.bEndpointAddress; 1207 unsigned int pipe = 1208 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr) 1209 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN); 1210 1211 usb_clear_halt(dev, pipe); 1212 } 1213 } 1214 1215 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1216 * 1217 * Note: 1218 * Despite EP0 is always present in all interfaces/AS, the list of 1219 * endpoints from the descriptor does not contain EP0. Due to its 1220 * omnipresence one might expect EP0 being considered "affected" by 1221 * any SetInterface request and hence assume toggles need to be reset. 1222 * However, EP0 toggles are re-synced for every individual transfer 1223 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1224 * (Likewise, EP0 never "halts" on well designed devices.) 1225 */ 1226 usb_enable_interface(dev, iface); 1227 if (device_is_registered(&iface->dev)) 1228 usb_create_sysfs_intf_files(iface); 1229 1230 return 0; 1231 } 1232 1233 /** 1234 * usb_reset_configuration - lightweight device reset 1235 * @dev: the device whose configuration is being reset 1236 * 1237 * This issues a standard SET_CONFIGURATION request to the device using 1238 * the current configuration. The effect is to reset most USB-related 1239 * state in the device, including interface altsettings (reset to zero), 1240 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1241 * endpoints). Other usbcore state is unchanged, including bindings of 1242 * usb device drivers to interfaces. 1243 * 1244 * Because this affects multiple interfaces, avoid using this with composite 1245 * (multi-interface) devices. Instead, the driver for each interface may 1246 * use usb_set_interface() on the interfaces it claims. Be careful though; 1247 * some devices don't support the SET_INTERFACE request, and others won't 1248 * reset all the interface state (notably data toggles). Resetting the whole 1249 * configuration would affect other drivers' interfaces. 1250 * 1251 * The caller must own the device lock. 1252 * 1253 * Returns zero on success, else a negative error code. 1254 */ 1255 int usb_reset_configuration(struct usb_device *dev) 1256 { 1257 int i, retval; 1258 struct usb_host_config *config; 1259 1260 if (dev->state == USB_STATE_SUSPENDED) 1261 return -EHOSTUNREACH; 1262 1263 /* caller must have locked the device and must own 1264 * the usb bus readlock (so driver bindings are stable); 1265 * calls during probe() are fine 1266 */ 1267 1268 for (i = 1; i < 16; ++i) { 1269 usb_disable_endpoint(dev, i); 1270 usb_disable_endpoint(dev, i + USB_DIR_IN); 1271 } 1272 1273 config = dev->actconfig; 1274 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1275 USB_REQ_SET_CONFIGURATION, 0, 1276 config->desc.bConfigurationValue, 0, 1277 NULL, 0, USB_CTRL_SET_TIMEOUT); 1278 if (retval < 0) 1279 return retval; 1280 1281 dev->toggle[0] = dev->toggle[1] = 0; 1282 1283 /* re-init hc/hcd interface/endpoint state */ 1284 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1285 struct usb_interface *intf = config->interface[i]; 1286 struct usb_host_interface *alt; 1287 1288 if (device_is_registered(&intf->dev)) 1289 usb_remove_sysfs_intf_files(intf); 1290 alt = usb_altnum_to_altsetting(intf, 0); 1291 1292 /* No altsetting 0? We'll assume the first altsetting. 1293 * We could use a GetInterface call, but if a device is 1294 * so non-compliant that it doesn't have altsetting 0 1295 * then I wouldn't trust its reply anyway. 1296 */ 1297 if (!alt) 1298 alt = &intf->altsetting[0]; 1299 1300 intf->cur_altsetting = alt; 1301 usb_enable_interface(dev, intf); 1302 if (device_is_registered(&intf->dev)) 1303 usb_create_sysfs_intf_files(intf); 1304 } 1305 return 0; 1306 } 1307 1308 static void release_interface(struct device *dev) 1309 { 1310 struct usb_interface *intf = to_usb_interface(dev); 1311 struct usb_interface_cache *intfc = 1312 altsetting_to_usb_interface_cache(intf->altsetting); 1313 1314 kref_put(&intfc->ref, usb_release_interface_cache); 1315 kfree(intf); 1316 } 1317 1318 /* 1319 * usb_set_configuration - Makes a particular device setting be current 1320 * @dev: the device whose configuration is being updated 1321 * @configuration: the configuration being chosen. 1322 * Context: !in_interrupt(), caller owns the device lock 1323 * 1324 * This is used to enable non-default device modes. Not all devices 1325 * use this kind of configurability; many devices only have one 1326 * configuration. 1327 * 1328 * @configuration is the value of the configuration to be installed. 1329 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1330 * must be non-zero; a value of zero indicates that the device in 1331 * unconfigured. However some devices erroneously use 0 as one of their 1332 * configuration values. To help manage such devices, this routine will 1333 * accept @configuration = -1 as indicating the device should be put in 1334 * an unconfigured state. 1335 * 1336 * USB device configurations may affect Linux interoperability, 1337 * power consumption and the functionality available. For example, 1338 * the default configuration is limited to using 100mA of bus power, 1339 * so that when certain device functionality requires more power, 1340 * and the device is bus powered, that functionality should be in some 1341 * non-default device configuration. Other device modes may also be 1342 * reflected as configuration options, such as whether two ISDN 1343 * channels are available independently; and choosing between open 1344 * standard device protocols (like CDC) or proprietary ones. 1345 * 1346 * Note that USB has an additional level of device configurability, 1347 * associated with interfaces. That configurability is accessed using 1348 * usb_set_interface(). 1349 * 1350 * This call is synchronous. The calling context must be able to sleep, 1351 * must own the device lock, and must not hold the driver model's USB 1352 * bus rwsem; usb device driver probe() methods cannot use this routine. 1353 * 1354 * Returns zero on success, or else the status code returned by the 1355 * underlying call that failed. On successful completion, each interface 1356 * in the original device configuration has been destroyed, and each one 1357 * in the new configuration has been probed by all relevant usb device 1358 * drivers currently known to the kernel. 1359 */ 1360 int usb_set_configuration(struct usb_device *dev, int configuration) 1361 { 1362 int i, ret; 1363 struct usb_host_config *cp = NULL; 1364 struct usb_interface **new_interfaces = NULL; 1365 int n, nintf; 1366 1367 if (configuration == -1) 1368 configuration = 0; 1369 else { 1370 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1371 if (dev->config[i].desc.bConfigurationValue == 1372 configuration) { 1373 cp = &dev->config[i]; 1374 break; 1375 } 1376 } 1377 } 1378 if ((!cp && configuration != 0)) 1379 return -EINVAL; 1380 1381 /* The USB spec says configuration 0 means unconfigured. 1382 * But if a device includes a configuration numbered 0, 1383 * we will accept it as a correctly configured state. 1384 * Use -1 if you really want to unconfigure the device. 1385 */ 1386 if (cp && configuration == 0) 1387 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1388 1389 /* Allocate memory for new interfaces before doing anything else, 1390 * so that if we run out then nothing will have changed. */ 1391 n = nintf = 0; 1392 if (cp) { 1393 nintf = cp->desc.bNumInterfaces; 1394 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1395 GFP_KERNEL); 1396 if (!new_interfaces) { 1397 dev_err(&dev->dev, "Out of memory"); 1398 return -ENOMEM; 1399 } 1400 1401 for (; n < nintf; ++n) { 1402 new_interfaces[n] = kzalloc( 1403 sizeof(struct usb_interface), 1404 GFP_KERNEL); 1405 if (!new_interfaces[n]) { 1406 dev_err(&dev->dev, "Out of memory"); 1407 ret = -ENOMEM; 1408 free_interfaces: 1409 while (--n >= 0) 1410 kfree(new_interfaces[n]); 1411 kfree(new_interfaces); 1412 return ret; 1413 } 1414 } 1415 1416 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1417 if (i < 0) 1418 dev_warn(&dev->dev, "new config #%d exceeds power " 1419 "limit by %dmA\n", 1420 configuration, -i); 1421 } 1422 1423 /* Wake up the device so we can send it the Set-Config request */ 1424 ret = usb_autoresume_device(dev); 1425 if (ret) 1426 goto free_interfaces; 1427 1428 /* if it's already configured, clear out old state first. 1429 * getting rid of old interfaces means unbinding their drivers. 1430 */ 1431 if (dev->state != USB_STATE_ADDRESS) 1432 usb_disable_device (dev, 1); // Skip ep0 1433 1434 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1435 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1436 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) { 1437 1438 /* All the old state is gone, so what else can we do? 1439 * The device is probably useless now anyway. 1440 */ 1441 cp = NULL; 1442 } 1443 1444 dev->actconfig = cp; 1445 if (!cp) { 1446 usb_set_device_state(dev, USB_STATE_ADDRESS); 1447 usb_autosuspend_device(dev); 1448 goto free_interfaces; 1449 } 1450 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1451 1452 /* Initialize the new interface structures and the 1453 * hc/hcd/usbcore interface/endpoint state. 1454 */ 1455 for (i = 0; i < nintf; ++i) { 1456 struct usb_interface_cache *intfc; 1457 struct usb_interface *intf; 1458 struct usb_host_interface *alt; 1459 1460 cp->interface[i] = intf = new_interfaces[i]; 1461 intfc = cp->intf_cache[i]; 1462 intf->altsetting = intfc->altsetting; 1463 intf->num_altsetting = intfc->num_altsetting; 1464 kref_get(&intfc->ref); 1465 1466 alt = usb_altnum_to_altsetting(intf, 0); 1467 1468 /* No altsetting 0? We'll assume the first altsetting. 1469 * We could use a GetInterface call, but if a device is 1470 * so non-compliant that it doesn't have altsetting 0 1471 * then I wouldn't trust its reply anyway. 1472 */ 1473 if (!alt) 1474 alt = &intf->altsetting[0]; 1475 1476 intf->cur_altsetting = alt; 1477 usb_enable_interface(dev, intf); 1478 intf->dev.parent = &dev->dev; 1479 intf->dev.driver = NULL; 1480 intf->dev.bus = &usb_bus_type; 1481 intf->dev.dma_mask = dev->dev.dma_mask; 1482 intf->dev.release = release_interface; 1483 device_initialize (&intf->dev); 1484 mark_quiesced(intf); 1485 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d", 1486 dev->bus->busnum, dev->devpath, 1487 configuration, alt->desc.bInterfaceNumber); 1488 } 1489 kfree(new_interfaces); 1490 1491 if (cp->string == NULL) 1492 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1493 1494 /* Now that all the interfaces are set up, register them 1495 * to trigger binding of drivers to interfaces. probe() 1496 * routines may install different altsettings and may 1497 * claim() any interfaces not yet bound. Many class drivers 1498 * need that: CDC, audio, video, etc. 1499 */ 1500 for (i = 0; i < nintf; ++i) { 1501 struct usb_interface *intf = cp->interface[i]; 1502 1503 dev_dbg (&dev->dev, 1504 "adding %s (config #%d, interface %d)\n", 1505 intf->dev.bus_id, configuration, 1506 intf->cur_altsetting->desc.bInterfaceNumber); 1507 ret = device_add (&intf->dev); 1508 if (ret != 0) { 1509 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1510 intf->dev.bus_id, ret); 1511 continue; 1512 } 1513 usb_create_sysfs_intf_files (intf); 1514 } 1515 1516 usb_autosuspend_device(dev); 1517 return 0; 1518 } 1519 1520 struct set_config_request { 1521 struct usb_device *udev; 1522 int config; 1523 struct work_struct work; 1524 }; 1525 1526 /* Worker routine for usb_driver_set_configuration() */ 1527 static void driver_set_config_work(struct work_struct *work) 1528 { 1529 struct set_config_request *req = 1530 container_of(work, struct set_config_request, work); 1531 1532 usb_lock_device(req->udev); 1533 usb_set_configuration(req->udev, req->config); 1534 usb_unlock_device(req->udev); 1535 usb_put_dev(req->udev); 1536 kfree(req); 1537 } 1538 1539 /** 1540 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1541 * @udev: the device whose configuration is being updated 1542 * @config: the configuration being chosen. 1543 * Context: In process context, must be able to sleep 1544 * 1545 * Device interface drivers are not allowed to change device configurations. 1546 * This is because changing configurations will destroy the interface the 1547 * driver is bound to and create new ones; it would be like a floppy-disk 1548 * driver telling the computer to replace the floppy-disk drive with a 1549 * tape drive! 1550 * 1551 * Still, in certain specialized circumstances the need may arise. This 1552 * routine gets around the normal restrictions by using a work thread to 1553 * submit the change-config request. 1554 * 1555 * Returns 0 if the request was succesfully queued, error code otherwise. 1556 * The caller has no way to know whether the queued request will eventually 1557 * succeed. 1558 */ 1559 int usb_driver_set_configuration(struct usb_device *udev, int config) 1560 { 1561 struct set_config_request *req; 1562 1563 req = kmalloc(sizeof(*req), GFP_KERNEL); 1564 if (!req) 1565 return -ENOMEM; 1566 req->udev = udev; 1567 req->config = config; 1568 INIT_WORK(&req->work, driver_set_config_work); 1569 1570 usb_get_dev(udev); 1571 schedule_work(&req->work); 1572 return 0; 1573 } 1574 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1575 1576 // synchronous request completion model 1577 EXPORT_SYMBOL(usb_control_msg); 1578 EXPORT_SYMBOL(usb_bulk_msg); 1579 1580 EXPORT_SYMBOL(usb_sg_init); 1581 EXPORT_SYMBOL(usb_sg_cancel); 1582 EXPORT_SYMBOL(usb_sg_wait); 1583 1584 // synchronous control message convenience routines 1585 EXPORT_SYMBOL(usb_get_descriptor); 1586 EXPORT_SYMBOL(usb_get_status); 1587 EXPORT_SYMBOL(usb_string); 1588 1589 // synchronous calls that also maintain usbcore state 1590 EXPORT_SYMBOL(usb_clear_halt); 1591 EXPORT_SYMBOL(usb_reset_configuration); 1592 EXPORT_SYMBOL(usb_set_interface); 1593 1594