xref: /linux/drivers/usb/core/message.c (revision a5c4300389bb33ade2515c082709217f0614cf15)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <linux/usb/hcd.h>	/* for usbcore internals */
18 #include <asm/byteorder.h>
19 
20 #include "usb.h"
21 
22 static void cancel_async_set_config(struct usb_device *udev);
23 
24 struct api_context {
25 	struct completion	done;
26 	int			status;
27 };
28 
29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 	struct api_context *ctx = urb->context;
32 
33 	ctx->status = urb->status;
34 	complete(&ctx->done);
35 }
36 
37 
38 /*
39  * Starts urb and waits for completion or timeout. Note that this call
40  * is NOT interruptible. Many device driver i/o requests should be
41  * interruptible and therefore these drivers should implement their
42  * own interruptible routines.
43  */
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 	struct api_context ctx;
47 	unsigned long expire;
48 	int retval;
49 
50 	init_completion(&ctx.done);
51 	urb->context = &ctx;
52 	urb->actual_length = 0;
53 	retval = usb_submit_urb(urb, GFP_NOIO);
54 	if (unlikely(retval))
55 		goto out;
56 
57 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 		usb_kill_urb(urb);
60 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 
62 		dev_dbg(&urb->dev->dev,
63 			"%s timed out on ep%d%s len=%u/%u\n",
64 			current->comm,
65 			usb_endpoint_num(&urb->ep->desc),
66 			usb_urb_dir_in(urb) ? "in" : "out",
67 			urb->actual_length,
68 			urb->transfer_buffer_length);
69 	} else
70 		retval = ctx.status;
71 out:
72 	if (actual_length)
73 		*actual_length = urb->actual_length;
74 
75 	usb_free_urb(urb);
76 	return retval;
77 }
78 
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 				    unsigned int pipe,
83 				    struct usb_ctrlrequest *cmd,
84 				    void *data, int len, int timeout)
85 {
86 	struct urb *urb;
87 	int retv;
88 	int length;
89 
90 	urb = usb_alloc_urb(0, GFP_NOIO);
91 	if (!urb)
92 		return -ENOMEM;
93 
94 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 			     len, usb_api_blocking_completion, NULL);
96 
97 	retv = usb_start_wait_urb(urb, timeout, &length);
98 	if (retv < 0)
99 		return retv;
100 	else
101 		return length;
102 }
103 
104 /**
105  * usb_control_msg - Builds a control urb, sends it off and waits for completion
106  * @dev: pointer to the usb device to send the message to
107  * @pipe: endpoint "pipe" to send the message to
108  * @request: USB message request value
109  * @requesttype: USB message request type value
110  * @value: USB message value
111  * @index: USB message index value
112  * @data: pointer to the data to send
113  * @size: length in bytes of the data to send
114  * @timeout: time in msecs to wait for the message to complete before timing
115  *	out (if 0 the wait is forever)
116  *
117  * Context: !in_interrupt ()
118  *
119  * This function sends a simple control message to a specified endpoint and
120  * waits for the message to complete, or timeout.
121  *
122  * If successful, it returns the number of bytes transferred, otherwise a
123  * negative error number.
124  *
125  * Don't use this function from within an interrupt context, like a bottom half
126  * handler.  If you need an asynchronous message, or need to send a message
127  * from within interrupt context, use usb_submit_urb().
128  * If a thread in your driver uses this call, make sure your disconnect()
129  * method can wait for it to complete.  Since you don't have a handle on the
130  * URB used, you can't cancel the request.
131  */
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 		    __u8 requesttype, __u16 value, __u16 index, void *data,
134 		    __u16 size, int timeout)
135 {
136 	struct usb_ctrlrequest *dr;
137 	int ret;
138 
139 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 	if (!dr)
141 		return -ENOMEM;
142 
143 	dr->bRequestType = requesttype;
144 	dr->bRequest = request;
145 	dr->wValue = cpu_to_le16(value);
146 	dr->wIndex = cpu_to_le16(index);
147 	dr->wLength = cpu_to_le16(size);
148 
149 	/* dbg("usb_control_msg"); */
150 
151 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152 
153 	kfree(dr);
154 
155 	return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_control_msg);
158 
159 /**
160  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161  * @usb_dev: pointer to the usb device to send the message to
162  * @pipe: endpoint "pipe" to send the message to
163  * @data: pointer to the data to send
164  * @len: length in bytes of the data to send
165  * @actual_length: pointer to a location to put the actual length transferred
166  *	in bytes
167  * @timeout: time in msecs to wait for the message to complete before
168  *	timing out (if 0 the wait is forever)
169  *
170  * Context: !in_interrupt ()
171  *
172  * This function sends a simple interrupt message to a specified endpoint and
173  * waits for the message to complete, or timeout.
174  *
175  * If successful, it returns 0, otherwise a negative error number.  The number
176  * of actual bytes transferred will be stored in the actual_length paramater.
177  *
178  * Don't use this function from within an interrupt context, like a bottom half
179  * handler.  If you need an asynchronous message, or need to send a message
180  * from within interrupt context, use usb_submit_urb() If a thread in your
181  * driver uses this call, make sure your disconnect() method can wait for it to
182  * complete.  Since you don't have a handle on the URB used, you can't cancel
183  * the request.
184  */
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 		      void *data, int len, int *actual_length, int timeout)
187 {
188 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 }
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191 
192 /**
193  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194  * @usb_dev: pointer to the usb device to send the message to
195  * @pipe: endpoint "pipe" to send the message to
196  * @data: pointer to the data to send
197  * @len: length in bytes of the data to send
198  * @actual_length: pointer to a location to put the actual length transferred
199  *	in bytes
200  * @timeout: time in msecs to wait for the message to complete before
201  *	timing out (if 0 the wait is forever)
202  *
203  * Context: !in_interrupt ()
204  *
205  * This function sends a simple bulk message to a specified endpoint
206  * and waits for the message to complete, or timeout.
207  *
208  * If successful, it returns 0, otherwise a negative error number.  The number
209  * of actual bytes transferred will be stored in the actual_length paramater.
210  *
211  * Don't use this function from within an interrupt context, like a bottom half
212  * handler.  If you need an asynchronous message, or need to send a message
213  * from within interrupt context, use usb_submit_urb() If a thread in your
214  * driver uses this call, make sure your disconnect() method can wait for it to
215  * complete.  Since you don't have a handle on the URB used, you can't cancel
216  * the request.
217  *
218  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219  * users are forced to abuse this routine by using it to submit URBs for
220  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
221  * (with the default interval) if the target is an interrupt endpoint.
222  */
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 		 void *data, int len, int *actual_length, int timeout)
225 {
226 	struct urb *urb;
227 	struct usb_host_endpoint *ep;
228 
229 	ep = usb_pipe_endpoint(usb_dev, pipe);
230 	if (!ep || len < 0)
231 		return -EINVAL;
232 
233 	urb = usb_alloc_urb(0, GFP_KERNEL);
234 	if (!urb)
235 		return -ENOMEM;
236 
237 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 			USB_ENDPOINT_XFER_INT) {
239 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 				usb_api_blocking_completion, NULL,
242 				ep->desc.bInterval);
243 	} else
244 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 				usb_api_blocking_completion, NULL);
246 
247 	return usb_start_wait_urb(urb, timeout, actual_length);
248 }
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
250 
251 /*-------------------------------------------------------------------*/
252 
253 static void sg_clean(struct usb_sg_request *io)
254 {
255 	if (io->urbs) {
256 		while (io->entries--)
257 			usb_free_urb(io->urbs [io->entries]);
258 		kfree(io->urbs);
259 		io->urbs = NULL;
260 	}
261 	io->dev = NULL;
262 }
263 
264 static void sg_complete(struct urb *urb)
265 {
266 	struct usb_sg_request *io = urb->context;
267 	int status = urb->status;
268 
269 	spin_lock(&io->lock);
270 
271 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
272 	 * reports, until the completion callback (this!) returns.  That lets
273 	 * device driver code (like this routine) unlink queued urbs first,
274 	 * if it needs to, since the HC won't work on them at all.  So it's
275 	 * not possible for page N+1 to overwrite page N, and so on.
276 	 *
277 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 	 * complete before the HCD can get requests away from hardware,
279 	 * though never during cleanup after a hard fault.
280 	 */
281 	if (io->status
282 			&& (io->status != -ECONNRESET
283 				|| status != -ECONNRESET)
284 			&& urb->actual_length) {
285 		dev_err(io->dev->bus->controller,
286 			"dev %s ep%d%s scatterlist error %d/%d\n",
287 			io->dev->devpath,
288 			usb_endpoint_num(&urb->ep->desc),
289 			usb_urb_dir_in(urb) ? "in" : "out",
290 			status, io->status);
291 		/* BUG (); */
292 	}
293 
294 	if (io->status == 0 && status && status != -ECONNRESET) {
295 		int i, found, retval;
296 
297 		io->status = status;
298 
299 		/* the previous urbs, and this one, completed already.
300 		 * unlink pending urbs so they won't rx/tx bad data.
301 		 * careful: unlink can sometimes be synchronous...
302 		 */
303 		spin_unlock(&io->lock);
304 		for (i = 0, found = 0; i < io->entries; i++) {
305 			if (!io->urbs [i] || !io->urbs [i]->dev)
306 				continue;
307 			if (found) {
308 				retval = usb_unlink_urb(io->urbs [i]);
309 				if (retval != -EINPROGRESS &&
310 				    retval != -ENODEV &&
311 				    retval != -EBUSY)
312 					dev_err(&io->dev->dev,
313 						"%s, unlink --> %d\n",
314 						__func__, retval);
315 			} else if (urb == io->urbs [i])
316 				found = 1;
317 		}
318 		spin_lock(&io->lock);
319 	}
320 	urb->dev = NULL;
321 
322 	/* on the last completion, signal usb_sg_wait() */
323 	io->bytes += urb->actual_length;
324 	io->count--;
325 	if (!io->count)
326 		complete(&io->complete);
327 
328 	spin_unlock(&io->lock);
329 }
330 
331 
332 /**
333  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334  * @io: request block being initialized.  until usb_sg_wait() returns,
335  *	treat this as a pointer to an opaque block of memory,
336  * @dev: the usb device that will send or receive the data
337  * @pipe: endpoint "pipe" used to transfer the data
338  * @period: polling rate for interrupt endpoints, in frames or
339  * 	(for high speed endpoints) microframes; ignored for bulk
340  * @sg: scatterlist entries
341  * @nents: how many entries in the scatterlist
342  * @length: how many bytes to send from the scatterlist, or zero to
343  * 	send every byte identified in the list.
344  * @mem_flags: SLAB_* flags affecting memory allocations in this call
345  *
346  * Returns zero for success, else a negative errno value.  This initializes a
347  * scatter/gather request, allocating resources such as I/O mappings and urb
348  * memory (except maybe memory used by USB controller drivers).
349  *
350  * The request must be issued using usb_sg_wait(), which waits for the I/O to
351  * complete (or to be canceled) and then cleans up all resources allocated by
352  * usb_sg_init().
353  *
354  * The request may be canceled with usb_sg_cancel(), either before or after
355  * usb_sg_wait() is called.
356  */
357 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
358 		unsigned pipe, unsigned	period, struct scatterlist *sg,
359 		int nents, size_t length, gfp_t mem_flags)
360 {
361 	int i;
362 	int urb_flags;
363 	int use_sg;
364 
365 	if (!io || !dev || !sg
366 			|| usb_pipecontrol(pipe)
367 			|| usb_pipeisoc(pipe)
368 			|| nents <= 0)
369 		return -EINVAL;
370 
371 	spin_lock_init(&io->lock);
372 	io->dev = dev;
373 	io->pipe = pipe;
374 
375 	if (dev->bus->sg_tablesize > 0) {
376 		use_sg = true;
377 		io->entries = 1;
378 	} else {
379 		use_sg = false;
380 		io->entries = nents;
381 	}
382 
383 	/* initialize all the urbs we'll use */
384 	io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
385 	if (!io->urbs)
386 		goto nomem;
387 
388 	urb_flags = URB_NO_INTERRUPT;
389 	if (usb_pipein(pipe))
390 		urb_flags |= URB_SHORT_NOT_OK;
391 
392 	for_each_sg(sg, sg, io->entries, i) {
393 		struct urb *urb;
394 		unsigned len;
395 
396 		urb = usb_alloc_urb(0, mem_flags);
397 		if (!urb) {
398 			io->entries = i;
399 			goto nomem;
400 		}
401 		io->urbs[i] = urb;
402 
403 		urb->dev = NULL;
404 		urb->pipe = pipe;
405 		urb->interval = period;
406 		urb->transfer_flags = urb_flags;
407 		urb->complete = sg_complete;
408 		urb->context = io;
409 		urb->sg = sg;
410 
411 		if (use_sg) {
412 			/* There is no single transfer buffer */
413 			urb->transfer_buffer = NULL;
414 			urb->num_sgs = nents;
415 
416 			/* A length of zero means transfer the whole sg list */
417 			len = length;
418 			if (len == 0) {
419 				for_each_sg(sg, sg, nents, i)
420 					len += sg->length;
421 			}
422 		} else {
423 			/*
424 			 * Some systems can't use DMA; they use PIO instead.
425 			 * For their sakes, transfer_buffer is set whenever
426 			 * possible.
427 			 */
428 			if (!PageHighMem(sg_page(sg)))
429 				urb->transfer_buffer = sg_virt(sg);
430 			else
431 				urb->transfer_buffer = NULL;
432 
433 			len = sg->length;
434 			if (length) {
435 				len = min_t(unsigned, len, length);
436 				length -= len;
437 				if (length == 0)
438 					io->entries = i + 1;
439 			}
440 		}
441 		urb->transfer_buffer_length = len;
442 	}
443 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
444 
445 	/* transaction state */
446 	io->count = io->entries;
447 	io->status = 0;
448 	io->bytes = 0;
449 	init_completion(&io->complete);
450 	return 0;
451 
452 nomem:
453 	sg_clean(io);
454 	return -ENOMEM;
455 }
456 EXPORT_SYMBOL_GPL(usb_sg_init);
457 
458 /**
459  * usb_sg_wait - synchronously execute scatter/gather request
460  * @io: request block handle, as initialized with usb_sg_init().
461  * 	some fields become accessible when this call returns.
462  * Context: !in_interrupt ()
463  *
464  * This function blocks until the specified I/O operation completes.  It
465  * leverages the grouping of the related I/O requests to get good transfer
466  * rates, by queueing the requests.  At higher speeds, such queuing can
467  * significantly improve USB throughput.
468  *
469  * There are three kinds of completion for this function.
470  * (1) success, where io->status is zero.  The number of io->bytes
471  *     transferred is as requested.
472  * (2) error, where io->status is a negative errno value.  The number
473  *     of io->bytes transferred before the error is usually less
474  *     than requested, and can be nonzero.
475  * (3) cancellation, a type of error with status -ECONNRESET that
476  *     is initiated by usb_sg_cancel().
477  *
478  * When this function returns, all memory allocated through usb_sg_init() or
479  * this call will have been freed.  The request block parameter may still be
480  * passed to usb_sg_cancel(), or it may be freed.  It could also be
481  * reinitialized and then reused.
482  *
483  * Data Transfer Rates:
484  *
485  * Bulk transfers are valid for full or high speed endpoints.
486  * The best full speed data rate is 19 packets of 64 bytes each
487  * per frame, or 1216 bytes per millisecond.
488  * The best high speed data rate is 13 packets of 512 bytes each
489  * per microframe, or 52 KBytes per millisecond.
490  *
491  * The reason to use interrupt transfers through this API would most likely
492  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
493  * could be transferred.  That capability is less useful for low or full
494  * speed interrupt endpoints, which allow at most one packet per millisecond,
495  * of at most 8 or 64 bytes (respectively).
496  *
497  * It is not necessary to call this function to reserve bandwidth for devices
498  * under an xHCI host controller, as the bandwidth is reserved when the
499  * configuration or interface alt setting is selected.
500  */
501 void usb_sg_wait(struct usb_sg_request *io)
502 {
503 	int i;
504 	int entries = io->entries;
505 
506 	/* queue the urbs.  */
507 	spin_lock_irq(&io->lock);
508 	i = 0;
509 	while (i < entries && !io->status) {
510 		int retval;
511 
512 		io->urbs[i]->dev = io->dev;
513 		retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
514 
515 		/* after we submit, let completions or cancelations fire;
516 		 * we handshake using io->status.
517 		 */
518 		spin_unlock_irq(&io->lock);
519 		switch (retval) {
520 			/* maybe we retrying will recover */
521 		case -ENXIO:	/* hc didn't queue this one */
522 		case -EAGAIN:
523 		case -ENOMEM:
524 			io->urbs[i]->dev = NULL;
525 			retval = 0;
526 			yield();
527 			break;
528 
529 			/* no error? continue immediately.
530 			 *
531 			 * NOTE: to work better with UHCI (4K I/O buffer may
532 			 * need 3K of TDs) it may be good to limit how many
533 			 * URBs are queued at once; N milliseconds?
534 			 */
535 		case 0:
536 			++i;
537 			cpu_relax();
538 			break;
539 
540 			/* fail any uncompleted urbs */
541 		default:
542 			io->urbs[i]->dev = NULL;
543 			io->urbs[i]->status = retval;
544 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
545 				__func__, retval);
546 			usb_sg_cancel(io);
547 		}
548 		spin_lock_irq(&io->lock);
549 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
550 			io->status = retval;
551 	}
552 	io->count -= entries - i;
553 	if (io->count == 0)
554 		complete(&io->complete);
555 	spin_unlock_irq(&io->lock);
556 
557 	/* OK, yes, this could be packaged as non-blocking.
558 	 * So could the submit loop above ... but it's easier to
559 	 * solve neither problem than to solve both!
560 	 */
561 	wait_for_completion(&io->complete);
562 
563 	sg_clean(io);
564 }
565 EXPORT_SYMBOL_GPL(usb_sg_wait);
566 
567 /**
568  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
569  * @io: request block, initialized with usb_sg_init()
570  *
571  * This stops a request after it has been started by usb_sg_wait().
572  * It can also prevents one initialized by usb_sg_init() from starting,
573  * so that call just frees resources allocated to the request.
574  */
575 void usb_sg_cancel(struct usb_sg_request *io)
576 {
577 	unsigned long flags;
578 
579 	spin_lock_irqsave(&io->lock, flags);
580 
581 	/* shut everything down, if it didn't already */
582 	if (!io->status) {
583 		int i;
584 
585 		io->status = -ECONNRESET;
586 		spin_unlock(&io->lock);
587 		for (i = 0; i < io->entries; i++) {
588 			int retval;
589 
590 			if (!io->urbs [i]->dev)
591 				continue;
592 			retval = usb_unlink_urb(io->urbs [i]);
593 			if (retval != -EINPROGRESS && retval != -EBUSY)
594 				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
595 					__func__, retval);
596 		}
597 		spin_lock(&io->lock);
598 	}
599 	spin_unlock_irqrestore(&io->lock, flags);
600 }
601 EXPORT_SYMBOL_GPL(usb_sg_cancel);
602 
603 /*-------------------------------------------------------------------*/
604 
605 /**
606  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
607  * @dev: the device whose descriptor is being retrieved
608  * @type: the descriptor type (USB_DT_*)
609  * @index: the number of the descriptor
610  * @buf: where to put the descriptor
611  * @size: how big is "buf"?
612  * Context: !in_interrupt ()
613  *
614  * Gets a USB descriptor.  Convenience functions exist to simplify
615  * getting some types of descriptors.  Use
616  * usb_get_string() or usb_string() for USB_DT_STRING.
617  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
618  * are part of the device structure.
619  * In addition to a number of USB-standard descriptors, some
620  * devices also use class-specific or vendor-specific descriptors.
621  *
622  * This call is synchronous, and may not be used in an interrupt context.
623  *
624  * Returns the number of bytes received on success, or else the status code
625  * returned by the underlying usb_control_msg() call.
626  */
627 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
628 		       unsigned char index, void *buf, int size)
629 {
630 	int i;
631 	int result;
632 
633 	memset(buf, 0, size);	/* Make sure we parse really received data */
634 
635 	for (i = 0; i < 3; ++i) {
636 		/* retry on length 0 or error; some devices are flakey */
637 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
638 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
639 				(type << 8) + index, 0, buf, size,
640 				USB_CTRL_GET_TIMEOUT);
641 		if (result <= 0 && result != -ETIMEDOUT)
642 			continue;
643 		if (result > 1 && ((u8 *)buf)[1] != type) {
644 			result = -ENODATA;
645 			continue;
646 		}
647 		break;
648 	}
649 	return result;
650 }
651 EXPORT_SYMBOL_GPL(usb_get_descriptor);
652 
653 /**
654  * usb_get_string - gets a string descriptor
655  * @dev: the device whose string descriptor is being retrieved
656  * @langid: code for language chosen (from string descriptor zero)
657  * @index: the number of the descriptor
658  * @buf: where to put the string
659  * @size: how big is "buf"?
660  * Context: !in_interrupt ()
661  *
662  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
663  * in little-endian byte order).
664  * The usb_string() function will often be a convenient way to turn
665  * these strings into kernel-printable form.
666  *
667  * Strings may be referenced in device, configuration, interface, or other
668  * descriptors, and could also be used in vendor-specific ways.
669  *
670  * This call is synchronous, and may not be used in an interrupt context.
671  *
672  * Returns the number of bytes received on success, or else the status code
673  * returned by the underlying usb_control_msg() call.
674  */
675 static int usb_get_string(struct usb_device *dev, unsigned short langid,
676 			  unsigned char index, void *buf, int size)
677 {
678 	int i;
679 	int result;
680 
681 	for (i = 0; i < 3; ++i) {
682 		/* retry on length 0 or stall; some devices are flakey */
683 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
684 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
685 			(USB_DT_STRING << 8) + index, langid, buf, size,
686 			USB_CTRL_GET_TIMEOUT);
687 		if (result == 0 || result == -EPIPE)
688 			continue;
689 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
690 			result = -ENODATA;
691 			continue;
692 		}
693 		break;
694 	}
695 	return result;
696 }
697 
698 static void usb_try_string_workarounds(unsigned char *buf, int *length)
699 {
700 	int newlength, oldlength = *length;
701 
702 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
703 		if (!isprint(buf[newlength]) || buf[newlength + 1])
704 			break;
705 
706 	if (newlength > 2) {
707 		buf[0] = newlength;
708 		*length = newlength;
709 	}
710 }
711 
712 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
713 			  unsigned int index, unsigned char *buf)
714 {
715 	int rc;
716 
717 	/* Try to read the string descriptor by asking for the maximum
718 	 * possible number of bytes */
719 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
720 		rc = -EIO;
721 	else
722 		rc = usb_get_string(dev, langid, index, buf, 255);
723 
724 	/* If that failed try to read the descriptor length, then
725 	 * ask for just that many bytes */
726 	if (rc < 2) {
727 		rc = usb_get_string(dev, langid, index, buf, 2);
728 		if (rc == 2)
729 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
730 	}
731 
732 	if (rc >= 2) {
733 		if (!buf[0] && !buf[1])
734 			usb_try_string_workarounds(buf, &rc);
735 
736 		/* There might be extra junk at the end of the descriptor */
737 		if (buf[0] < rc)
738 			rc = buf[0];
739 
740 		rc = rc - (rc & 1); /* force a multiple of two */
741 	}
742 
743 	if (rc < 2)
744 		rc = (rc < 0 ? rc : -EINVAL);
745 
746 	return rc;
747 }
748 
749 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
750 {
751 	int err;
752 
753 	if (dev->have_langid)
754 		return 0;
755 
756 	if (dev->string_langid < 0)
757 		return -EPIPE;
758 
759 	err = usb_string_sub(dev, 0, 0, tbuf);
760 
761 	/* If the string was reported but is malformed, default to english
762 	 * (0x0409) */
763 	if (err == -ENODATA || (err > 0 && err < 4)) {
764 		dev->string_langid = 0x0409;
765 		dev->have_langid = 1;
766 		dev_err(&dev->dev,
767 			"string descriptor 0 malformed (err = %d), "
768 			"defaulting to 0x%04x\n",
769 				err, dev->string_langid);
770 		return 0;
771 	}
772 
773 	/* In case of all other errors, we assume the device is not able to
774 	 * deal with strings at all. Set string_langid to -1 in order to
775 	 * prevent any string to be retrieved from the device */
776 	if (err < 0) {
777 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
778 					err);
779 		dev->string_langid = -1;
780 		return -EPIPE;
781 	}
782 
783 	/* always use the first langid listed */
784 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
785 	dev->have_langid = 1;
786 	dev_dbg(&dev->dev, "default language 0x%04x\n",
787 				dev->string_langid);
788 	return 0;
789 }
790 
791 /**
792  * usb_string - returns UTF-8 version of a string descriptor
793  * @dev: the device whose string descriptor is being retrieved
794  * @index: the number of the descriptor
795  * @buf: where to put the string
796  * @size: how big is "buf"?
797  * Context: !in_interrupt ()
798  *
799  * This converts the UTF-16LE encoded strings returned by devices, from
800  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
801  * that are more usable in most kernel contexts.  Note that this function
802  * chooses strings in the first language supported by the device.
803  *
804  * This call is synchronous, and may not be used in an interrupt context.
805  *
806  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
807  */
808 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
809 {
810 	unsigned char *tbuf;
811 	int err;
812 
813 	if (dev->state == USB_STATE_SUSPENDED)
814 		return -EHOSTUNREACH;
815 	if (size <= 0 || !buf || !index)
816 		return -EINVAL;
817 	buf[0] = 0;
818 	tbuf = kmalloc(256, GFP_NOIO);
819 	if (!tbuf)
820 		return -ENOMEM;
821 
822 	err = usb_get_langid(dev, tbuf);
823 	if (err < 0)
824 		goto errout;
825 
826 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
827 	if (err < 0)
828 		goto errout;
829 
830 	size--;		/* leave room for trailing NULL char in output buffer */
831 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
832 			UTF16_LITTLE_ENDIAN, buf, size);
833 	buf[err] = 0;
834 
835 	if (tbuf[1] != USB_DT_STRING)
836 		dev_dbg(&dev->dev,
837 			"wrong descriptor type %02x for string %d (\"%s\")\n",
838 			tbuf[1], index, buf);
839 
840  errout:
841 	kfree(tbuf);
842 	return err;
843 }
844 EXPORT_SYMBOL_GPL(usb_string);
845 
846 /* one UTF-8-encoded 16-bit character has at most three bytes */
847 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
848 
849 /**
850  * usb_cache_string - read a string descriptor and cache it for later use
851  * @udev: the device whose string descriptor is being read
852  * @index: the descriptor index
853  *
854  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
855  * or NULL if the index is 0 or the string could not be read.
856  */
857 char *usb_cache_string(struct usb_device *udev, int index)
858 {
859 	char *buf;
860 	char *smallbuf = NULL;
861 	int len;
862 
863 	if (index <= 0)
864 		return NULL;
865 
866 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
867 	if (buf) {
868 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
869 		if (len > 0) {
870 			smallbuf = kmalloc(++len, GFP_NOIO);
871 			if (!smallbuf)
872 				return buf;
873 			memcpy(smallbuf, buf, len);
874 		}
875 		kfree(buf);
876 	}
877 	return smallbuf;
878 }
879 
880 /*
881  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
882  * @dev: the device whose device descriptor is being updated
883  * @size: how much of the descriptor to read
884  * Context: !in_interrupt ()
885  *
886  * Updates the copy of the device descriptor stored in the device structure,
887  * which dedicates space for this purpose.
888  *
889  * Not exported, only for use by the core.  If drivers really want to read
890  * the device descriptor directly, they can call usb_get_descriptor() with
891  * type = USB_DT_DEVICE and index = 0.
892  *
893  * This call is synchronous, and may not be used in an interrupt context.
894  *
895  * Returns the number of bytes received on success, or else the status code
896  * returned by the underlying usb_control_msg() call.
897  */
898 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
899 {
900 	struct usb_device_descriptor *desc;
901 	int ret;
902 
903 	if (size > sizeof(*desc))
904 		return -EINVAL;
905 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
906 	if (!desc)
907 		return -ENOMEM;
908 
909 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
910 	if (ret >= 0)
911 		memcpy(&dev->descriptor, desc, size);
912 	kfree(desc);
913 	return ret;
914 }
915 
916 /**
917  * usb_get_status - issues a GET_STATUS call
918  * @dev: the device whose status is being checked
919  * @type: USB_RECIP_*; for device, interface, or endpoint
920  * @target: zero (for device), else interface or endpoint number
921  * @data: pointer to two bytes of bitmap data
922  * Context: !in_interrupt ()
923  *
924  * Returns device, interface, or endpoint status.  Normally only of
925  * interest to see if the device is self powered, or has enabled the
926  * remote wakeup facility; or whether a bulk or interrupt endpoint
927  * is halted ("stalled").
928  *
929  * Bits in these status bitmaps are set using the SET_FEATURE request,
930  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
931  * function should be used to clear halt ("stall") status.
932  *
933  * This call is synchronous, and may not be used in an interrupt context.
934  *
935  * Returns the number of bytes received on success, or else the status code
936  * returned by the underlying usb_control_msg() call.
937  */
938 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
939 {
940 	int ret;
941 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
942 
943 	if (!status)
944 		return -ENOMEM;
945 
946 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
947 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
948 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
949 
950 	*(u16 *)data = *status;
951 	kfree(status);
952 	return ret;
953 }
954 EXPORT_SYMBOL_GPL(usb_get_status);
955 
956 /**
957  * usb_clear_halt - tells device to clear endpoint halt/stall condition
958  * @dev: device whose endpoint is halted
959  * @pipe: endpoint "pipe" being cleared
960  * Context: !in_interrupt ()
961  *
962  * This is used to clear halt conditions for bulk and interrupt endpoints,
963  * as reported by URB completion status.  Endpoints that are halted are
964  * sometimes referred to as being "stalled".  Such endpoints are unable
965  * to transmit or receive data until the halt status is cleared.  Any URBs
966  * queued for such an endpoint should normally be unlinked by the driver
967  * before clearing the halt condition, as described in sections 5.7.5
968  * and 5.8.5 of the USB 2.0 spec.
969  *
970  * Note that control and isochronous endpoints don't halt, although control
971  * endpoints report "protocol stall" (for unsupported requests) using the
972  * same status code used to report a true stall.
973  *
974  * This call is synchronous, and may not be used in an interrupt context.
975  *
976  * Returns zero on success, or else the status code returned by the
977  * underlying usb_control_msg() call.
978  */
979 int usb_clear_halt(struct usb_device *dev, int pipe)
980 {
981 	int result;
982 	int endp = usb_pipeendpoint(pipe);
983 
984 	if (usb_pipein(pipe))
985 		endp |= USB_DIR_IN;
986 
987 	/* we don't care if it wasn't halted first. in fact some devices
988 	 * (like some ibmcam model 1 units) seem to expect hosts to make
989 	 * this request for iso endpoints, which can't halt!
990 	 */
991 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
992 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
993 		USB_ENDPOINT_HALT, endp, NULL, 0,
994 		USB_CTRL_SET_TIMEOUT);
995 
996 	/* don't un-halt or force to DATA0 except on success */
997 	if (result < 0)
998 		return result;
999 
1000 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1001 	 * the clear "took", so some devices could lock up if you check...
1002 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1003 	 *
1004 	 * NOTE:  make sure the logic here doesn't diverge much from
1005 	 * the copy in usb-storage, for as long as we need two copies.
1006 	 */
1007 
1008 	usb_reset_endpoint(dev, endp);
1009 
1010 	return 0;
1011 }
1012 EXPORT_SYMBOL_GPL(usb_clear_halt);
1013 
1014 static int create_intf_ep_devs(struct usb_interface *intf)
1015 {
1016 	struct usb_device *udev = interface_to_usbdev(intf);
1017 	struct usb_host_interface *alt = intf->cur_altsetting;
1018 	int i;
1019 
1020 	if (intf->ep_devs_created || intf->unregistering)
1021 		return 0;
1022 
1023 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1024 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1025 	intf->ep_devs_created = 1;
1026 	return 0;
1027 }
1028 
1029 static void remove_intf_ep_devs(struct usb_interface *intf)
1030 {
1031 	struct usb_host_interface *alt = intf->cur_altsetting;
1032 	int i;
1033 
1034 	if (!intf->ep_devs_created)
1035 		return;
1036 
1037 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1038 		usb_remove_ep_devs(&alt->endpoint[i]);
1039 	intf->ep_devs_created = 0;
1040 }
1041 
1042 /**
1043  * usb_disable_endpoint -- Disable an endpoint by address
1044  * @dev: the device whose endpoint is being disabled
1045  * @epaddr: the endpoint's address.  Endpoint number for output,
1046  *	endpoint number + USB_DIR_IN for input
1047  * @reset_hardware: flag to erase any endpoint state stored in the
1048  *	controller hardware
1049  *
1050  * Disables the endpoint for URB submission and nukes all pending URBs.
1051  * If @reset_hardware is set then also deallocates hcd/hardware state
1052  * for the endpoint.
1053  */
1054 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1055 		bool reset_hardware)
1056 {
1057 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1058 	struct usb_host_endpoint *ep;
1059 
1060 	if (!dev)
1061 		return;
1062 
1063 	if (usb_endpoint_out(epaddr)) {
1064 		ep = dev->ep_out[epnum];
1065 		if (reset_hardware)
1066 			dev->ep_out[epnum] = NULL;
1067 	} else {
1068 		ep = dev->ep_in[epnum];
1069 		if (reset_hardware)
1070 			dev->ep_in[epnum] = NULL;
1071 	}
1072 	if (ep) {
1073 		ep->enabled = 0;
1074 		usb_hcd_flush_endpoint(dev, ep);
1075 		if (reset_hardware)
1076 			usb_hcd_disable_endpoint(dev, ep);
1077 	}
1078 }
1079 
1080 /**
1081  * usb_reset_endpoint - Reset an endpoint's state.
1082  * @dev: the device whose endpoint is to be reset
1083  * @epaddr: the endpoint's address.  Endpoint number for output,
1084  *	endpoint number + USB_DIR_IN for input
1085  *
1086  * Resets any host-side endpoint state such as the toggle bit,
1087  * sequence number or current window.
1088  */
1089 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1090 {
1091 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1092 	struct usb_host_endpoint *ep;
1093 
1094 	if (usb_endpoint_out(epaddr))
1095 		ep = dev->ep_out[epnum];
1096 	else
1097 		ep = dev->ep_in[epnum];
1098 	if (ep)
1099 		usb_hcd_reset_endpoint(dev, ep);
1100 }
1101 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1102 
1103 
1104 /**
1105  * usb_disable_interface -- Disable all endpoints for an interface
1106  * @dev: the device whose interface is being disabled
1107  * @intf: pointer to the interface descriptor
1108  * @reset_hardware: flag to erase any endpoint state stored in the
1109  *	controller hardware
1110  *
1111  * Disables all the endpoints for the interface's current altsetting.
1112  */
1113 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1114 		bool reset_hardware)
1115 {
1116 	struct usb_host_interface *alt = intf->cur_altsetting;
1117 	int i;
1118 
1119 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1120 		usb_disable_endpoint(dev,
1121 				alt->endpoint[i].desc.bEndpointAddress,
1122 				reset_hardware);
1123 	}
1124 }
1125 
1126 /**
1127  * usb_disable_device - Disable all the endpoints for a USB device
1128  * @dev: the device whose endpoints are being disabled
1129  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1130  *
1131  * Disables all the device's endpoints, potentially including endpoint 0.
1132  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1133  * pending urbs) and usbcore state for the interfaces, so that usbcore
1134  * must usb_set_configuration() before any interfaces could be used.
1135  */
1136 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1137 {
1138 	int i;
1139 
1140 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1141 		skip_ep0 ? "non-ep0" : "all");
1142 	for (i = skip_ep0; i < 16; ++i) {
1143 		usb_disable_endpoint(dev, i, true);
1144 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1145 	}
1146 
1147 	/* getting rid of interfaces will disconnect
1148 	 * any drivers bound to them (a key side effect)
1149 	 */
1150 	if (dev->actconfig) {
1151 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1152 			struct usb_interface	*interface;
1153 
1154 			/* remove this interface if it has been registered */
1155 			interface = dev->actconfig->interface[i];
1156 			if (!device_is_registered(&interface->dev))
1157 				continue;
1158 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1159 				dev_name(&interface->dev));
1160 			interface->unregistering = 1;
1161 			remove_intf_ep_devs(interface);
1162 			device_del(&interface->dev);
1163 		}
1164 
1165 		/* Now that the interfaces are unbound, nobody should
1166 		 * try to access them.
1167 		 */
1168 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1169 			put_device(&dev->actconfig->interface[i]->dev);
1170 			dev->actconfig->interface[i] = NULL;
1171 		}
1172 		dev->actconfig = NULL;
1173 		if (dev->state == USB_STATE_CONFIGURED)
1174 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1175 	}
1176 }
1177 
1178 /**
1179  * usb_enable_endpoint - Enable an endpoint for USB communications
1180  * @dev: the device whose interface is being enabled
1181  * @ep: the endpoint
1182  * @reset_ep: flag to reset the endpoint state
1183  *
1184  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1185  * For control endpoints, both the input and output sides are handled.
1186  */
1187 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1188 		bool reset_ep)
1189 {
1190 	int epnum = usb_endpoint_num(&ep->desc);
1191 	int is_out = usb_endpoint_dir_out(&ep->desc);
1192 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1193 
1194 	if (reset_ep)
1195 		usb_hcd_reset_endpoint(dev, ep);
1196 	if (is_out || is_control)
1197 		dev->ep_out[epnum] = ep;
1198 	if (!is_out || is_control)
1199 		dev->ep_in[epnum] = ep;
1200 	ep->enabled = 1;
1201 }
1202 
1203 /**
1204  * usb_enable_interface - Enable all the endpoints for an interface
1205  * @dev: the device whose interface is being enabled
1206  * @intf: pointer to the interface descriptor
1207  * @reset_eps: flag to reset the endpoints' state
1208  *
1209  * Enables all the endpoints for the interface's current altsetting.
1210  */
1211 void usb_enable_interface(struct usb_device *dev,
1212 		struct usb_interface *intf, bool reset_eps)
1213 {
1214 	struct usb_host_interface *alt = intf->cur_altsetting;
1215 	int i;
1216 
1217 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1218 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1219 }
1220 
1221 /**
1222  * usb_set_interface - Makes a particular alternate setting be current
1223  * @dev: the device whose interface is being updated
1224  * @interface: the interface being updated
1225  * @alternate: the setting being chosen.
1226  * Context: !in_interrupt ()
1227  *
1228  * This is used to enable data transfers on interfaces that may not
1229  * be enabled by default.  Not all devices support such configurability.
1230  * Only the driver bound to an interface may change its setting.
1231  *
1232  * Within any given configuration, each interface may have several
1233  * alternative settings.  These are often used to control levels of
1234  * bandwidth consumption.  For example, the default setting for a high
1235  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1236  * while interrupt transfers of up to 3KBytes per microframe are legal.
1237  * Also, isochronous endpoints may never be part of an
1238  * interface's default setting.  To access such bandwidth, alternate
1239  * interface settings must be made current.
1240  *
1241  * Note that in the Linux USB subsystem, bandwidth associated with
1242  * an endpoint in a given alternate setting is not reserved until an URB
1243  * is submitted that needs that bandwidth.  Some other operating systems
1244  * allocate bandwidth early, when a configuration is chosen.
1245  *
1246  * This call is synchronous, and may not be used in an interrupt context.
1247  * Also, drivers must not change altsettings while urbs are scheduled for
1248  * endpoints in that interface; all such urbs must first be completed
1249  * (perhaps forced by unlinking).
1250  *
1251  * Returns zero on success, or else the status code returned by the
1252  * underlying usb_control_msg() call.
1253  */
1254 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1255 {
1256 	struct usb_interface *iface;
1257 	struct usb_host_interface *alt;
1258 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1259 	int ret;
1260 	int manual = 0;
1261 	unsigned int epaddr;
1262 	unsigned int pipe;
1263 
1264 	if (dev->state == USB_STATE_SUSPENDED)
1265 		return -EHOSTUNREACH;
1266 
1267 	iface = usb_ifnum_to_if(dev, interface);
1268 	if (!iface) {
1269 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1270 			interface);
1271 		return -EINVAL;
1272 	}
1273 
1274 	alt = usb_altnum_to_altsetting(iface, alternate);
1275 	if (!alt) {
1276 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1277 			 alternate);
1278 		return -EINVAL;
1279 	}
1280 
1281 	/* Make sure we have enough bandwidth for this alternate interface.
1282 	 * Remove the current alt setting and add the new alt setting.
1283 	 */
1284 	mutex_lock(&hcd->bandwidth_mutex);
1285 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1286 	if (ret < 0) {
1287 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1288 				alternate);
1289 		mutex_unlock(&hcd->bandwidth_mutex);
1290 		return ret;
1291 	}
1292 
1293 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1294 		ret = -EPIPE;
1295 	else
1296 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1297 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1298 				   alternate, interface, NULL, 0, 5000);
1299 
1300 	/* 9.4.10 says devices don't need this and are free to STALL the
1301 	 * request if the interface only has one alternate setting.
1302 	 */
1303 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1304 		dev_dbg(&dev->dev,
1305 			"manual set_interface for iface %d, alt %d\n",
1306 			interface, alternate);
1307 		manual = 1;
1308 	} else if (ret < 0) {
1309 		/* Re-instate the old alt setting */
1310 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1311 		mutex_unlock(&hcd->bandwidth_mutex);
1312 		return ret;
1313 	}
1314 	mutex_unlock(&hcd->bandwidth_mutex);
1315 
1316 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1317 	 * when they implement async or easily-killable versions of this or
1318 	 * other "should-be-internal" functions (like clear_halt).
1319 	 * should hcd+usbcore postprocess control requests?
1320 	 */
1321 
1322 	/* prevent submissions using previous endpoint settings */
1323 	if (iface->cur_altsetting != alt) {
1324 		remove_intf_ep_devs(iface);
1325 		usb_remove_sysfs_intf_files(iface);
1326 	}
1327 	usb_disable_interface(dev, iface, true);
1328 
1329 	iface->cur_altsetting = alt;
1330 
1331 	/* If the interface only has one altsetting and the device didn't
1332 	 * accept the request, we attempt to carry out the equivalent action
1333 	 * by manually clearing the HALT feature for each endpoint in the
1334 	 * new altsetting.
1335 	 */
1336 	if (manual) {
1337 		int i;
1338 
1339 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1340 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1341 			pipe = __create_pipe(dev,
1342 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1343 					(usb_endpoint_out(epaddr) ?
1344 					USB_DIR_OUT : USB_DIR_IN);
1345 
1346 			usb_clear_halt(dev, pipe);
1347 		}
1348 	}
1349 
1350 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1351 	 *
1352 	 * Note:
1353 	 * Despite EP0 is always present in all interfaces/AS, the list of
1354 	 * endpoints from the descriptor does not contain EP0. Due to its
1355 	 * omnipresence one might expect EP0 being considered "affected" by
1356 	 * any SetInterface request and hence assume toggles need to be reset.
1357 	 * However, EP0 toggles are re-synced for every individual transfer
1358 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1359 	 * (Likewise, EP0 never "halts" on well designed devices.)
1360 	 */
1361 	usb_enable_interface(dev, iface, true);
1362 	if (device_is_registered(&iface->dev)) {
1363 		usb_create_sysfs_intf_files(iface);
1364 		create_intf_ep_devs(iface);
1365 	}
1366 	return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(usb_set_interface);
1369 
1370 /**
1371  * usb_reset_configuration - lightweight device reset
1372  * @dev: the device whose configuration is being reset
1373  *
1374  * This issues a standard SET_CONFIGURATION request to the device using
1375  * the current configuration.  The effect is to reset most USB-related
1376  * state in the device, including interface altsettings (reset to zero),
1377  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1378  * endpoints).  Other usbcore state is unchanged, including bindings of
1379  * usb device drivers to interfaces.
1380  *
1381  * Because this affects multiple interfaces, avoid using this with composite
1382  * (multi-interface) devices.  Instead, the driver for each interface may
1383  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1384  * some devices don't support the SET_INTERFACE request, and others won't
1385  * reset all the interface state (notably endpoint state).  Resetting the whole
1386  * configuration would affect other drivers' interfaces.
1387  *
1388  * The caller must own the device lock.
1389  *
1390  * Returns zero on success, else a negative error code.
1391  */
1392 int usb_reset_configuration(struct usb_device *dev)
1393 {
1394 	int			i, retval;
1395 	struct usb_host_config	*config;
1396 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1397 
1398 	if (dev->state == USB_STATE_SUSPENDED)
1399 		return -EHOSTUNREACH;
1400 
1401 	/* caller must have locked the device and must own
1402 	 * the usb bus readlock (so driver bindings are stable);
1403 	 * calls during probe() are fine
1404 	 */
1405 
1406 	for (i = 1; i < 16; ++i) {
1407 		usb_disable_endpoint(dev, i, true);
1408 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1409 	}
1410 
1411 	config = dev->actconfig;
1412 	retval = 0;
1413 	mutex_lock(&hcd->bandwidth_mutex);
1414 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1415 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1416 		struct usb_interface *intf = config->interface[i];
1417 		struct usb_host_interface *alt;
1418 
1419 		alt = usb_altnum_to_altsetting(intf, 0);
1420 		if (!alt)
1421 			alt = &intf->altsetting[0];
1422 		if (alt != intf->cur_altsetting)
1423 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1424 					intf->cur_altsetting, alt);
1425 		if (retval < 0)
1426 			break;
1427 	}
1428 	/* If not, reinstate the old alternate settings */
1429 	if (retval < 0) {
1430 reset_old_alts:
1431 		for (i--; i >= 0; i--) {
1432 			struct usb_interface *intf = config->interface[i];
1433 			struct usb_host_interface *alt;
1434 
1435 			alt = usb_altnum_to_altsetting(intf, 0);
1436 			if (!alt)
1437 				alt = &intf->altsetting[0];
1438 			if (alt != intf->cur_altsetting)
1439 				usb_hcd_alloc_bandwidth(dev, NULL,
1440 						alt, intf->cur_altsetting);
1441 		}
1442 		mutex_unlock(&hcd->bandwidth_mutex);
1443 		return retval;
1444 	}
1445 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1446 			USB_REQ_SET_CONFIGURATION, 0,
1447 			config->desc.bConfigurationValue, 0,
1448 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1449 	if (retval < 0)
1450 		goto reset_old_alts;
1451 	mutex_unlock(&hcd->bandwidth_mutex);
1452 
1453 	/* re-init hc/hcd interface/endpoint state */
1454 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1455 		struct usb_interface *intf = config->interface[i];
1456 		struct usb_host_interface *alt;
1457 
1458 		alt = usb_altnum_to_altsetting(intf, 0);
1459 
1460 		/* No altsetting 0?  We'll assume the first altsetting.
1461 		 * We could use a GetInterface call, but if a device is
1462 		 * so non-compliant that it doesn't have altsetting 0
1463 		 * then I wouldn't trust its reply anyway.
1464 		 */
1465 		if (!alt)
1466 			alt = &intf->altsetting[0];
1467 
1468 		if (alt != intf->cur_altsetting) {
1469 			remove_intf_ep_devs(intf);
1470 			usb_remove_sysfs_intf_files(intf);
1471 		}
1472 		intf->cur_altsetting = alt;
1473 		usb_enable_interface(dev, intf, true);
1474 		if (device_is_registered(&intf->dev)) {
1475 			usb_create_sysfs_intf_files(intf);
1476 			create_intf_ep_devs(intf);
1477 		}
1478 	}
1479 	return 0;
1480 }
1481 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1482 
1483 static void usb_release_interface(struct device *dev)
1484 {
1485 	struct usb_interface *intf = to_usb_interface(dev);
1486 	struct usb_interface_cache *intfc =
1487 			altsetting_to_usb_interface_cache(intf->altsetting);
1488 
1489 	kref_put(&intfc->ref, usb_release_interface_cache);
1490 	kfree(intf);
1491 }
1492 
1493 #ifdef	CONFIG_HOTPLUG
1494 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1495 {
1496 	struct usb_device *usb_dev;
1497 	struct usb_interface *intf;
1498 	struct usb_host_interface *alt;
1499 
1500 	intf = to_usb_interface(dev);
1501 	usb_dev = interface_to_usbdev(intf);
1502 	alt = intf->cur_altsetting;
1503 
1504 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1505 		   alt->desc.bInterfaceClass,
1506 		   alt->desc.bInterfaceSubClass,
1507 		   alt->desc.bInterfaceProtocol))
1508 		return -ENOMEM;
1509 
1510 	if (add_uevent_var(env,
1511 		   "MODALIAS=usb:"
1512 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1513 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1514 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1515 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1516 		   usb_dev->descriptor.bDeviceClass,
1517 		   usb_dev->descriptor.bDeviceSubClass,
1518 		   usb_dev->descriptor.bDeviceProtocol,
1519 		   alt->desc.bInterfaceClass,
1520 		   alt->desc.bInterfaceSubClass,
1521 		   alt->desc.bInterfaceProtocol))
1522 		return -ENOMEM;
1523 
1524 	return 0;
1525 }
1526 
1527 #else
1528 
1529 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1530 {
1531 	return -ENODEV;
1532 }
1533 #endif	/* CONFIG_HOTPLUG */
1534 
1535 struct device_type usb_if_device_type = {
1536 	.name =		"usb_interface",
1537 	.release =	usb_release_interface,
1538 	.uevent =	usb_if_uevent,
1539 };
1540 
1541 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1542 						struct usb_host_config *config,
1543 						u8 inum)
1544 {
1545 	struct usb_interface_assoc_descriptor *retval = NULL;
1546 	struct usb_interface_assoc_descriptor *intf_assoc;
1547 	int first_intf;
1548 	int last_intf;
1549 	int i;
1550 
1551 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1552 		intf_assoc = config->intf_assoc[i];
1553 		if (intf_assoc->bInterfaceCount == 0)
1554 			continue;
1555 
1556 		first_intf = intf_assoc->bFirstInterface;
1557 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1558 		if (inum >= first_intf && inum <= last_intf) {
1559 			if (!retval)
1560 				retval = intf_assoc;
1561 			else
1562 				dev_err(&dev->dev, "Interface #%d referenced"
1563 					" by multiple IADs\n", inum);
1564 		}
1565 	}
1566 
1567 	return retval;
1568 }
1569 
1570 
1571 /*
1572  * Internal function to queue a device reset
1573  *
1574  * This is initialized into the workstruct in 'struct
1575  * usb_device->reset_ws' that is launched by
1576  * message.c:usb_set_configuration() when initializing each 'struct
1577  * usb_interface'.
1578  *
1579  * It is safe to get the USB device without reference counts because
1580  * the life cycle of @iface is bound to the life cycle of @udev. Then,
1581  * this function will be ran only if @iface is alive (and before
1582  * freeing it any scheduled instances of it will have been cancelled).
1583  *
1584  * We need to set a flag (usb_dev->reset_running) because when we call
1585  * the reset, the interfaces might be unbound. The current interface
1586  * cannot try to remove the queued work as it would cause a deadlock
1587  * (you cannot remove your work from within your executing
1588  * workqueue). This flag lets it know, so that
1589  * usb_cancel_queued_reset() doesn't try to do it.
1590  *
1591  * See usb_queue_reset_device() for more details
1592  */
1593 static void __usb_queue_reset_device(struct work_struct *ws)
1594 {
1595 	int rc;
1596 	struct usb_interface *iface =
1597 		container_of(ws, struct usb_interface, reset_ws);
1598 	struct usb_device *udev = interface_to_usbdev(iface);
1599 
1600 	rc = usb_lock_device_for_reset(udev, iface);
1601 	if (rc >= 0) {
1602 		iface->reset_running = 1;
1603 		usb_reset_device(udev);
1604 		iface->reset_running = 0;
1605 		usb_unlock_device(udev);
1606 	}
1607 }
1608 
1609 
1610 /*
1611  * usb_set_configuration - Makes a particular device setting be current
1612  * @dev: the device whose configuration is being updated
1613  * @configuration: the configuration being chosen.
1614  * Context: !in_interrupt(), caller owns the device lock
1615  *
1616  * This is used to enable non-default device modes.  Not all devices
1617  * use this kind of configurability; many devices only have one
1618  * configuration.
1619  *
1620  * @configuration is the value of the configuration to be installed.
1621  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1622  * must be non-zero; a value of zero indicates that the device in
1623  * unconfigured.  However some devices erroneously use 0 as one of their
1624  * configuration values.  To help manage such devices, this routine will
1625  * accept @configuration = -1 as indicating the device should be put in
1626  * an unconfigured state.
1627  *
1628  * USB device configurations may affect Linux interoperability,
1629  * power consumption and the functionality available.  For example,
1630  * the default configuration is limited to using 100mA of bus power,
1631  * so that when certain device functionality requires more power,
1632  * and the device is bus powered, that functionality should be in some
1633  * non-default device configuration.  Other device modes may also be
1634  * reflected as configuration options, such as whether two ISDN
1635  * channels are available independently; and choosing between open
1636  * standard device protocols (like CDC) or proprietary ones.
1637  *
1638  * Note that a non-authorized device (dev->authorized == 0) will only
1639  * be put in unconfigured mode.
1640  *
1641  * Note that USB has an additional level of device configurability,
1642  * associated with interfaces.  That configurability is accessed using
1643  * usb_set_interface().
1644  *
1645  * This call is synchronous. The calling context must be able to sleep,
1646  * must own the device lock, and must not hold the driver model's USB
1647  * bus mutex; usb interface driver probe() methods cannot use this routine.
1648  *
1649  * Returns zero on success, or else the status code returned by the
1650  * underlying call that failed.  On successful completion, each interface
1651  * in the original device configuration has been destroyed, and each one
1652  * in the new configuration has been probed by all relevant usb device
1653  * drivers currently known to the kernel.
1654  */
1655 int usb_set_configuration(struct usb_device *dev, int configuration)
1656 {
1657 	int i, ret;
1658 	struct usb_host_config *cp = NULL;
1659 	struct usb_interface **new_interfaces = NULL;
1660 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1661 	int n, nintf;
1662 
1663 	if (dev->authorized == 0 || configuration == -1)
1664 		configuration = 0;
1665 	else {
1666 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1667 			if (dev->config[i].desc.bConfigurationValue ==
1668 					configuration) {
1669 				cp = &dev->config[i];
1670 				break;
1671 			}
1672 		}
1673 	}
1674 	if ((!cp && configuration != 0))
1675 		return -EINVAL;
1676 
1677 	/* The USB spec says configuration 0 means unconfigured.
1678 	 * But if a device includes a configuration numbered 0,
1679 	 * we will accept it as a correctly configured state.
1680 	 * Use -1 if you really want to unconfigure the device.
1681 	 */
1682 	if (cp && configuration == 0)
1683 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1684 
1685 	/* Allocate memory for new interfaces before doing anything else,
1686 	 * so that if we run out then nothing will have changed. */
1687 	n = nintf = 0;
1688 	if (cp) {
1689 		nintf = cp->desc.bNumInterfaces;
1690 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1691 				GFP_NOIO);
1692 		if (!new_interfaces) {
1693 			dev_err(&dev->dev, "Out of memory\n");
1694 			return -ENOMEM;
1695 		}
1696 
1697 		for (; n < nintf; ++n) {
1698 			new_interfaces[n] = kzalloc(
1699 					sizeof(struct usb_interface),
1700 					GFP_NOIO);
1701 			if (!new_interfaces[n]) {
1702 				dev_err(&dev->dev, "Out of memory\n");
1703 				ret = -ENOMEM;
1704 free_interfaces:
1705 				while (--n >= 0)
1706 					kfree(new_interfaces[n]);
1707 				kfree(new_interfaces);
1708 				return ret;
1709 			}
1710 		}
1711 
1712 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1713 		if (i < 0)
1714 			dev_warn(&dev->dev, "new config #%d exceeds power "
1715 					"limit by %dmA\n",
1716 					configuration, -i);
1717 	}
1718 
1719 	/* Wake up the device so we can send it the Set-Config request */
1720 	ret = usb_autoresume_device(dev);
1721 	if (ret)
1722 		goto free_interfaces;
1723 
1724 	/* Make sure we have bandwidth (and available HCD resources) for this
1725 	 * configuration.  Remove endpoints from the schedule if we're dropping
1726 	 * this configuration to set configuration 0.  After this point, the
1727 	 * host controller will not allow submissions to dropped endpoints.  If
1728 	 * this call fails, the device state is unchanged.
1729 	 */
1730 	mutex_lock(&hcd->bandwidth_mutex);
1731 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1732 	if (ret < 0) {
1733 		usb_autosuspend_device(dev);
1734 		mutex_unlock(&hcd->bandwidth_mutex);
1735 		goto free_interfaces;
1736 	}
1737 
1738 	/* if it's already configured, clear out old state first.
1739 	 * getting rid of old interfaces means unbinding their drivers.
1740 	 */
1741 	if (dev->state != USB_STATE_ADDRESS)
1742 		usb_disable_device(dev, 1);	/* Skip ep0 */
1743 
1744 	/* Get rid of pending async Set-Config requests for this device */
1745 	cancel_async_set_config(dev);
1746 
1747 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1748 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1749 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1750 	if (ret < 0) {
1751 		/* All the old state is gone, so what else can we do?
1752 		 * The device is probably useless now anyway.
1753 		 */
1754 		cp = NULL;
1755 	}
1756 
1757 	dev->actconfig = cp;
1758 	if (!cp) {
1759 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1760 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1761 		usb_autosuspend_device(dev);
1762 		mutex_unlock(&hcd->bandwidth_mutex);
1763 		goto free_interfaces;
1764 	}
1765 	mutex_unlock(&hcd->bandwidth_mutex);
1766 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1767 
1768 	/* Initialize the new interface structures and the
1769 	 * hc/hcd/usbcore interface/endpoint state.
1770 	 */
1771 	for (i = 0; i < nintf; ++i) {
1772 		struct usb_interface_cache *intfc;
1773 		struct usb_interface *intf;
1774 		struct usb_host_interface *alt;
1775 
1776 		cp->interface[i] = intf = new_interfaces[i];
1777 		intfc = cp->intf_cache[i];
1778 		intf->altsetting = intfc->altsetting;
1779 		intf->num_altsetting = intfc->num_altsetting;
1780 		intf->intf_assoc = find_iad(dev, cp, i);
1781 		kref_get(&intfc->ref);
1782 
1783 		alt = usb_altnum_to_altsetting(intf, 0);
1784 
1785 		/* No altsetting 0?  We'll assume the first altsetting.
1786 		 * We could use a GetInterface call, but if a device is
1787 		 * so non-compliant that it doesn't have altsetting 0
1788 		 * then I wouldn't trust its reply anyway.
1789 		 */
1790 		if (!alt)
1791 			alt = &intf->altsetting[0];
1792 
1793 		intf->cur_altsetting = alt;
1794 		usb_enable_interface(dev, intf, true);
1795 		intf->dev.parent = &dev->dev;
1796 		intf->dev.driver = NULL;
1797 		intf->dev.bus = &usb_bus_type;
1798 		intf->dev.type = &usb_if_device_type;
1799 		intf->dev.groups = usb_interface_groups;
1800 		intf->dev.dma_mask = dev->dev.dma_mask;
1801 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1802 		device_initialize(&intf->dev);
1803 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1804 			dev->bus->busnum, dev->devpath,
1805 			configuration, alt->desc.bInterfaceNumber);
1806 	}
1807 	kfree(new_interfaces);
1808 
1809 	if (cp->string == NULL &&
1810 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1811 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1812 
1813 	/* Now that all the interfaces are set up, register them
1814 	 * to trigger binding of drivers to interfaces.  probe()
1815 	 * routines may install different altsettings and may
1816 	 * claim() any interfaces not yet bound.  Many class drivers
1817 	 * need that: CDC, audio, video, etc.
1818 	 */
1819 	for (i = 0; i < nintf; ++i) {
1820 		struct usb_interface *intf = cp->interface[i];
1821 
1822 		dev_dbg(&dev->dev,
1823 			"adding %s (config #%d, interface %d)\n",
1824 			dev_name(&intf->dev), configuration,
1825 			intf->cur_altsetting->desc.bInterfaceNumber);
1826 		device_enable_async_suspend(&intf->dev);
1827 		ret = device_add(&intf->dev);
1828 		if (ret != 0) {
1829 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1830 				dev_name(&intf->dev), ret);
1831 			continue;
1832 		}
1833 		create_intf_ep_devs(intf);
1834 	}
1835 
1836 	usb_autosuspend_device(dev);
1837 	return 0;
1838 }
1839 
1840 static LIST_HEAD(set_config_list);
1841 static DEFINE_SPINLOCK(set_config_lock);
1842 
1843 struct set_config_request {
1844 	struct usb_device	*udev;
1845 	int			config;
1846 	struct work_struct	work;
1847 	struct list_head	node;
1848 };
1849 
1850 /* Worker routine for usb_driver_set_configuration() */
1851 static void driver_set_config_work(struct work_struct *work)
1852 {
1853 	struct set_config_request *req =
1854 		container_of(work, struct set_config_request, work);
1855 	struct usb_device *udev = req->udev;
1856 
1857 	usb_lock_device(udev);
1858 	spin_lock(&set_config_lock);
1859 	list_del(&req->node);
1860 	spin_unlock(&set_config_lock);
1861 
1862 	if (req->config >= -1)		/* Is req still valid? */
1863 		usb_set_configuration(udev, req->config);
1864 	usb_unlock_device(udev);
1865 	usb_put_dev(udev);
1866 	kfree(req);
1867 }
1868 
1869 /* Cancel pending Set-Config requests for a device whose configuration
1870  * was just changed
1871  */
1872 static void cancel_async_set_config(struct usb_device *udev)
1873 {
1874 	struct set_config_request *req;
1875 
1876 	spin_lock(&set_config_lock);
1877 	list_for_each_entry(req, &set_config_list, node) {
1878 		if (req->udev == udev)
1879 			req->config = -999;	/* Mark as cancelled */
1880 	}
1881 	spin_unlock(&set_config_lock);
1882 }
1883 
1884 /**
1885  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1886  * @udev: the device whose configuration is being updated
1887  * @config: the configuration being chosen.
1888  * Context: In process context, must be able to sleep
1889  *
1890  * Device interface drivers are not allowed to change device configurations.
1891  * This is because changing configurations will destroy the interface the
1892  * driver is bound to and create new ones; it would be like a floppy-disk
1893  * driver telling the computer to replace the floppy-disk drive with a
1894  * tape drive!
1895  *
1896  * Still, in certain specialized circumstances the need may arise.  This
1897  * routine gets around the normal restrictions by using a work thread to
1898  * submit the change-config request.
1899  *
1900  * Returns 0 if the request was successfully queued, error code otherwise.
1901  * The caller has no way to know whether the queued request will eventually
1902  * succeed.
1903  */
1904 int usb_driver_set_configuration(struct usb_device *udev, int config)
1905 {
1906 	struct set_config_request *req;
1907 
1908 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1909 	if (!req)
1910 		return -ENOMEM;
1911 	req->udev = udev;
1912 	req->config = config;
1913 	INIT_WORK(&req->work, driver_set_config_work);
1914 
1915 	spin_lock(&set_config_lock);
1916 	list_add(&req->node, &set_config_list);
1917 	spin_unlock(&set_config_lock);
1918 
1919 	usb_get_dev(udev);
1920 	schedule_work(&req->work);
1921 	return 0;
1922 }
1923 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1924