xref: /linux/drivers/usb/core/message.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <asm/byteorder.h>
15 #include <asm/scatterlist.h>
16 
17 #include "hcd.h"	/* for usbcore internals */
18 #include "usb.h"
19 
20 static void usb_api_blocking_completion(struct urb *urb)
21 {
22 	complete((struct completion *)urb->context);
23 }
24 
25 
26 /*
27  * Starts urb and waits for completion or timeout. Note that this call
28  * is NOT interruptible. Many device driver i/o requests should be
29  * interruptible and therefore these drivers should implement their
30  * own interruptible routines.
31  */
32 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
33 {
34 	struct completion done;
35 	unsigned long expire;
36 	int status;
37 
38 	init_completion(&done);
39 	urb->context = &done;
40 	urb->actual_length = 0;
41 	status = usb_submit_urb(urb, GFP_NOIO);
42 	if (unlikely(status))
43 		goto out;
44 
45 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
46 	if (!wait_for_completion_timeout(&done, expire)) {
47 
48 		dev_dbg(&urb->dev->dev,
49 			"%s timed out on ep%d%s len=%d/%d\n",
50 			current->comm,
51 			usb_pipeendpoint(urb->pipe),
52 			usb_pipein(urb->pipe) ? "in" : "out",
53 			urb->actual_length,
54 			urb->transfer_buffer_length);
55 
56 		usb_kill_urb(urb);
57 		status = urb->status == -ENOENT ? -ETIMEDOUT : urb->status;
58 	} else
59 		status = urb->status;
60 out:
61 	if (actual_length)
62 		*actual_length = urb->actual_length;
63 
64 	usb_free_urb(urb);
65 	return status;
66 }
67 
68 /*-------------------------------------------------------------------*/
69 // returns status (negative) or length (positive)
70 static int usb_internal_control_msg(struct usb_device *usb_dev,
71 				    unsigned int pipe,
72 				    struct usb_ctrlrequest *cmd,
73 				    void *data, int len, int timeout)
74 {
75 	struct urb *urb;
76 	int retv;
77 	int length;
78 
79 	urb = usb_alloc_urb(0, GFP_NOIO);
80 	if (!urb)
81 		return -ENOMEM;
82 
83 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
84 			     len, usb_api_blocking_completion, NULL);
85 
86 	retv = usb_start_wait_urb(urb, timeout, &length);
87 	if (retv < 0)
88 		return retv;
89 	else
90 		return length;
91 }
92 
93 /**
94  *	usb_control_msg - Builds a control urb, sends it off and waits for completion
95  *	@dev: pointer to the usb device to send the message to
96  *	@pipe: endpoint "pipe" to send the message to
97  *	@request: USB message request value
98  *	@requesttype: USB message request type value
99  *	@value: USB message value
100  *	@index: USB message index value
101  *	@data: pointer to the data to send
102  *	@size: length in bytes of the data to send
103  *	@timeout: time in msecs to wait for the message to complete before
104  *		timing out (if 0 the wait is forever)
105  *	Context: !in_interrupt ()
106  *
107  *	This function sends a simple control message to a specified endpoint
108  *	and waits for the message to complete, or timeout.
109  *
110  *	If successful, it returns the number of bytes transferred, otherwise a negative error number.
111  *
112  *	Don't use this function from within an interrupt context, like a
113  *	bottom half handler.  If you need an asynchronous message, or need to send
114  *	a message from within interrupt context, use usb_submit_urb()
115  *      If a thread in your driver uses this call, make sure your disconnect()
116  *      method can wait for it to complete.  Since you don't have a handle on
117  *      the URB used, you can't cancel the request.
118  */
119 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
120 			 __u16 value, __u16 index, void *data, __u16 size, int timeout)
121 {
122 	struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
123 	int ret;
124 
125 	if (!dr)
126 		return -ENOMEM;
127 
128 	dr->bRequestType= requesttype;
129 	dr->bRequest = request;
130 	dr->wValue = cpu_to_le16p(&value);
131 	dr->wIndex = cpu_to_le16p(&index);
132 	dr->wLength = cpu_to_le16p(&size);
133 
134 	//dbg("usb_control_msg");
135 
136 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
137 
138 	kfree(dr);
139 
140 	return ret;
141 }
142 
143 
144 /**
145  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
146  * @usb_dev: pointer to the usb device to send the message to
147  * @pipe: endpoint "pipe" to send the message to
148  * @data: pointer to the data to send
149  * @len: length in bytes of the data to send
150  * @actual_length: pointer to a location to put the actual length transferred in bytes
151  * @timeout: time in msecs to wait for the message to complete before
152  *	timing out (if 0 the wait is forever)
153  * Context: !in_interrupt ()
154  *
155  * This function sends a simple interrupt message to a specified endpoint and
156  * waits for the message to complete, or timeout.
157  *
158  * If successful, it returns 0, otherwise a negative error number.  The number
159  * of actual bytes transferred will be stored in the actual_length paramater.
160  *
161  * Don't use this function from within an interrupt context, like a bottom half
162  * handler.  If you need an asynchronous message, or need to send a message
163  * from within interrupt context, use usb_submit_urb() If a thread in your
164  * driver uses this call, make sure your disconnect() method can wait for it to
165  * complete.  Since you don't have a handle on the URB used, you can't cancel
166  * the request.
167  */
168 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
169 		      void *data, int len, int *actual_length, int timeout)
170 {
171 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
172 }
173 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
174 
175 /**
176  *	usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
177  *	@usb_dev: pointer to the usb device to send the message to
178  *	@pipe: endpoint "pipe" to send the message to
179  *	@data: pointer to the data to send
180  *	@len: length in bytes of the data to send
181  *	@actual_length: pointer to a location to put the actual length transferred in bytes
182  *	@timeout: time in msecs to wait for the message to complete before
183  *		timing out (if 0 the wait is forever)
184  *	Context: !in_interrupt ()
185  *
186  *	This function sends a simple bulk message to a specified endpoint
187  *	and waits for the message to complete, or timeout.
188  *
189  *	If successful, it returns 0, otherwise a negative error number.
190  *	The number of actual bytes transferred will be stored in the
191  *	actual_length paramater.
192  *
193  *	Don't use this function from within an interrupt context, like a
194  *	bottom half handler.  If you need an asynchronous message, or need to
195  *	send a message from within interrupt context, use usb_submit_urb()
196  *      If a thread in your driver uses this call, make sure your disconnect()
197  *      method can wait for it to complete.  Since you don't have a handle on
198  *      the URB used, you can't cancel the request.
199  *
200  *	Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
201  *	ioctl, users are forced to abuse this routine by using it to submit
202  *	URBs for interrupt endpoints.  We will take the liberty of creating
203  *	an interrupt URB (with the default interval) if the target is an
204  *	interrupt endpoint.
205  */
206 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
207 			void *data, int len, int *actual_length, int timeout)
208 {
209 	struct urb *urb;
210 	struct usb_host_endpoint *ep;
211 
212 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
213 			[usb_pipeendpoint(pipe)];
214 	if (!ep || len < 0)
215 		return -EINVAL;
216 
217 	urb = usb_alloc_urb(0, GFP_KERNEL);
218 	if (!urb)
219 		return -ENOMEM;
220 
221 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
222 			USB_ENDPOINT_XFER_INT) {
223 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
224 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
225 				usb_api_blocking_completion, NULL,
226 				ep->desc.bInterval);
227 	} else
228 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
229 				usb_api_blocking_completion, NULL);
230 
231 	return usb_start_wait_urb(urb, timeout, actual_length);
232 }
233 
234 /*-------------------------------------------------------------------*/
235 
236 static void sg_clean (struct usb_sg_request *io)
237 {
238 	if (io->urbs) {
239 		while (io->entries--)
240 			usb_free_urb (io->urbs [io->entries]);
241 		kfree (io->urbs);
242 		io->urbs = NULL;
243 	}
244 	if (io->dev->dev.dma_mask != NULL)
245 		usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
246 	io->dev = NULL;
247 }
248 
249 static void sg_complete (struct urb *urb)
250 {
251 	struct usb_sg_request	*io = urb->context;
252 
253 	spin_lock (&io->lock);
254 
255 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
256 	 * reports, until the completion callback (this!) returns.  That lets
257 	 * device driver code (like this routine) unlink queued urbs first,
258 	 * if it needs to, since the HC won't work on them at all.  So it's
259 	 * not possible for page N+1 to overwrite page N, and so on.
260 	 *
261 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
262 	 * complete before the HCD can get requests away from hardware,
263 	 * though never during cleanup after a hard fault.
264 	 */
265 	if (io->status
266 			&& (io->status != -ECONNRESET
267 				|| urb->status != -ECONNRESET)
268 			&& urb->actual_length) {
269 		dev_err (io->dev->bus->controller,
270 			"dev %s ep%d%s scatterlist error %d/%d\n",
271 			io->dev->devpath,
272 			usb_pipeendpoint (urb->pipe),
273 			usb_pipein (urb->pipe) ? "in" : "out",
274 			urb->status, io->status);
275 		// BUG ();
276 	}
277 
278 	if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
279 		int		i, found, status;
280 
281 		io->status = urb->status;
282 
283 		/* the previous urbs, and this one, completed already.
284 		 * unlink pending urbs so they won't rx/tx bad data.
285 		 * careful: unlink can sometimes be synchronous...
286 		 */
287 		spin_unlock (&io->lock);
288 		for (i = 0, found = 0; i < io->entries; i++) {
289 			if (!io->urbs [i] || !io->urbs [i]->dev)
290 				continue;
291 			if (found) {
292 				status = usb_unlink_urb (io->urbs [i]);
293 				if (status != -EINPROGRESS
294 						&& status != -ENODEV
295 						&& status != -EBUSY)
296 					dev_err (&io->dev->dev,
297 						"%s, unlink --> %d\n",
298 						__FUNCTION__, status);
299 			} else if (urb == io->urbs [i])
300 				found = 1;
301 		}
302 		spin_lock (&io->lock);
303 	}
304 	urb->dev = NULL;
305 
306 	/* on the last completion, signal usb_sg_wait() */
307 	io->bytes += urb->actual_length;
308 	io->count--;
309 	if (!io->count)
310 		complete (&io->complete);
311 
312 	spin_unlock (&io->lock);
313 }
314 
315 
316 /**
317  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
318  * @io: request block being initialized.  until usb_sg_wait() returns,
319  *	treat this as a pointer to an opaque block of memory,
320  * @dev: the usb device that will send or receive the data
321  * @pipe: endpoint "pipe" used to transfer the data
322  * @period: polling rate for interrupt endpoints, in frames or
323  * 	(for high speed endpoints) microframes; ignored for bulk
324  * @sg: scatterlist entries
325  * @nents: how many entries in the scatterlist
326  * @length: how many bytes to send from the scatterlist, or zero to
327  * 	send every byte identified in the list.
328  * @mem_flags: SLAB_* flags affecting memory allocations in this call
329  *
330  * Returns zero for success, else a negative errno value.  This initializes a
331  * scatter/gather request, allocating resources such as I/O mappings and urb
332  * memory (except maybe memory used by USB controller drivers).
333  *
334  * The request must be issued using usb_sg_wait(), which waits for the I/O to
335  * complete (or to be canceled) and then cleans up all resources allocated by
336  * usb_sg_init().
337  *
338  * The request may be canceled with usb_sg_cancel(), either before or after
339  * usb_sg_wait() is called.
340  */
341 int usb_sg_init (
342 	struct usb_sg_request	*io,
343 	struct usb_device	*dev,
344 	unsigned		pipe,
345 	unsigned		period,
346 	struct scatterlist	*sg,
347 	int			nents,
348 	size_t			length,
349 	gfp_t			mem_flags
350 )
351 {
352 	int			i;
353 	int			urb_flags;
354 	int			dma;
355 
356 	if (!io || !dev || !sg
357 			|| usb_pipecontrol (pipe)
358 			|| usb_pipeisoc (pipe)
359 			|| nents <= 0)
360 		return -EINVAL;
361 
362 	spin_lock_init (&io->lock);
363 	io->dev = dev;
364 	io->pipe = pipe;
365 	io->sg = sg;
366 	io->nents = nents;
367 
368 	/* not all host controllers use DMA (like the mainstream pci ones);
369 	 * they can use PIO (sl811) or be software over another transport.
370 	 */
371 	dma = (dev->dev.dma_mask != NULL);
372 	if (dma)
373 		io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
374 	else
375 		io->entries = nents;
376 
377 	/* initialize all the urbs we'll use */
378 	if (io->entries <= 0)
379 		return io->entries;
380 
381 	io->count = io->entries;
382 	io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
383 	if (!io->urbs)
384 		goto nomem;
385 
386 	urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
387 	if (usb_pipein (pipe))
388 		urb_flags |= URB_SHORT_NOT_OK;
389 
390 	for (i = 0; i < io->entries; i++) {
391 		unsigned		len;
392 
393 		io->urbs [i] = usb_alloc_urb (0, mem_flags);
394 		if (!io->urbs [i]) {
395 			io->entries = i;
396 			goto nomem;
397 		}
398 
399 		io->urbs [i]->dev = NULL;
400 		io->urbs [i]->pipe = pipe;
401 		io->urbs [i]->interval = period;
402 		io->urbs [i]->transfer_flags = urb_flags;
403 
404 		io->urbs [i]->complete = sg_complete;
405 		io->urbs [i]->context = io;
406 		io->urbs [i]->status = -EINPROGRESS;
407 		io->urbs [i]->actual_length = 0;
408 
409 		if (dma) {
410 			/* hc may use _only_ transfer_dma */
411 			io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
412 			len = sg_dma_len (sg + i);
413 		} else {
414 			/* hc may use _only_ transfer_buffer */
415 			io->urbs [i]->transfer_buffer =
416 				page_address (sg [i].page) + sg [i].offset;
417 			len = sg [i].length;
418 		}
419 
420 		if (length) {
421 			len = min_t (unsigned, len, length);
422 			length -= len;
423 			if (length == 0)
424 				io->entries = i + 1;
425 		}
426 		io->urbs [i]->transfer_buffer_length = len;
427 	}
428 	io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
429 
430 	/* transaction state */
431 	io->status = 0;
432 	io->bytes = 0;
433 	init_completion (&io->complete);
434 	return 0;
435 
436 nomem:
437 	sg_clean (io);
438 	return -ENOMEM;
439 }
440 
441 
442 /**
443  * usb_sg_wait - synchronously execute scatter/gather request
444  * @io: request block handle, as initialized with usb_sg_init().
445  * 	some fields become accessible when this call returns.
446  * Context: !in_interrupt ()
447  *
448  * This function blocks until the specified I/O operation completes.  It
449  * leverages the grouping of the related I/O requests to get good transfer
450  * rates, by queueing the requests.  At higher speeds, such queuing can
451  * significantly improve USB throughput.
452  *
453  * There are three kinds of completion for this function.
454  * (1) success, where io->status is zero.  The number of io->bytes
455  *     transferred is as requested.
456  * (2) error, where io->status is a negative errno value.  The number
457  *     of io->bytes transferred before the error is usually less
458  *     than requested, and can be nonzero.
459  * (3) cancellation, a type of error with status -ECONNRESET that
460  *     is initiated by usb_sg_cancel().
461  *
462  * When this function returns, all memory allocated through usb_sg_init() or
463  * this call will have been freed.  The request block parameter may still be
464  * passed to usb_sg_cancel(), or it may be freed.  It could also be
465  * reinitialized and then reused.
466  *
467  * Data Transfer Rates:
468  *
469  * Bulk transfers are valid for full or high speed endpoints.
470  * The best full speed data rate is 19 packets of 64 bytes each
471  * per frame, or 1216 bytes per millisecond.
472  * The best high speed data rate is 13 packets of 512 bytes each
473  * per microframe, or 52 KBytes per millisecond.
474  *
475  * The reason to use interrupt transfers through this API would most likely
476  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
477  * could be transferred.  That capability is less useful for low or full
478  * speed interrupt endpoints, which allow at most one packet per millisecond,
479  * of at most 8 or 64 bytes (respectively).
480  */
481 void usb_sg_wait (struct usb_sg_request *io)
482 {
483 	int		i, entries = io->entries;
484 
485 	/* queue the urbs.  */
486 	spin_lock_irq (&io->lock);
487 	for (i = 0; i < entries && !io->status; i++) {
488 		int	retval;
489 
490 		io->urbs [i]->dev = io->dev;
491 		retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC);
492 
493 		/* after we submit, let completions or cancelations fire;
494 		 * we handshake using io->status.
495 		 */
496 		spin_unlock_irq (&io->lock);
497 		switch (retval) {
498 			/* maybe we retrying will recover */
499 		case -ENXIO:	// hc didn't queue this one
500 		case -EAGAIN:
501 		case -ENOMEM:
502 			io->urbs[i]->dev = NULL;
503 			retval = 0;
504 			i--;
505 			yield ();
506 			break;
507 
508 			/* no error? continue immediately.
509 			 *
510 			 * NOTE: to work better with UHCI (4K I/O buffer may
511 			 * need 3K of TDs) it may be good to limit how many
512 			 * URBs are queued at once; N milliseconds?
513 			 */
514 		case 0:
515 			cpu_relax ();
516 			break;
517 
518 			/* fail any uncompleted urbs */
519 		default:
520 			io->urbs [i]->dev = NULL;
521 			io->urbs [i]->status = retval;
522 			dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
523 				__FUNCTION__, retval);
524 			usb_sg_cancel (io);
525 		}
526 		spin_lock_irq (&io->lock);
527 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
528 			io->status = retval;
529 	}
530 	io->count -= entries - i;
531 	if (io->count == 0)
532 		complete (&io->complete);
533 	spin_unlock_irq (&io->lock);
534 
535 	/* OK, yes, this could be packaged as non-blocking.
536 	 * So could the submit loop above ... but it's easier to
537 	 * solve neither problem than to solve both!
538 	 */
539 	wait_for_completion (&io->complete);
540 
541 	sg_clean (io);
542 }
543 
544 /**
545  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
546  * @io: request block, initialized with usb_sg_init()
547  *
548  * This stops a request after it has been started by usb_sg_wait().
549  * It can also prevents one initialized by usb_sg_init() from starting,
550  * so that call just frees resources allocated to the request.
551  */
552 void usb_sg_cancel (struct usb_sg_request *io)
553 {
554 	unsigned long	flags;
555 
556 	spin_lock_irqsave (&io->lock, flags);
557 
558 	/* shut everything down, if it didn't already */
559 	if (!io->status) {
560 		int	i;
561 
562 		io->status = -ECONNRESET;
563 		spin_unlock (&io->lock);
564 		for (i = 0; i < io->entries; i++) {
565 			int	retval;
566 
567 			if (!io->urbs [i]->dev)
568 				continue;
569 			retval = usb_unlink_urb (io->urbs [i]);
570 			if (retval != -EINPROGRESS && retval != -EBUSY)
571 				dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
572 					__FUNCTION__, retval);
573 		}
574 		spin_lock (&io->lock);
575 	}
576 	spin_unlock_irqrestore (&io->lock, flags);
577 }
578 
579 /*-------------------------------------------------------------------*/
580 
581 /**
582  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
583  * @dev: the device whose descriptor is being retrieved
584  * @type: the descriptor type (USB_DT_*)
585  * @index: the number of the descriptor
586  * @buf: where to put the descriptor
587  * @size: how big is "buf"?
588  * Context: !in_interrupt ()
589  *
590  * Gets a USB descriptor.  Convenience functions exist to simplify
591  * getting some types of descriptors.  Use
592  * usb_get_string() or usb_string() for USB_DT_STRING.
593  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
594  * are part of the device structure.
595  * In addition to a number of USB-standard descriptors, some
596  * devices also use class-specific or vendor-specific descriptors.
597  *
598  * This call is synchronous, and may not be used in an interrupt context.
599  *
600  * Returns the number of bytes received on success, or else the status code
601  * returned by the underlying usb_control_msg() call.
602  */
603 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
604 {
605 	int i;
606 	int result;
607 
608 	memset(buf,0,size);	// Make sure we parse really received data
609 
610 	for (i = 0; i < 3; ++i) {
611 		/* retry on length 0 or stall; some devices are flakey */
612 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
613 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
614 				(type << 8) + index, 0, buf, size,
615 				USB_CTRL_GET_TIMEOUT);
616 		if (result == 0 || result == -EPIPE)
617 			continue;
618 		if (result > 1 && ((u8 *)buf)[1] != type) {
619 			result = -EPROTO;
620 			continue;
621 		}
622 		break;
623 	}
624 	return result;
625 }
626 
627 /**
628  * usb_get_string - gets a string descriptor
629  * @dev: the device whose string descriptor is being retrieved
630  * @langid: code for language chosen (from string descriptor zero)
631  * @index: the number of the descriptor
632  * @buf: where to put the string
633  * @size: how big is "buf"?
634  * Context: !in_interrupt ()
635  *
636  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
637  * in little-endian byte order).
638  * The usb_string() function will often be a convenient way to turn
639  * these strings into kernel-printable form.
640  *
641  * Strings may be referenced in device, configuration, interface, or other
642  * descriptors, and could also be used in vendor-specific ways.
643  *
644  * This call is synchronous, and may not be used in an interrupt context.
645  *
646  * Returns the number of bytes received on success, or else the status code
647  * returned by the underlying usb_control_msg() call.
648  */
649 static int usb_get_string(struct usb_device *dev, unsigned short langid,
650 			  unsigned char index, void *buf, int size)
651 {
652 	int i;
653 	int result;
654 
655 	for (i = 0; i < 3; ++i) {
656 		/* retry on length 0 or stall; some devices are flakey */
657 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
658 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
659 			(USB_DT_STRING << 8) + index, langid, buf, size,
660 			USB_CTRL_GET_TIMEOUT);
661 		if (!(result == 0 || result == -EPIPE))
662 			break;
663 	}
664 	return result;
665 }
666 
667 static void usb_try_string_workarounds(unsigned char *buf, int *length)
668 {
669 	int newlength, oldlength = *length;
670 
671 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
672 		if (!isprint(buf[newlength]) || buf[newlength + 1])
673 			break;
674 
675 	if (newlength > 2) {
676 		buf[0] = newlength;
677 		*length = newlength;
678 	}
679 }
680 
681 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
682 		unsigned int index, unsigned char *buf)
683 {
684 	int rc;
685 
686 	/* Try to read the string descriptor by asking for the maximum
687 	 * possible number of bytes */
688 	rc = usb_get_string(dev, langid, index, buf, 255);
689 
690 	/* If that failed try to read the descriptor length, then
691 	 * ask for just that many bytes */
692 	if (rc < 2) {
693 		rc = usb_get_string(dev, langid, index, buf, 2);
694 		if (rc == 2)
695 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
696 	}
697 
698 	if (rc >= 2) {
699 		if (!buf[0] && !buf[1])
700 			usb_try_string_workarounds(buf, &rc);
701 
702 		/* There might be extra junk at the end of the descriptor */
703 		if (buf[0] < rc)
704 			rc = buf[0];
705 
706 		rc = rc - (rc & 1); /* force a multiple of two */
707 	}
708 
709 	if (rc < 2)
710 		rc = (rc < 0 ? rc : -EINVAL);
711 
712 	return rc;
713 }
714 
715 /**
716  * usb_string - returns ISO 8859-1 version of a string descriptor
717  * @dev: the device whose string descriptor is being retrieved
718  * @index: the number of the descriptor
719  * @buf: where to put the string
720  * @size: how big is "buf"?
721  * Context: !in_interrupt ()
722  *
723  * This converts the UTF-16LE encoded strings returned by devices, from
724  * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
725  * that are more usable in most kernel contexts.  Note that all characters
726  * in the chosen descriptor that can't be encoded using ISO-8859-1
727  * are converted to the question mark ("?") character, and this function
728  * chooses strings in the first language supported by the device.
729  *
730  * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
731  * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
732  * and is appropriate for use many uses of English and several other
733  * Western European languages.  (But it doesn't include the "Euro" symbol.)
734  *
735  * This call is synchronous, and may not be used in an interrupt context.
736  *
737  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
738  */
739 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
740 {
741 	unsigned char *tbuf;
742 	int err;
743 	unsigned int u, idx;
744 
745 	if (dev->state == USB_STATE_SUSPENDED)
746 		return -EHOSTUNREACH;
747 	if (size <= 0 || !buf || !index)
748 		return -EINVAL;
749 	buf[0] = 0;
750 	tbuf = kmalloc(256, GFP_KERNEL);
751 	if (!tbuf)
752 		return -ENOMEM;
753 
754 	/* get langid for strings if it's not yet known */
755 	if (!dev->have_langid) {
756 		err = usb_string_sub(dev, 0, 0, tbuf);
757 		if (err < 0) {
758 			dev_err (&dev->dev,
759 				"string descriptor 0 read error: %d\n",
760 				err);
761 			goto errout;
762 		} else if (err < 4) {
763 			dev_err (&dev->dev, "string descriptor 0 too short\n");
764 			err = -EINVAL;
765 			goto errout;
766 		} else {
767 			dev->have_langid = 1;
768 			dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
769 				/* always use the first langid listed */
770 			dev_dbg (&dev->dev, "default language 0x%04x\n",
771 				dev->string_langid);
772 		}
773 	}
774 
775 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
776 	if (err < 0)
777 		goto errout;
778 
779 	size--;		/* leave room for trailing NULL char in output buffer */
780 	for (idx = 0, u = 2; u < err; u += 2) {
781 		if (idx >= size)
782 			break;
783 		if (tbuf[u+1])			/* high byte */
784 			buf[idx++] = '?';  /* non ISO-8859-1 character */
785 		else
786 			buf[idx++] = tbuf[u];
787 	}
788 	buf[idx] = 0;
789 	err = idx;
790 
791 	if (tbuf[1] != USB_DT_STRING)
792 		dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
793 
794  errout:
795 	kfree(tbuf);
796 	return err;
797 }
798 
799 /**
800  * usb_cache_string - read a string descriptor and cache it for later use
801  * @udev: the device whose string descriptor is being read
802  * @index: the descriptor index
803  *
804  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
805  * or NULL if the index is 0 or the string could not be read.
806  */
807 char *usb_cache_string(struct usb_device *udev, int index)
808 {
809 	char *buf;
810 	char *smallbuf = NULL;
811 	int len;
812 
813 	if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
814 		if ((len = usb_string(udev, index, buf, 256)) > 0) {
815 			if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
816 				return buf;
817 			memcpy(smallbuf, buf, len);
818 		}
819 		kfree(buf);
820 	}
821 	return smallbuf;
822 }
823 
824 /*
825  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
826  * @dev: the device whose device descriptor is being updated
827  * @size: how much of the descriptor to read
828  * Context: !in_interrupt ()
829  *
830  * Updates the copy of the device descriptor stored in the device structure,
831  * which dedicates space for this purpose.
832  *
833  * Not exported, only for use by the core.  If drivers really want to read
834  * the device descriptor directly, they can call usb_get_descriptor() with
835  * type = USB_DT_DEVICE and index = 0.
836  *
837  * This call is synchronous, and may not be used in an interrupt context.
838  *
839  * Returns the number of bytes received on success, or else the status code
840  * returned by the underlying usb_control_msg() call.
841  */
842 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
843 {
844 	struct usb_device_descriptor *desc;
845 	int ret;
846 
847 	if (size > sizeof(*desc))
848 		return -EINVAL;
849 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
850 	if (!desc)
851 		return -ENOMEM;
852 
853 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
854 	if (ret >= 0)
855 		memcpy(&dev->descriptor, desc, size);
856 	kfree(desc);
857 	return ret;
858 }
859 
860 /**
861  * usb_get_status - issues a GET_STATUS call
862  * @dev: the device whose status is being checked
863  * @type: USB_RECIP_*; for device, interface, or endpoint
864  * @target: zero (for device), else interface or endpoint number
865  * @data: pointer to two bytes of bitmap data
866  * Context: !in_interrupt ()
867  *
868  * Returns device, interface, or endpoint status.  Normally only of
869  * interest to see if the device is self powered, or has enabled the
870  * remote wakeup facility; or whether a bulk or interrupt endpoint
871  * is halted ("stalled").
872  *
873  * Bits in these status bitmaps are set using the SET_FEATURE request,
874  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
875  * function should be used to clear halt ("stall") status.
876  *
877  * This call is synchronous, and may not be used in an interrupt context.
878  *
879  * Returns the number of bytes received on success, or else the status code
880  * returned by the underlying usb_control_msg() call.
881  */
882 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
883 {
884 	int ret;
885 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
886 
887 	if (!status)
888 		return -ENOMEM;
889 
890 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
891 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
892 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
893 
894 	*(u16 *)data = *status;
895 	kfree(status);
896 	return ret;
897 }
898 
899 /**
900  * usb_clear_halt - tells device to clear endpoint halt/stall condition
901  * @dev: device whose endpoint is halted
902  * @pipe: endpoint "pipe" being cleared
903  * Context: !in_interrupt ()
904  *
905  * This is used to clear halt conditions for bulk and interrupt endpoints,
906  * as reported by URB completion status.  Endpoints that are halted are
907  * sometimes referred to as being "stalled".  Such endpoints are unable
908  * to transmit or receive data until the halt status is cleared.  Any URBs
909  * queued for such an endpoint should normally be unlinked by the driver
910  * before clearing the halt condition, as described in sections 5.7.5
911  * and 5.8.5 of the USB 2.0 spec.
912  *
913  * Note that control and isochronous endpoints don't halt, although control
914  * endpoints report "protocol stall" (for unsupported requests) using the
915  * same status code used to report a true stall.
916  *
917  * This call is synchronous, and may not be used in an interrupt context.
918  *
919  * Returns zero on success, or else the status code returned by the
920  * underlying usb_control_msg() call.
921  */
922 int usb_clear_halt(struct usb_device *dev, int pipe)
923 {
924 	int result;
925 	int endp = usb_pipeendpoint(pipe);
926 
927 	if (usb_pipein (pipe))
928 		endp |= USB_DIR_IN;
929 
930 	/* we don't care if it wasn't halted first. in fact some devices
931 	 * (like some ibmcam model 1 units) seem to expect hosts to make
932 	 * this request for iso endpoints, which can't halt!
933 	 */
934 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
935 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
936 		USB_ENDPOINT_HALT, endp, NULL, 0,
937 		USB_CTRL_SET_TIMEOUT);
938 
939 	/* don't un-halt or force to DATA0 except on success */
940 	if (result < 0)
941 		return result;
942 
943 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
944 	 * the clear "took", so some devices could lock up if you check...
945 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
946 	 *
947 	 * NOTE:  make sure the logic here doesn't diverge much from
948 	 * the copy in usb-storage, for as long as we need two copies.
949 	 */
950 
951 	/* toggle was reset by the clear */
952 	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
953 
954 	return 0;
955 }
956 
957 /**
958  * usb_disable_endpoint -- Disable an endpoint by address
959  * @dev: the device whose endpoint is being disabled
960  * @epaddr: the endpoint's address.  Endpoint number for output,
961  *	endpoint number + USB_DIR_IN for input
962  *
963  * Deallocates hcd/hardware state for this endpoint ... and nukes all
964  * pending urbs.
965  *
966  * If the HCD hasn't registered a disable() function, this sets the
967  * endpoint's maxpacket size to 0 to prevent further submissions.
968  */
969 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
970 {
971 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
972 	struct usb_host_endpoint *ep;
973 
974 	if (!dev)
975 		return;
976 
977 	if (usb_endpoint_out(epaddr)) {
978 		ep = dev->ep_out[epnum];
979 		dev->ep_out[epnum] = NULL;
980 	} else {
981 		ep = dev->ep_in[epnum];
982 		dev->ep_in[epnum] = NULL;
983 	}
984 	if (ep && dev->bus)
985 		usb_hcd_endpoint_disable(dev, ep);
986 }
987 
988 /**
989  * usb_disable_interface -- Disable all endpoints for an interface
990  * @dev: the device whose interface is being disabled
991  * @intf: pointer to the interface descriptor
992  *
993  * Disables all the endpoints for the interface's current altsetting.
994  */
995 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
996 {
997 	struct usb_host_interface *alt = intf->cur_altsetting;
998 	int i;
999 
1000 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1001 		usb_disable_endpoint(dev,
1002 				alt->endpoint[i].desc.bEndpointAddress);
1003 	}
1004 }
1005 
1006 /*
1007  * usb_disable_device - Disable all the endpoints for a USB device
1008  * @dev: the device whose endpoints are being disabled
1009  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1010  *
1011  * Disables all the device's endpoints, potentially including endpoint 0.
1012  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1013  * pending urbs) and usbcore state for the interfaces, so that usbcore
1014  * must usb_set_configuration() before any interfaces could be used.
1015  */
1016 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1017 {
1018 	int i;
1019 
1020 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1021 			skip_ep0 ? "non-ep0" : "all");
1022 	for (i = skip_ep0; i < 16; ++i) {
1023 		usb_disable_endpoint(dev, i);
1024 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1025 	}
1026 	dev->toggle[0] = dev->toggle[1] = 0;
1027 
1028 	/* getting rid of interfaces will disconnect
1029 	 * any drivers bound to them (a key side effect)
1030 	 */
1031 	if (dev->actconfig) {
1032 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1033 			struct usb_interface	*interface;
1034 
1035 			/* remove this interface if it has been registered */
1036 			interface = dev->actconfig->interface[i];
1037 			if (!device_is_registered(&interface->dev))
1038 				continue;
1039 			dev_dbg (&dev->dev, "unregistering interface %s\n",
1040 				interface->dev.bus_id);
1041 			usb_remove_sysfs_intf_files(interface);
1042 			device_del (&interface->dev);
1043 		}
1044 
1045 		/* Now that the interfaces are unbound, nobody should
1046 		 * try to access them.
1047 		 */
1048 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1049 			put_device (&dev->actconfig->interface[i]->dev);
1050 			dev->actconfig->interface[i] = NULL;
1051 		}
1052 		dev->actconfig = NULL;
1053 		if (dev->state == USB_STATE_CONFIGURED)
1054 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1055 	}
1056 }
1057 
1058 
1059 /*
1060  * usb_enable_endpoint - Enable an endpoint for USB communications
1061  * @dev: the device whose interface is being enabled
1062  * @ep: the endpoint
1063  *
1064  * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1065  * For control endpoints, both the input and output sides are handled.
1066  */
1067 static void
1068 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1069 {
1070 	unsigned int epaddr = ep->desc.bEndpointAddress;
1071 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1072 	int is_control;
1073 
1074 	is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1075 			== USB_ENDPOINT_XFER_CONTROL);
1076 	if (usb_endpoint_out(epaddr) || is_control) {
1077 		usb_settoggle(dev, epnum, 1, 0);
1078 		dev->ep_out[epnum] = ep;
1079 	}
1080 	if (!usb_endpoint_out(epaddr) || is_control) {
1081 		usb_settoggle(dev, epnum, 0, 0);
1082 		dev->ep_in[epnum] = ep;
1083 	}
1084 }
1085 
1086 /*
1087  * usb_enable_interface - Enable all the endpoints for an interface
1088  * @dev: the device whose interface is being enabled
1089  * @intf: pointer to the interface descriptor
1090  *
1091  * Enables all the endpoints for the interface's current altsetting.
1092  */
1093 static void usb_enable_interface(struct usb_device *dev,
1094 				 struct usb_interface *intf)
1095 {
1096 	struct usb_host_interface *alt = intf->cur_altsetting;
1097 	int i;
1098 
1099 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1100 		usb_enable_endpoint(dev, &alt->endpoint[i]);
1101 }
1102 
1103 /**
1104  * usb_set_interface - Makes a particular alternate setting be current
1105  * @dev: the device whose interface is being updated
1106  * @interface: the interface being updated
1107  * @alternate: the setting being chosen.
1108  * Context: !in_interrupt ()
1109  *
1110  * This is used to enable data transfers on interfaces that may not
1111  * be enabled by default.  Not all devices support such configurability.
1112  * Only the driver bound to an interface may change its setting.
1113  *
1114  * Within any given configuration, each interface may have several
1115  * alternative settings.  These are often used to control levels of
1116  * bandwidth consumption.  For example, the default setting for a high
1117  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1118  * while interrupt transfers of up to 3KBytes per microframe are legal.
1119  * Also, isochronous endpoints may never be part of an
1120  * interface's default setting.  To access such bandwidth, alternate
1121  * interface settings must be made current.
1122  *
1123  * Note that in the Linux USB subsystem, bandwidth associated with
1124  * an endpoint in a given alternate setting is not reserved until an URB
1125  * is submitted that needs that bandwidth.  Some other operating systems
1126  * allocate bandwidth early, when a configuration is chosen.
1127  *
1128  * This call is synchronous, and may not be used in an interrupt context.
1129  * Also, drivers must not change altsettings while urbs are scheduled for
1130  * endpoints in that interface; all such urbs must first be completed
1131  * (perhaps forced by unlinking).
1132  *
1133  * Returns zero on success, or else the status code returned by the
1134  * underlying usb_control_msg() call.
1135  */
1136 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1137 {
1138 	struct usb_interface *iface;
1139 	struct usb_host_interface *alt;
1140 	int ret;
1141 	int manual = 0;
1142 
1143 	if (dev->state == USB_STATE_SUSPENDED)
1144 		return -EHOSTUNREACH;
1145 
1146 	iface = usb_ifnum_to_if(dev, interface);
1147 	if (!iface) {
1148 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1149 			interface);
1150 		return -EINVAL;
1151 	}
1152 
1153 	alt = usb_altnum_to_altsetting(iface, alternate);
1154 	if (!alt) {
1155 		warn("selecting invalid altsetting %d", alternate);
1156 		return -EINVAL;
1157 	}
1158 
1159 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1160 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1161 				   alternate, interface, NULL, 0, 5000);
1162 
1163 	/* 9.4.10 says devices don't need this and are free to STALL the
1164 	 * request if the interface only has one alternate setting.
1165 	 */
1166 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1167 		dev_dbg(&dev->dev,
1168 			"manual set_interface for iface %d, alt %d\n",
1169 			interface, alternate);
1170 		manual = 1;
1171 	} else if (ret < 0)
1172 		return ret;
1173 
1174 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1175 	 * when they implement async or easily-killable versions of this or
1176 	 * other "should-be-internal" functions (like clear_halt).
1177 	 * should hcd+usbcore postprocess control requests?
1178 	 */
1179 
1180 	/* prevent submissions using previous endpoint settings */
1181 	if (device_is_registered(&iface->dev))
1182 		usb_remove_sysfs_intf_files(iface);
1183 	usb_disable_interface(dev, iface);
1184 
1185 	iface->cur_altsetting = alt;
1186 
1187 	/* If the interface only has one altsetting and the device didn't
1188 	 * accept the request, we attempt to carry out the equivalent action
1189 	 * by manually clearing the HALT feature for each endpoint in the
1190 	 * new altsetting.
1191 	 */
1192 	if (manual) {
1193 		int i;
1194 
1195 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1196 			unsigned int epaddr =
1197 				alt->endpoint[i].desc.bEndpointAddress;
1198 			unsigned int pipe =
1199 	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1200 	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1201 
1202 			usb_clear_halt(dev, pipe);
1203 		}
1204 	}
1205 
1206 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1207 	 *
1208 	 * Note:
1209 	 * Despite EP0 is always present in all interfaces/AS, the list of
1210 	 * endpoints from the descriptor does not contain EP0. Due to its
1211 	 * omnipresence one might expect EP0 being considered "affected" by
1212 	 * any SetInterface request and hence assume toggles need to be reset.
1213 	 * However, EP0 toggles are re-synced for every individual transfer
1214 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1215 	 * (Likewise, EP0 never "halts" on well designed devices.)
1216 	 */
1217 	usb_enable_interface(dev, iface);
1218 	if (device_is_registered(&iface->dev))
1219 		usb_create_sysfs_intf_files(iface);
1220 
1221 	return 0;
1222 }
1223 
1224 /**
1225  * usb_reset_configuration - lightweight device reset
1226  * @dev: the device whose configuration is being reset
1227  *
1228  * This issues a standard SET_CONFIGURATION request to the device using
1229  * the current configuration.  The effect is to reset most USB-related
1230  * state in the device, including interface altsettings (reset to zero),
1231  * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1232  * endpoints).  Other usbcore state is unchanged, including bindings of
1233  * usb device drivers to interfaces.
1234  *
1235  * Because this affects multiple interfaces, avoid using this with composite
1236  * (multi-interface) devices.  Instead, the driver for each interface may
1237  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1238  * some devices don't support the SET_INTERFACE request, and others won't
1239  * reset all the interface state (notably data toggles).  Resetting the whole
1240  * configuration would affect other drivers' interfaces.
1241  *
1242  * The caller must own the device lock.
1243  *
1244  * Returns zero on success, else a negative error code.
1245  */
1246 int usb_reset_configuration(struct usb_device *dev)
1247 {
1248 	int			i, retval;
1249 	struct usb_host_config	*config;
1250 
1251 	if (dev->state == USB_STATE_SUSPENDED)
1252 		return -EHOSTUNREACH;
1253 
1254 	/* caller must have locked the device and must own
1255 	 * the usb bus readlock (so driver bindings are stable);
1256 	 * calls during probe() are fine
1257 	 */
1258 
1259 	for (i = 1; i < 16; ++i) {
1260 		usb_disable_endpoint(dev, i);
1261 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1262 	}
1263 
1264 	config = dev->actconfig;
1265 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1266 			USB_REQ_SET_CONFIGURATION, 0,
1267 			config->desc.bConfigurationValue, 0,
1268 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1269 	if (retval < 0)
1270 		return retval;
1271 
1272 	dev->toggle[0] = dev->toggle[1] = 0;
1273 
1274 	/* re-init hc/hcd interface/endpoint state */
1275 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1276 		struct usb_interface *intf = config->interface[i];
1277 		struct usb_host_interface *alt;
1278 
1279 		if (device_is_registered(&intf->dev))
1280 			usb_remove_sysfs_intf_files(intf);
1281 		alt = usb_altnum_to_altsetting(intf, 0);
1282 
1283 		/* No altsetting 0?  We'll assume the first altsetting.
1284 		 * We could use a GetInterface call, but if a device is
1285 		 * so non-compliant that it doesn't have altsetting 0
1286 		 * then I wouldn't trust its reply anyway.
1287 		 */
1288 		if (!alt)
1289 			alt = &intf->altsetting[0];
1290 
1291 		intf->cur_altsetting = alt;
1292 		usb_enable_interface(dev, intf);
1293 		if (device_is_registered(&intf->dev))
1294 			usb_create_sysfs_intf_files(intf);
1295 	}
1296 	return 0;
1297 }
1298 
1299 static void release_interface(struct device *dev)
1300 {
1301 	struct usb_interface *intf = to_usb_interface(dev);
1302 	struct usb_interface_cache *intfc =
1303 			altsetting_to_usb_interface_cache(intf->altsetting);
1304 
1305 	kref_put(&intfc->ref, usb_release_interface_cache);
1306 	kfree(intf);
1307 }
1308 
1309 /*
1310  * usb_set_configuration - Makes a particular device setting be current
1311  * @dev: the device whose configuration is being updated
1312  * @configuration: the configuration being chosen.
1313  * Context: !in_interrupt(), caller owns the device lock
1314  *
1315  * This is used to enable non-default device modes.  Not all devices
1316  * use this kind of configurability; many devices only have one
1317  * configuration.
1318  *
1319  * USB device configurations may affect Linux interoperability,
1320  * power consumption and the functionality available.  For example,
1321  * the default configuration is limited to using 100mA of bus power,
1322  * so that when certain device functionality requires more power,
1323  * and the device is bus powered, that functionality should be in some
1324  * non-default device configuration.  Other device modes may also be
1325  * reflected as configuration options, such as whether two ISDN
1326  * channels are available independently; and choosing between open
1327  * standard device protocols (like CDC) or proprietary ones.
1328  *
1329  * Note that USB has an additional level of device configurability,
1330  * associated with interfaces.  That configurability is accessed using
1331  * usb_set_interface().
1332  *
1333  * This call is synchronous. The calling context must be able to sleep,
1334  * must own the device lock, and must not hold the driver model's USB
1335  * bus rwsem; usb device driver probe() methods cannot use this routine.
1336  *
1337  * Returns zero on success, or else the status code returned by the
1338  * underlying call that failed.  On successful completion, each interface
1339  * in the original device configuration has been destroyed, and each one
1340  * in the new configuration has been probed by all relevant usb device
1341  * drivers currently known to the kernel.
1342  */
1343 int usb_set_configuration(struct usb_device *dev, int configuration)
1344 {
1345 	int i, ret;
1346 	struct usb_host_config *cp = NULL;
1347 	struct usb_interface **new_interfaces = NULL;
1348 	int n, nintf;
1349 
1350 	for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1351 		if (dev->config[i].desc.bConfigurationValue == configuration) {
1352 			cp = &dev->config[i];
1353 			break;
1354 		}
1355 	}
1356 	if ((!cp && configuration != 0))
1357 		return -EINVAL;
1358 
1359 	/* The USB spec says configuration 0 means unconfigured.
1360 	 * But if a device includes a configuration numbered 0,
1361 	 * we will accept it as a correctly configured state.
1362 	 */
1363 	if (cp && configuration == 0)
1364 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1365 
1366 	/* Allocate memory for new interfaces before doing anything else,
1367 	 * so that if we run out then nothing will have changed. */
1368 	n = nintf = 0;
1369 	if (cp) {
1370 		nintf = cp->desc.bNumInterfaces;
1371 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1372 				GFP_KERNEL);
1373 		if (!new_interfaces) {
1374 			dev_err(&dev->dev, "Out of memory");
1375 			return -ENOMEM;
1376 		}
1377 
1378 		for (; n < nintf; ++n) {
1379 			new_interfaces[n] = kzalloc(
1380 					sizeof(struct usb_interface),
1381 					GFP_KERNEL);
1382 			if (!new_interfaces[n]) {
1383 				dev_err(&dev->dev, "Out of memory");
1384 				ret = -ENOMEM;
1385 free_interfaces:
1386 				while (--n >= 0)
1387 					kfree(new_interfaces[n]);
1388 				kfree(new_interfaces);
1389 				return ret;
1390 			}
1391 		}
1392 
1393 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1394 		if (i < 0)
1395 			dev_warn(&dev->dev, "new config #%d exceeds power "
1396 					"limit by %dmA\n",
1397 					configuration, -i);
1398 	}
1399 
1400 	/* Wake up the device so we can send it the Set-Config request */
1401 	ret = usb_autoresume_device(dev);
1402 	if (ret)
1403 		goto free_interfaces;
1404 
1405 	/* if it's already configured, clear out old state first.
1406 	 * getting rid of old interfaces means unbinding their drivers.
1407 	 */
1408 	if (dev->state != USB_STATE_ADDRESS)
1409 		usb_disable_device (dev, 1);	// Skip ep0
1410 
1411 	if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1412 			USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1413 			NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) {
1414 
1415 		/* All the old state is gone, so what else can we do?
1416 		 * The device is probably useless now anyway.
1417 		 */
1418 		cp = NULL;
1419 	}
1420 
1421 	dev->actconfig = cp;
1422 	if (!cp) {
1423 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1424 		usb_autosuspend_device(dev);
1425 		goto free_interfaces;
1426 	}
1427 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1428 
1429 	/* Initialize the new interface structures and the
1430 	 * hc/hcd/usbcore interface/endpoint state.
1431 	 */
1432 	for (i = 0; i < nintf; ++i) {
1433 		struct usb_interface_cache *intfc;
1434 		struct usb_interface *intf;
1435 		struct usb_host_interface *alt;
1436 
1437 		cp->interface[i] = intf = new_interfaces[i];
1438 		intfc = cp->intf_cache[i];
1439 		intf->altsetting = intfc->altsetting;
1440 		intf->num_altsetting = intfc->num_altsetting;
1441 		kref_get(&intfc->ref);
1442 
1443 		alt = usb_altnum_to_altsetting(intf, 0);
1444 
1445 		/* No altsetting 0?  We'll assume the first altsetting.
1446 		 * We could use a GetInterface call, but if a device is
1447 		 * so non-compliant that it doesn't have altsetting 0
1448 		 * then I wouldn't trust its reply anyway.
1449 		 */
1450 		if (!alt)
1451 			alt = &intf->altsetting[0];
1452 
1453 		intf->cur_altsetting = alt;
1454 		usb_enable_interface(dev, intf);
1455 		intf->dev.parent = &dev->dev;
1456 		intf->dev.driver = NULL;
1457 		intf->dev.bus = &usb_bus_type;
1458 		intf->dev.dma_mask = dev->dev.dma_mask;
1459 		intf->dev.release = release_interface;
1460 		device_initialize (&intf->dev);
1461 		mark_quiesced(intf);
1462 		sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1463 			 dev->bus->busnum, dev->devpath,
1464 			 configuration, alt->desc.bInterfaceNumber);
1465 	}
1466 	kfree(new_interfaces);
1467 
1468 	if (cp->string == NULL)
1469 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1470 
1471 	/* Now that all the interfaces are set up, register them
1472 	 * to trigger binding of drivers to interfaces.  probe()
1473 	 * routines may install different altsettings and may
1474 	 * claim() any interfaces not yet bound.  Many class drivers
1475 	 * need that: CDC, audio, video, etc.
1476 	 */
1477 	for (i = 0; i < nintf; ++i) {
1478 		struct usb_interface *intf = cp->interface[i];
1479 
1480 		dev_dbg (&dev->dev,
1481 			"adding %s (config #%d, interface %d)\n",
1482 			intf->dev.bus_id, configuration,
1483 			intf->cur_altsetting->desc.bInterfaceNumber);
1484 		ret = device_add (&intf->dev);
1485 		if (ret != 0) {
1486 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1487 				intf->dev.bus_id, ret);
1488 			continue;
1489 		}
1490 		usb_create_sysfs_intf_files (intf);
1491 	}
1492 
1493 	usb_autosuspend_device(dev);
1494 	return 0;
1495 }
1496 
1497 struct set_config_request {
1498 	struct usb_device	*udev;
1499 	int			config;
1500 	struct work_struct	work;
1501 };
1502 
1503 /* Worker routine for usb_driver_set_configuration() */
1504 static void driver_set_config_work(struct work_struct *work)
1505 {
1506 	struct set_config_request *req =
1507 		container_of(work, struct set_config_request, work);
1508 
1509 	usb_lock_device(req->udev);
1510 	usb_set_configuration(req->udev, req->config);
1511 	usb_unlock_device(req->udev);
1512 	usb_put_dev(req->udev);
1513 	kfree(req);
1514 }
1515 
1516 /**
1517  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1518  * @udev: the device whose configuration is being updated
1519  * @config: the configuration being chosen.
1520  * Context: In process context, must be able to sleep
1521  *
1522  * Device interface drivers are not allowed to change device configurations.
1523  * This is because changing configurations will destroy the interface the
1524  * driver is bound to and create new ones; it would be like a floppy-disk
1525  * driver telling the computer to replace the floppy-disk drive with a
1526  * tape drive!
1527  *
1528  * Still, in certain specialized circumstances the need may arise.  This
1529  * routine gets around the normal restrictions by using a work thread to
1530  * submit the change-config request.
1531  *
1532  * Returns 0 if the request was succesfully queued, error code otherwise.
1533  * The caller has no way to know whether the queued request will eventually
1534  * succeed.
1535  */
1536 int usb_driver_set_configuration(struct usb_device *udev, int config)
1537 {
1538 	struct set_config_request *req;
1539 
1540 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1541 	if (!req)
1542 		return -ENOMEM;
1543 	req->udev = udev;
1544 	req->config = config;
1545 	INIT_WORK(&req->work, driver_set_config_work);
1546 
1547 	usb_get_dev(udev);
1548 	schedule_work(&req->work);
1549 	return 0;
1550 }
1551 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1552 
1553 // synchronous request completion model
1554 EXPORT_SYMBOL(usb_control_msg);
1555 EXPORT_SYMBOL(usb_bulk_msg);
1556 
1557 EXPORT_SYMBOL(usb_sg_init);
1558 EXPORT_SYMBOL(usb_sg_cancel);
1559 EXPORT_SYMBOL(usb_sg_wait);
1560 
1561 // synchronous control message convenience routines
1562 EXPORT_SYMBOL(usb_get_descriptor);
1563 EXPORT_SYMBOL(usb_get_status);
1564 EXPORT_SYMBOL(usb_string);
1565 
1566 // synchronous calls that also maintain usbcore state
1567 EXPORT_SYMBOL(usb_clear_halt);
1568 EXPORT_SYMBOL(usb_reset_configuration);
1569 EXPORT_SYMBOL(usb_set_interface);
1570 
1571