xref: /linux/drivers/usb/core/message.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/timer.h>
11 #include <linux/ctype.h>
12 #include <linux/nls.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/quirks.h>
16 #include <linux/usb/hcd.h>	/* for usbcore internals */
17 #include <asm/byteorder.h>
18 
19 #include "usb.h"
20 
21 static void cancel_async_set_config(struct usb_device *udev);
22 
23 struct api_context {
24 	struct completion	done;
25 	int			status;
26 };
27 
28 static void usb_api_blocking_completion(struct urb *urb)
29 {
30 	struct api_context *ctx = urb->context;
31 
32 	ctx->status = urb->status;
33 	complete(&ctx->done);
34 }
35 
36 
37 /*
38  * Starts urb and waits for completion or timeout. Note that this call
39  * is NOT interruptible. Many device driver i/o requests should be
40  * interruptible and therefore these drivers should implement their
41  * own interruptible routines.
42  */
43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
44 {
45 	struct api_context ctx;
46 	unsigned long expire;
47 	int retval;
48 
49 	init_completion(&ctx.done);
50 	urb->context = &ctx;
51 	urb->actual_length = 0;
52 	retval = usb_submit_urb(urb, GFP_NOIO);
53 	if (unlikely(retval))
54 		goto out;
55 
56 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 		usb_kill_urb(urb);
59 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
60 
61 		dev_dbg(&urb->dev->dev,
62 			"%s timed out on ep%d%s len=%u/%u\n",
63 			current->comm,
64 			usb_endpoint_num(&urb->ep->desc),
65 			usb_urb_dir_in(urb) ? "in" : "out",
66 			urb->actual_length,
67 			urb->transfer_buffer_length);
68 	} else
69 		retval = ctx.status;
70 out:
71 	if (actual_length)
72 		*actual_length = urb->actual_length;
73 
74 	usb_free_urb(urb);
75 	return retval;
76 }
77 
78 /*-------------------------------------------------------------------*/
79 /* returns status (negative) or length (positive) */
80 static int usb_internal_control_msg(struct usb_device *usb_dev,
81 				    unsigned int pipe,
82 				    struct usb_ctrlrequest *cmd,
83 				    void *data, int len, int timeout)
84 {
85 	struct urb *urb;
86 	int retv;
87 	int length;
88 
89 	urb = usb_alloc_urb(0, GFP_NOIO);
90 	if (!urb)
91 		return -ENOMEM;
92 
93 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 			     len, usb_api_blocking_completion, NULL);
95 
96 	retv = usb_start_wait_urb(urb, timeout, &length);
97 	if (retv < 0)
98 		return retv;
99 	else
100 		return length;
101 }
102 
103 /**
104  * usb_control_msg - Builds a control urb, sends it off and waits for completion
105  * @dev: pointer to the usb device to send the message to
106  * @pipe: endpoint "pipe" to send the message to
107  * @request: USB message request value
108  * @requesttype: USB message request type value
109  * @value: USB message value
110  * @index: USB message index value
111  * @data: pointer to the data to send
112  * @size: length in bytes of the data to send
113  * @timeout: time in msecs to wait for the message to complete before timing
114  *	out (if 0 the wait is forever)
115  *
116  * Context: !in_interrupt ()
117  *
118  * This function sends a simple control message to a specified endpoint and
119  * waits for the message to complete, or timeout.
120  *
121  * Don't use this function from within an interrupt context, like a bottom half
122  * handler.  If you need an asynchronous message, or need to send a message
123  * from within interrupt context, use usb_submit_urb().
124  * If a thread in your driver uses this call, make sure your disconnect()
125  * method can wait for it to complete.  Since you don't have a handle on the
126  * URB used, you can't cancel the request.
127  *
128  * Return: If successful, the number of bytes transferred. Otherwise, a negative
129  * error number.
130  */
131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 		    __u8 requesttype, __u16 value, __u16 index, void *data,
133 		    __u16 size, int timeout)
134 {
135 	struct usb_ctrlrequest *dr;
136 	int ret;
137 
138 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 	if (!dr)
140 		return -ENOMEM;
141 
142 	dr->bRequestType = requesttype;
143 	dr->bRequest = request;
144 	dr->wValue = cpu_to_le16(value);
145 	dr->wIndex = cpu_to_le16(index);
146 	dr->wLength = cpu_to_le16(size);
147 
148 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
149 
150 	kfree(dr);
151 
152 	return ret;
153 }
154 EXPORT_SYMBOL_GPL(usb_control_msg);
155 
156 /**
157  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
158  * @usb_dev: pointer to the usb device to send the message to
159  * @pipe: endpoint "pipe" to send the message to
160  * @data: pointer to the data to send
161  * @len: length in bytes of the data to send
162  * @actual_length: pointer to a location to put the actual length transferred
163  *	in bytes
164  * @timeout: time in msecs to wait for the message to complete before
165  *	timing out (if 0 the wait is forever)
166  *
167  * Context: !in_interrupt ()
168  *
169  * This function sends a simple interrupt message to a specified endpoint and
170  * waits for the message to complete, or timeout.
171  *
172  * Don't use this function from within an interrupt context, like a bottom half
173  * handler.  If you need an asynchronous message, or need to send a message
174  * from within interrupt context, use usb_submit_urb() If a thread in your
175  * driver uses this call, make sure your disconnect() method can wait for it to
176  * complete.  Since you don't have a handle on the URB used, you can't cancel
177  * the request.
178  *
179  * Return:
180  * If successful, 0. Otherwise a negative error number. The number of actual
181  * bytes transferred will be stored in the @actual_length parameter.
182  */
183 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
184 		      void *data, int len, int *actual_length, int timeout)
185 {
186 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
187 }
188 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
189 
190 /**
191  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
192  * @usb_dev: pointer to the usb device to send the message to
193  * @pipe: endpoint "pipe" to send the message to
194  * @data: pointer to the data to send
195  * @len: length in bytes of the data to send
196  * @actual_length: pointer to a location to put the actual length transferred
197  *	in bytes
198  * @timeout: time in msecs to wait for the message to complete before
199  *	timing out (if 0 the wait is forever)
200  *
201  * Context: !in_interrupt ()
202  *
203  * This function sends a simple bulk message to a specified endpoint
204  * and waits for the message to complete, or timeout.
205  *
206  * Don't use this function from within an interrupt context, like a bottom half
207  * handler.  If you need an asynchronous message, or need to send a message
208  * from within interrupt context, use usb_submit_urb() If a thread in your
209  * driver uses this call, make sure your disconnect() method can wait for it to
210  * complete.  Since you don't have a handle on the URB used, you can't cancel
211  * the request.
212  *
213  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
214  * users are forced to abuse this routine by using it to submit URBs for
215  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
216  * (with the default interval) if the target is an interrupt endpoint.
217  *
218  * Return:
219  * If successful, 0. Otherwise a negative error number. The number of actual
220  * bytes transferred will be stored in the @actual_length parameter.
221  *
222  */
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 		 void *data, int len, int *actual_length, int timeout)
225 {
226 	struct urb *urb;
227 	struct usb_host_endpoint *ep;
228 
229 	ep = usb_pipe_endpoint(usb_dev, pipe);
230 	if (!ep || len < 0)
231 		return -EINVAL;
232 
233 	urb = usb_alloc_urb(0, GFP_KERNEL);
234 	if (!urb)
235 		return -ENOMEM;
236 
237 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 			USB_ENDPOINT_XFER_INT) {
239 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 				usb_api_blocking_completion, NULL,
242 				ep->desc.bInterval);
243 	} else
244 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 				usb_api_blocking_completion, NULL);
246 
247 	return usb_start_wait_urb(urb, timeout, actual_length);
248 }
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
250 
251 /*-------------------------------------------------------------------*/
252 
253 static void sg_clean(struct usb_sg_request *io)
254 {
255 	if (io->urbs) {
256 		while (io->entries--)
257 			usb_free_urb(io->urbs[io->entries]);
258 		kfree(io->urbs);
259 		io->urbs = NULL;
260 	}
261 	io->dev = NULL;
262 }
263 
264 static void sg_complete(struct urb *urb)
265 {
266 	struct usb_sg_request *io = urb->context;
267 	int status = urb->status;
268 
269 	spin_lock(&io->lock);
270 
271 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
272 	 * reports, until the completion callback (this!) returns.  That lets
273 	 * device driver code (like this routine) unlink queued urbs first,
274 	 * if it needs to, since the HC won't work on them at all.  So it's
275 	 * not possible for page N+1 to overwrite page N, and so on.
276 	 *
277 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 	 * complete before the HCD can get requests away from hardware,
279 	 * though never during cleanup after a hard fault.
280 	 */
281 	if (io->status
282 			&& (io->status != -ECONNRESET
283 				|| status != -ECONNRESET)
284 			&& urb->actual_length) {
285 		dev_err(io->dev->bus->controller,
286 			"dev %s ep%d%s scatterlist error %d/%d\n",
287 			io->dev->devpath,
288 			usb_endpoint_num(&urb->ep->desc),
289 			usb_urb_dir_in(urb) ? "in" : "out",
290 			status, io->status);
291 		/* BUG (); */
292 	}
293 
294 	if (io->status == 0 && status && status != -ECONNRESET) {
295 		int i, found, retval;
296 
297 		io->status = status;
298 
299 		/* the previous urbs, and this one, completed already.
300 		 * unlink pending urbs so they won't rx/tx bad data.
301 		 * careful: unlink can sometimes be synchronous...
302 		 */
303 		spin_unlock(&io->lock);
304 		for (i = 0, found = 0; i < io->entries; i++) {
305 			if (!io->urbs[i] || !io->urbs[i]->dev)
306 				continue;
307 			if (found) {
308 				retval = usb_unlink_urb(io->urbs[i]);
309 				if (retval != -EINPROGRESS &&
310 				    retval != -ENODEV &&
311 				    retval != -EBUSY &&
312 				    retval != -EIDRM)
313 					dev_err(&io->dev->dev,
314 						"%s, unlink --> %d\n",
315 						__func__, retval);
316 			} else if (urb == io->urbs[i])
317 				found = 1;
318 		}
319 		spin_lock(&io->lock);
320 	}
321 
322 	/* on the last completion, signal usb_sg_wait() */
323 	io->bytes += urb->actual_length;
324 	io->count--;
325 	if (!io->count)
326 		complete(&io->complete);
327 
328 	spin_unlock(&io->lock);
329 }
330 
331 
332 /**
333  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334  * @io: request block being initialized.  until usb_sg_wait() returns,
335  *	treat this as a pointer to an opaque block of memory,
336  * @dev: the usb device that will send or receive the data
337  * @pipe: endpoint "pipe" used to transfer the data
338  * @period: polling rate for interrupt endpoints, in frames or
339  * 	(for high speed endpoints) microframes; ignored for bulk
340  * @sg: scatterlist entries
341  * @nents: how many entries in the scatterlist
342  * @length: how many bytes to send from the scatterlist, or zero to
343  * 	send every byte identified in the list.
344  * @mem_flags: SLAB_* flags affecting memory allocations in this call
345  *
346  * This initializes a scatter/gather request, allocating resources such as
347  * I/O mappings and urb memory (except maybe memory used by USB controller
348  * drivers).
349  *
350  * The request must be issued using usb_sg_wait(), which waits for the I/O to
351  * complete (or to be canceled) and then cleans up all resources allocated by
352  * usb_sg_init().
353  *
354  * The request may be canceled with usb_sg_cancel(), either before or after
355  * usb_sg_wait() is called.
356  *
357  * Return: Zero for success, else a negative errno value.
358  */
359 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
360 		unsigned pipe, unsigned	period, struct scatterlist *sg,
361 		int nents, size_t length, gfp_t mem_flags)
362 {
363 	int i;
364 	int urb_flags;
365 	int use_sg;
366 
367 	if (!io || !dev || !sg
368 			|| usb_pipecontrol(pipe)
369 			|| usb_pipeisoc(pipe)
370 			|| nents <= 0)
371 		return -EINVAL;
372 
373 	spin_lock_init(&io->lock);
374 	io->dev = dev;
375 	io->pipe = pipe;
376 
377 	if (dev->bus->sg_tablesize > 0) {
378 		use_sg = true;
379 		io->entries = 1;
380 	} else {
381 		use_sg = false;
382 		io->entries = nents;
383 	}
384 
385 	/* initialize all the urbs we'll use */
386 	io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
387 	if (!io->urbs)
388 		goto nomem;
389 
390 	urb_flags = URB_NO_INTERRUPT;
391 	if (usb_pipein(pipe))
392 		urb_flags |= URB_SHORT_NOT_OK;
393 
394 	for_each_sg(sg, sg, io->entries, i) {
395 		struct urb *urb;
396 		unsigned len;
397 
398 		urb = usb_alloc_urb(0, mem_flags);
399 		if (!urb) {
400 			io->entries = i;
401 			goto nomem;
402 		}
403 		io->urbs[i] = urb;
404 
405 		urb->dev = NULL;
406 		urb->pipe = pipe;
407 		urb->interval = period;
408 		urb->transfer_flags = urb_flags;
409 		urb->complete = sg_complete;
410 		urb->context = io;
411 		urb->sg = sg;
412 
413 		if (use_sg) {
414 			/* There is no single transfer buffer */
415 			urb->transfer_buffer = NULL;
416 			urb->num_sgs = nents;
417 
418 			/* A length of zero means transfer the whole sg list */
419 			len = length;
420 			if (len == 0) {
421 				struct scatterlist	*sg2;
422 				int			j;
423 
424 				for_each_sg(sg, sg2, nents, j)
425 					len += sg2->length;
426 			}
427 		} else {
428 			/*
429 			 * Some systems can't use DMA; they use PIO instead.
430 			 * For their sakes, transfer_buffer is set whenever
431 			 * possible.
432 			 */
433 			if (!PageHighMem(sg_page(sg)))
434 				urb->transfer_buffer = sg_virt(sg);
435 			else
436 				urb->transfer_buffer = NULL;
437 
438 			len = sg->length;
439 			if (length) {
440 				len = min_t(size_t, len, length);
441 				length -= len;
442 				if (length == 0)
443 					io->entries = i + 1;
444 			}
445 		}
446 		urb->transfer_buffer_length = len;
447 	}
448 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
449 
450 	/* transaction state */
451 	io->count = io->entries;
452 	io->status = 0;
453 	io->bytes = 0;
454 	init_completion(&io->complete);
455 	return 0;
456 
457 nomem:
458 	sg_clean(io);
459 	return -ENOMEM;
460 }
461 EXPORT_SYMBOL_GPL(usb_sg_init);
462 
463 /**
464  * usb_sg_wait - synchronously execute scatter/gather request
465  * @io: request block handle, as initialized with usb_sg_init().
466  * 	some fields become accessible when this call returns.
467  * Context: !in_interrupt ()
468  *
469  * This function blocks until the specified I/O operation completes.  It
470  * leverages the grouping of the related I/O requests to get good transfer
471  * rates, by queueing the requests.  At higher speeds, such queuing can
472  * significantly improve USB throughput.
473  *
474  * There are three kinds of completion for this function.
475  * (1) success, where io->status is zero.  The number of io->bytes
476  *     transferred is as requested.
477  * (2) error, where io->status is a negative errno value.  The number
478  *     of io->bytes transferred before the error is usually less
479  *     than requested, and can be nonzero.
480  * (3) cancellation, a type of error with status -ECONNRESET that
481  *     is initiated by usb_sg_cancel().
482  *
483  * When this function returns, all memory allocated through usb_sg_init() or
484  * this call will have been freed.  The request block parameter may still be
485  * passed to usb_sg_cancel(), or it may be freed.  It could also be
486  * reinitialized and then reused.
487  *
488  * Data Transfer Rates:
489  *
490  * Bulk transfers are valid for full or high speed endpoints.
491  * The best full speed data rate is 19 packets of 64 bytes each
492  * per frame, or 1216 bytes per millisecond.
493  * The best high speed data rate is 13 packets of 512 bytes each
494  * per microframe, or 52 KBytes per millisecond.
495  *
496  * The reason to use interrupt transfers through this API would most likely
497  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
498  * could be transferred.  That capability is less useful for low or full
499  * speed interrupt endpoints, which allow at most one packet per millisecond,
500  * of at most 8 or 64 bytes (respectively).
501  *
502  * It is not necessary to call this function to reserve bandwidth for devices
503  * under an xHCI host controller, as the bandwidth is reserved when the
504  * configuration or interface alt setting is selected.
505  */
506 void usb_sg_wait(struct usb_sg_request *io)
507 {
508 	int i;
509 	int entries = io->entries;
510 
511 	/* queue the urbs.  */
512 	spin_lock_irq(&io->lock);
513 	i = 0;
514 	while (i < entries && !io->status) {
515 		int retval;
516 
517 		io->urbs[i]->dev = io->dev;
518 		retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC);
519 
520 		/* after we submit, let completions or cancellations fire;
521 		 * we handshake using io->status.
522 		 */
523 		spin_unlock_irq(&io->lock);
524 		switch (retval) {
525 			/* maybe we retrying will recover */
526 		case -ENXIO:	/* hc didn't queue this one */
527 		case -EAGAIN:
528 		case -ENOMEM:
529 			retval = 0;
530 			yield();
531 			break;
532 
533 			/* no error? continue immediately.
534 			 *
535 			 * NOTE: to work better with UHCI (4K I/O buffer may
536 			 * need 3K of TDs) it may be good to limit how many
537 			 * URBs are queued at once; N milliseconds?
538 			 */
539 		case 0:
540 			++i;
541 			cpu_relax();
542 			break;
543 
544 			/* fail any uncompleted urbs */
545 		default:
546 			io->urbs[i]->status = retval;
547 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
548 				__func__, retval);
549 			usb_sg_cancel(io);
550 		}
551 		spin_lock_irq(&io->lock);
552 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
553 			io->status = retval;
554 	}
555 	io->count -= entries - i;
556 	if (io->count == 0)
557 		complete(&io->complete);
558 	spin_unlock_irq(&io->lock);
559 
560 	/* OK, yes, this could be packaged as non-blocking.
561 	 * So could the submit loop above ... but it's easier to
562 	 * solve neither problem than to solve both!
563 	 */
564 	wait_for_completion(&io->complete);
565 
566 	sg_clean(io);
567 }
568 EXPORT_SYMBOL_GPL(usb_sg_wait);
569 
570 /**
571  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
572  * @io: request block, initialized with usb_sg_init()
573  *
574  * This stops a request after it has been started by usb_sg_wait().
575  * It can also prevents one initialized by usb_sg_init() from starting,
576  * so that call just frees resources allocated to the request.
577  */
578 void usb_sg_cancel(struct usb_sg_request *io)
579 {
580 	unsigned long flags;
581 
582 	spin_lock_irqsave(&io->lock, flags);
583 
584 	/* shut everything down, if it didn't already */
585 	if (!io->status) {
586 		int i;
587 
588 		io->status = -ECONNRESET;
589 		spin_unlock(&io->lock);
590 		for (i = 0; i < io->entries; i++) {
591 			int retval;
592 
593 			if (!io->urbs[i]->dev)
594 				continue;
595 			retval = usb_unlink_urb(io->urbs[i]);
596 			if (retval != -EINPROGRESS
597 					&& retval != -ENODEV
598 					&& retval != -EBUSY
599 					&& retval != -EIDRM)
600 				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
601 					__func__, retval);
602 		}
603 		spin_lock(&io->lock);
604 	}
605 	spin_unlock_irqrestore(&io->lock, flags);
606 }
607 EXPORT_SYMBOL_GPL(usb_sg_cancel);
608 
609 /*-------------------------------------------------------------------*/
610 
611 /**
612  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
613  * @dev: the device whose descriptor is being retrieved
614  * @type: the descriptor type (USB_DT_*)
615  * @index: the number of the descriptor
616  * @buf: where to put the descriptor
617  * @size: how big is "buf"?
618  * Context: !in_interrupt ()
619  *
620  * Gets a USB descriptor.  Convenience functions exist to simplify
621  * getting some types of descriptors.  Use
622  * usb_get_string() or usb_string() for USB_DT_STRING.
623  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
624  * are part of the device structure.
625  * In addition to a number of USB-standard descriptors, some
626  * devices also use class-specific or vendor-specific descriptors.
627  *
628  * This call is synchronous, and may not be used in an interrupt context.
629  *
630  * Return: The number of bytes received on success, or else the status code
631  * returned by the underlying usb_control_msg() call.
632  */
633 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
634 		       unsigned char index, void *buf, int size)
635 {
636 	int i;
637 	int result;
638 
639 	memset(buf, 0, size);	/* Make sure we parse really received data */
640 
641 	for (i = 0; i < 3; ++i) {
642 		/* retry on length 0 or error; some devices are flakey */
643 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
644 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
645 				(type << 8) + index, 0, buf, size,
646 				USB_CTRL_GET_TIMEOUT);
647 		if (result <= 0 && result != -ETIMEDOUT)
648 			continue;
649 		if (result > 1 && ((u8 *)buf)[1] != type) {
650 			result = -ENODATA;
651 			continue;
652 		}
653 		break;
654 	}
655 	return result;
656 }
657 EXPORT_SYMBOL_GPL(usb_get_descriptor);
658 
659 /**
660  * usb_get_string - gets a string descriptor
661  * @dev: the device whose string descriptor is being retrieved
662  * @langid: code for language chosen (from string descriptor zero)
663  * @index: the number of the descriptor
664  * @buf: where to put the string
665  * @size: how big is "buf"?
666  * Context: !in_interrupt ()
667  *
668  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
669  * in little-endian byte order).
670  * The usb_string() function will often be a convenient way to turn
671  * these strings into kernel-printable form.
672  *
673  * Strings may be referenced in device, configuration, interface, or other
674  * descriptors, and could also be used in vendor-specific ways.
675  *
676  * This call is synchronous, and may not be used in an interrupt context.
677  *
678  * Return: The number of bytes received on success, or else the status code
679  * returned by the underlying usb_control_msg() call.
680  */
681 static int usb_get_string(struct usb_device *dev, unsigned short langid,
682 			  unsigned char index, void *buf, int size)
683 {
684 	int i;
685 	int result;
686 
687 	for (i = 0; i < 3; ++i) {
688 		/* retry on length 0 or stall; some devices are flakey */
689 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
690 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
691 			(USB_DT_STRING << 8) + index, langid, buf, size,
692 			USB_CTRL_GET_TIMEOUT);
693 		if (result == 0 || result == -EPIPE)
694 			continue;
695 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
696 			result = -ENODATA;
697 			continue;
698 		}
699 		break;
700 	}
701 	return result;
702 }
703 
704 static void usb_try_string_workarounds(unsigned char *buf, int *length)
705 {
706 	int newlength, oldlength = *length;
707 
708 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
709 		if (!isprint(buf[newlength]) || buf[newlength + 1])
710 			break;
711 
712 	if (newlength > 2) {
713 		buf[0] = newlength;
714 		*length = newlength;
715 	}
716 }
717 
718 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
719 			  unsigned int index, unsigned char *buf)
720 {
721 	int rc;
722 
723 	/* Try to read the string descriptor by asking for the maximum
724 	 * possible number of bytes */
725 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
726 		rc = -EIO;
727 	else
728 		rc = usb_get_string(dev, langid, index, buf, 255);
729 
730 	/* If that failed try to read the descriptor length, then
731 	 * ask for just that many bytes */
732 	if (rc < 2) {
733 		rc = usb_get_string(dev, langid, index, buf, 2);
734 		if (rc == 2)
735 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
736 	}
737 
738 	if (rc >= 2) {
739 		if (!buf[0] && !buf[1])
740 			usb_try_string_workarounds(buf, &rc);
741 
742 		/* There might be extra junk at the end of the descriptor */
743 		if (buf[0] < rc)
744 			rc = buf[0];
745 
746 		rc = rc - (rc & 1); /* force a multiple of two */
747 	}
748 
749 	if (rc < 2)
750 		rc = (rc < 0 ? rc : -EINVAL);
751 
752 	return rc;
753 }
754 
755 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
756 {
757 	int err;
758 
759 	if (dev->have_langid)
760 		return 0;
761 
762 	if (dev->string_langid < 0)
763 		return -EPIPE;
764 
765 	err = usb_string_sub(dev, 0, 0, tbuf);
766 
767 	/* If the string was reported but is malformed, default to english
768 	 * (0x0409) */
769 	if (err == -ENODATA || (err > 0 && err < 4)) {
770 		dev->string_langid = 0x0409;
771 		dev->have_langid = 1;
772 		dev_err(&dev->dev,
773 			"language id specifier not provided by device, defaulting to English\n");
774 		return 0;
775 	}
776 
777 	/* In case of all other errors, we assume the device is not able to
778 	 * deal with strings at all. Set string_langid to -1 in order to
779 	 * prevent any string to be retrieved from the device */
780 	if (err < 0) {
781 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
782 					err);
783 		dev->string_langid = -1;
784 		return -EPIPE;
785 	}
786 
787 	/* always use the first langid listed */
788 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
789 	dev->have_langid = 1;
790 	dev_dbg(&dev->dev, "default language 0x%04x\n",
791 				dev->string_langid);
792 	return 0;
793 }
794 
795 /**
796  * usb_string - returns UTF-8 version of a string descriptor
797  * @dev: the device whose string descriptor is being retrieved
798  * @index: the number of the descriptor
799  * @buf: where to put the string
800  * @size: how big is "buf"?
801  * Context: !in_interrupt ()
802  *
803  * This converts the UTF-16LE encoded strings returned by devices, from
804  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
805  * that are more usable in most kernel contexts.  Note that this function
806  * chooses strings in the first language supported by the device.
807  *
808  * This call is synchronous, and may not be used in an interrupt context.
809  *
810  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
811  */
812 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
813 {
814 	unsigned char *tbuf;
815 	int err;
816 
817 	if (dev->state == USB_STATE_SUSPENDED)
818 		return -EHOSTUNREACH;
819 	if (size <= 0 || !buf || !index)
820 		return -EINVAL;
821 	buf[0] = 0;
822 	tbuf = kmalloc(256, GFP_NOIO);
823 	if (!tbuf)
824 		return -ENOMEM;
825 
826 	err = usb_get_langid(dev, tbuf);
827 	if (err < 0)
828 		goto errout;
829 
830 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
831 	if (err < 0)
832 		goto errout;
833 
834 	size--;		/* leave room for trailing NULL char in output buffer */
835 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
836 			UTF16_LITTLE_ENDIAN, buf, size);
837 	buf[err] = 0;
838 
839 	if (tbuf[1] != USB_DT_STRING)
840 		dev_dbg(&dev->dev,
841 			"wrong descriptor type %02x for string %d (\"%s\")\n",
842 			tbuf[1], index, buf);
843 
844  errout:
845 	kfree(tbuf);
846 	return err;
847 }
848 EXPORT_SYMBOL_GPL(usb_string);
849 
850 /* one UTF-8-encoded 16-bit character has at most three bytes */
851 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
852 
853 /**
854  * usb_cache_string - read a string descriptor and cache it for later use
855  * @udev: the device whose string descriptor is being read
856  * @index: the descriptor index
857  *
858  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
859  * or %NULL if the index is 0 or the string could not be read.
860  */
861 char *usb_cache_string(struct usb_device *udev, int index)
862 {
863 	char *buf;
864 	char *smallbuf = NULL;
865 	int len;
866 
867 	if (index <= 0)
868 		return NULL;
869 
870 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
871 	if (buf) {
872 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
873 		if (len > 0) {
874 			smallbuf = kmalloc(++len, GFP_NOIO);
875 			if (!smallbuf)
876 				return buf;
877 			memcpy(smallbuf, buf, len);
878 		}
879 		kfree(buf);
880 	}
881 	return smallbuf;
882 }
883 
884 /*
885  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
886  * @dev: the device whose device descriptor is being updated
887  * @size: how much of the descriptor to read
888  * Context: !in_interrupt ()
889  *
890  * Updates the copy of the device descriptor stored in the device structure,
891  * which dedicates space for this purpose.
892  *
893  * Not exported, only for use by the core.  If drivers really want to read
894  * the device descriptor directly, they can call usb_get_descriptor() with
895  * type = USB_DT_DEVICE and index = 0.
896  *
897  * This call is synchronous, and may not be used in an interrupt context.
898  *
899  * Return: The number of bytes received on success, or else the status code
900  * returned by the underlying usb_control_msg() call.
901  */
902 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
903 {
904 	struct usb_device_descriptor *desc;
905 	int ret;
906 
907 	if (size > sizeof(*desc))
908 		return -EINVAL;
909 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
910 	if (!desc)
911 		return -ENOMEM;
912 
913 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
914 	if (ret >= 0)
915 		memcpy(&dev->descriptor, desc, size);
916 	kfree(desc);
917 	return ret;
918 }
919 
920 /**
921  * usb_get_status - issues a GET_STATUS call
922  * @dev: the device whose status is being checked
923  * @type: USB_RECIP_*; for device, interface, or endpoint
924  * @target: zero (for device), else interface or endpoint number
925  * @data: pointer to two bytes of bitmap data
926  * Context: !in_interrupt ()
927  *
928  * Returns device, interface, or endpoint status.  Normally only of
929  * interest to see if the device is self powered, or has enabled the
930  * remote wakeup facility; or whether a bulk or interrupt endpoint
931  * is halted ("stalled").
932  *
933  * Bits in these status bitmaps are set using the SET_FEATURE request,
934  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
935  * function should be used to clear halt ("stall") status.
936  *
937  * This call is synchronous, and may not be used in an interrupt context.
938  *
939  * Returns 0 and the status value in *@data (in host byte order) on success,
940  * or else the status code from the underlying usb_control_msg() call.
941  */
942 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
943 {
944 	int ret;
945 	__le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
946 
947 	if (!status)
948 		return -ENOMEM;
949 
950 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
951 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
952 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
953 
954 	if (ret == 2) {
955 		*(u16 *) data = le16_to_cpu(*status);
956 		ret = 0;
957 	} else if (ret >= 0) {
958 		ret = -EIO;
959 	}
960 	kfree(status);
961 	return ret;
962 }
963 EXPORT_SYMBOL_GPL(usb_get_status);
964 
965 /**
966  * usb_clear_halt - tells device to clear endpoint halt/stall condition
967  * @dev: device whose endpoint is halted
968  * @pipe: endpoint "pipe" being cleared
969  * Context: !in_interrupt ()
970  *
971  * This is used to clear halt conditions for bulk and interrupt endpoints,
972  * as reported by URB completion status.  Endpoints that are halted are
973  * sometimes referred to as being "stalled".  Such endpoints are unable
974  * to transmit or receive data until the halt status is cleared.  Any URBs
975  * queued for such an endpoint should normally be unlinked by the driver
976  * before clearing the halt condition, as described in sections 5.7.5
977  * and 5.8.5 of the USB 2.0 spec.
978  *
979  * Note that control and isochronous endpoints don't halt, although control
980  * endpoints report "protocol stall" (for unsupported requests) using the
981  * same status code used to report a true stall.
982  *
983  * This call is synchronous, and may not be used in an interrupt context.
984  *
985  * Return: Zero on success, or else the status code returned by the
986  * underlying usb_control_msg() call.
987  */
988 int usb_clear_halt(struct usb_device *dev, int pipe)
989 {
990 	int result;
991 	int endp = usb_pipeendpoint(pipe);
992 
993 	if (usb_pipein(pipe))
994 		endp |= USB_DIR_IN;
995 
996 	/* we don't care if it wasn't halted first. in fact some devices
997 	 * (like some ibmcam model 1 units) seem to expect hosts to make
998 	 * this request for iso endpoints, which can't halt!
999 	 */
1000 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1001 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1002 		USB_ENDPOINT_HALT, endp, NULL, 0,
1003 		USB_CTRL_SET_TIMEOUT);
1004 
1005 	/* don't un-halt or force to DATA0 except on success */
1006 	if (result < 0)
1007 		return result;
1008 
1009 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1010 	 * the clear "took", so some devices could lock up if you check...
1011 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1012 	 *
1013 	 * NOTE:  make sure the logic here doesn't diverge much from
1014 	 * the copy in usb-storage, for as long as we need two copies.
1015 	 */
1016 
1017 	usb_reset_endpoint(dev, endp);
1018 
1019 	return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(usb_clear_halt);
1022 
1023 static int create_intf_ep_devs(struct usb_interface *intf)
1024 {
1025 	struct usb_device *udev = interface_to_usbdev(intf);
1026 	struct usb_host_interface *alt = intf->cur_altsetting;
1027 	int i;
1028 
1029 	if (intf->ep_devs_created || intf->unregistering)
1030 		return 0;
1031 
1032 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1033 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1034 	intf->ep_devs_created = 1;
1035 	return 0;
1036 }
1037 
1038 static void remove_intf_ep_devs(struct usb_interface *intf)
1039 {
1040 	struct usb_host_interface *alt = intf->cur_altsetting;
1041 	int i;
1042 
1043 	if (!intf->ep_devs_created)
1044 		return;
1045 
1046 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1047 		usb_remove_ep_devs(&alt->endpoint[i]);
1048 	intf->ep_devs_created = 0;
1049 }
1050 
1051 /**
1052  * usb_disable_endpoint -- Disable an endpoint by address
1053  * @dev: the device whose endpoint is being disabled
1054  * @epaddr: the endpoint's address.  Endpoint number for output,
1055  *	endpoint number + USB_DIR_IN for input
1056  * @reset_hardware: flag to erase any endpoint state stored in the
1057  *	controller hardware
1058  *
1059  * Disables the endpoint for URB submission and nukes all pending URBs.
1060  * If @reset_hardware is set then also deallocates hcd/hardware state
1061  * for the endpoint.
1062  */
1063 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1064 		bool reset_hardware)
1065 {
1066 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1067 	struct usb_host_endpoint *ep;
1068 
1069 	if (!dev)
1070 		return;
1071 
1072 	if (usb_endpoint_out(epaddr)) {
1073 		ep = dev->ep_out[epnum];
1074 		if (reset_hardware)
1075 			dev->ep_out[epnum] = NULL;
1076 	} else {
1077 		ep = dev->ep_in[epnum];
1078 		if (reset_hardware)
1079 			dev->ep_in[epnum] = NULL;
1080 	}
1081 	if (ep) {
1082 		ep->enabled = 0;
1083 		usb_hcd_flush_endpoint(dev, ep);
1084 		if (reset_hardware)
1085 			usb_hcd_disable_endpoint(dev, ep);
1086 	}
1087 }
1088 
1089 /**
1090  * usb_reset_endpoint - Reset an endpoint's state.
1091  * @dev: the device whose endpoint is to be reset
1092  * @epaddr: the endpoint's address.  Endpoint number for output,
1093  *	endpoint number + USB_DIR_IN for input
1094  *
1095  * Resets any host-side endpoint state such as the toggle bit,
1096  * sequence number or current window.
1097  */
1098 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1099 {
1100 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1101 	struct usb_host_endpoint *ep;
1102 
1103 	if (usb_endpoint_out(epaddr))
1104 		ep = dev->ep_out[epnum];
1105 	else
1106 		ep = dev->ep_in[epnum];
1107 	if (ep)
1108 		usb_hcd_reset_endpoint(dev, ep);
1109 }
1110 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1111 
1112 
1113 /**
1114  * usb_disable_interface -- Disable all endpoints for an interface
1115  * @dev: the device whose interface is being disabled
1116  * @intf: pointer to the interface descriptor
1117  * @reset_hardware: flag to erase any endpoint state stored in the
1118  *	controller hardware
1119  *
1120  * Disables all the endpoints for the interface's current altsetting.
1121  */
1122 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1123 		bool reset_hardware)
1124 {
1125 	struct usb_host_interface *alt = intf->cur_altsetting;
1126 	int i;
1127 
1128 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1129 		usb_disable_endpoint(dev,
1130 				alt->endpoint[i].desc.bEndpointAddress,
1131 				reset_hardware);
1132 	}
1133 }
1134 
1135 /**
1136  * usb_disable_device - Disable all the endpoints for a USB device
1137  * @dev: the device whose endpoints are being disabled
1138  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1139  *
1140  * Disables all the device's endpoints, potentially including endpoint 0.
1141  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1142  * pending urbs) and usbcore state for the interfaces, so that usbcore
1143  * must usb_set_configuration() before any interfaces could be used.
1144  */
1145 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1146 {
1147 	int i;
1148 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1149 
1150 	/* getting rid of interfaces will disconnect
1151 	 * any drivers bound to them (a key side effect)
1152 	 */
1153 	if (dev->actconfig) {
1154 		/*
1155 		 * FIXME: In order to avoid self-deadlock involving the
1156 		 * bandwidth_mutex, we have to mark all the interfaces
1157 		 * before unregistering any of them.
1158 		 */
1159 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1160 			dev->actconfig->interface[i]->unregistering = 1;
1161 
1162 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1163 			struct usb_interface	*interface;
1164 
1165 			/* remove this interface if it has been registered */
1166 			interface = dev->actconfig->interface[i];
1167 			if (!device_is_registered(&interface->dev))
1168 				continue;
1169 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1170 				dev_name(&interface->dev));
1171 			remove_intf_ep_devs(interface);
1172 			device_del(&interface->dev);
1173 		}
1174 
1175 		/* Now that the interfaces are unbound, nobody should
1176 		 * try to access them.
1177 		 */
1178 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1179 			put_device(&dev->actconfig->interface[i]->dev);
1180 			dev->actconfig->interface[i] = NULL;
1181 		}
1182 
1183 		if (dev->usb2_hw_lpm_enabled == 1)
1184 			usb_set_usb2_hardware_lpm(dev, 0);
1185 		usb_unlocked_disable_lpm(dev);
1186 		usb_disable_ltm(dev);
1187 
1188 		dev->actconfig = NULL;
1189 		if (dev->state == USB_STATE_CONFIGURED)
1190 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1191 	}
1192 
1193 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1194 		skip_ep0 ? "non-ep0" : "all");
1195 	if (hcd->driver->check_bandwidth) {
1196 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1197 		for (i = skip_ep0; i < 16; ++i) {
1198 			usb_disable_endpoint(dev, i, false);
1199 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1200 		}
1201 		/* Remove endpoints from the host controller internal state */
1202 		mutex_lock(hcd->bandwidth_mutex);
1203 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1204 		mutex_unlock(hcd->bandwidth_mutex);
1205 		/* Second pass: remove endpoint pointers */
1206 	}
1207 	for (i = skip_ep0; i < 16; ++i) {
1208 		usb_disable_endpoint(dev, i, true);
1209 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1210 	}
1211 }
1212 
1213 /**
1214  * usb_enable_endpoint - Enable an endpoint for USB communications
1215  * @dev: the device whose interface is being enabled
1216  * @ep: the endpoint
1217  * @reset_ep: flag to reset the endpoint state
1218  *
1219  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1220  * For control endpoints, both the input and output sides are handled.
1221  */
1222 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1223 		bool reset_ep)
1224 {
1225 	int epnum = usb_endpoint_num(&ep->desc);
1226 	int is_out = usb_endpoint_dir_out(&ep->desc);
1227 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1228 
1229 	if (reset_ep)
1230 		usb_hcd_reset_endpoint(dev, ep);
1231 	if (is_out || is_control)
1232 		dev->ep_out[epnum] = ep;
1233 	if (!is_out || is_control)
1234 		dev->ep_in[epnum] = ep;
1235 	ep->enabled = 1;
1236 }
1237 
1238 /**
1239  * usb_enable_interface - Enable all the endpoints for an interface
1240  * @dev: the device whose interface is being enabled
1241  * @intf: pointer to the interface descriptor
1242  * @reset_eps: flag to reset the endpoints' state
1243  *
1244  * Enables all the endpoints for the interface's current altsetting.
1245  */
1246 void usb_enable_interface(struct usb_device *dev,
1247 		struct usb_interface *intf, bool reset_eps)
1248 {
1249 	struct usb_host_interface *alt = intf->cur_altsetting;
1250 	int i;
1251 
1252 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1253 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1254 }
1255 
1256 /**
1257  * usb_set_interface - Makes a particular alternate setting be current
1258  * @dev: the device whose interface is being updated
1259  * @interface: the interface being updated
1260  * @alternate: the setting being chosen.
1261  * Context: !in_interrupt ()
1262  *
1263  * This is used to enable data transfers on interfaces that may not
1264  * be enabled by default.  Not all devices support such configurability.
1265  * Only the driver bound to an interface may change its setting.
1266  *
1267  * Within any given configuration, each interface may have several
1268  * alternative settings.  These are often used to control levels of
1269  * bandwidth consumption.  For example, the default setting for a high
1270  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1271  * while interrupt transfers of up to 3KBytes per microframe are legal.
1272  * Also, isochronous endpoints may never be part of an
1273  * interface's default setting.  To access such bandwidth, alternate
1274  * interface settings must be made current.
1275  *
1276  * Note that in the Linux USB subsystem, bandwidth associated with
1277  * an endpoint in a given alternate setting is not reserved until an URB
1278  * is submitted that needs that bandwidth.  Some other operating systems
1279  * allocate bandwidth early, when a configuration is chosen.
1280  *
1281  * This call is synchronous, and may not be used in an interrupt context.
1282  * Also, drivers must not change altsettings while urbs are scheduled for
1283  * endpoints in that interface; all such urbs must first be completed
1284  * (perhaps forced by unlinking).
1285  *
1286  * Return: Zero on success, or else the status code returned by the
1287  * underlying usb_control_msg() call.
1288  */
1289 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1290 {
1291 	struct usb_interface *iface;
1292 	struct usb_host_interface *alt;
1293 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1294 	int i, ret, manual = 0;
1295 	unsigned int epaddr;
1296 	unsigned int pipe;
1297 
1298 	if (dev->state == USB_STATE_SUSPENDED)
1299 		return -EHOSTUNREACH;
1300 
1301 	iface = usb_ifnum_to_if(dev, interface);
1302 	if (!iface) {
1303 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1304 			interface);
1305 		return -EINVAL;
1306 	}
1307 	if (iface->unregistering)
1308 		return -ENODEV;
1309 
1310 	alt = usb_altnum_to_altsetting(iface, alternate);
1311 	if (!alt) {
1312 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1313 			 alternate);
1314 		return -EINVAL;
1315 	}
1316 
1317 	/* Make sure we have enough bandwidth for this alternate interface.
1318 	 * Remove the current alt setting and add the new alt setting.
1319 	 */
1320 	mutex_lock(hcd->bandwidth_mutex);
1321 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1322 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1323 	 */
1324 	if (usb_disable_lpm(dev)) {
1325 		dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1326 		mutex_unlock(hcd->bandwidth_mutex);
1327 		return -ENOMEM;
1328 	}
1329 	/* Changing alt-setting also frees any allocated streams */
1330 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1331 		iface->cur_altsetting->endpoint[i].streams = 0;
1332 
1333 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1334 	if (ret < 0) {
1335 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1336 				alternate);
1337 		usb_enable_lpm(dev);
1338 		mutex_unlock(hcd->bandwidth_mutex);
1339 		return ret;
1340 	}
1341 
1342 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1343 		ret = -EPIPE;
1344 	else
1345 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1346 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1347 				   alternate, interface, NULL, 0, 5000);
1348 
1349 	/* 9.4.10 says devices don't need this and are free to STALL the
1350 	 * request if the interface only has one alternate setting.
1351 	 */
1352 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1353 		dev_dbg(&dev->dev,
1354 			"manual set_interface for iface %d, alt %d\n",
1355 			interface, alternate);
1356 		manual = 1;
1357 	} else if (ret < 0) {
1358 		/* Re-instate the old alt setting */
1359 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1360 		usb_enable_lpm(dev);
1361 		mutex_unlock(hcd->bandwidth_mutex);
1362 		return ret;
1363 	}
1364 	mutex_unlock(hcd->bandwidth_mutex);
1365 
1366 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1367 	 * when they implement async or easily-killable versions of this or
1368 	 * other "should-be-internal" functions (like clear_halt).
1369 	 * should hcd+usbcore postprocess control requests?
1370 	 */
1371 
1372 	/* prevent submissions using previous endpoint settings */
1373 	if (iface->cur_altsetting != alt) {
1374 		remove_intf_ep_devs(iface);
1375 		usb_remove_sysfs_intf_files(iface);
1376 	}
1377 	usb_disable_interface(dev, iface, true);
1378 
1379 	iface->cur_altsetting = alt;
1380 
1381 	/* Now that the interface is installed, re-enable LPM. */
1382 	usb_unlocked_enable_lpm(dev);
1383 
1384 	/* If the interface only has one altsetting and the device didn't
1385 	 * accept the request, we attempt to carry out the equivalent action
1386 	 * by manually clearing the HALT feature for each endpoint in the
1387 	 * new altsetting.
1388 	 */
1389 	if (manual) {
1390 		int i;
1391 
1392 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1393 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1394 			pipe = __create_pipe(dev,
1395 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1396 					(usb_endpoint_out(epaddr) ?
1397 					USB_DIR_OUT : USB_DIR_IN);
1398 
1399 			usb_clear_halt(dev, pipe);
1400 		}
1401 	}
1402 
1403 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1404 	 *
1405 	 * Note:
1406 	 * Despite EP0 is always present in all interfaces/AS, the list of
1407 	 * endpoints from the descriptor does not contain EP0. Due to its
1408 	 * omnipresence one might expect EP0 being considered "affected" by
1409 	 * any SetInterface request and hence assume toggles need to be reset.
1410 	 * However, EP0 toggles are re-synced for every individual transfer
1411 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1412 	 * (Likewise, EP0 never "halts" on well designed devices.)
1413 	 */
1414 	usb_enable_interface(dev, iface, true);
1415 	if (device_is_registered(&iface->dev)) {
1416 		usb_create_sysfs_intf_files(iface);
1417 		create_intf_ep_devs(iface);
1418 	}
1419 	return 0;
1420 }
1421 EXPORT_SYMBOL_GPL(usb_set_interface);
1422 
1423 /**
1424  * usb_reset_configuration - lightweight device reset
1425  * @dev: the device whose configuration is being reset
1426  *
1427  * This issues a standard SET_CONFIGURATION request to the device using
1428  * the current configuration.  The effect is to reset most USB-related
1429  * state in the device, including interface altsettings (reset to zero),
1430  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1431  * endpoints).  Other usbcore state is unchanged, including bindings of
1432  * usb device drivers to interfaces.
1433  *
1434  * Because this affects multiple interfaces, avoid using this with composite
1435  * (multi-interface) devices.  Instead, the driver for each interface may
1436  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1437  * some devices don't support the SET_INTERFACE request, and others won't
1438  * reset all the interface state (notably endpoint state).  Resetting the whole
1439  * configuration would affect other drivers' interfaces.
1440  *
1441  * The caller must own the device lock.
1442  *
1443  * Return: Zero on success, else a negative error code.
1444  */
1445 int usb_reset_configuration(struct usb_device *dev)
1446 {
1447 	int			i, retval;
1448 	struct usb_host_config	*config;
1449 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1450 
1451 	if (dev->state == USB_STATE_SUSPENDED)
1452 		return -EHOSTUNREACH;
1453 
1454 	/* caller must have locked the device and must own
1455 	 * the usb bus readlock (so driver bindings are stable);
1456 	 * calls during probe() are fine
1457 	 */
1458 
1459 	for (i = 1; i < 16; ++i) {
1460 		usb_disable_endpoint(dev, i, true);
1461 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1462 	}
1463 
1464 	config = dev->actconfig;
1465 	retval = 0;
1466 	mutex_lock(hcd->bandwidth_mutex);
1467 	/* Disable LPM, and re-enable it once the configuration is reset, so
1468 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1469 	 */
1470 	if (usb_disable_lpm(dev)) {
1471 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1472 		mutex_unlock(hcd->bandwidth_mutex);
1473 		return -ENOMEM;
1474 	}
1475 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1476 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1477 		struct usb_interface *intf = config->interface[i];
1478 		struct usb_host_interface *alt;
1479 
1480 		alt = usb_altnum_to_altsetting(intf, 0);
1481 		if (!alt)
1482 			alt = &intf->altsetting[0];
1483 		if (alt != intf->cur_altsetting)
1484 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1485 					intf->cur_altsetting, alt);
1486 		if (retval < 0)
1487 			break;
1488 	}
1489 	/* If not, reinstate the old alternate settings */
1490 	if (retval < 0) {
1491 reset_old_alts:
1492 		for (i--; i >= 0; i--) {
1493 			struct usb_interface *intf = config->interface[i];
1494 			struct usb_host_interface *alt;
1495 
1496 			alt = usb_altnum_to_altsetting(intf, 0);
1497 			if (!alt)
1498 				alt = &intf->altsetting[0];
1499 			if (alt != intf->cur_altsetting)
1500 				usb_hcd_alloc_bandwidth(dev, NULL,
1501 						alt, intf->cur_altsetting);
1502 		}
1503 		usb_enable_lpm(dev);
1504 		mutex_unlock(hcd->bandwidth_mutex);
1505 		return retval;
1506 	}
1507 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1508 			USB_REQ_SET_CONFIGURATION, 0,
1509 			config->desc.bConfigurationValue, 0,
1510 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1511 	if (retval < 0)
1512 		goto reset_old_alts;
1513 	mutex_unlock(hcd->bandwidth_mutex);
1514 
1515 	/* re-init hc/hcd interface/endpoint state */
1516 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1517 		struct usb_interface *intf = config->interface[i];
1518 		struct usb_host_interface *alt;
1519 
1520 		alt = usb_altnum_to_altsetting(intf, 0);
1521 
1522 		/* No altsetting 0?  We'll assume the first altsetting.
1523 		 * We could use a GetInterface call, but if a device is
1524 		 * so non-compliant that it doesn't have altsetting 0
1525 		 * then I wouldn't trust its reply anyway.
1526 		 */
1527 		if (!alt)
1528 			alt = &intf->altsetting[0];
1529 
1530 		if (alt != intf->cur_altsetting) {
1531 			remove_intf_ep_devs(intf);
1532 			usb_remove_sysfs_intf_files(intf);
1533 		}
1534 		intf->cur_altsetting = alt;
1535 		usb_enable_interface(dev, intf, true);
1536 		if (device_is_registered(&intf->dev)) {
1537 			usb_create_sysfs_intf_files(intf);
1538 			create_intf_ep_devs(intf);
1539 		}
1540 	}
1541 	/* Now that the interfaces are installed, re-enable LPM. */
1542 	usb_unlocked_enable_lpm(dev);
1543 	return 0;
1544 }
1545 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1546 
1547 static void usb_release_interface(struct device *dev)
1548 {
1549 	struct usb_interface *intf = to_usb_interface(dev);
1550 	struct usb_interface_cache *intfc =
1551 			altsetting_to_usb_interface_cache(intf->altsetting);
1552 
1553 	kref_put(&intfc->ref, usb_release_interface_cache);
1554 	usb_put_dev(interface_to_usbdev(intf));
1555 	kfree(intf);
1556 }
1557 
1558 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1559 {
1560 	struct usb_device *usb_dev;
1561 	struct usb_interface *intf;
1562 	struct usb_host_interface *alt;
1563 
1564 	intf = to_usb_interface(dev);
1565 	usb_dev = interface_to_usbdev(intf);
1566 	alt = intf->cur_altsetting;
1567 
1568 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1569 		   alt->desc.bInterfaceClass,
1570 		   alt->desc.bInterfaceSubClass,
1571 		   alt->desc.bInterfaceProtocol))
1572 		return -ENOMEM;
1573 
1574 	if (add_uevent_var(env,
1575 		   "MODALIAS=usb:"
1576 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1577 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1578 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1579 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1580 		   usb_dev->descriptor.bDeviceClass,
1581 		   usb_dev->descriptor.bDeviceSubClass,
1582 		   usb_dev->descriptor.bDeviceProtocol,
1583 		   alt->desc.bInterfaceClass,
1584 		   alt->desc.bInterfaceSubClass,
1585 		   alt->desc.bInterfaceProtocol,
1586 		   alt->desc.bInterfaceNumber))
1587 		return -ENOMEM;
1588 
1589 	return 0;
1590 }
1591 
1592 struct device_type usb_if_device_type = {
1593 	.name =		"usb_interface",
1594 	.release =	usb_release_interface,
1595 	.uevent =	usb_if_uevent,
1596 };
1597 
1598 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1599 						struct usb_host_config *config,
1600 						u8 inum)
1601 {
1602 	struct usb_interface_assoc_descriptor *retval = NULL;
1603 	struct usb_interface_assoc_descriptor *intf_assoc;
1604 	int first_intf;
1605 	int last_intf;
1606 	int i;
1607 
1608 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1609 		intf_assoc = config->intf_assoc[i];
1610 		if (intf_assoc->bInterfaceCount == 0)
1611 			continue;
1612 
1613 		first_intf = intf_assoc->bFirstInterface;
1614 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1615 		if (inum >= first_intf && inum <= last_intf) {
1616 			if (!retval)
1617 				retval = intf_assoc;
1618 			else
1619 				dev_err(&dev->dev, "Interface #%d referenced"
1620 					" by multiple IADs\n", inum);
1621 		}
1622 	}
1623 
1624 	return retval;
1625 }
1626 
1627 
1628 /*
1629  * Internal function to queue a device reset
1630  * See usb_queue_reset_device() for more details
1631  */
1632 static void __usb_queue_reset_device(struct work_struct *ws)
1633 {
1634 	int rc;
1635 	struct usb_interface *iface =
1636 		container_of(ws, struct usb_interface, reset_ws);
1637 	struct usb_device *udev = interface_to_usbdev(iface);
1638 
1639 	rc = usb_lock_device_for_reset(udev, iface);
1640 	if (rc >= 0) {
1641 		usb_reset_device(udev);
1642 		usb_unlock_device(udev);
1643 	}
1644 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1645 }
1646 
1647 
1648 /*
1649  * usb_set_configuration - Makes a particular device setting be current
1650  * @dev: the device whose configuration is being updated
1651  * @configuration: the configuration being chosen.
1652  * Context: !in_interrupt(), caller owns the device lock
1653  *
1654  * This is used to enable non-default device modes.  Not all devices
1655  * use this kind of configurability; many devices only have one
1656  * configuration.
1657  *
1658  * @configuration is the value of the configuration to be installed.
1659  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1660  * must be non-zero; a value of zero indicates that the device in
1661  * unconfigured.  However some devices erroneously use 0 as one of their
1662  * configuration values.  To help manage such devices, this routine will
1663  * accept @configuration = -1 as indicating the device should be put in
1664  * an unconfigured state.
1665  *
1666  * USB device configurations may affect Linux interoperability,
1667  * power consumption and the functionality available.  For example,
1668  * the default configuration is limited to using 100mA of bus power,
1669  * so that when certain device functionality requires more power,
1670  * and the device is bus powered, that functionality should be in some
1671  * non-default device configuration.  Other device modes may also be
1672  * reflected as configuration options, such as whether two ISDN
1673  * channels are available independently; and choosing between open
1674  * standard device protocols (like CDC) or proprietary ones.
1675  *
1676  * Note that a non-authorized device (dev->authorized == 0) will only
1677  * be put in unconfigured mode.
1678  *
1679  * Note that USB has an additional level of device configurability,
1680  * associated with interfaces.  That configurability is accessed using
1681  * usb_set_interface().
1682  *
1683  * This call is synchronous. The calling context must be able to sleep,
1684  * must own the device lock, and must not hold the driver model's USB
1685  * bus mutex; usb interface driver probe() methods cannot use this routine.
1686  *
1687  * Returns zero on success, or else the status code returned by the
1688  * underlying call that failed.  On successful completion, each interface
1689  * in the original device configuration has been destroyed, and each one
1690  * in the new configuration has been probed by all relevant usb device
1691  * drivers currently known to the kernel.
1692  */
1693 int usb_set_configuration(struct usb_device *dev, int configuration)
1694 {
1695 	int i, ret;
1696 	struct usb_host_config *cp = NULL;
1697 	struct usb_interface **new_interfaces = NULL;
1698 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1699 	int n, nintf;
1700 
1701 	if (dev->authorized == 0 || configuration == -1)
1702 		configuration = 0;
1703 	else {
1704 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1705 			if (dev->config[i].desc.bConfigurationValue ==
1706 					configuration) {
1707 				cp = &dev->config[i];
1708 				break;
1709 			}
1710 		}
1711 	}
1712 	if ((!cp && configuration != 0))
1713 		return -EINVAL;
1714 
1715 	/* The USB spec says configuration 0 means unconfigured.
1716 	 * But if a device includes a configuration numbered 0,
1717 	 * we will accept it as a correctly configured state.
1718 	 * Use -1 if you really want to unconfigure the device.
1719 	 */
1720 	if (cp && configuration == 0)
1721 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1722 
1723 	/* Allocate memory for new interfaces before doing anything else,
1724 	 * so that if we run out then nothing will have changed. */
1725 	n = nintf = 0;
1726 	if (cp) {
1727 		nintf = cp->desc.bNumInterfaces;
1728 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1729 				GFP_NOIO);
1730 		if (!new_interfaces) {
1731 			dev_err(&dev->dev, "Out of memory\n");
1732 			return -ENOMEM;
1733 		}
1734 
1735 		for (; n < nintf; ++n) {
1736 			new_interfaces[n] = kzalloc(
1737 					sizeof(struct usb_interface),
1738 					GFP_NOIO);
1739 			if (!new_interfaces[n]) {
1740 				dev_err(&dev->dev, "Out of memory\n");
1741 				ret = -ENOMEM;
1742 free_interfaces:
1743 				while (--n >= 0)
1744 					kfree(new_interfaces[n]);
1745 				kfree(new_interfaces);
1746 				return ret;
1747 			}
1748 		}
1749 
1750 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1751 		if (i < 0)
1752 			dev_warn(&dev->dev, "new config #%d exceeds power "
1753 					"limit by %dmA\n",
1754 					configuration, -i);
1755 	}
1756 
1757 	/* Wake up the device so we can send it the Set-Config request */
1758 	ret = usb_autoresume_device(dev);
1759 	if (ret)
1760 		goto free_interfaces;
1761 
1762 	/* if it's already configured, clear out old state first.
1763 	 * getting rid of old interfaces means unbinding their drivers.
1764 	 */
1765 	if (dev->state != USB_STATE_ADDRESS)
1766 		usb_disable_device(dev, 1);	/* Skip ep0 */
1767 
1768 	/* Get rid of pending async Set-Config requests for this device */
1769 	cancel_async_set_config(dev);
1770 
1771 	/* Make sure we have bandwidth (and available HCD resources) for this
1772 	 * configuration.  Remove endpoints from the schedule if we're dropping
1773 	 * this configuration to set configuration 0.  After this point, the
1774 	 * host controller will not allow submissions to dropped endpoints.  If
1775 	 * this call fails, the device state is unchanged.
1776 	 */
1777 	mutex_lock(hcd->bandwidth_mutex);
1778 	/* Disable LPM, and re-enable it once the new configuration is
1779 	 * installed, so that the xHCI driver can recalculate the U1/U2
1780 	 * timeouts.
1781 	 */
1782 	if (dev->actconfig && usb_disable_lpm(dev)) {
1783 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1784 		mutex_unlock(hcd->bandwidth_mutex);
1785 		ret = -ENOMEM;
1786 		goto free_interfaces;
1787 	}
1788 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1789 	if (ret < 0) {
1790 		if (dev->actconfig)
1791 			usb_enable_lpm(dev);
1792 		mutex_unlock(hcd->bandwidth_mutex);
1793 		usb_autosuspend_device(dev);
1794 		goto free_interfaces;
1795 	}
1796 
1797 	/*
1798 	 * Initialize the new interface structures and the
1799 	 * hc/hcd/usbcore interface/endpoint state.
1800 	 */
1801 	for (i = 0; i < nintf; ++i) {
1802 		struct usb_interface_cache *intfc;
1803 		struct usb_interface *intf;
1804 		struct usb_host_interface *alt;
1805 
1806 		cp->interface[i] = intf = new_interfaces[i];
1807 		intfc = cp->intf_cache[i];
1808 		intf->altsetting = intfc->altsetting;
1809 		intf->num_altsetting = intfc->num_altsetting;
1810 		kref_get(&intfc->ref);
1811 
1812 		alt = usb_altnum_to_altsetting(intf, 0);
1813 
1814 		/* No altsetting 0?  We'll assume the first altsetting.
1815 		 * We could use a GetInterface call, but if a device is
1816 		 * so non-compliant that it doesn't have altsetting 0
1817 		 * then I wouldn't trust its reply anyway.
1818 		 */
1819 		if (!alt)
1820 			alt = &intf->altsetting[0];
1821 
1822 		intf->intf_assoc =
1823 			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1824 		intf->cur_altsetting = alt;
1825 		usb_enable_interface(dev, intf, true);
1826 		intf->dev.parent = &dev->dev;
1827 		intf->dev.driver = NULL;
1828 		intf->dev.bus = &usb_bus_type;
1829 		intf->dev.type = &usb_if_device_type;
1830 		intf->dev.groups = usb_interface_groups;
1831 		intf->dev.dma_mask = dev->dev.dma_mask;
1832 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1833 		intf->minor = -1;
1834 		device_initialize(&intf->dev);
1835 		pm_runtime_no_callbacks(&intf->dev);
1836 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1837 			dev->bus->busnum, dev->devpath,
1838 			configuration, alt->desc.bInterfaceNumber);
1839 		usb_get_dev(dev);
1840 	}
1841 	kfree(new_interfaces);
1842 
1843 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1844 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1845 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1846 	if (ret < 0 && cp) {
1847 		/*
1848 		 * All the old state is gone, so what else can we do?
1849 		 * The device is probably useless now anyway.
1850 		 */
1851 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1852 		for (i = 0; i < nintf; ++i) {
1853 			usb_disable_interface(dev, cp->interface[i], true);
1854 			put_device(&cp->interface[i]->dev);
1855 			cp->interface[i] = NULL;
1856 		}
1857 		cp = NULL;
1858 	}
1859 
1860 	dev->actconfig = cp;
1861 	mutex_unlock(hcd->bandwidth_mutex);
1862 
1863 	if (!cp) {
1864 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1865 
1866 		/* Leave LPM disabled while the device is unconfigured. */
1867 		usb_autosuspend_device(dev);
1868 		return ret;
1869 	}
1870 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1871 
1872 	if (cp->string == NULL &&
1873 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1874 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1875 
1876 	/* Now that the interfaces are installed, re-enable LPM. */
1877 	usb_unlocked_enable_lpm(dev);
1878 	/* Enable LTM if it was turned off by usb_disable_device. */
1879 	usb_enable_ltm(dev);
1880 
1881 	/* Now that all the interfaces are set up, register them
1882 	 * to trigger binding of drivers to interfaces.  probe()
1883 	 * routines may install different altsettings and may
1884 	 * claim() any interfaces not yet bound.  Many class drivers
1885 	 * need that: CDC, audio, video, etc.
1886 	 */
1887 	for (i = 0; i < nintf; ++i) {
1888 		struct usb_interface *intf = cp->interface[i];
1889 
1890 		dev_dbg(&dev->dev,
1891 			"adding %s (config #%d, interface %d)\n",
1892 			dev_name(&intf->dev), configuration,
1893 			intf->cur_altsetting->desc.bInterfaceNumber);
1894 		device_enable_async_suspend(&intf->dev);
1895 		ret = device_add(&intf->dev);
1896 		if (ret != 0) {
1897 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1898 				dev_name(&intf->dev), ret);
1899 			continue;
1900 		}
1901 		create_intf_ep_devs(intf);
1902 	}
1903 
1904 	usb_autosuspend_device(dev);
1905 	return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(usb_set_configuration);
1908 
1909 static LIST_HEAD(set_config_list);
1910 static DEFINE_SPINLOCK(set_config_lock);
1911 
1912 struct set_config_request {
1913 	struct usb_device	*udev;
1914 	int			config;
1915 	struct work_struct	work;
1916 	struct list_head	node;
1917 };
1918 
1919 /* Worker routine for usb_driver_set_configuration() */
1920 static void driver_set_config_work(struct work_struct *work)
1921 {
1922 	struct set_config_request *req =
1923 		container_of(work, struct set_config_request, work);
1924 	struct usb_device *udev = req->udev;
1925 
1926 	usb_lock_device(udev);
1927 	spin_lock(&set_config_lock);
1928 	list_del(&req->node);
1929 	spin_unlock(&set_config_lock);
1930 
1931 	if (req->config >= -1)		/* Is req still valid? */
1932 		usb_set_configuration(udev, req->config);
1933 	usb_unlock_device(udev);
1934 	usb_put_dev(udev);
1935 	kfree(req);
1936 }
1937 
1938 /* Cancel pending Set-Config requests for a device whose configuration
1939  * was just changed
1940  */
1941 static void cancel_async_set_config(struct usb_device *udev)
1942 {
1943 	struct set_config_request *req;
1944 
1945 	spin_lock(&set_config_lock);
1946 	list_for_each_entry(req, &set_config_list, node) {
1947 		if (req->udev == udev)
1948 			req->config = -999;	/* Mark as cancelled */
1949 	}
1950 	spin_unlock(&set_config_lock);
1951 }
1952 
1953 /**
1954  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1955  * @udev: the device whose configuration is being updated
1956  * @config: the configuration being chosen.
1957  * Context: In process context, must be able to sleep
1958  *
1959  * Device interface drivers are not allowed to change device configurations.
1960  * This is because changing configurations will destroy the interface the
1961  * driver is bound to and create new ones; it would be like a floppy-disk
1962  * driver telling the computer to replace the floppy-disk drive with a
1963  * tape drive!
1964  *
1965  * Still, in certain specialized circumstances the need may arise.  This
1966  * routine gets around the normal restrictions by using a work thread to
1967  * submit the change-config request.
1968  *
1969  * Return: 0 if the request was successfully queued, error code otherwise.
1970  * The caller has no way to know whether the queued request will eventually
1971  * succeed.
1972  */
1973 int usb_driver_set_configuration(struct usb_device *udev, int config)
1974 {
1975 	struct set_config_request *req;
1976 
1977 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1978 	if (!req)
1979 		return -ENOMEM;
1980 	req->udev = udev;
1981 	req->config = config;
1982 	INIT_WORK(&req->work, driver_set_config_work);
1983 
1984 	spin_lock(&set_config_lock);
1985 	list_add(&req->node, &set_config_list);
1986 	spin_unlock(&set_config_lock);
1987 
1988 	usb_get_dev(udev);
1989 	schedule_work(&req->work);
1990 	return 0;
1991 }
1992 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1993