1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/device.h> 14 #include <asm/byteorder.h> 15 #include <asm/scatterlist.h> 16 17 #include "hcd.h" /* for usbcore internals */ 18 #include "usb.h" 19 20 static void usb_api_blocking_completion(struct urb *urb) 21 { 22 complete((struct completion *)urb->context); 23 } 24 25 26 /* 27 * Starts urb and waits for completion or timeout. Note that this call 28 * is NOT interruptible. Many device driver i/o requests should be 29 * interruptible and therefore these drivers should implement their 30 * own interruptible routines. 31 */ 32 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 33 { 34 struct completion done; 35 unsigned long expire; 36 int status; 37 38 init_completion(&done); 39 urb->context = &done; 40 urb->actual_length = 0; 41 status = usb_submit_urb(urb, GFP_NOIO); 42 if (unlikely(status)) 43 goto out; 44 45 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 46 if (!wait_for_completion_timeout(&done, expire)) { 47 48 dev_dbg(&urb->dev->dev, 49 "%s timed out on ep%d%s len=%d/%d\n", 50 current->comm, 51 usb_pipeendpoint(urb->pipe), 52 usb_pipein(urb->pipe) ? "in" : "out", 53 urb->actual_length, 54 urb->transfer_buffer_length); 55 56 usb_kill_urb(urb); 57 status = urb->status == -ENOENT ? -ETIMEDOUT : urb->status; 58 } else 59 status = urb->status; 60 out: 61 if (actual_length) 62 *actual_length = urb->actual_length; 63 64 usb_free_urb(urb); 65 return status; 66 } 67 68 /*-------------------------------------------------------------------*/ 69 // returns status (negative) or length (positive) 70 static int usb_internal_control_msg(struct usb_device *usb_dev, 71 unsigned int pipe, 72 struct usb_ctrlrequest *cmd, 73 void *data, int len, int timeout) 74 { 75 struct urb *urb; 76 int retv; 77 int length; 78 79 urb = usb_alloc_urb(0, GFP_NOIO); 80 if (!urb) 81 return -ENOMEM; 82 83 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 84 len, usb_api_blocking_completion, NULL); 85 86 retv = usb_start_wait_urb(urb, timeout, &length); 87 if (retv < 0) 88 return retv; 89 else 90 return length; 91 } 92 93 /** 94 * usb_control_msg - Builds a control urb, sends it off and waits for completion 95 * @dev: pointer to the usb device to send the message to 96 * @pipe: endpoint "pipe" to send the message to 97 * @request: USB message request value 98 * @requesttype: USB message request type value 99 * @value: USB message value 100 * @index: USB message index value 101 * @data: pointer to the data to send 102 * @size: length in bytes of the data to send 103 * @timeout: time in msecs to wait for the message to complete before 104 * timing out (if 0 the wait is forever) 105 * Context: !in_interrupt () 106 * 107 * This function sends a simple control message to a specified endpoint 108 * and waits for the message to complete, or timeout. 109 * 110 * If successful, it returns the number of bytes transferred, otherwise a negative error number. 111 * 112 * Don't use this function from within an interrupt context, like a 113 * bottom half handler. If you need an asynchronous message, or need to send 114 * a message from within interrupt context, use usb_submit_urb() 115 * If a thread in your driver uses this call, make sure your disconnect() 116 * method can wait for it to complete. Since you don't have a handle on 117 * the URB used, you can't cancel the request. 118 */ 119 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, 120 __u16 value, __u16 index, void *data, __u16 size, int timeout) 121 { 122 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 123 int ret; 124 125 if (!dr) 126 return -ENOMEM; 127 128 dr->bRequestType= requesttype; 129 dr->bRequest = request; 130 dr->wValue = cpu_to_le16p(&value); 131 dr->wIndex = cpu_to_le16p(&index); 132 dr->wLength = cpu_to_le16p(&size); 133 134 //dbg("usb_control_msg"); 135 136 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 137 138 kfree(dr); 139 140 return ret; 141 } 142 143 144 /** 145 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 146 * @usb_dev: pointer to the usb device to send the message to 147 * @pipe: endpoint "pipe" to send the message to 148 * @data: pointer to the data to send 149 * @len: length in bytes of the data to send 150 * @actual_length: pointer to a location to put the actual length transferred in bytes 151 * @timeout: time in msecs to wait for the message to complete before 152 * timing out (if 0 the wait is forever) 153 * Context: !in_interrupt () 154 * 155 * This function sends a simple interrupt message to a specified endpoint and 156 * waits for the message to complete, or timeout. 157 * 158 * If successful, it returns 0, otherwise a negative error number. The number 159 * of actual bytes transferred will be stored in the actual_length paramater. 160 * 161 * Don't use this function from within an interrupt context, like a bottom half 162 * handler. If you need an asynchronous message, or need to send a message 163 * from within interrupt context, use usb_submit_urb() If a thread in your 164 * driver uses this call, make sure your disconnect() method can wait for it to 165 * complete. Since you don't have a handle on the URB used, you can't cancel 166 * the request. 167 */ 168 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 169 void *data, int len, int *actual_length, int timeout) 170 { 171 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 172 } 173 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 174 175 /** 176 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 177 * @usb_dev: pointer to the usb device to send the message to 178 * @pipe: endpoint "pipe" to send the message to 179 * @data: pointer to the data to send 180 * @len: length in bytes of the data to send 181 * @actual_length: pointer to a location to put the actual length transferred in bytes 182 * @timeout: time in msecs to wait for the message to complete before 183 * timing out (if 0 the wait is forever) 184 * Context: !in_interrupt () 185 * 186 * This function sends a simple bulk message to a specified endpoint 187 * and waits for the message to complete, or timeout. 188 * 189 * If successful, it returns 0, otherwise a negative error number. 190 * The number of actual bytes transferred will be stored in the 191 * actual_length paramater. 192 * 193 * Don't use this function from within an interrupt context, like a 194 * bottom half handler. If you need an asynchronous message, or need to 195 * send a message from within interrupt context, use usb_submit_urb() 196 * If a thread in your driver uses this call, make sure your disconnect() 197 * method can wait for it to complete. Since you don't have a handle on 198 * the URB used, you can't cancel the request. 199 * 200 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT 201 * ioctl, users are forced to abuse this routine by using it to submit 202 * URBs for interrupt endpoints. We will take the liberty of creating 203 * an interrupt URB (with the default interval) if the target is an 204 * interrupt endpoint. 205 */ 206 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 207 void *data, int len, int *actual_length, int timeout) 208 { 209 struct urb *urb; 210 struct usb_host_endpoint *ep; 211 212 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 213 [usb_pipeendpoint(pipe)]; 214 if (!ep || len < 0) 215 return -EINVAL; 216 217 urb = usb_alloc_urb(0, GFP_KERNEL); 218 if (!urb) 219 return -ENOMEM; 220 221 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 222 USB_ENDPOINT_XFER_INT) { 223 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 224 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 225 usb_api_blocking_completion, NULL, 226 ep->desc.bInterval); 227 } else 228 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 229 usb_api_blocking_completion, NULL); 230 231 return usb_start_wait_urb(urb, timeout, actual_length); 232 } 233 234 /*-------------------------------------------------------------------*/ 235 236 static void sg_clean (struct usb_sg_request *io) 237 { 238 if (io->urbs) { 239 while (io->entries--) 240 usb_free_urb (io->urbs [io->entries]); 241 kfree (io->urbs); 242 io->urbs = NULL; 243 } 244 if (io->dev->dev.dma_mask != NULL) 245 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents); 246 io->dev = NULL; 247 } 248 249 static void sg_complete (struct urb *urb) 250 { 251 struct usb_sg_request *io = urb->context; 252 253 spin_lock (&io->lock); 254 255 /* In 2.5 we require hcds' endpoint queues not to progress after fault 256 * reports, until the completion callback (this!) returns. That lets 257 * device driver code (like this routine) unlink queued urbs first, 258 * if it needs to, since the HC won't work on them at all. So it's 259 * not possible for page N+1 to overwrite page N, and so on. 260 * 261 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 262 * complete before the HCD can get requests away from hardware, 263 * though never during cleanup after a hard fault. 264 */ 265 if (io->status 266 && (io->status != -ECONNRESET 267 || urb->status != -ECONNRESET) 268 && urb->actual_length) { 269 dev_err (io->dev->bus->controller, 270 "dev %s ep%d%s scatterlist error %d/%d\n", 271 io->dev->devpath, 272 usb_pipeendpoint (urb->pipe), 273 usb_pipein (urb->pipe) ? "in" : "out", 274 urb->status, io->status); 275 // BUG (); 276 } 277 278 if (io->status == 0 && urb->status && urb->status != -ECONNRESET) { 279 int i, found, status; 280 281 io->status = urb->status; 282 283 /* the previous urbs, and this one, completed already. 284 * unlink pending urbs so they won't rx/tx bad data. 285 * careful: unlink can sometimes be synchronous... 286 */ 287 spin_unlock (&io->lock); 288 for (i = 0, found = 0; i < io->entries; i++) { 289 if (!io->urbs [i] || !io->urbs [i]->dev) 290 continue; 291 if (found) { 292 status = usb_unlink_urb (io->urbs [i]); 293 if (status != -EINPROGRESS 294 && status != -ENODEV 295 && status != -EBUSY) 296 dev_err (&io->dev->dev, 297 "%s, unlink --> %d\n", 298 __FUNCTION__, status); 299 } else if (urb == io->urbs [i]) 300 found = 1; 301 } 302 spin_lock (&io->lock); 303 } 304 urb->dev = NULL; 305 306 /* on the last completion, signal usb_sg_wait() */ 307 io->bytes += urb->actual_length; 308 io->count--; 309 if (!io->count) 310 complete (&io->complete); 311 312 spin_unlock (&io->lock); 313 } 314 315 316 /** 317 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 318 * @io: request block being initialized. until usb_sg_wait() returns, 319 * treat this as a pointer to an opaque block of memory, 320 * @dev: the usb device that will send or receive the data 321 * @pipe: endpoint "pipe" used to transfer the data 322 * @period: polling rate for interrupt endpoints, in frames or 323 * (for high speed endpoints) microframes; ignored for bulk 324 * @sg: scatterlist entries 325 * @nents: how many entries in the scatterlist 326 * @length: how many bytes to send from the scatterlist, or zero to 327 * send every byte identified in the list. 328 * @mem_flags: SLAB_* flags affecting memory allocations in this call 329 * 330 * Returns zero for success, else a negative errno value. This initializes a 331 * scatter/gather request, allocating resources such as I/O mappings and urb 332 * memory (except maybe memory used by USB controller drivers). 333 * 334 * The request must be issued using usb_sg_wait(), which waits for the I/O to 335 * complete (or to be canceled) and then cleans up all resources allocated by 336 * usb_sg_init(). 337 * 338 * The request may be canceled with usb_sg_cancel(), either before or after 339 * usb_sg_wait() is called. 340 */ 341 int usb_sg_init ( 342 struct usb_sg_request *io, 343 struct usb_device *dev, 344 unsigned pipe, 345 unsigned period, 346 struct scatterlist *sg, 347 int nents, 348 size_t length, 349 gfp_t mem_flags 350 ) 351 { 352 int i; 353 int urb_flags; 354 int dma; 355 356 if (!io || !dev || !sg 357 || usb_pipecontrol (pipe) 358 || usb_pipeisoc (pipe) 359 || nents <= 0) 360 return -EINVAL; 361 362 spin_lock_init (&io->lock); 363 io->dev = dev; 364 io->pipe = pipe; 365 io->sg = sg; 366 io->nents = nents; 367 368 /* not all host controllers use DMA (like the mainstream pci ones); 369 * they can use PIO (sl811) or be software over another transport. 370 */ 371 dma = (dev->dev.dma_mask != NULL); 372 if (dma) 373 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents); 374 else 375 io->entries = nents; 376 377 /* initialize all the urbs we'll use */ 378 if (io->entries <= 0) 379 return io->entries; 380 381 io->count = io->entries; 382 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags); 383 if (!io->urbs) 384 goto nomem; 385 386 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT; 387 if (usb_pipein (pipe)) 388 urb_flags |= URB_SHORT_NOT_OK; 389 390 for (i = 0; i < io->entries; i++) { 391 unsigned len; 392 393 io->urbs [i] = usb_alloc_urb (0, mem_flags); 394 if (!io->urbs [i]) { 395 io->entries = i; 396 goto nomem; 397 } 398 399 io->urbs [i]->dev = NULL; 400 io->urbs [i]->pipe = pipe; 401 io->urbs [i]->interval = period; 402 io->urbs [i]->transfer_flags = urb_flags; 403 404 io->urbs [i]->complete = sg_complete; 405 io->urbs [i]->context = io; 406 io->urbs [i]->status = -EINPROGRESS; 407 io->urbs [i]->actual_length = 0; 408 409 if (dma) { 410 /* hc may use _only_ transfer_dma */ 411 io->urbs [i]->transfer_dma = sg_dma_address (sg + i); 412 len = sg_dma_len (sg + i); 413 } else { 414 /* hc may use _only_ transfer_buffer */ 415 io->urbs [i]->transfer_buffer = 416 page_address (sg [i].page) + sg [i].offset; 417 len = sg [i].length; 418 } 419 420 if (length) { 421 len = min_t (unsigned, len, length); 422 length -= len; 423 if (length == 0) 424 io->entries = i + 1; 425 } 426 io->urbs [i]->transfer_buffer_length = len; 427 } 428 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT; 429 430 /* transaction state */ 431 io->status = 0; 432 io->bytes = 0; 433 init_completion (&io->complete); 434 return 0; 435 436 nomem: 437 sg_clean (io); 438 return -ENOMEM; 439 } 440 441 442 /** 443 * usb_sg_wait - synchronously execute scatter/gather request 444 * @io: request block handle, as initialized with usb_sg_init(). 445 * some fields become accessible when this call returns. 446 * Context: !in_interrupt () 447 * 448 * This function blocks until the specified I/O operation completes. It 449 * leverages the grouping of the related I/O requests to get good transfer 450 * rates, by queueing the requests. At higher speeds, such queuing can 451 * significantly improve USB throughput. 452 * 453 * There are three kinds of completion for this function. 454 * (1) success, where io->status is zero. The number of io->bytes 455 * transferred is as requested. 456 * (2) error, where io->status is a negative errno value. The number 457 * of io->bytes transferred before the error is usually less 458 * than requested, and can be nonzero. 459 * (3) cancellation, a type of error with status -ECONNRESET that 460 * is initiated by usb_sg_cancel(). 461 * 462 * When this function returns, all memory allocated through usb_sg_init() or 463 * this call will have been freed. The request block parameter may still be 464 * passed to usb_sg_cancel(), or it may be freed. It could also be 465 * reinitialized and then reused. 466 * 467 * Data Transfer Rates: 468 * 469 * Bulk transfers are valid for full or high speed endpoints. 470 * The best full speed data rate is 19 packets of 64 bytes each 471 * per frame, or 1216 bytes per millisecond. 472 * The best high speed data rate is 13 packets of 512 bytes each 473 * per microframe, or 52 KBytes per millisecond. 474 * 475 * The reason to use interrupt transfers through this API would most likely 476 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 477 * could be transferred. That capability is less useful for low or full 478 * speed interrupt endpoints, which allow at most one packet per millisecond, 479 * of at most 8 or 64 bytes (respectively). 480 */ 481 void usb_sg_wait (struct usb_sg_request *io) 482 { 483 int i, entries = io->entries; 484 485 /* queue the urbs. */ 486 spin_lock_irq (&io->lock); 487 for (i = 0; i < entries && !io->status; i++) { 488 int retval; 489 490 io->urbs [i]->dev = io->dev; 491 retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC); 492 493 /* after we submit, let completions or cancelations fire; 494 * we handshake using io->status. 495 */ 496 spin_unlock_irq (&io->lock); 497 switch (retval) { 498 /* maybe we retrying will recover */ 499 case -ENXIO: // hc didn't queue this one 500 case -EAGAIN: 501 case -ENOMEM: 502 io->urbs[i]->dev = NULL; 503 retval = 0; 504 i--; 505 yield (); 506 break; 507 508 /* no error? continue immediately. 509 * 510 * NOTE: to work better with UHCI (4K I/O buffer may 511 * need 3K of TDs) it may be good to limit how many 512 * URBs are queued at once; N milliseconds? 513 */ 514 case 0: 515 cpu_relax (); 516 break; 517 518 /* fail any uncompleted urbs */ 519 default: 520 io->urbs [i]->dev = NULL; 521 io->urbs [i]->status = retval; 522 dev_dbg (&io->dev->dev, "%s, submit --> %d\n", 523 __FUNCTION__, retval); 524 usb_sg_cancel (io); 525 } 526 spin_lock_irq (&io->lock); 527 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 528 io->status = retval; 529 } 530 io->count -= entries - i; 531 if (io->count == 0) 532 complete (&io->complete); 533 spin_unlock_irq (&io->lock); 534 535 /* OK, yes, this could be packaged as non-blocking. 536 * So could the submit loop above ... but it's easier to 537 * solve neither problem than to solve both! 538 */ 539 wait_for_completion (&io->complete); 540 541 sg_clean (io); 542 } 543 544 /** 545 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 546 * @io: request block, initialized with usb_sg_init() 547 * 548 * This stops a request after it has been started by usb_sg_wait(). 549 * It can also prevents one initialized by usb_sg_init() from starting, 550 * so that call just frees resources allocated to the request. 551 */ 552 void usb_sg_cancel (struct usb_sg_request *io) 553 { 554 unsigned long flags; 555 556 spin_lock_irqsave (&io->lock, flags); 557 558 /* shut everything down, if it didn't already */ 559 if (!io->status) { 560 int i; 561 562 io->status = -ECONNRESET; 563 spin_unlock (&io->lock); 564 for (i = 0; i < io->entries; i++) { 565 int retval; 566 567 if (!io->urbs [i]->dev) 568 continue; 569 retval = usb_unlink_urb (io->urbs [i]); 570 if (retval != -EINPROGRESS && retval != -EBUSY) 571 dev_warn (&io->dev->dev, "%s, unlink --> %d\n", 572 __FUNCTION__, retval); 573 } 574 spin_lock (&io->lock); 575 } 576 spin_unlock_irqrestore (&io->lock, flags); 577 } 578 579 /*-------------------------------------------------------------------*/ 580 581 /** 582 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 583 * @dev: the device whose descriptor is being retrieved 584 * @type: the descriptor type (USB_DT_*) 585 * @index: the number of the descriptor 586 * @buf: where to put the descriptor 587 * @size: how big is "buf"? 588 * Context: !in_interrupt () 589 * 590 * Gets a USB descriptor. Convenience functions exist to simplify 591 * getting some types of descriptors. Use 592 * usb_get_string() or usb_string() for USB_DT_STRING. 593 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 594 * are part of the device structure. 595 * In addition to a number of USB-standard descriptors, some 596 * devices also use class-specific or vendor-specific descriptors. 597 * 598 * This call is synchronous, and may not be used in an interrupt context. 599 * 600 * Returns the number of bytes received on success, or else the status code 601 * returned by the underlying usb_control_msg() call. 602 */ 603 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) 604 { 605 int i; 606 int result; 607 608 memset(buf,0,size); // Make sure we parse really received data 609 610 for (i = 0; i < 3; ++i) { 611 /* retry on length 0 or stall; some devices are flakey */ 612 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 613 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 614 (type << 8) + index, 0, buf, size, 615 USB_CTRL_GET_TIMEOUT); 616 if (result == 0 || result == -EPIPE) 617 continue; 618 if (result > 1 && ((u8 *)buf)[1] != type) { 619 result = -EPROTO; 620 continue; 621 } 622 break; 623 } 624 return result; 625 } 626 627 /** 628 * usb_get_string - gets a string descriptor 629 * @dev: the device whose string descriptor is being retrieved 630 * @langid: code for language chosen (from string descriptor zero) 631 * @index: the number of the descriptor 632 * @buf: where to put the string 633 * @size: how big is "buf"? 634 * Context: !in_interrupt () 635 * 636 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 637 * in little-endian byte order). 638 * The usb_string() function will often be a convenient way to turn 639 * these strings into kernel-printable form. 640 * 641 * Strings may be referenced in device, configuration, interface, or other 642 * descriptors, and could also be used in vendor-specific ways. 643 * 644 * This call is synchronous, and may not be used in an interrupt context. 645 * 646 * Returns the number of bytes received on success, or else the status code 647 * returned by the underlying usb_control_msg() call. 648 */ 649 static int usb_get_string(struct usb_device *dev, unsigned short langid, 650 unsigned char index, void *buf, int size) 651 { 652 int i; 653 int result; 654 655 for (i = 0; i < 3; ++i) { 656 /* retry on length 0 or stall; some devices are flakey */ 657 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 658 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 659 (USB_DT_STRING << 8) + index, langid, buf, size, 660 USB_CTRL_GET_TIMEOUT); 661 if (!(result == 0 || result == -EPIPE)) 662 break; 663 } 664 return result; 665 } 666 667 static void usb_try_string_workarounds(unsigned char *buf, int *length) 668 { 669 int newlength, oldlength = *length; 670 671 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 672 if (!isprint(buf[newlength]) || buf[newlength + 1]) 673 break; 674 675 if (newlength > 2) { 676 buf[0] = newlength; 677 *length = newlength; 678 } 679 } 680 681 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 682 unsigned int index, unsigned char *buf) 683 { 684 int rc; 685 686 /* Try to read the string descriptor by asking for the maximum 687 * possible number of bytes */ 688 rc = usb_get_string(dev, langid, index, buf, 255); 689 690 /* If that failed try to read the descriptor length, then 691 * ask for just that many bytes */ 692 if (rc < 2) { 693 rc = usb_get_string(dev, langid, index, buf, 2); 694 if (rc == 2) 695 rc = usb_get_string(dev, langid, index, buf, buf[0]); 696 } 697 698 if (rc >= 2) { 699 if (!buf[0] && !buf[1]) 700 usb_try_string_workarounds(buf, &rc); 701 702 /* There might be extra junk at the end of the descriptor */ 703 if (buf[0] < rc) 704 rc = buf[0]; 705 706 rc = rc - (rc & 1); /* force a multiple of two */ 707 } 708 709 if (rc < 2) 710 rc = (rc < 0 ? rc : -EINVAL); 711 712 return rc; 713 } 714 715 /** 716 * usb_string - returns ISO 8859-1 version of a string descriptor 717 * @dev: the device whose string descriptor is being retrieved 718 * @index: the number of the descriptor 719 * @buf: where to put the string 720 * @size: how big is "buf"? 721 * Context: !in_interrupt () 722 * 723 * This converts the UTF-16LE encoded strings returned by devices, from 724 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 725 * that are more usable in most kernel contexts. Note that all characters 726 * in the chosen descriptor that can't be encoded using ISO-8859-1 727 * are converted to the question mark ("?") character, and this function 728 * chooses strings in the first language supported by the device. 729 * 730 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 731 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 732 * and is appropriate for use many uses of English and several other 733 * Western European languages. (But it doesn't include the "Euro" symbol.) 734 * 735 * This call is synchronous, and may not be used in an interrupt context. 736 * 737 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 738 */ 739 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 740 { 741 unsigned char *tbuf; 742 int err; 743 unsigned int u, idx; 744 745 if (dev->state == USB_STATE_SUSPENDED) 746 return -EHOSTUNREACH; 747 if (size <= 0 || !buf || !index) 748 return -EINVAL; 749 buf[0] = 0; 750 tbuf = kmalloc(256, GFP_KERNEL); 751 if (!tbuf) 752 return -ENOMEM; 753 754 /* get langid for strings if it's not yet known */ 755 if (!dev->have_langid) { 756 err = usb_string_sub(dev, 0, 0, tbuf); 757 if (err < 0) { 758 dev_err (&dev->dev, 759 "string descriptor 0 read error: %d\n", 760 err); 761 goto errout; 762 } else if (err < 4) { 763 dev_err (&dev->dev, "string descriptor 0 too short\n"); 764 err = -EINVAL; 765 goto errout; 766 } else { 767 dev->have_langid = 1; 768 dev->string_langid = tbuf[2] | (tbuf[3]<< 8); 769 /* always use the first langid listed */ 770 dev_dbg (&dev->dev, "default language 0x%04x\n", 771 dev->string_langid); 772 } 773 } 774 775 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 776 if (err < 0) 777 goto errout; 778 779 size--; /* leave room for trailing NULL char in output buffer */ 780 for (idx = 0, u = 2; u < err; u += 2) { 781 if (idx >= size) 782 break; 783 if (tbuf[u+1]) /* high byte */ 784 buf[idx++] = '?'; /* non ISO-8859-1 character */ 785 else 786 buf[idx++] = tbuf[u]; 787 } 788 buf[idx] = 0; 789 err = idx; 790 791 if (tbuf[1] != USB_DT_STRING) 792 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf); 793 794 errout: 795 kfree(tbuf); 796 return err; 797 } 798 799 /** 800 * usb_cache_string - read a string descriptor and cache it for later use 801 * @udev: the device whose string descriptor is being read 802 * @index: the descriptor index 803 * 804 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 805 * or NULL if the index is 0 or the string could not be read. 806 */ 807 char *usb_cache_string(struct usb_device *udev, int index) 808 { 809 char *buf; 810 char *smallbuf = NULL; 811 int len; 812 813 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) { 814 if ((len = usb_string(udev, index, buf, 256)) > 0) { 815 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL) 816 return buf; 817 memcpy(smallbuf, buf, len); 818 } 819 kfree(buf); 820 } 821 return smallbuf; 822 } 823 824 /* 825 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 826 * @dev: the device whose device descriptor is being updated 827 * @size: how much of the descriptor to read 828 * Context: !in_interrupt () 829 * 830 * Updates the copy of the device descriptor stored in the device structure, 831 * which dedicates space for this purpose. 832 * 833 * Not exported, only for use by the core. If drivers really want to read 834 * the device descriptor directly, they can call usb_get_descriptor() with 835 * type = USB_DT_DEVICE and index = 0. 836 * 837 * This call is synchronous, and may not be used in an interrupt context. 838 * 839 * Returns the number of bytes received on success, or else the status code 840 * returned by the underlying usb_control_msg() call. 841 */ 842 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 843 { 844 struct usb_device_descriptor *desc; 845 int ret; 846 847 if (size > sizeof(*desc)) 848 return -EINVAL; 849 desc = kmalloc(sizeof(*desc), GFP_NOIO); 850 if (!desc) 851 return -ENOMEM; 852 853 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 854 if (ret >= 0) 855 memcpy(&dev->descriptor, desc, size); 856 kfree(desc); 857 return ret; 858 } 859 860 /** 861 * usb_get_status - issues a GET_STATUS call 862 * @dev: the device whose status is being checked 863 * @type: USB_RECIP_*; for device, interface, or endpoint 864 * @target: zero (for device), else interface or endpoint number 865 * @data: pointer to two bytes of bitmap data 866 * Context: !in_interrupt () 867 * 868 * Returns device, interface, or endpoint status. Normally only of 869 * interest to see if the device is self powered, or has enabled the 870 * remote wakeup facility; or whether a bulk or interrupt endpoint 871 * is halted ("stalled"). 872 * 873 * Bits in these status bitmaps are set using the SET_FEATURE request, 874 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 875 * function should be used to clear halt ("stall") status. 876 * 877 * This call is synchronous, and may not be used in an interrupt context. 878 * 879 * Returns the number of bytes received on success, or else the status code 880 * returned by the underlying usb_control_msg() call. 881 */ 882 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 883 { 884 int ret; 885 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 886 887 if (!status) 888 return -ENOMEM; 889 890 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 891 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 892 sizeof(*status), USB_CTRL_GET_TIMEOUT); 893 894 *(u16 *)data = *status; 895 kfree(status); 896 return ret; 897 } 898 899 /** 900 * usb_clear_halt - tells device to clear endpoint halt/stall condition 901 * @dev: device whose endpoint is halted 902 * @pipe: endpoint "pipe" being cleared 903 * Context: !in_interrupt () 904 * 905 * This is used to clear halt conditions for bulk and interrupt endpoints, 906 * as reported by URB completion status. Endpoints that are halted are 907 * sometimes referred to as being "stalled". Such endpoints are unable 908 * to transmit or receive data until the halt status is cleared. Any URBs 909 * queued for such an endpoint should normally be unlinked by the driver 910 * before clearing the halt condition, as described in sections 5.7.5 911 * and 5.8.5 of the USB 2.0 spec. 912 * 913 * Note that control and isochronous endpoints don't halt, although control 914 * endpoints report "protocol stall" (for unsupported requests) using the 915 * same status code used to report a true stall. 916 * 917 * This call is synchronous, and may not be used in an interrupt context. 918 * 919 * Returns zero on success, or else the status code returned by the 920 * underlying usb_control_msg() call. 921 */ 922 int usb_clear_halt(struct usb_device *dev, int pipe) 923 { 924 int result; 925 int endp = usb_pipeendpoint(pipe); 926 927 if (usb_pipein (pipe)) 928 endp |= USB_DIR_IN; 929 930 /* we don't care if it wasn't halted first. in fact some devices 931 * (like some ibmcam model 1 units) seem to expect hosts to make 932 * this request for iso endpoints, which can't halt! 933 */ 934 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 935 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 936 USB_ENDPOINT_HALT, endp, NULL, 0, 937 USB_CTRL_SET_TIMEOUT); 938 939 /* don't un-halt or force to DATA0 except on success */ 940 if (result < 0) 941 return result; 942 943 /* NOTE: seems like Microsoft and Apple don't bother verifying 944 * the clear "took", so some devices could lock up if you check... 945 * such as the Hagiwara FlashGate DUAL. So we won't bother. 946 * 947 * NOTE: make sure the logic here doesn't diverge much from 948 * the copy in usb-storage, for as long as we need two copies. 949 */ 950 951 /* toggle was reset by the clear */ 952 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 953 954 return 0; 955 } 956 957 /** 958 * usb_disable_endpoint -- Disable an endpoint by address 959 * @dev: the device whose endpoint is being disabled 960 * @epaddr: the endpoint's address. Endpoint number for output, 961 * endpoint number + USB_DIR_IN for input 962 * 963 * Deallocates hcd/hardware state for this endpoint ... and nukes all 964 * pending urbs. 965 * 966 * If the HCD hasn't registered a disable() function, this sets the 967 * endpoint's maxpacket size to 0 to prevent further submissions. 968 */ 969 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 970 { 971 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 972 struct usb_host_endpoint *ep; 973 974 if (!dev) 975 return; 976 977 if (usb_endpoint_out(epaddr)) { 978 ep = dev->ep_out[epnum]; 979 dev->ep_out[epnum] = NULL; 980 } else { 981 ep = dev->ep_in[epnum]; 982 dev->ep_in[epnum] = NULL; 983 } 984 if (ep && dev->bus) 985 usb_hcd_endpoint_disable(dev, ep); 986 } 987 988 /** 989 * usb_disable_interface -- Disable all endpoints for an interface 990 * @dev: the device whose interface is being disabled 991 * @intf: pointer to the interface descriptor 992 * 993 * Disables all the endpoints for the interface's current altsetting. 994 */ 995 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 996 { 997 struct usb_host_interface *alt = intf->cur_altsetting; 998 int i; 999 1000 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1001 usb_disable_endpoint(dev, 1002 alt->endpoint[i].desc.bEndpointAddress); 1003 } 1004 } 1005 1006 /* 1007 * usb_disable_device - Disable all the endpoints for a USB device 1008 * @dev: the device whose endpoints are being disabled 1009 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1010 * 1011 * Disables all the device's endpoints, potentially including endpoint 0. 1012 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1013 * pending urbs) and usbcore state for the interfaces, so that usbcore 1014 * must usb_set_configuration() before any interfaces could be used. 1015 */ 1016 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1017 { 1018 int i; 1019 1020 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__, 1021 skip_ep0 ? "non-ep0" : "all"); 1022 for (i = skip_ep0; i < 16; ++i) { 1023 usb_disable_endpoint(dev, i); 1024 usb_disable_endpoint(dev, i + USB_DIR_IN); 1025 } 1026 dev->toggle[0] = dev->toggle[1] = 0; 1027 1028 /* getting rid of interfaces will disconnect 1029 * any drivers bound to them (a key side effect) 1030 */ 1031 if (dev->actconfig) { 1032 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1033 struct usb_interface *interface; 1034 1035 /* remove this interface if it has been registered */ 1036 interface = dev->actconfig->interface[i]; 1037 if (!device_is_registered(&interface->dev)) 1038 continue; 1039 dev_dbg (&dev->dev, "unregistering interface %s\n", 1040 interface->dev.bus_id); 1041 usb_remove_sysfs_intf_files(interface); 1042 device_del (&interface->dev); 1043 } 1044 1045 /* Now that the interfaces are unbound, nobody should 1046 * try to access them. 1047 */ 1048 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1049 put_device (&dev->actconfig->interface[i]->dev); 1050 dev->actconfig->interface[i] = NULL; 1051 } 1052 dev->actconfig = NULL; 1053 if (dev->state == USB_STATE_CONFIGURED) 1054 usb_set_device_state(dev, USB_STATE_ADDRESS); 1055 } 1056 } 1057 1058 1059 /* 1060 * usb_enable_endpoint - Enable an endpoint for USB communications 1061 * @dev: the device whose interface is being enabled 1062 * @ep: the endpoint 1063 * 1064 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1065 * For control endpoints, both the input and output sides are handled. 1066 */ 1067 static void 1068 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1069 { 1070 unsigned int epaddr = ep->desc.bEndpointAddress; 1071 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1072 int is_control; 1073 1074 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) 1075 == USB_ENDPOINT_XFER_CONTROL); 1076 if (usb_endpoint_out(epaddr) || is_control) { 1077 usb_settoggle(dev, epnum, 1, 0); 1078 dev->ep_out[epnum] = ep; 1079 } 1080 if (!usb_endpoint_out(epaddr) || is_control) { 1081 usb_settoggle(dev, epnum, 0, 0); 1082 dev->ep_in[epnum] = ep; 1083 } 1084 } 1085 1086 /* 1087 * usb_enable_interface - Enable all the endpoints for an interface 1088 * @dev: the device whose interface is being enabled 1089 * @intf: pointer to the interface descriptor 1090 * 1091 * Enables all the endpoints for the interface's current altsetting. 1092 */ 1093 static void usb_enable_interface(struct usb_device *dev, 1094 struct usb_interface *intf) 1095 { 1096 struct usb_host_interface *alt = intf->cur_altsetting; 1097 int i; 1098 1099 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1100 usb_enable_endpoint(dev, &alt->endpoint[i]); 1101 } 1102 1103 /** 1104 * usb_set_interface - Makes a particular alternate setting be current 1105 * @dev: the device whose interface is being updated 1106 * @interface: the interface being updated 1107 * @alternate: the setting being chosen. 1108 * Context: !in_interrupt () 1109 * 1110 * This is used to enable data transfers on interfaces that may not 1111 * be enabled by default. Not all devices support such configurability. 1112 * Only the driver bound to an interface may change its setting. 1113 * 1114 * Within any given configuration, each interface may have several 1115 * alternative settings. These are often used to control levels of 1116 * bandwidth consumption. For example, the default setting for a high 1117 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1118 * while interrupt transfers of up to 3KBytes per microframe are legal. 1119 * Also, isochronous endpoints may never be part of an 1120 * interface's default setting. To access such bandwidth, alternate 1121 * interface settings must be made current. 1122 * 1123 * Note that in the Linux USB subsystem, bandwidth associated with 1124 * an endpoint in a given alternate setting is not reserved until an URB 1125 * is submitted that needs that bandwidth. Some other operating systems 1126 * allocate bandwidth early, when a configuration is chosen. 1127 * 1128 * This call is synchronous, and may not be used in an interrupt context. 1129 * Also, drivers must not change altsettings while urbs are scheduled for 1130 * endpoints in that interface; all such urbs must first be completed 1131 * (perhaps forced by unlinking). 1132 * 1133 * Returns zero on success, or else the status code returned by the 1134 * underlying usb_control_msg() call. 1135 */ 1136 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1137 { 1138 struct usb_interface *iface; 1139 struct usb_host_interface *alt; 1140 int ret; 1141 int manual = 0; 1142 1143 if (dev->state == USB_STATE_SUSPENDED) 1144 return -EHOSTUNREACH; 1145 1146 iface = usb_ifnum_to_if(dev, interface); 1147 if (!iface) { 1148 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1149 interface); 1150 return -EINVAL; 1151 } 1152 1153 alt = usb_altnum_to_altsetting(iface, alternate); 1154 if (!alt) { 1155 warn("selecting invalid altsetting %d", alternate); 1156 return -EINVAL; 1157 } 1158 1159 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1160 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1161 alternate, interface, NULL, 0, 5000); 1162 1163 /* 9.4.10 says devices don't need this and are free to STALL the 1164 * request if the interface only has one alternate setting. 1165 */ 1166 if (ret == -EPIPE && iface->num_altsetting == 1) { 1167 dev_dbg(&dev->dev, 1168 "manual set_interface for iface %d, alt %d\n", 1169 interface, alternate); 1170 manual = 1; 1171 } else if (ret < 0) 1172 return ret; 1173 1174 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1175 * when they implement async or easily-killable versions of this or 1176 * other "should-be-internal" functions (like clear_halt). 1177 * should hcd+usbcore postprocess control requests? 1178 */ 1179 1180 /* prevent submissions using previous endpoint settings */ 1181 if (device_is_registered(&iface->dev)) 1182 usb_remove_sysfs_intf_files(iface); 1183 usb_disable_interface(dev, iface); 1184 1185 iface->cur_altsetting = alt; 1186 1187 /* If the interface only has one altsetting and the device didn't 1188 * accept the request, we attempt to carry out the equivalent action 1189 * by manually clearing the HALT feature for each endpoint in the 1190 * new altsetting. 1191 */ 1192 if (manual) { 1193 int i; 1194 1195 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1196 unsigned int epaddr = 1197 alt->endpoint[i].desc.bEndpointAddress; 1198 unsigned int pipe = 1199 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr) 1200 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN); 1201 1202 usb_clear_halt(dev, pipe); 1203 } 1204 } 1205 1206 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1207 * 1208 * Note: 1209 * Despite EP0 is always present in all interfaces/AS, the list of 1210 * endpoints from the descriptor does not contain EP0. Due to its 1211 * omnipresence one might expect EP0 being considered "affected" by 1212 * any SetInterface request and hence assume toggles need to be reset. 1213 * However, EP0 toggles are re-synced for every individual transfer 1214 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1215 * (Likewise, EP0 never "halts" on well designed devices.) 1216 */ 1217 usb_enable_interface(dev, iface); 1218 if (device_is_registered(&iface->dev)) 1219 usb_create_sysfs_intf_files(iface); 1220 1221 return 0; 1222 } 1223 1224 /** 1225 * usb_reset_configuration - lightweight device reset 1226 * @dev: the device whose configuration is being reset 1227 * 1228 * This issues a standard SET_CONFIGURATION request to the device using 1229 * the current configuration. The effect is to reset most USB-related 1230 * state in the device, including interface altsettings (reset to zero), 1231 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1232 * endpoints). Other usbcore state is unchanged, including bindings of 1233 * usb device drivers to interfaces. 1234 * 1235 * Because this affects multiple interfaces, avoid using this with composite 1236 * (multi-interface) devices. Instead, the driver for each interface may 1237 * use usb_set_interface() on the interfaces it claims. Be careful though; 1238 * some devices don't support the SET_INTERFACE request, and others won't 1239 * reset all the interface state (notably data toggles). Resetting the whole 1240 * configuration would affect other drivers' interfaces. 1241 * 1242 * The caller must own the device lock. 1243 * 1244 * Returns zero on success, else a negative error code. 1245 */ 1246 int usb_reset_configuration(struct usb_device *dev) 1247 { 1248 int i, retval; 1249 struct usb_host_config *config; 1250 1251 if (dev->state == USB_STATE_SUSPENDED) 1252 return -EHOSTUNREACH; 1253 1254 /* caller must have locked the device and must own 1255 * the usb bus readlock (so driver bindings are stable); 1256 * calls during probe() are fine 1257 */ 1258 1259 for (i = 1; i < 16; ++i) { 1260 usb_disable_endpoint(dev, i); 1261 usb_disable_endpoint(dev, i + USB_DIR_IN); 1262 } 1263 1264 config = dev->actconfig; 1265 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1266 USB_REQ_SET_CONFIGURATION, 0, 1267 config->desc.bConfigurationValue, 0, 1268 NULL, 0, USB_CTRL_SET_TIMEOUT); 1269 if (retval < 0) 1270 return retval; 1271 1272 dev->toggle[0] = dev->toggle[1] = 0; 1273 1274 /* re-init hc/hcd interface/endpoint state */ 1275 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1276 struct usb_interface *intf = config->interface[i]; 1277 struct usb_host_interface *alt; 1278 1279 if (device_is_registered(&intf->dev)) 1280 usb_remove_sysfs_intf_files(intf); 1281 alt = usb_altnum_to_altsetting(intf, 0); 1282 1283 /* No altsetting 0? We'll assume the first altsetting. 1284 * We could use a GetInterface call, but if a device is 1285 * so non-compliant that it doesn't have altsetting 0 1286 * then I wouldn't trust its reply anyway. 1287 */ 1288 if (!alt) 1289 alt = &intf->altsetting[0]; 1290 1291 intf->cur_altsetting = alt; 1292 usb_enable_interface(dev, intf); 1293 if (device_is_registered(&intf->dev)) 1294 usb_create_sysfs_intf_files(intf); 1295 } 1296 return 0; 1297 } 1298 1299 static void release_interface(struct device *dev) 1300 { 1301 struct usb_interface *intf = to_usb_interface(dev); 1302 struct usb_interface_cache *intfc = 1303 altsetting_to_usb_interface_cache(intf->altsetting); 1304 1305 kref_put(&intfc->ref, usb_release_interface_cache); 1306 kfree(intf); 1307 } 1308 1309 /* 1310 * usb_set_configuration - Makes a particular device setting be current 1311 * @dev: the device whose configuration is being updated 1312 * @configuration: the configuration being chosen. 1313 * Context: !in_interrupt(), caller owns the device lock 1314 * 1315 * This is used to enable non-default device modes. Not all devices 1316 * use this kind of configurability; many devices only have one 1317 * configuration. 1318 * 1319 * USB device configurations may affect Linux interoperability, 1320 * power consumption and the functionality available. For example, 1321 * the default configuration is limited to using 100mA of bus power, 1322 * so that when certain device functionality requires more power, 1323 * and the device is bus powered, that functionality should be in some 1324 * non-default device configuration. Other device modes may also be 1325 * reflected as configuration options, such as whether two ISDN 1326 * channels are available independently; and choosing between open 1327 * standard device protocols (like CDC) or proprietary ones. 1328 * 1329 * Note that USB has an additional level of device configurability, 1330 * associated with interfaces. That configurability is accessed using 1331 * usb_set_interface(). 1332 * 1333 * This call is synchronous. The calling context must be able to sleep, 1334 * must own the device lock, and must not hold the driver model's USB 1335 * bus rwsem; usb device driver probe() methods cannot use this routine. 1336 * 1337 * Returns zero on success, or else the status code returned by the 1338 * underlying call that failed. On successful completion, each interface 1339 * in the original device configuration has been destroyed, and each one 1340 * in the new configuration has been probed by all relevant usb device 1341 * drivers currently known to the kernel. 1342 */ 1343 int usb_set_configuration(struct usb_device *dev, int configuration) 1344 { 1345 int i, ret; 1346 struct usb_host_config *cp = NULL; 1347 struct usb_interface **new_interfaces = NULL; 1348 int n, nintf; 1349 1350 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1351 if (dev->config[i].desc.bConfigurationValue == configuration) { 1352 cp = &dev->config[i]; 1353 break; 1354 } 1355 } 1356 if ((!cp && configuration != 0)) 1357 return -EINVAL; 1358 1359 /* The USB spec says configuration 0 means unconfigured. 1360 * But if a device includes a configuration numbered 0, 1361 * we will accept it as a correctly configured state. 1362 */ 1363 if (cp && configuration == 0) 1364 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1365 1366 /* Allocate memory for new interfaces before doing anything else, 1367 * so that if we run out then nothing will have changed. */ 1368 n = nintf = 0; 1369 if (cp) { 1370 nintf = cp->desc.bNumInterfaces; 1371 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1372 GFP_KERNEL); 1373 if (!new_interfaces) { 1374 dev_err(&dev->dev, "Out of memory"); 1375 return -ENOMEM; 1376 } 1377 1378 for (; n < nintf; ++n) { 1379 new_interfaces[n] = kzalloc( 1380 sizeof(struct usb_interface), 1381 GFP_KERNEL); 1382 if (!new_interfaces[n]) { 1383 dev_err(&dev->dev, "Out of memory"); 1384 ret = -ENOMEM; 1385 free_interfaces: 1386 while (--n >= 0) 1387 kfree(new_interfaces[n]); 1388 kfree(new_interfaces); 1389 return ret; 1390 } 1391 } 1392 1393 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1394 if (i < 0) 1395 dev_warn(&dev->dev, "new config #%d exceeds power " 1396 "limit by %dmA\n", 1397 configuration, -i); 1398 } 1399 1400 /* Wake up the device so we can send it the Set-Config request */ 1401 ret = usb_autoresume_device(dev); 1402 if (ret) 1403 goto free_interfaces; 1404 1405 /* if it's already configured, clear out old state first. 1406 * getting rid of old interfaces means unbinding their drivers. 1407 */ 1408 if (dev->state != USB_STATE_ADDRESS) 1409 usb_disable_device (dev, 1); // Skip ep0 1410 1411 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1412 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1413 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) { 1414 1415 /* All the old state is gone, so what else can we do? 1416 * The device is probably useless now anyway. 1417 */ 1418 cp = NULL; 1419 } 1420 1421 dev->actconfig = cp; 1422 if (!cp) { 1423 usb_set_device_state(dev, USB_STATE_ADDRESS); 1424 usb_autosuspend_device(dev); 1425 goto free_interfaces; 1426 } 1427 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1428 1429 /* Initialize the new interface structures and the 1430 * hc/hcd/usbcore interface/endpoint state. 1431 */ 1432 for (i = 0; i < nintf; ++i) { 1433 struct usb_interface_cache *intfc; 1434 struct usb_interface *intf; 1435 struct usb_host_interface *alt; 1436 1437 cp->interface[i] = intf = new_interfaces[i]; 1438 intfc = cp->intf_cache[i]; 1439 intf->altsetting = intfc->altsetting; 1440 intf->num_altsetting = intfc->num_altsetting; 1441 kref_get(&intfc->ref); 1442 1443 alt = usb_altnum_to_altsetting(intf, 0); 1444 1445 /* No altsetting 0? We'll assume the first altsetting. 1446 * We could use a GetInterface call, but if a device is 1447 * so non-compliant that it doesn't have altsetting 0 1448 * then I wouldn't trust its reply anyway. 1449 */ 1450 if (!alt) 1451 alt = &intf->altsetting[0]; 1452 1453 intf->cur_altsetting = alt; 1454 usb_enable_interface(dev, intf); 1455 intf->dev.parent = &dev->dev; 1456 intf->dev.driver = NULL; 1457 intf->dev.bus = &usb_bus_type; 1458 intf->dev.dma_mask = dev->dev.dma_mask; 1459 intf->dev.release = release_interface; 1460 device_initialize (&intf->dev); 1461 mark_quiesced(intf); 1462 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d", 1463 dev->bus->busnum, dev->devpath, 1464 configuration, alt->desc.bInterfaceNumber); 1465 } 1466 kfree(new_interfaces); 1467 1468 if (cp->string == NULL) 1469 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1470 1471 /* Now that all the interfaces are set up, register them 1472 * to trigger binding of drivers to interfaces. probe() 1473 * routines may install different altsettings and may 1474 * claim() any interfaces not yet bound. Many class drivers 1475 * need that: CDC, audio, video, etc. 1476 */ 1477 for (i = 0; i < nintf; ++i) { 1478 struct usb_interface *intf = cp->interface[i]; 1479 1480 dev_dbg (&dev->dev, 1481 "adding %s (config #%d, interface %d)\n", 1482 intf->dev.bus_id, configuration, 1483 intf->cur_altsetting->desc.bInterfaceNumber); 1484 ret = device_add (&intf->dev); 1485 if (ret != 0) { 1486 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1487 intf->dev.bus_id, ret); 1488 continue; 1489 } 1490 usb_create_sysfs_intf_files (intf); 1491 } 1492 1493 usb_autosuspend_device(dev); 1494 return 0; 1495 } 1496 1497 struct set_config_request { 1498 struct usb_device *udev; 1499 int config; 1500 struct work_struct work; 1501 }; 1502 1503 /* Worker routine for usb_driver_set_configuration() */ 1504 static void driver_set_config_work(struct work_struct *work) 1505 { 1506 struct set_config_request *req = 1507 container_of(work, struct set_config_request, work); 1508 1509 usb_lock_device(req->udev); 1510 usb_set_configuration(req->udev, req->config); 1511 usb_unlock_device(req->udev); 1512 usb_put_dev(req->udev); 1513 kfree(req); 1514 } 1515 1516 /** 1517 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1518 * @udev: the device whose configuration is being updated 1519 * @config: the configuration being chosen. 1520 * Context: In process context, must be able to sleep 1521 * 1522 * Device interface drivers are not allowed to change device configurations. 1523 * This is because changing configurations will destroy the interface the 1524 * driver is bound to and create new ones; it would be like a floppy-disk 1525 * driver telling the computer to replace the floppy-disk drive with a 1526 * tape drive! 1527 * 1528 * Still, in certain specialized circumstances the need may arise. This 1529 * routine gets around the normal restrictions by using a work thread to 1530 * submit the change-config request. 1531 * 1532 * Returns 0 if the request was succesfully queued, error code otherwise. 1533 * The caller has no way to know whether the queued request will eventually 1534 * succeed. 1535 */ 1536 int usb_driver_set_configuration(struct usb_device *udev, int config) 1537 { 1538 struct set_config_request *req; 1539 1540 req = kmalloc(sizeof(*req), GFP_KERNEL); 1541 if (!req) 1542 return -ENOMEM; 1543 req->udev = udev; 1544 req->config = config; 1545 INIT_WORK(&req->work, driver_set_config_work); 1546 1547 usb_get_dev(udev); 1548 schedule_work(&req->work); 1549 return 0; 1550 } 1551 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1552 1553 // synchronous request completion model 1554 EXPORT_SYMBOL(usb_control_msg); 1555 EXPORT_SYMBOL(usb_bulk_msg); 1556 1557 EXPORT_SYMBOL(usb_sg_init); 1558 EXPORT_SYMBOL(usb_sg_cancel); 1559 EXPORT_SYMBOL(usb_sg_wait); 1560 1561 // synchronous control message convenience routines 1562 EXPORT_SYMBOL(usb_get_descriptor); 1563 EXPORT_SYMBOL(usb_get_status); 1564 EXPORT_SYMBOL(usb_string); 1565 1566 // synchronous calls that also maintain usbcore state 1567 EXPORT_SYMBOL(usb_clear_halt); 1568 EXPORT_SYMBOL(usb_reset_configuration); 1569 EXPORT_SYMBOL(usb_set_interface); 1570 1571