1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * message.c - synchronous message handling 4 * 5 * Released under the GPLv2 only. 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/pci.h> /* for scatterlist macros */ 10 #include <linux/usb.h> 11 #include <linux/module.h> 12 #include <linux/of.h> 13 #include <linux/slab.h> 14 #include <linux/mm.h> 15 #include <linux/timer.h> 16 #include <linux/ctype.h> 17 #include <linux/nls.h> 18 #include <linux/device.h> 19 #include <linux/scatterlist.h> 20 #include <linux/usb/cdc.h> 21 #include <linux/usb/quirks.h> 22 #include <linux/usb/hcd.h> /* for usbcore internals */ 23 #include <linux/usb/of.h> 24 #include <asm/byteorder.h> 25 26 #include "usb.h" 27 28 static void cancel_async_set_config(struct usb_device *udev); 29 30 struct api_context { 31 struct completion done; 32 int status; 33 }; 34 35 static void usb_api_blocking_completion(struct urb *urb) 36 { 37 struct api_context *ctx = urb->context; 38 39 ctx->status = urb->status; 40 complete(&ctx->done); 41 } 42 43 44 /* 45 * Starts urb and waits for completion or timeout. Note that this call 46 * is NOT interruptible. Many device driver i/o requests should be 47 * interruptible and therefore these drivers should implement their 48 * own interruptible routines. 49 */ 50 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 51 { 52 struct api_context ctx; 53 unsigned long expire; 54 int retval; 55 56 init_completion(&ctx.done); 57 urb->context = &ctx; 58 urb->actual_length = 0; 59 retval = usb_submit_urb(urb, GFP_NOIO); 60 if (unlikely(retval)) 61 goto out; 62 63 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 64 if (!wait_for_completion_timeout(&ctx.done, expire)) { 65 usb_kill_urb(urb); 66 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 67 68 dev_dbg(&urb->dev->dev, 69 "%s timed out on ep%d%s len=%u/%u\n", 70 current->comm, 71 usb_endpoint_num(&urb->ep->desc), 72 usb_urb_dir_in(urb) ? "in" : "out", 73 urb->actual_length, 74 urb->transfer_buffer_length); 75 } else 76 retval = ctx.status; 77 out: 78 if (actual_length) 79 *actual_length = urb->actual_length; 80 81 usb_free_urb(urb); 82 return retval; 83 } 84 85 /*-------------------------------------------------------------------*/ 86 /* returns status (negative) or length (positive) */ 87 static int usb_internal_control_msg(struct usb_device *usb_dev, 88 unsigned int pipe, 89 struct usb_ctrlrequest *cmd, 90 void *data, int len, int timeout) 91 { 92 struct urb *urb; 93 int retv; 94 int length; 95 96 urb = usb_alloc_urb(0, GFP_NOIO); 97 if (!urb) 98 return -ENOMEM; 99 100 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 101 len, usb_api_blocking_completion, NULL); 102 103 retv = usb_start_wait_urb(urb, timeout, &length); 104 if (retv < 0) 105 return retv; 106 else 107 return length; 108 } 109 110 /** 111 * usb_control_msg - Builds a control urb, sends it off and waits for completion 112 * @dev: pointer to the usb device to send the message to 113 * @pipe: endpoint "pipe" to send the message to 114 * @request: USB message request value 115 * @requesttype: USB message request type value 116 * @value: USB message value 117 * @index: USB message index value 118 * @data: pointer to the data to send 119 * @size: length in bytes of the data to send 120 * @timeout: time in msecs to wait for the message to complete before timing 121 * out (if 0 the wait is forever) 122 * 123 * Context: task context, might sleep. 124 * 125 * This function sends a simple control message to a specified endpoint and 126 * waits for the message to complete, or timeout. 127 * 128 * Don't use this function from within an interrupt context. If you need 129 * an asynchronous message, or need to send a message from within interrupt 130 * context, use usb_submit_urb(). If a thread in your driver uses this call, 131 * make sure your disconnect() method can wait for it to complete. Since you 132 * don't have a handle on the URB used, you can't cancel the request. 133 * 134 * Return: If successful, the number of bytes transferred. Otherwise, a negative 135 * error number. 136 */ 137 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 138 __u8 requesttype, __u16 value, __u16 index, void *data, 139 __u16 size, int timeout) 140 { 141 struct usb_ctrlrequest *dr; 142 int ret; 143 144 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 145 if (!dr) 146 return -ENOMEM; 147 148 dr->bRequestType = requesttype; 149 dr->bRequest = request; 150 dr->wValue = cpu_to_le16(value); 151 dr->wIndex = cpu_to_le16(index); 152 dr->wLength = cpu_to_le16(size); 153 154 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 155 156 /* Linger a bit, prior to the next control message. */ 157 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG) 158 msleep(200); 159 160 kfree(dr); 161 162 return ret; 163 } 164 EXPORT_SYMBOL_GPL(usb_control_msg); 165 166 /** 167 * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion 168 * @dev: pointer to the usb device to send the message to 169 * @endpoint: endpoint to send the message to 170 * @request: USB message request value 171 * @requesttype: USB message request type value 172 * @value: USB message value 173 * @index: USB message index value 174 * @driver_data: pointer to the data to send 175 * @size: length in bytes of the data to send 176 * @timeout: time in msecs to wait for the message to complete before timing 177 * out (if 0 the wait is forever) 178 * @memflags: the flags for memory allocation for buffers 179 * 180 * Context: !in_interrupt () 181 * 182 * This function sends a control message to a specified endpoint that is not 183 * expected to fill in a response (i.e. a "send message") and waits for the 184 * message to complete, or timeout. 185 * 186 * Do not use this function from within an interrupt context. If you need 187 * an asynchronous message, or need to send a message from within interrupt 188 * context, use usb_submit_urb(). If a thread in your driver uses this call, 189 * make sure your disconnect() method can wait for it to complete. Since you 190 * don't have a handle on the URB used, you can't cancel the request. 191 * 192 * The data pointer can be made to a reference on the stack, or anywhere else, 193 * as it will not be modified at all. This does not have the restriction that 194 * usb_control_msg() has where the data pointer must be to dynamically allocated 195 * memory (i.e. memory that can be successfully DMAed to a device). 196 * 197 * Return: If successful, 0 is returned, Otherwise, a negative error number. 198 */ 199 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 200 __u8 requesttype, __u16 value, __u16 index, 201 const void *driver_data, __u16 size, int timeout, 202 gfp_t memflags) 203 { 204 unsigned int pipe = usb_sndctrlpipe(dev, endpoint); 205 int ret; 206 u8 *data = NULL; 207 208 if (size) { 209 data = kmemdup(driver_data, size, memflags); 210 if (!data) 211 return -ENOMEM; 212 } 213 214 ret = usb_control_msg(dev, pipe, request, requesttype, value, index, 215 data, size, timeout); 216 kfree(data); 217 218 if (ret < 0) 219 return ret; 220 221 return 0; 222 } 223 EXPORT_SYMBOL_GPL(usb_control_msg_send); 224 225 /** 226 * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion 227 * @dev: pointer to the usb device to send the message to 228 * @endpoint: endpoint to send the message to 229 * @request: USB message request value 230 * @requesttype: USB message request type value 231 * @value: USB message value 232 * @index: USB message index value 233 * @driver_data: pointer to the data to be filled in by the message 234 * @size: length in bytes of the data to be received 235 * @timeout: time in msecs to wait for the message to complete before timing 236 * out (if 0 the wait is forever) 237 * @memflags: the flags for memory allocation for buffers 238 * 239 * Context: !in_interrupt () 240 * 241 * This function sends a control message to a specified endpoint that is 242 * expected to fill in a response (i.e. a "receive message") and waits for the 243 * message to complete, or timeout. 244 * 245 * Do not use this function from within an interrupt context. If you need 246 * an asynchronous message, or need to send a message from within interrupt 247 * context, use usb_submit_urb(). If a thread in your driver uses this call, 248 * make sure your disconnect() method can wait for it to complete. Since you 249 * don't have a handle on the URB used, you can't cancel the request. 250 * 251 * The data pointer can be made to a reference on the stack, or anywhere else 252 * that can be successfully written to. This function does not have the 253 * restriction that usb_control_msg() has where the data pointer must be to 254 * dynamically allocated memory (i.e. memory that can be successfully DMAed to a 255 * device). 256 * 257 * The "whole" message must be properly received from the device in order for 258 * this function to be successful. If a device returns less than the expected 259 * amount of data, then the function will fail. Do not use this for messages 260 * where a variable amount of data might be returned. 261 * 262 * Return: If successful, 0 is returned, Otherwise, a negative error number. 263 */ 264 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 265 __u8 requesttype, __u16 value, __u16 index, 266 void *driver_data, __u16 size, int timeout, 267 gfp_t memflags) 268 { 269 unsigned int pipe = usb_rcvctrlpipe(dev, endpoint); 270 int ret; 271 u8 *data; 272 273 if (!size || !driver_data) 274 return -EINVAL; 275 276 data = kmalloc(size, memflags); 277 if (!data) 278 return -ENOMEM; 279 280 ret = usb_control_msg(dev, pipe, request, requesttype, value, index, 281 data, size, timeout); 282 283 if (ret < 0) 284 goto exit; 285 286 if (ret == size) { 287 memcpy(driver_data, data, size); 288 ret = 0; 289 } else { 290 ret = -EREMOTEIO; 291 } 292 293 exit: 294 kfree(data); 295 return ret; 296 } 297 EXPORT_SYMBOL_GPL(usb_control_msg_recv); 298 299 /** 300 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 301 * @usb_dev: pointer to the usb device to send the message to 302 * @pipe: endpoint "pipe" to send the message to 303 * @data: pointer to the data to send 304 * @len: length in bytes of the data to send 305 * @actual_length: pointer to a location to put the actual length transferred 306 * in bytes 307 * @timeout: time in msecs to wait for the message to complete before 308 * timing out (if 0 the wait is forever) 309 * 310 * Context: task context, might sleep. 311 * 312 * This function sends a simple interrupt message to a specified endpoint and 313 * waits for the message to complete, or timeout. 314 * 315 * Don't use this function from within an interrupt context. If you need 316 * an asynchronous message, or need to send a message from within interrupt 317 * context, use usb_submit_urb() If a thread in your driver uses this call, 318 * make sure your disconnect() method can wait for it to complete. Since you 319 * don't have a handle on the URB used, you can't cancel the request. 320 * 321 * Return: 322 * If successful, 0. Otherwise a negative error number. The number of actual 323 * bytes transferred will be stored in the @actual_length parameter. 324 */ 325 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 326 void *data, int len, int *actual_length, int timeout) 327 { 328 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 329 } 330 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 331 332 /** 333 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 334 * @usb_dev: pointer to the usb device to send the message to 335 * @pipe: endpoint "pipe" to send the message to 336 * @data: pointer to the data to send 337 * @len: length in bytes of the data to send 338 * @actual_length: pointer to a location to put the actual length transferred 339 * in bytes 340 * @timeout: time in msecs to wait for the message to complete before 341 * timing out (if 0 the wait is forever) 342 * 343 * Context: task context, might sleep. 344 * 345 * This function sends a simple bulk message to a specified endpoint 346 * and waits for the message to complete, or timeout. 347 * 348 * Don't use this function from within an interrupt context. If you need 349 * an asynchronous message, or need to send a message from within interrupt 350 * context, use usb_submit_urb() If a thread in your driver uses this call, 351 * make sure your disconnect() method can wait for it to complete. Since you 352 * don't have a handle on the URB used, you can't cancel the request. 353 * 354 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 355 * users are forced to abuse this routine by using it to submit URBs for 356 * interrupt endpoints. We will take the liberty of creating an interrupt URB 357 * (with the default interval) if the target is an interrupt endpoint. 358 * 359 * Return: 360 * If successful, 0. Otherwise a negative error number. The number of actual 361 * bytes transferred will be stored in the @actual_length parameter. 362 * 363 */ 364 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 365 void *data, int len, int *actual_length, int timeout) 366 { 367 struct urb *urb; 368 struct usb_host_endpoint *ep; 369 370 ep = usb_pipe_endpoint(usb_dev, pipe); 371 if (!ep || len < 0) 372 return -EINVAL; 373 374 urb = usb_alloc_urb(0, GFP_KERNEL); 375 if (!urb) 376 return -ENOMEM; 377 378 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 379 USB_ENDPOINT_XFER_INT) { 380 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 381 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 382 usb_api_blocking_completion, NULL, 383 ep->desc.bInterval); 384 } else 385 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 386 usb_api_blocking_completion, NULL); 387 388 return usb_start_wait_urb(urb, timeout, actual_length); 389 } 390 EXPORT_SYMBOL_GPL(usb_bulk_msg); 391 392 /*-------------------------------------------------------------------*/ 393 394 static void sg_clean(struct usb_sg_request *io) 395 { 396 if (io->urbs) { 397 while (io->entries--) 398 usb_free_urb(io->urbs[io->entries]); 399 kfree(io->urbs); 400 io->urbs = NULL; 401 } 402 io->dev = NULL; 403 } 404 405 static void sg_complete(struct urb *urb) 406 { 407 unsigned long flags; 408 struct usb_sg_request *io = urb->context; 409 int status = urb->status; 410 411 spin_lock_irqsave(&io->lock, flags); 412 413 /* In 2.5 we require hcds' endpoint queues not to progress after fault 414 * reports, until the completion callback (this!) returns. That lets 415 * device driver code (like this routine) unlink queued urbs first, 416 * if it needs to, since the HC won't work on them at all. So it's 417 * not possible for page N+1 to overwrite page N, and so on. 418 * 419 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 420 * complete before the HCD can get requests away from hardware, 421 * though never during cleanup after a hard fault. 422 */ 423 if (io->status 424 && (io->status != -ECONNRESET 425 || status != -ECONNRESET) 426 && urb->actual_length) { 427 dev_err(io->dev->bus->controller, 428 "dev %s ep%d%s scatterlist error %d/%d\n", 429 io->dev->devpath, 430 usb_endpoint_num(&urb->ep->desc), 431 usb_urb_dir_in(urb) ? "in" : "out", 432 status, io->status); 433 /* BUG (); */ 434 } 435 436 if (io->status == 0 && status && status != -ECONNRESET) { 437 int i, found, retval; 438 439 io->status = status; 440 441 /* the previous urbs, and this one, completed already. 442 * unlink pending urbs so they won't rx/tx bad data. 443 * careful: unlink can sometimes be synchronous... 444 */ 445 spin_unlock_irqrestore(&io->lock, flags); 446 for (i = 0, found = 0; i < io->entries; i++) { 447 if (!io->urbs[i]) 448 continue; 449 if (found) { 450 usb_block_urb(io->urbs[i]); 451 retval = usb_unlink_urb(io->urbs[i]); 452 if (retval != -EINPROGRESS && 453 retval != -ENODEV && 454 retval != -EBUSY && 455 retval != -EIDRM) 456 dev_err(&io->dev->dev, 457 "%s, unlink --> %d\n", 458 __func__, retval); 459 } else if (urb == io->urbs[i]) 460 found = 1; 461 } 462 spin_lock_irqsave(&io->lock, flags); 463 } 464 465 /* on the last completion, signal usb_sg_wait() */ 466 io->bytes += urb->actual_length; 467 io->count--; 468 if (!io->count) 469 complete(&io->complete); 470 471 spin_unlock_irqrestore(&io->lock, flags); 472 } 473 474 475 /** 476 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 477 * @io: request block being initialized. until usb_sg_wait() returns, 478 * treat this as a pointer to an opaque block of memory, 479 * @dev: the usb device that will send or receive the data 480 * @pipe: endpoint "pipe" used to transfer the data 481 * @period: polling rate for interrupt endpoints, in frames or 482 * (for high speed endpoints) microframes; ignored for bulk 483 * @sg: scatterlist entries 484 * @nents: how many entries in the scatterlist 485 * @length: how many bytes to send from the scatterlist, or zero to 486 * send every byte identified in the list. 487 * @mem_flags: SLAB_* flags affecting memory allocations in this call 488 * 489 * This initializes a scatter/gather request, allocating resources such as 490 * I/O mappings and urb memory (except maybe memory used by USB controller 491 * drivers). 492 * 493 * The request must be issued using usb_sg_wait(), which waits for the I/O to 494 * complete (or to be canceled) and then cleans up all resources allocated by 495 * usb_sg_init(). 496 * 497 * The request may be canceled with usb_sg_cancel(), either before or after 498 * usb_sg_wait() is called. 499 * 500 * Return: Zero for success, else a negative errno value. 501 */ 502 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 503 unsigned pipe, unsigned period, struct scatterlist *sg, 504 int nents, size_t length, gfp_t mem_flags) 505 { 506 int i; 507 int urb_flags; 508 int use_sg; 509 510 if (!io || !dev || !sg 511 || usb_pipecontrol(pipe) 512 || usb_pipeisoc(pipe) 513 || nents <= 0) 514 return -EINVAL; 515 516 spin_lock_init(&io->lock); 517 io->dev = dev; 518 io->pipe = pipe; 519 520 if (dev->bus->sg_tablesize > 0) { 521 use_sg = true; 522 io->entries = 1; 523 } else { 524 use_sg = false; 525 io->entries = nents; 526 } 527 528 /* initialize all the urbs we'll use */ 529 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags); 530 if (!io->urbs) 531 goto nomem; 532 533 urb_flags = URB_NO_INTERRUPT; 534 if (usb_pipein(pipe)) 535 urb_flags |= URB_SHORT_NOT_OK; 536 537 for_each_sg(sg, sg, io->entries, i) { 538 struct urb *urb; 539 unsigned len; 540 541 urb = usb_alloc_urb(0, mem_flags); 542 if (!urb) { 543 io->entries = i; 544 goto nomem; 545 } 546 io->urbs[i] = urb; 547 548 urb->dev = NULL; 549 urb->pipe = pipe; 550 urb->interval = period; 551 urb->transfer_flags = urb_flags; 552 urb->complete = sg_complete; 553 urb->context = io; 554 urb->sg = sg; 555 556 if (use_sg) { 557 /* There is no single transfer buffer */ 558 urb->transfer_buffer = NULL; 559 urb->num_sgs = nents; 560 561 /* A length of zero means transfer the whole sg list */ 562 len = length; 563 if (len == 0) { 564 struct scatterlist *sg2; 565 int j; 566 567 for_each_sg(sg, sg2, nents, j) 568 len += sg2->length; 569 } 570 } else { 571 /* 572 * Some systems can't use DMA; they use PIO instead. 573 * For their sakes, transfer_buffer is set whenever 574 * possible. 575 */ 576 if (!PageHighMem(sg_page(sg))) 577 urb->transfer_buffer = sg_virt(sg); 578 else 579 urb->transfer_buffer = NULL; 580 581 len = sg->length; 582 if (length) { 583 len = min_t(size_t, len, length); 584 length -= len; 585 if (length == 0) 586 io->entries = i + 1; 587 } 588 } 589 urb->transfer_buffer_length = len; 590 } 591 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 592 593 /* transaction state */ 594 io->count = io->entries; 595 io->status = 0; 596 io->bytes = 0; 597 init_completion(&io->complete); 598 return 0; 599 600 nomem: 601 sg_clean(io); 602 return -ENOMEM; 603 } 604 EXPORT_SYMBOL_GPL(usb_sg_init); 605 606 /** 607 * usb_sg_wait - synchronously execute scatter/gather request 608 * @io: request block handle, as initialized with usb_sg_init(). 609 * some fields become accessible when this call returns. 610 * 611 * Context: task context, might sleep. 612 * 613 * This function blocks until the specified I/O operation completes. It 614 * leverages the grouping of the related I/O requests to get good transfer 615 * rates, by queueing the requests. At higher speeds, such queuing can 616 * significantly improve USB throughput. 617 * 618 * There are three kinds of completion for this function. 619 * 620 * (1) success, where io->status is zero. The number of io->bytes 621 * transferred is as requested. 622 * (2) error, where io->status is a negative errno value. The number 623 * of io->bytes transferred before the error is usually less 624 * than requested, and can be nonzero. 625 * (3) cancellation, a type of error with status -ECONNRESET that 626 * is initiated by usb_sg_cancel(). 627 * 628 * When this function returns, all memory allocated through usb_sg_init() or 629 * this call will have been freed. The request block parameter may still be 630 * passed to usb_sg_cancel(), or it may be freed. It could also be 631 * reinitialized and then reused. 632 * 633 * Data Transfer Rates: 634 * 635 * Bulk transfers are valid for full or high speed endpoints. 636 * The best full speed data rate is 19 packets of 64 bytes each 637 * per frame, or 1216 bytes per millisecond. 638 * The best high speed data rate is 13 packets of 512 bytes each 639 * per microframe, or 52 KBytes per millisecond. 640 * 641 * The reason to use interrupt transfers through this API would most likely 642 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 643 * could be transferred. That capability is less useful for low or full 644 * speed interrupt endpoints, which allow at most one packet per millisecond, 645 * of at most 8 or 64 bytes (respectively). 646 * 647 * It is not necessary to call this function to reserve bandwidth for devices 648 * under an xHCI host controller, as the bandwidth is reserved when the 649 * configuration or interface alt setting is selected. 650 */ 651 void usb_sg_wait(struct usb_sg_request *io) 652 { 653 int i; 654 int entries = io->entries; 655 656 /* queue the urbs. */ 657 spin_lock_irq(&io->lock); 658 i = 0; 659 while (i < entries && !io->status) { 660 int retval; 661 662 io->urbs[i]->dev = io->dev; 663 spin_unlock_irq(&io->lock); 664 665 retval = usb_submit_urb(io->urbs[i], GFP_NOIO); 666 667 switch (retval) { 668 /* maybe we retrying will recover */ 669 case -ENXIO: /* hc didn't queue this one */ 670 case -EAGAIN: 671 case -ENOMEM: 672 retval = 0; 673 yield(); 674 break; 675 676 /* no error? continue immediately. 677 * 678 * NOTE: to work better with UHCI (4K I/O buffer may 679 * need 3K of TDs) it may be good to limit how many 680 * URBs are queued at once; N milliseconds? 681 */ 682 case 0: 683 ++i; 684 cpu_relax(); 685 break; 686 687 /* fail any uncompleted urbs */ 688 default: 689 io->urbs[i]->status = retval; 690 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 691 __func__, retval); 692 usb_sg_cancel(io); 693 } 694 spin_lock_irq(&io->lock); 695 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 696 io->status = retval; 697 } 698 io->count -= entries - i; 699 if (io->count == 0) 700 complete(&io->complete); 701 spin_unlock_irq(&io->lock); 702 703 /* OK, yes, this could be packaged as non-blocking. 704 * So could the submit loop above ... but it's easier to 705 * solve neither problem than to solve both! 706 */ 707 wait_for_completion(&io->complete); 708 709 sg_clean(io); 710 } 711 EXPORT_SYMBOL_GPL(usb_sg_wait); 712 713 /** 714 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 715 * @io: request block, initialized with usb_sg_init() 716 * 717 * This stops a request after it has been started by usb_sg_wait(). 718 * It can also prevents one initialized by usb_sg_init() from starting, 719 * so that call just frees resources allocated to the request. 720 */ 721 void usb_sg_cancel(struct usb_sg_request *io) 722 { 723 unsigned long flags; 724 int i, retval; 725 726 spin_lock_irqsave(&io->lock, flags); 727 if (io->status || io->count == 0) { 728 spin_unlock_irqrestore(&io->lock, flags); 729 return; 730 } 731 /* shut everything down */ 732 io->status = -ECONNRESET; 733 io->count++; /* Keep the request alive until we're done */ 734 spin_unlock_irqrestore(&io->lock, flags); 735 736 for (i = io->entries - 1; i >= 0; --i) { 737 usb_block_urb(io->urbs[i]); 738 739 retval = usb_unlink_urb(io->urbs[i]); 740 if (retval != -EINPROGRESS 741 && retval != -ENODEV 742 && retval != -EBUSY 743 && retval != -EIDRM) 744 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 745 __func__, retval); 746 } 747 748 spin_lock_irqsave(&io->lock, flags); 749 io->count--; 750 if (!io->count) 751 complete(&io->complete); 752 spin_unlock_irqrestore(&io->lock, flags); 753 } 754 EXPORT_SYMBOL_GPL(usb_sg_cancel); 755 756 /*-------------------------------------------------------------------*/ 757 758 /** 759 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 760 * @dev: the device whose descriptor is being retrieved 761 * @type: the descriptor type (USB_DT_*) 762 * @index: the number of the descriptor 763 * @buf: where to put the descriptor 764 * @size: how big is "buf"? 765 * 766 * Context: task context, might sleep. 767 * 768 * Gets a USB descriptor. Convenience functions exist to simplify 769 * getting some types of descriptors. Use 770 * usb_get_string() or usb_string() for USB_DT_STRING. 771 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 772 * are part of the device structure. 773 * In addition to a number of USB-standard descriptors, some 774 * devices also use class-specific or vendor-specific descriptors. 775 * 776 * This call is synchronous, and may not be used in an interrupt context. 777 * 778 * Return: The number of bytes received on success, or else the status code 779 * returned by the underlying usb_control_msg() call. 780 */ 781 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 782 unsigned char index, void *buf, int size) 783 { 784 int i; 785 int result; 786 787 if (size <= 0) /* No point in asking for no data */ 788 return -EINVAL; 789 790 memset(buf, 0, size); /* Make sure we parse really received data */ 791 792 for (i = 0; i < 3; ++i) { 793 /* retry on length 0 or error; some devices are flakey */ 794 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 795 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 796 (type << 8) + index, 0, buf, size, 797 USB_CTRL_GET_TIMEOUT); 798 if (result <= 0 && result != -ETIMEDOUT) 799 continue; 800 if (result > 1 && ((u8 *)buf)[1] != type) { 801 result = -ENODATA; 802 continue; 803 } 804 break; 805 } 806 return result; 807 } 808 EXPORT_SYMBOL_GPL(usb_get_descriptor); 809 810 /** 811 * usb_get_string - gets a string descriptor 812 * @dev: the device whose string descriptor is being retrieved 813 * @langid: code for language chosen (from string descriptor zero) 814 * @index: the number of the descriptor 815 * @buf: where to put the string 816 * @size: how big is "buf"? 817 * 818 * Context: task context, might sleep. 819 * 820 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 821 * in little-endian byte order). 822 * The usb_string() function will often be a convenient way to turn 823 * these strings into kernel-printable form. 824 * 825 * Strings may be referenced in device, configuration, interface, or other 826 * descriptors, and could also be used in vendor-specific ways. 827 * 828 * This call is synchronous, and may not be used in an interrupt context. 829 * 830 * Return: The number of bytes received on success, or else the status code 831 * returned by the underlying usb_control_msg() call. 832 */ 833 static int usb_get_string(struct usb_device *dev, unsigned short langid, 834 unsigned char index, void *buf, int size) 835 { 836 int i; 837 int result; 838 839 if (size <= 0) /* No point in asking for no data */ 840 return -EINVAL; 841 842 for (i = 0; i < 3; ++i) { 843 /* retry on length 0 or stall; some devices are flakey */ 844 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 845 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 846 (USB_DT_STRING << 8) + index, langid, buf, size, 847 USB_CTRL_GET_TIMEOUT); 848 if (result == 0 || result == -EPIPE) 849 continue; 850 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 851 result = -ENODATA; 852 continue; 853 } 854 break; 855 } 856 return result; 857 } 858 859 static void usb_try_string_workarounds(unsigned char *buf, int *length) 860 { 861 int newlength, oldlength = *length; 862 863 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 864 if (!isprint(buf[newlength]) || buf[newlength + 1]) 865 break; 866 867 if (newlength > 2) { 868 buf[0] = newlength; 869 *length = newlength; 870 } 871 } 872 873 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 874 unsigned int index, unsigned char *buf) 875 { 876 int rc; 877 878 /* Try to read the string descriptor by asking for the maximum 879 * possible number of bytes */ 880 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 881 rc = -EIO; 882 else 883 rc = usb_get_string(dev, langid, index, buf, 255); 884 885 /* If that failed try to read the descriptor length, then 886 * ask for just that many bytes */ 887 if (rc < 2) { 888 rc = usb_get_string(dev, langid, index, buf, 2); 889 if (rc == 2) 890 rc = usb_get_string(dev, langid, index, buf, buf[0]); 891 } 892 893 if (rc >= 2) { 894 if (!buf[0] && !buf[1]) 895 usb_try_string_workarounds(buf, &rc); 896 897 /* There might be extra junk at the end of the descriptor */ 898 if (buf[0] < rc) 899 rc = buf[0]; 900 901 rc = rc - (rc & 1); /* force a multiple of two */ 902 } 903 904 if (rc < 2) 905 rc = (rc < 0 ? rc : -EINVAL); 906 907 return rc; 908 } 909 910 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 911 { 912 int err; 913 914 if (dev->have_langid) 915 return 0; 916 917 if (dev->string_langid < 0) 918 return -EPIPE; 919 920 err = usb_string_sub(dev, 0, 0, tbuf); 921 922 /* If the string was reported but is malformed, default to english 923 * (0x0409) */ 924 if (err == -ENODATA || (err > 0 && err < 4)) { 925 dev->string_langid = 0x0409; 926 dev->have_langid = 1; 927 dev_err(&dev->dev, 928 "language id specifier not provided by device, defaulting to English\n"); 929 return 0; 930 } 931 932 /* In case of all other errors, we assume the device is not able to 933 * deal with strings at all. Set string_langid to -1 in order to 934 * prevent any string to be retrieved from the device */ 935 if (err < 0) { 936 dev_info(&dev->dev, "string descriptor 0 read error: %d\n", 937 err); 938 dev->string_langid = -1; 939 return -EPIPE; 940 } 941 942 /* always use the first langid listed */ 943 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 944 dev->have_langid = 1; 945 dev_dbg(&dev->dev, "default language 0x%04x\n", 946 dev->string_langid); 947 return 0; 948 } 949 950 /** 951 * usb_string - returns UTF-8 version of a string descriptor 952 * @dev: the device whose string descriptor is being retrieved 953 * @index: the number of the descriptor 954 * @buf: where to put the string 955 * @size: how big is "buf"? 956 * 957 * Context: task context, might sleep. 958 * 959 * This converts the UTF-16LE encoded strings returned by devices, from 960 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 961 * that are more usable in most kernel contexts. Note that this function 962 * chooses strings in the first language supported by the device. 963 * 964 * This call is synchronous, and may not be used in an interrupt context. 965 * 966 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 967 */ 968 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 969 { 970 unsigned char *tbuf; 971 int err; 972 973 if (dev->state == USB_STATE_SUSPENDED) 974 return -EHOSTUNREACH; 975 if (size <= 0 || !buf) 976 return -EINVAL; 977 buf[0] = 0; 978 if (index <= 0 || index >= 256) 979 return -EINVAL; 980 tbuf = kmalloc(256, GFP_NOIO); 981 if (!tbuf) 982 return -ENOMEM; 983 984 err = usb_get_langid(dev, tbuf); 985 if (err < 0) 986 goto errout; 987 988 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 989 if (err < 0) 990 goto errout; 991 992 size--; /* leave room for trailing NULL char in output buffer */ 993 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 994 UTF16_LITTLE_ENDIAN, buf, size); 995 buf[err] = 0; 996 997 if (tbuf[1] != USB_DT_STRING) 998 dev_dbg(&dev->dev, 999 "wrong descriptor type %02x for string %d (\"%s\")\n", 1000 tbuf[1], index, buf); 1001 1002 errout: 1003 kfree(tbuf); 1004 return err; 1005 } 1006 EXPORT_SYMBOL_GPL(usb_string); 1007 1008 /* one UTF-8-encoded 16-bit character has at most three bytes */ 1009 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 1010 1011 /** 1012 * usb_cache_string - read a string descriptor and cache it for later use 1013 * @udev: the device whose string descriptor is being read 1014 * @index: the descriptor index 1015 * 1016 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 1017 * or %NULL if the index is 0 or the string could not be read. 1018 */ 1019 char *usb_cache_string(struct usb_device *udev, int index) 1020 { 1021 char *buf; 1022 char *smallbuf = NULL; 1023 int len; 1024 1025 if (index <= 0) 1026 return NULL; 1027 1028 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 1029 if (buf) { 1030 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 1031 if (len > 0) { 1032 smallbuf = kmalloc(++len, GFP_NOIO); 1033 if (!smallbuf) 1034 return buf; 1035 memcpy(smallbuf, buf, len); 1036 } 1037 kfree(buf); 1038 } 1039 return smallbuf; 1040 } 1041 EXPORT_SYMBOL_GPL(usb_cache_string); 1042 1043 /* 1044 * usb_get_device_descriptor - read the device descriptor 1045 * @udev: the device whose device descriptor should be read 1046 * 1047 * Context: task context, might sleep. 1048 * 1049 * Not exported, only for use by the core. If drivers really want to read 1050 * the device descriptor directly, they can call usb_get_descriptor() with 1051 * type = USB_DT_DEVICE and index = 0. 1052 * 1053 * Returns: a pointer to a dynamically allocated usb_device_descriptor 1054 * structure (which the caller must deallocate), or an ERR_PTR value. 1055 */ 1056 struct usb_device_descriptor *usb_get_device_descriptor(struct usb_device *udev) 1057 { 1058 struct usb_device_descriptor *desc; 1059 int ret; 1060 1061 desc = kmalloc(sizeof(*desc), GFP_NOIO); 1062 if (!desc) 1063 return ERR_PTR(-ENOMEM); 1064 1065 ret = usb_get_descriptor(udev, USB_DT_DEVICE, 0, desc, sizeof(*desc)); 1066 if (ret == sizeof(*desc)) 1067 return desc; 1068 1069 if (ret >= 0) 1070 ret = -EMSGSIZE; 1071 kfree(desc); 1072 return ERR_PTR(ret); 1073 } 1074 1075 /* 1076 * usb_set_isoch_delay - informs the device of the packet transmit delay 1077 * @dev: the device whose delay is to be informed 1078 * Context: task context, might sleep 1079 * 1080 * Since this is an optional request, we don't bother if it fails. 1081 */ 1082 int usb_set_isoch_delay(struct usb_device *dev) 1083 { 1084 /* skip hub devices */ 1085 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB) 1086 return 0; 1087 1088 /* skip non-SS/non-SSP devices */ 1089 if (dev->speed < USB_SPEED_SUPER) 1090 return 0; 1091 1092 return usb_control_msg_send(dev, 0, 1093 USB_REQ_SET_ISOCH_DELAY, 1094 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE, 1095 dev->hub_delay, 0, NULL, 0, 1096 USB_CTRL_SET_TIMEOUT, 1097 GFP_NOIO); 1098 } 1099 1100 /** 1101 * usb_get_status - issues a GET_STATUS call 1102 * @dev: the device whose status is being checked 1103 * @recip: USB_RECIP_*; for device, interface, or endpoint 1104 * @type: USB_STATUS_TYPE_*; for standard or PTM status types 1105 * @target: zero (for device), else interface or endpoint number 1106 * @data: pointer to two bytes of bitmap data 1107 * 1108 * Context: task context, might sleep. 1109 * 1110 * Returns device, interface, or endpoint status. Normally only of 1111 * interest to see if the device is self powered, or has enabled the 1112 * remote wakeup facility; or whether a bulk or interrupt endpoint 1113 * is halted ("stalled"). 1114 * 1115 * Bits in these status bitmaps are set using the SET_FEATURE request, 1116 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 1117 * function should be used to clear halt ("stall") status. 1118 * 1119 * This call is synchronous, and may not be used in an interrupt context. 1120 * 1121 * Returns 0 and the status value in *@data (in host byte order) on success, 1122 * or else the status code from the underlying usb_control_msg() call. 1123 */ 1124 int usb_get_status(struct usb_device *dev, int recip, int type, int target, 1125 void *data) 1126 { 1127 int ret; 1128 void *status; 1129 int length; 1130 1131 switch (type) { 1132 case USB_STATUS_TYPE_STANDARD: 1133 length = 2; 1134 break; 1135 case USB_STATUS_TYPE_PTM: 1136 if (recip != USB_RECIP_DEVICE) 1137 return -EINVAL; 1138 1139 length = 4; 1140 break; 1141 default: 1142 return -EINVAL; 1143 } 1144 1145 status = kmalloc(length, GFP_KERNEL); 1146 if (!status) 1147 return -ENOMEM; 1148 1149 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 1150 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD, 1151 target, status, length, USB_CTRL_GET_TIMEOUT); 1152 1153 switch (ret) { 1154 case 4: 1155 if (type != USB_STATUS_TYPE_PTM) { 1156 ret = -EIO; 1157 break; 1158 } 1159 1160 *(u32 *) data = le32_to_cpu(*(__le32 *) status); 1161 ret = 0; 1162 break; 1163 case 2: 1164 if (type != USB_STATUS_TYPE_STANDARD) { 1165 ret = -EIO; 1166 break; 1167 } 1168 1169 *(u16 *) data = le16_to_cpu(*(__le16 *) status); 1170 ret = 0; 1171 break; 1172 default: 1173 ret = -EIO; 1174 } 1175 1176 kfree(status); 1177 return ret; 1178 } 1179 EXPORT_SYMBOL_GPL(usb_get_status); 1180 1181 /** 1182 * usb_clear_halt - tells device to clear endpoint halt/stall condition 1183 * @dev: device whose endpoint is halted 1184 * @pipe: endpoint "pipe" being cleared 1185 * 1186 * Context: task context, might sleep. 1187 * 1188 * This is used to clear halt conditions for bulk and interrupt endpoints, 1189 * as reported by URB completion status. Endpoints that are halted are 1190 * sometimes referred to as being "stalled". Such endpoints are unable 1191 * to transmit or receive data until the halt status is cleared. Any URBs 1192 * queued for such an endpoint should normally be unlinked by the driver 1193 * before clearing the halt condition, as described in sections 5.7.5 1194 * and 5.8.5 of the USB 2.0 spec. 1195 * 1196 * Note that control and isochronous endpoints don't halt, although control 1197 * endpoints report "protocol stall" (for unsupported requests) using the 1198 * same status code used to report a true stall. 1199 * 1200 * This call is synchronous, and may not be used in an interrupt context. 1201 * If a thread in your driver uses this call, make sure your disconnect() 1202 * method can wait for it to complete. 1203 * 1204 * Return: Zero on success, or else the status code returned by the 1205 * underlying usb_control_msg() call. 1206 */ 1207 int usb_clear_halt(struct usb_device *dev, int pipe) 1208 { 1209 int result; 1210 int endp = usb_pipeendpoint(pipe); 1211 1212 if (usb_pipein(pipe)) 1213 endp |= USB_DIR_IN; 1214 1215 /* we don't care if it wasn't halted first. in fact some devices 1216 * (like some ibmcam model 1 units) seem to expect hosts to make 1217 * this request for iso endpoints, which can't halt! 1218 */ 1219 result = usb_control_msg_send(dev, 0, 1220 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1221 USB_ENDPOINT_HALT, endp, NULL, 0, 1222 USB_CTRL_SET_TIMEOUT, GFP_NOIO); 1223 1224 /* don't un-halt or force to DATA0 except on success */ 1225 if (result) 1226 return result; 1227 1228 /* NOTE: seems like Microsoft and Apple don't bother verifying 1229 * the clear "took", so some devices could lock up if you check... 1230 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1231 * 1232 * NOTE: make sure the logic here doesn't diverge much from 1233 * the copy in usb-storage, for as long as we need two copies. 1234 */ 1235 1236 usb_reset_endpoint(dev, endp); 1237 1238 return 0; 1239 } 1240 EXPORT_SYMBOL_GPL(usb_clear_halt); 1241 1242 static int create_intf_ep_devs(struct usb_interface *intf) 1243 { 1244 struct usb_device *udev = interface_to_usbdev(intf); 1245 struct usb_host_interface *alt = intf->cur_altsetting; 1246 int i; 1247 1248 if (intf->ep_devs_created || intf->unregistering) 1249 return 0; 1250 1251 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1252 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1253 intf->ep_devs_created = 1; 1254 return 0; 1255 } 1256 1257 static void remove_intf_ep_devs(struct usb_interface *intf) 1258 { 1259 struct usb_host_interface *alt = intf->cur_altsetting; 1260 int i; 1261 1262 if (!intf->ep_devs_created) 1263 return; 1264 1265 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1266 usb_remove_ep_devs(&alt->endpoint[i]); 1267 intf->ep_devs_created = 0; 1268 } 1269 1270 /** 1271 * usb_disable_endpoint -- Disable an endpoint by address 1272 * @dev: the device whose endpoint is being disabled 1273 * @epaddr: the endpoint's address. Endpoint number for output, 1274 * endpoint number + USB_DIR_IN for input 1275 * @reset_hardware: flag to erase any endpoint state stored in the 1276 * controller hardware 1277 * 1278 * Disables the endpoint for URB submission and nukes all pending URBs. 1279 * If @reset_hardware is set then also deallocates hcd/hardware state 1280 * for the endpoint. 1281 */ 1282 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1283 bool reset_hardware) 1284 { 1285 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1286 struct usb_host_endpoint *ep; 1287 1288 if (!dev) 1289 return; 1290 1291 if (usb_endpoint_out(epaddr)) { 1292 ep = dev->ep_out[epnum]; 1293 if (reset_hardware && epnum != 0) 1294 dev->ep_out[epnum] = NULL; 1295 } else { 1296 ep = dev->ep_in[epnum]; 1297 if (reset_hardware && epnum != 0) 1298 dev->ep_in[epnum] = NULL; 1299 } 1300 if (ep) { 1301 ep->enabled = 0; 1302 usb_hcd_flush_endpoint(dev, ep); 1303 if (reset_hardware) 1304 usb_hcd_disable_endpoint(dev, ep); 1305 } 1306 } 1307 1308 /** 1309 * usb_reset_endpoint - Reset an endpoint's state. 1310 * @dev: the device whose endpoint is to be reset 1311 * @epaddr: the endpoint's address. Endpoint number for output, 1312 * endpoint number + USB_DIR_IN for input 1313 * 1314 * Resets any host-side endpoint state such as the toggle bit, 1315 * sequence number or current window. 1316 */ 1317 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1318 { 1319 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1320 struct usb_host_endpoint *ep; 1321 1322 if (usb_endpoint_out(epaddr)) 1323 ep = dev->ep_out[epnum]; 1324 else 1325 ep = dev->ep_in[epnum]; 1326 if (ep) 1327 usb_hcd_reset_endpoint(dev, ep); 1328 } 1329 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1330 1331 1332 /** 1333 * usb_disable_interface -- Disable all endpoints for an interface 1334 * @dev: the device whose interface is being disabled 1335 * @intf: pointer to the interface descriptor 1336 * @reset_hardware: flag to erase any endpoint state stored in the 1337 * controller hardware 1338 * 1339 * Disables all the endpoints for the interface's current altsetting. 1340 */ 1341 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1342 bool reset_hardware) 1343 { 1344 struct usb_host_interface *alt = intf->cur_altsetting; 1345 int i; 1346 1347 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1348 usb_disable_endpoint(dev, 1349 alt->endpoint[i].desc.bEndpointAddress, 1350 reset_hardware); 1351 } 1352 } 1353 1354 /* 1355 * usb_disable_device_endpoints -- Disable all endpoints for a device 1356 * @dev: the device whose endpoints are being disabled 1357 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1358 */ 1359 static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0) 1360 { 1361 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1362 int i; 1363 1364 if (hcd->driver->check_bandwidth) { 1365 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1366 for (i = skip_ep0; i < 16; ++i) { 1367 usb_disable_endpoint(dev, i, false); 1368 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1369 } 1370 /* Remove endpoints from the host controller internal state */ 1371 mutex_lock(hcd->bandwidth_mutex); 1372 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1373 mutex_unlock(hcd->bandwidth_mutex); 1374 } 1375 /* Second pass: remove endpoint pointers */ 1376 for (i = skip_ep0; i < 16; ++i) { 1377 usb_disable_endpoint(dev, i, true); 1378 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1379 } 1380 } 1381 1382 /** 1383 * usb_disable_device - Disable all the endpoints for a USB device 1384 * @dev: the device whose endpoints are being disabled 1385 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1386 * 1387 * Disables all the device's endpoints, potentially including endpoint 0. 1388 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1389 * pending urbs) and usbcore state for the interfaces, so that usbcore 1390 * must usb_set_configuration() before any interfaces could be used. 1391 */ 1392 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1393 { 1394 int i; 1395 1396 /* getting rid of interfaces will disconnect 1397 * any drivers bound to them (a key side effect) 1398 */ 1399 if (dev->actconfig) { 1400 /* 1401 * FIXME: In order to avoid self-deadlock involving the 1402 * bandwidth_mutex, we have to mark all the interfaces 1403 * before unregistering any of them. 1404 */ 1405 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1406 dev->actconfig->interface[i]->unregistering = 1; 1407 1408 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1409 struct usb_interface *interface; 1410 1411 /* remove this interface if it has been registered */ 1412 interface = dev->actconfig->interface[i]; 1413 if (!device_is_registered(&interface->dev)) 1414 continue; 1415 dev_dbg(&dev->dev, "unregistering interface %s\n", 1416 dev_name(&interface->dev)); 1417 remove_intf_ep_devs(interface); 1418 device_del(&interface->dev); 1419 } 1420 1421 /* Now that the interfaces are unbound, nobody should 1422 * try to access them. 1423 */ 1424 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1425 put_device(&dev->actconfig->interface[i]->dev); 1426 dev->actconfig->interface[i] = NULL; 1427 } 1428 1429 usb_disable_usb2_hardware_lpm(dev); 1430 usb_unlocked_disable_lpm(dev); 1431 usb_disable_ltm(dev); 1432 1433 dev->actconfig = NULL; 1434 if (dev->state == USB_STATE_CONFIGURED) 1435 usb_set_device_state(dev, USB_STATE_ADDRESS); 1436 } 1437 1438 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1439 skip_ep0 ? "non-ep0" : "all"); 1440 1441 usb_disable_device_endpoints(dev, skip_ep0); 1442 } 1443 1444 /** 1445 * usb_enable_endpoint - Enable an endpoint for USB communications 1446 * @dev: the device whose interface is being enabled 1447 * @ep: the endpoint 1448 * @reset_ep: flag to reset the endpoint state 1449 * 1450 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1451 * For control endpoints, both the input and output sides are handled. 1452 */ 1453 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1454 bool reset_ep) 1455 { 1456 int epnum = usb_endpoint_num(&ep->desc); 1457 int is_out = usb_endpoint_dir_out(&ep->desc); 1458 int is_control = usb_endpoint_xfer_control(&ep->desc); 1459 1460 if (reset_ep) 1461 usb_hcd_reset_endpoint(dev, ep); 1462 if (is_out || is_control) 1463 dev->ep_out[epnum] = ep; 1464 if (!is_out || is_control) 1465 dev->ep_in[epnum] = ep; 1466 ep->enabled = 1; 1467 } 1468 1469 /** 1470 * usb_enable_interface - Enable all the endpoints for an interface 1471 * @dev: the device whose interface is being enabled 1472 * @intf: pointer to the interface descriptor 1473 * @reset_eps: flag to reset the endpoints' state 1474 * 1475 * Enables all the endpoints for the interface's current altsetting. 1476 */ 1477 void usb_enable_interface(struct usb_device *dev, 1478 struct usb_interface *intf, bool reset_eps) 1479 { 1480 struct usb_host_interface *alt = intf->cur_altsetting; 1481 int i; 1482 1483 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1484 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1485 } 1486 1487 /** 1488 * usb_set_interface - Makes a particular alternate setting be current 1489 * @dev: the device whose interface is being updated 1490 * @interface: the interface being updated 1491 * @alternate: the setting being chosen. 1492 * 1493 * Context: task context, might sleep. 1494 * 1495 * This is used to enable data transfers on interfaces that may not 1496 * be enabled by default. Not all devices support such configurability. 1497 * Only the driver bound to an interface may change its setting. 1498 * 1499 * Within any given configuration, each interface may have several 1500 * alternative settings. These are often used to control levels of 1501 * bandwidth consumption. For example, the default setting for a high 1502 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1503 * while interrupt transfers of up to 3KBytes per microframe are legal. 1504 * Also, isochronous endpoints may never be part of an 1505 * interface's default setting. To access such bandwidth, alternate 1506 * interface settings must be made current. 1507 * 1508 * Note that in the Linux USB subsystem, bandwidth associated with 1509 * an endpoint in a given alternate setting is not reserved until an URB 1510 * is submitted that needs that bandwidth. Some other operating systems 1511 * allocate bandwidth early, when a configuration is chosen. 1512 * 1513 * xHCI reserves bandwidth and configures the alternate setting in 1514 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting 1515 * may be disabled. Drivers cannot rely on any particular alternate 1516 * setting being in effect after a failure. 1517 * 1518 * This call is synchronous, and may not be used in an interrupt context. 1519 * Also, drivers must not change altsettings while urbs are scheduled for 1520 * endpoints in that interface; all such urbs must first be completed 1521 * (perhaps forced by unlinking). If a thread in your driver uses this call, 1522 * make sure your disconnect() method can wait for it to complete. 1523 * 1524 * Return: Zero on success, or else the status code returned by the 1525 * underlying usb_control_msg() call. 1526 */ 1527 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1528 { 1529 struct usb_interface *iface; 1530 struct usb_host_interface *alt; 1531 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1532 int i, ret, manual = 0; 1533 unsigned int epaddr; 1534 unsigned int pipe; 1535 1536 if (dev->state == USB_STATE_SUSPENDED) 1537 return -EHOSTUNREACH; 1538 1539 iface = usb_ifnum_to_if(dev, interface); 1540 if (!iface) { 1541 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1542 interface); 1543 return -EINVAL; 1544 } 1545 if (iface->unregistering) 1546 return -ENODEV; 1547 1548 alt = usb_altnum_to_altsetting(iface, alternate); 1549 if (!alt) { 1550 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1551 alternate); 1552 return -EINVAL; 1553 } 1554 /* 1555 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth, 1556 * including freeing dropped endpoint ring buffers. 1557 * Make sure the interface endpoints are flushed before that 1558 */ 1559 usb_disable_interface(dev, iface, false); 1560 1561 /* Make sure we have enough bandwidth for this alternate interface. 1562 * Remove the current alt setting and add the new alt setting. 1563 */ 1564 mutex_lock(hcd->bandwidth_mutex); 1565 /* Disable LPM, and re-enable it once the new alt setting is installed, 1566 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1567 */ 1568 if (usb_disable_lpm(dev)) { 1569 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__); 1570 mutex_unlock(hcd->bandwidth_mutex); 1571 return -ENOMEM; 1572 } 1573 /* Changing alt-setting also frees any allocated streams */ 1574 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++) 1575 iface->cur_altsetting->endpoint[i].streams = 0; 1576 1577 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1578 if (ret < 0) { 1579 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1580 alternate); 1581 usb_enable_lpm(dev); 1582 mutex_unlock(hcd->bandwidth_mutex); 1583 return ret; 1584 } 1585 1586 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1587 ret = -EPIPE; 1588 else 1589 ret = usb_control_msg_send(dev, 0, 1590 USB_REQ_SET_INTERFACE, 1591 USB_RECIP_INTERFACE, alternate, 1592 interface, NULL, 0, 5000, 1593 GFP_NOIO); 1594 1595 /* 9.4.10 says devices don't need this and are free to STALL the 1596 * request if the interface only has one alternate setting. 1597 */ 1598 if (ret == -EPIPE && iface->num_altsetting == 1) { 1599 dev_dbg(&dev->dev, 1600 "manual set_interface for iface %d, alt %d\n", 1601 interface, alternate); 1602 manual = 1; 1603 } else if (ret) { 1604 /* Re-instate the old alt setting */ 1605 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1606 usb_enable_lpm(dev); 1607 mutex_unlock(hcd->bandwidth_mutex); 1608 return ret; 1609 } 1610 mutex_unlock(hcd->bandwidth_mutex); 1611 1612 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1613 * when they implement async or easily-killable versions of this or 1614 * other "should-be-internal" functions (like clear_halt). 1615 * should hcd+usbcore postprocess control requests? 1616 */ 1617 1618 /* prevent submissions using previous endpoint settings */ 1619 if (iface->cur_altsetting != alt) { 1620 remove_intf_ep_devs(iface); 1621 usb_remove_sysfs_intf_files(iface); 1622 } 1623 usb_disable_interface(dev, iface, true); 1624 1625 iface->cur_altsetting = alt; 1626 1627 /* Now that the interface is installed, re-enable LPM. */ 1628 usb_unlocked_enable_lpm(dev); 1629 1630 /* If the interface only has one altsetting and the device didn't 1631 * accept the request, we attempt to carry out the equivalent action 1632 * by manually clearing the HALT feature for each endpoint in the 1633 * new altsetting. 1634 */ 1635 if (manual) { 1636 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1637 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1638 pipe = __create_pipe(dev, 1639 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1640 (usb_endpoint_out(epaddr) ? 1641 USB_DIR_OUT : USB_DIR_IN); 1642 1643 usb_clear_halt(dev, pipe); 1644 } 1645 } 1646 1647 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1648 * 1649 * Note: 1650 * Despite EP0 is always present in all interfaces/AS, the list of 1651 * endpoints from the descriptor does not contain EP0. Due to its 1652 * omnipresence one might expect EP0 being considered "affected" by 1653 * any SetInterface request and hence assume toggles need to be reset. 1654 * However, EP0 toggles are re-synced for every individual transfer 1655 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1656 * (Likewise, EP0 never "halts" on well designed devices.) 1657 */ 1658 usb_enable_interface(dev, iface, true); 1659 if (device_is_registered(&iface->dev)) { 1660 usb_create_sysfs_intf_files(iface); 1661 create_intf_ep_devs(iface); 1662 } 1663 return 0; 1664 } 1665 EXPORT_SYMBOL_GPL(usb_set_interface); 1666 1667 /** 1668 * usb_reset_configuration - lightweight device reset 1669 * @dev: the device whose configuration is being reset 1670 * 1671 * This issues a standard SET_CONFIGURATION request to the device using 1672 * the current configuration. The effect is to reset most USB-related 1673 * state in the device, including interface altsettings (reset to zero), 1674 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1675 * endpoints). Other usbcore state is unchanged, including bindings of 1676 * usb device drivers to interfaces. 1677 * 1678 * Because this affects multiple interfaces, avoid using this with composite 1679 * (multi-interface) devices. Instead, the driver for each interface may 1680 * use usb_set_interface() on the interfaces it claims. Be careful though; 1681 * some devices don't support the SET_INTERFACE request, and others won't 1682 * reset all the interface state (notably endpoint state). Resetting the whole 1683 * configuration would affect other drivers' interfaces. 1684 * 1685 * The caller must own the device lock. 1686 * 1687 * Return: Zero on success, else a negative error code. 1688 * 1689 * If this routine fails the device will probably be in an unusable state 1690 * with endpoints disabled, and interfaces only partially enabled. 1691 */ 1692 int usb_reset_configuration(struct usb_device *dev) 1693 { 1694 int i, retval; 1695 struct usb_host_config *config; 1696 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1697 1698 if (dev->state == USB_STATE_SUSPENDED) 1699 return -EHOSTUNREACH; 1700 1701 /* caller must have locked the device and must own 1702 * the usb bus readlock (so driver bindings are stable); 1703 * calls during probe() are fine 1704 */ 1705 1706 usb_disable_device_endpoints(dev, 1); /* skip ep0*/ 1707 1708 config = dev->actconfig; 1709 retval = 0; 1710 mutex_lock(hcd->bandwidth_mutex); 1711 /* Disable LPM, and re-enable it once the configuration is reset, so 1712 * that the xHCI driver can recalculate the U1/U2 timeouts. 1713 */ 1714 if (usb_disable_lpm(dev)) { 1715 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 1716 mutex_unlock(hcd->bandwidth_mutex); 1717 return -ENOMEM; 1718 } 1719 1720 /* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */ 1721 retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL); 1722 if (retval < 0) { 1723 usb_enable_lpm(dev); 1724 mutex_unlock(hcd->bandwidth_mutex); 1725 return retval; 1726 } 1727 retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0, 1728 config->desc.bConfigurationValue, 0, 1729 NULL, 0, USB_CTRL_SET_TIMEOUT, 1730 GFP_NOIO); 1731 if (retval) { 1732 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1733 usb_enable_lpm(dev); 1734 mutex_unlock(hcd->bandwidth_mutex); 1735 return retval; 1736 } 1737 mutex_unlock(hcd->bandwidth_mutex); 1738 1739 /* re-init hc/hcd interface/endpoint state */ 1740 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1741 struct usb_interface *intf = config->interface[i]; 1742 struct usb_host_interface *alt; 1743 1744 alt = usb_altnum_to_altsetting(intf, 0); 1745 1746 /* No altsetting 0? We'll assume the first altsetting. 1747 * We could use a GetInterface call, but if a device is 1748 * so non-compliant that it doesn't have altsetting 0 1749 * then I wouldn't trust its reply anyway. 1750 */ 1751 if (!alt) 1752 alt = &intf->altsetting[0]; 1753 1754 if (alt != intf->cur_altsetting) { 1755 remove_intf_ep_devs(intf); 1756 usb_remove_sysfs_intf_files(intf); 1757 } 1758 intf->cur_altsetting = alt; 1759 usb_enable_interface(dev, intf, true); 1760 if (device_is_registered(&intf->dev)) { 1761 usb_create_sysfs_intf_files(intf); 1762 create_intf_ep_devs(intf); 1763 } 1764 } 1765 /* Now that the interfaces are installed, re-enable LPM. */ 1766 usb_unlocked_enable_lpm(dev); 1767 return 0; 1768 } 1769 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1770 1771 static void usb_release_interface(struct device *dev) 1772 { 1773 struct usb_interface *intf = to_usb_interface(dev); 1774 struct usb_interface_cache *intfc = 1775 altsetting_to_usb_interface_cache(intf->altsetting); 1776 1777 kref_put(&intfc->ref, usb_release_interface_cache); 1778 usb_put_dev(interface_to_usbdev(intf)); 1779 of_node_put(dev->of_node); 1780 kfree(intf); 1781 } 1782 1783 /* 1784 * usb_deauthorize_interface - deauthorize an USB interface 1785 * 1786 * @intf: USB interface structure 1787 */ 1788 void usb_deauthorize_interface(struct usb_interface *intf) 1789 { 1790 struct device *dev = &intf->dev; 1791 1792 device_lock(dev->parent); 1793 1794 if (intf->authorized) { 1795 device_lock(dev); 1796 intf->authorized = 0; 1797 device_unlock(dev); 1798 1799 usb_forced_unbind_intf(intf); 1800 } 1801 1802 device_unlock(dev->parent); 1803 } 1804 1805 /* 1806 * usb_authorize_interface - authorize an USB interface 1807 * 1808 * @intf: USB interface structure 1809 */ 1810 void usb_authorize_interface(struct usb_interface *intf) 1811 { 1812 struct device *dev = &intf->dev; 1813 1814 if (!intf->authorized) { 1815 device_lock(dev); 1816 intf->authorized = 1; /* authorize interface */ 1817 device_unlock(dev); 1818 } 1819 } 1820 1821 static int usb_if_uevent(const struct device *dev, struct kobj_uevent_env *env) 1822 { 1823 const struct usb_device *usb_dev; 1824 const struct usb_interface *intf; 1825 const struct usb_host_interface *alt; 1826 1827 intf = to_usb_interface(dev); 1828 usb_dev = interface_to_usbdev(intf); 1829 alt = intf->cur_altsetting; 1830 1831 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1832 alt->desc.bInterfaceClass, 1833 alt->desc.bInterfaceSubClass, 1834 alt->desc.bInterfaceProtocol)) 1835 return -ENOMEM; 1836 1837 if (add_uevent_var(env, 1838 "MODALIAS=usb:" 1839 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1840 le16_to_cpu(usb_dev->descriptor.idVendor), 1841 le16_to_cpu(usb_dev->descriptor.idProduct), 1842 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1843 usb_dev->descriptor.bDeviceClass, 1844 usb_dev->descriptor.bDeviceSubClass, 1845 usb_dev->descriptor.bDeviceProtocol, 1846 alt->desc.bInterfaceClass, 1847 alt->desc.bInterfaceSubClass, 1848 alt->desc.bInterfaceProtocol, 1849 alt->desc.bInterfaceNumber)) 1850 return -ENOMEM; 1851 1852 return 0; 1853 } 1854 1855 const struct device_type usb_if_device_type = { 1856 .name = "usb_interface", 1857 .release = usb_release_interface, 1858 .uevent = usb_if_uevent, 1859 }; 1860 1861 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1862 struct usb_host_config *config, 1863 u8 inum) 1864 { 1865 struct usb_interface_assoc_descriptor *retval = NULL; 1866 struct usb_interface_assoc_descriptor *intf_assoc; 1867 int first_intf; 1868 int last_intf; 1869 int i; 1870 1871 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1872 intf_assoc = config->intf_assoc[i]; 1873 if (intf_assoc->bInterfaceCount == 0) 1874 continue; 1875 1876 first_intf = intf_assoc->bFirstInterface; 1877 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1878 if (inum >= first_intf && inum <= last_intf) { 1879 if (!retval) 1880 retval = intf_assoc; 1881 else 1882 dev_err(&dev->dev, "Interface #%d referenced" 1883 " by multiple IADs\n", inum); 1884 } 1885 } 1886 1887 return retval; 1888 } 1889 1890 1891 /* 1892 * Internal function to queue a device reset 1893 * See usb_queue_reset_device() for more details 1894 */ 1895 static void __usb_queue_reset_device(struct work_struct *ws) 1896 { 1897 int rc; 1898 struct usb_interface *iface = 1899 container_of(ws, struct usb_interface, reset_ws); 1900 struct usb_device *udev = interface_to_usbdev(iface); 1901 1902 rc = usb_lock_device_for_reset(udev, iface); 1903 if (rc >= 0) { 1904 usb_reset_device(udev); 1905 usb_unlock_device(udev); 1906 } 1907 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */ 1908 } 1909 1910 /* 1911 * Internal function to set the wireless_status sysfs attribute 1912 * See usb_set_wireless_status() for more details 1913 */ 1914 static void __usb_wireless_status_intf(struct work_struct *ws) 1915 { 1916 struct usb_interface *iface = 1917 container_of(ws, struct usb_interface, wireless_status_work); 1918 1919 device_lock(iface->dev.parent); 1920 if (iface->sysfs_files_created) 1921 usb_update_wireless_status_attr(iface); 1922 device_unlock(iface->dev.parent); 1923 usb_put_intf(iface); /* Undo _get_ in usb_set_wireless_status() */ 1924 } 1925 1926 /** 1927 * usb_set_wireless_status - sets the wireless_status struct member 1928 * @iface: the interface to modify 1929 * @status: the new wireless status 1930 * 1931 * Set the wireless_status struct member to the new value, and emit 1932 * sysfs changes as necessary. 1933 * 1934 * Returns: 0 on success, -EALREADY if already set. 1935 */ 1936 int usb_set_wireless_status(struct usb_interface *iface, 1937 enum usb_wireless_status status) 1938 { 1939 if (iface->wireless_status == status) 1940 return -EALREADY; 1941 1942 usb_get_intf(iface); 1943 iface->wireless_status = status; 1944 schedule_work(&iface->wireless_status_work); 1945 1946 return 0; 1947 } 1948 EXPORT_SYMBOL_GPL(usb_set_wireless_status); 1949 1950 /* 1951 * usb_set_configuration - Makes a particular device setting be current 1952 * @dev: the device whose configuration is being updated 1953 * @configuration: the configuration being chosen. 1954 * 1955 * Context: task context, might sleep. Caller holds device lock. 1956 * 1957 * This is used to enable non-default device modes. Not all devices 1958 * use this kind of configurability; many devices only have one 1959 * configuration. 1960 * 1961 * @configuration is the value of the configuration to be installed. 1962 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1963 * must be non-zero; a value of zero indicates that the device in 1964 * unconfigured. However some devices erroneously use 0 as one of their 1965 * configuration values. To help manage such devices, this routine will 1966 * accept @configuration = -1 as indicating the device should be put in 1967 * an unconfigured state. 1968 * 1969 * USB device configurations may affect Linux interoperability, 1970 * power consumption and the functionality available. For example, 1971 * the default configuration is limited to using 100mA of bus power, 1972 * so that when certain device functionality requires more power, 1973 * and the device is bus powered, that functionality should be in some 1974 * non-default device configuration. Other device modes may also be 1975 * reflected as configuration options, such as whether two ISDN 1976 * channels are available independently; and choosing between open 1977 * standard device protocols (like CDC) or proprietary ones. 1978 * 1979 * Note that a non-authorized device (dev->authorized == 0) will only 1980 * be put in unconfigured mode. 1981 * 1982 * Note that USB has an additional level of device configurability, 1983 * associated with interfaces. That configurability is accessed using 1984 * usb_set_interface(). 1985 * 1986 * This call is synchronous. The calling context must be able to sleep, 1987 * must own the device lock, and must not hold the driver model's USB 1988 * bus mutex; usb interface driver probe() methods cannot use this routine. 1989 * 1990 * Returns zero on success, or else the status code returned by the 1991 * underlying call that failed. On successful completion, each interface 1992 * in the original device configuration has been destroyed, and each one 1993 * in the new configuration has been probed by all relevant usb device 1994 * drivers currently known to the kernel. 1995 */ 1996 int usb_set_configuration(struct usb_device *dev, int configuration) 1997 { 1998 int i, ret; 1999 struct usb_host_config *cp = NULL; 2000 struct usb_interface **new_interfaces = NULL; 2001 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 2002 int n, nintf; 2003 2004 if (dev->authorized == 0 || configuration == -1) 2005 configuration = 0; 2006 else { 2007 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 2008 if (dev->config[i].desc.bConfigurationValue == 2009 configuration) { 2010 cp = &dev->config[i]; 2011 break; 2012 } 2013 } 2014 } 2015 if ((!cp && configuration != 0)) 2016 return -EINVAL; 2017 2018 /* The USB spec says configuration 0 means unconfigured. 2019 * But if a device includes a configuration numbered 0, 2020 * we will accept it as a correctly configured state. 2021 * Use -1 if you really want to unconfigure the device. 2022 */ 2023 if (cp && configuration == 0) 2024 dev_warn(&dev->dev, "config 0 descriptor??\n"); 2025 2026 /* Allocate memory for new interfaces before doing anything else, 2027 * so that if we run out then nothing will have changed. */ 2028 n = nintf = 0; 2029 if (cp) { 2030 nintf = cp->desc.bNumInterfaces; 2031 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces), 2032 GFP_NOIO); 2033 if (!new_interfaces) 2034 return -ENOMEM; 2035 2036 for (; n < nintf; ++n) { 2037 new_interfaces[n] = kzalloc( 2038 sizeof(struct usb_interface), 2039 GFP_NOIO); 2040 if (!new_interfaces[n]) { 2041 ret = -ENOMEM; 2042 free_interfaces: 2043 while (--n >= 0) 2044 kfree(new_interfaces[n]); 2045 kfree(new_interfaces); 2046 return ret; 2047 } 2048 } 2049 2050 i = dev->bus_mA - usb_get_max_power(dev, cp); 2051 if (i < 0) 2052 dev_warn(&dev->dev, "new config #%d exceeds power " 2053 "limit by %dmA\n", 2054 configuration, -i); 2055 } 2056 2057 /* Wake up the device so we can send it the Set-Config request */ 2058 ret = usb_autoresume_device(dev); 2059 if (ret) 2060 goto free_interfaces; 2061 2062 /* if it's already configured, clear out old state first. 2063 * getting rid of old interfaces means unbinding their drivers. 2064 */ 2065 if (dev->state != USB_STATE_ADDRESS) 2066 usb_disable_device(dev, 1); /* Skip ep0 */ 2067 2068 /* Get rid of pending async Set-Config requests for this device */ 2069 cancel_async_set_config(dev); 2070 2071 /* Make sure we have bandwidth (and available HCD resources) for this 2072 * configuration. Remove endpoints from the schedule if we're dropping 2073 * this configuration to set configuration 0. After this point, the 2074 * host controller will not allow submissions to dropped endpoints. If 2075 * this call fails, the device state is unchanged. 2076 */ 2077 mutex_lock(hcd->bandwidth_mutex); 2078 /* Disable LPM, and re-enable it once the new configuration is 2079 * installed, so that the xHCI driver can recalculate the U1/U2 2080 * timeouts. 2081 */ 2082 if (dev->actconfig && usb_disable_lpm(dev)) { 2083 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 2084 mutex_unlock(hcd->bandwidth_mutex); 2085 ret = -ENOMEM; 2086 goto free_interfaces; 2087 } 2088 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 2089 if (ret < 0) { 2090 if (dev->actconfig) 2091 usb_enable_lpm(dev); 2092 mutex_unlock(hcd->bandwidth_mutex); 2093 usb_autosuspend_device(dev); 2094 goto free_interfaces; 2095 } 2096 2097 /* 2098 * Initialize the new interface structures and the 2099 * hc/hcd/usbcore interface/endpoint state. 2100 */ 2101 for (i = 0; i < nintf; ++i) { 2102 struct usb_interface_cache *intfc; 2103 struct usb_interface *intf; 2104 struct usb_host_interface *alt; 2105 u8 ifnum; 2106 2107 cp->interface[i] = intf = new_interfaces[i]; 2108 intfc = cp->intf_cache[i]; 2109 intf->altsetting = intfc->altsetting; 2110 intf->num_altsetting = intfc->num_altsetting; 2111 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd); 2112 kref_get(&intfc->ref); 2113 2114 alt = usb_altnum_to_altsetting(intf, 0); 2115 2116 /* No altsetting 0? We'll assume the first altsetting. 2117 * We could use a GetInterface call, but if a device is 2118 * so non-compliant that it doesn't have altsetting 0 2119 * then I wouldn't trust its reply anyway. 2120 */ 2121 if (!alt) 2122 alt = &intf->altsetting[0]; 2123 2124 ifnum = alt->desc.bInterfaceNumber; 2125 intf->intf_assoc = find_iad(dev, cp, ifnum); 2126 intf->cur_altsetting = alt; 2127 usb_enable_interface(dev, intf, true); 2128 intf->dev.parent = &dev->dev; 2129 if (usb_of_has_combined_node(dev)) { 2130 device_set_of_node_from_dev(&intf->dev, &dev->dev); 2131 } else { 2132 intf->dev.of_node = usb_of_get_interface_node(dev, 2133 configuration, ifnum); 2134 } 2135 ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev)); 2136 intf->dev.driver = NULL; 2137 intf->dev.bus = &usb_bus_type; 2138 intf->dev.type = &usb_if_device_type; 2139 intf->dev.groups = usb_interface_groups; 2140 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 2141 INIT_WORK(&intf->wireless_status_work, __usb_wireless_status_intf); 2142 intf->minor = -1; 2143 device_initialize(&intf->dev); 2144 pm_runtime_no_callbacks(&intf->dev); 2145 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum, 2146 dev->devpath, configuration, ifnum); 2147 usb_get_dev(dev); 2148 } 2149 kfree(new_interfaces); 2150 2151 ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0, 2152 configuration, 0, NULL, 0, 2153 USB_CTRL_SET_TIMEOUT, GFP_NOIO); 2154 if (ret && cp) { 2155 /* 2156 * All the old state is gone, so what else can we do? 2157 * The device is probably useless now anyway. 2158 */ 2159 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 2160 for (i = 0; i < nintf; ++i) { 2161 usb_disable_interface(dev, cp->interface[i], true); 2162 put_device(&cp->interface[i]->dev); 2163 cp->interface[i] = NULL; 2164 } 2165 cp = NULL; 2166 } 2167 2168 dev->actconfig = cp; 2169 mutex_unlock(hcd->bandwidth_mutex); 2170 2171 if (!cp) { 2172 usb_set_device_state(dev, USB_STATE_ADDRESS); 2173 2174 /* Leave LPM disabled while the device is unconfigured. */ 2175 usb_autosuspend_device(dev); 2176 return ret; 2177 } 2178 usb_set_device_state(dev, USB_STATE_CONFIGURED); 2179 2180 if (cp->string == NULL && 2181 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 2182 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 2183 2184 /* Now that the interfaces are installed, re-enable LPM. */ 2185 usb_unlocked_enable_lpm(dev); 2186 /* Enable LTM if it was turned off by usb_disable_device. */ 2187 usb_enable_ltm(dev); 2188 2189 /* Now that all the interfaces are set up, register them 2190 * to trigger binding of drivers to interfaces. probe() 2191 * routines may install different altsettings and may 2192 * claim() any interfaces not yet bound. Many class drivers 2193 * need that: CDC, audio, video, etc. 2194 */ 2195 for (i = 0; i < nintf; ++i) { 2196 struct usb_interface *intf = cp->interface[i]; 2197 2198 if (intf->dev.of_node && 2199 !of_device_is_available(intf->dev.of_node)) { 2200 dev_info(&dev->dev, "skipping disabled interface %d\n", 2201 intf->cur_altsetting->desc.bInterfaceNumber); 2202 continue; 2203 } 2204 2205 dev_dbg(&dev->dev, 2206 "adding %s (config #%d, interface %d)\n", 2207 dev_name(&intf->dev), configuration, 2208 intf->cur_altsetting->desc.bInterfaceNumber); 2209 device_enable_async_suspend(&intf->dev); 2210 ret = device_add(&intf->dev); 2211 if (ret != 0) { 2212 dev_err(&dev->dev, "device_add(%s) --> %d\n", 2213 dev_name(&intf->dev), ret); 2214 continue; 2215 } 2216 create_intf_ep_devs(intf); 2217 } 2218 2219 usb_autosuspend_device(dev); 2220 return 0; 2221 } 2222 EXPORT_SYMBOL_GPL(usb_set_configuration); 2223 2224 static LIST_HEAD(set_config_list); 2225 static DEFINE_SPINLOCK(set_config_lock); 2226 2227 struct set_config_request { 2228 struct usb_device *udev; 2229 int config; 2230 struct work_struct work; 2231 struct list_head node; 2232 }; 2233 2234 /* Worker routine for usb_driver_set_configuration() */ 2235 static void driver_set_config_work(struct work_struct *work) 2236 { 2237 struct set_config_request *req = 2238 container_of(work, struct set_config_request, work); 2239 struct usb_device *udev = req->udev; 2240 2241 usb_lock_device(udev); 2242 spin_lock(&set_config_lock); 2243 list_del(&req->node); 2244 spin_unlock(&set_config_lock); 2245 2246 if (req->config >= -1) /* Is req still valid? */ 2247 usb_set_configuration(udev, req->config); 2248 usb_unlock_device(udev); 2249 usb_put_dev(udev); 2250 kfree(req); 2251 } 2252 2253 /* Cancel pending Set-Config requests for a device whose configuration 2254 * was just changed 2255 */ 2256 static void cancel_async_set_config(struct usb_device *udev) 2257 { 2258 struct set_config_request *req; 2259 2260 spin_lock(&set_config_lock); 2261 list_for_each_entry(req, &set_config_list, node) { 2262 if (req->udev == udev) 2263 req->config = -999; /* Mark as cancelled */ 2264 } 2265 spin_unlock(&set_config_lock); 2266 } 2267 2268 /** 2269 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 2270 * @udev: the device whose configuration is being updated 2271 * @config: the configuration being chosen. 2272 * Context: In process context, must be able to sleep 2273 * 2274 * Device interface drivers are not allowed to change device configurations. 2275 * This is because changing configurations will destroy the interface the 2276 * driver is bound to and create new ones; it would be like a floppy-disk 2277 * driver telling the computer to replace the floppy-disk drive with a 2278 * tape drive! 2279 * 2280 * Still, in certain specialized circumstances the need may arise. This 2281 * routine gets around the normal restrictions by using a work thread to 2282 * submit the change-config request. 2283 * 2284 * Return: 0 if the request was successfully queued, error code otherwise. 2285 * The caller has no way to know whether the queued request will eventually 2286 * succeed. 2287 */ 2288 int usb_driver_set_configuration(struct usb_device *udev, int config) 2289 { 2290 struct set_config_request *req; 2291 2292 req = kmalloc(sizeof(*req), GFP_KERNEL); 2293 if (!req) 2294 return -ENOMEM; 2295 req->udev = udev; 2296 req->config = config; 2297 INIT_WORK(&req->work, driver_set_config_work); 2298 2299 spin_lock(&set_config_lock); 2300 list_add(&req->node, &set_config_list); 2301 spin_unlock(&set_config_lock); 2302 2303 usb_get_dev(udev); 2304 schedule_work(&req->work); 2305 return 0; 2306 } 2307 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2308 2309 /** 2310 * cdc_parse_cdc_header - parse the extra headers present in CDC devices 2311 * @hdr: the place to put the results of the parsing 2312 * @intf: the interface for which parsing is requested 2313 * @buffer: pointer to the extra headers to be parsed 2314 * @buflen: length of the extra headers 2315 * 2316 * This evaluates the extra headers present in CDC devices which 2317 * bind the interfaces for data and control and provide details 2318 * about the capabilities of the device. 2319 * 2320 * Return: number of descriptors parsed or -EINVAL 2321 * if the header is contradictory beyond salvage 2322 */ 2323 2324 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr, 2325 struct usb_interface *intf, 2326 u8 *buffer, 2327 int buflen) 2328 { 2329 /* duplicates are ignored */ 2330 struct usb_cdc_union_desc *union_header = NULL; 2331 2332 /* duplicates are not tolerated */ 2333 struct usb_cdc_header_desc *header = NULL; 2334 struct usb_cdc_ether_desc *ether = NULL; 2335 struct usb_cdc_mdlm_detail_desc *detail = NULL; 2336 struct usb_cdc_mdlm_desc *desc = NULL; 2337 2338 unsigned int elength; 2339 int cnt = 0; 2340 2341 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header)); 2342 hdr->phonet_magic_present = false; 2343 while (buflen > 0) { 2344 elength = buffer[0]; 2345 if (!elength) { 2346 dev_err(&intf->dev, "skipping garbage byte\n"); 2347 elength = 1; 2348 goto next_desc; 2349 } 2350 if ((buflen < elength) || (elength < 3)) { 2351 dev_err(&intf->dev, "invalid descriptor buffer length\n"); 2352 break; 2353 } 2354 if (buffer[1] != USB_DT_CS_INTERFACE) { 2355 dev_err(&intf->dev, "skipping garbage\n"); 2356 goto next_desc; 2357 } 2358 2359 switch (buffer[2]) { 2360 case USB_CDC_UNION_TYPE: /* we've found it */ 2361 if (elength < sizeof(struct usb_cdc_union_desc)) 2362 goto next_desc; 2363 if (union_header) { 2364 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n"); 2365 goto next_desc; 2366 } 2367 union_header = (struct usb_cdc_union_desc *)buffer; 2368 break; 2369 case USB_CDC_COUNTRY_TYPE: 2370 if (elength < sizeof(struct usb_cdc_country_functional_desc)) 2371 goto next_desc; 2372 hdr->usb_cdc_country_functional_desc = 2373 (struct usb_cdc_country_functional_desc *)buffer; 2374 break; 2375 case USB_CDC_HEADER_TYPE: 2376 if (elength != sizeof(struct usb_cdc_header_desc)) 2377 goto next_desc; 2378 if (header) 2379 return -EINVAL; 2380 header = (struct usb_cdc_header_desc *)buffer; 2381 break; 2382 case USB_CDC_ACM_TYPE: 2383 if (elength < sizeof(struct usb_cdc_acm_descriptor)) 2384 goto next_desc; 2385 hdr->usb_cdc_acm_descriptor = 2386 (struct usb_cdc_acm_descriptor *)buffer; 2387 break; 2388 case USB_CDC_ETHERNET_TYPE: 2389 if (elength != sizeof(struct usb_cdc_ether_desc)) 2390 goto next_desc; 2391 if (ether) 2392 return -EINVAL; 2393 ether = (struct usb_cdc_ether_desc *)buffer; 2394 break; 2395 case USB_CDC_CALL_MANAGEMENT_TYPE: 2396 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor)) 2397 goto next_desc; 2398 hdr->usb_cdc_call_mgmt_descriptor = 2399 (struct usb_cdc_call_mgmt_descriptor *)buffer; 2400 break; 2401 case USB_CDC_DMM_TYPE: 2402 if (elength < sizeof(struct usb_cdc_dmm_desc)) 2403 goto next_desc; 2404 hdr->usb_cdc_dmm_desc = 2405 (struct usb_cdc_dmm_desc *)buffer; 2406 break; 2407 case USB_CDC_MDLM_TYPE: 2408 if (elength < sizeof(struct usb_cdc_mdlm_desc)) 2409 goto next_desc; 2410 if (desc) 2411 return -EINVAL; 2412 desc = (struct usb_cdc_mdlm_desc *)buffer; 2413 break; 2414 case USB_CDC_MDLM_DETAIL_TYPE: 2415 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc)) 2416 goto next_desc; 2417 if (detail) 2418 return -EINVAL; 2419 detail = (struct usb_cdc_mdlm_detail_desc *)buffer; 2420 break; 2421 case USB_CDC_NCM_TYPE: 2422 if (elength < sizeof(struct usb_cdc_ncm_desc)) 2423 goto next_desc; 2424 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer; 2425 break; 2426 case USB_CDC_MBIM_TYPE: 2427 if (elength < sizeof(struct usb_cdc_mbim_desc)) 2428 goto next_desc; 2429 2430 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer; 2431 break; 2432 case USB_CDC_MBIM_EXTENDED_TYPE: 2433 if (elength < sizeof(struct usb_cdc_mbim_extended_desc)) 2434 break; 2435 hdr->usb_cdc_mbim_extended_desc = 2436 (struct usb_cdc_mbim_extended_desc *)buffer; 2437 break; 2438 case CDC_PHONET_MAGIC_NUMBER: 2439 hdr->phonet_magic_present = true; 2440 break; 2441 default: 2442 /* 2443 * there are LOTS more CDC descriptors that 2444 * could legitimately be found here. 2445 */ 2446 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n", 2447 buffer[2], elength); 2448 goto next_desc; 2449 } 2450 cnt++; 2451 next_desc: 2452 buflen -= elength; 2453 buffer += elength; 2454 } 2455 hdr->usb_cdc_union_desc = union_header; 2456 hdr->usb_cdc_header_desc = header; 2457 hdr->usb_cdc_mdlm_detail_desc = detail; 2458 hdr->usb_cdc_mdlm_desc = desc; 2459 hdr->usb_cdc_ether_desc = ether; 2460 return cnt; 2461 } 2462 2463 EXPORT_SYMBOL(cdc_parse_cdc_header); 2464