1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * message.c - synchronous message handling 4 * 5 * Released under the GPLv2 only. 6 */ 7 8 #include <linux/pci.h> /* for scatterlist macros */ 9 #include <linux/usb.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/mm.h> 13 #include <linux/timer.h> 14 #include <linux/ctype.h> 15 #include <linux/nls.h> 16 #include <linux/device.h> 17 #include <linux/scatterlist.h> 18 #include <linux/usb/cdc.h> 19 #include <linux/usb/quirks.h> 20 #include <linux/usb/hcd.h> /* for usbcore internals */ 21 #include <linux/usb/of.h> 22 #include <asm/byteorder.h> 23 24 #include "usb.h" 25 26 static void cancel_async_set_config(struct usb_device *udev); 27 28 struct api_context { 29 struct completion done; 30 int status; 31 }; 32 33 static void usb_api_blocking_completion(struct urb *urb) 34 { 35 struct api_context *ctx = urb->context; 36 37 ctx->status = urb->status; 38 complete(&ctx->done); 39 } 40 41 42 /* 43 * Starts urb and waits for completion or timeout. Note that this call 44 * is NOT interruptible. Many device driver i/o requests should be 45 * interruptible and therefore these drivers should implement their 46 * own interruptible routines. 47 */ 48 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 49 { 50 struct api_context ctx; 51 unsigned long expire; 52 int retval; 53 54 init_completion(&ctx.done); 55 urb->context = &ctx; 56 urb->actual_length = 0; 57 retval = usb_submit_urb(urb, GFP_NOIO); 58 if (unlikely(retval)) 59 goto out; 60 61 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 62 if (!wait_for_completion_timeout(&ctx.done, expire)) { 63 usb_kill_urb(urb); 64 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 65 66 dev_dbg(&urb->dev->dev, 67 "%s timed out on ep%d%s len=%u/%u\n", 68 current->comm, 69 usb_endpoint_num(&urb->ep->desc), 70 usb_urb_dir_in(urb) ? "in" : "out", 71 urb->actual_length, 72 urb->transfer_buffer_length); 73 } else 74 retval = ctx.status; 75 out: 76 if (actual_length) 77 *actual_length = urb->actual_length; 78 79 usb_free_urb(urb); 80 return retval; 81 } 82 83 /*-------------------------------------------------------------------*/ 84 /* returns status (negative) or length (positive) */ 85 static int usb_internal_control_msg(struct usb_device *usb_dev, 86 unsigned int pipe, 87 struct usb_ctrlrequest *cmd, 88 void *data, int len, int timeout) 89 { 90 struct urb *urb; 91 int retv; 92 int length; 93 94 urb = usb_alloc_urb(0, GFP_NOIO); 95 if (!urb) 96 return -ENOMEM; 97 98 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 99 len, usb_api_blocking_completion, NULL); 100 101 retv = usb_start_wait_urb(urb, timeout, &length); 102 if (retv < 0) 103 return retv; 104 else 105 return length; 106 } 107 108 /** 109 * usb_control_msg - Builds a control urb, sends it off and waits for completion 110 * @dev: pointer to the usb device to send the message to 111 * @pipe: endpoint "pipe" to send the message to 112 * @request: USB message request value 113 * @requesttype: USB message request type value 114 * @value: USB message value 115 * @index: USB message index value 116 * @data: pointer to the data to send 117 * @size: length in bytes of the data to send 118 * @timeout: time in msecs to wait for the message to complete before timing 119 * out (if 0 the wait is forever) 120 * 121 * Context: !in_interrupt () 122 * 123 * This function sends a simple control message to a specified endpoint and 124 * waits for the message to complete, or timeout. 125 * 126 * Don't use this function from within an interrupt context. If you need 127 * an asynchronous message, or need to send a message from within interrupt 128 * context, use usb_submit_urb(). If a thread in your driver uses this call, 129 * make sure your disconnect() method can wait for it to complete. Since you 130 * don't have a handle on the URB used, you can't cancel the request. 131 * 132 * Return: If successful, the number of bytes transferred. Otherwise, a negative 133 * error number. 134 */ 135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 136 __u8 requesttype, __u16 value, __u16 index, void *data, 137 __u16 size, int timeout) 138 { 139 struct usb_ctrlrequest *dr; 140 int ret; 141 142 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 143 if (!dr) 144 return -ENOMEM; 145 146 dr->bRequestType = requesttype; 147 dr->bRequest = request; 148 dr->wValue = cpu_to_le16(value); 149 dr->wIndex = cpu_to_le16(index); 150 dr->wLength = cpu_to_le16(size); 151 152 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 153 154 kfree(dr); 155 156 return ret; 157 } 158 EXPORT_SYMBOL_GPL(usb_control_msg); 159 160 /** 161 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 162 * @usb_dev: pointer to the usb device to send the message to 163 * @pipe: endpoint "pipe" to send the message to 164 * @data: pointer to the data to send 165 * @len: length in bytes of the data to send 166 * @actual_length: pointer to a location to put the actual length transferred 167 * in bytes 168 * @timeout: time in msecs to wait for the message to complete before 169 * timing out (if 0 the wait is forever) 170 * 171 * Context: !in_interrupt () 172 * 173 * This function sends a simple interrupt message to a specified endpoint and 174 * waits for the message to complete, or timeout. 175 * 176 * Don't use this function from within an interrupt context. If you need 177 * an asynchronous message, or need to send a message from within interrupt 178 * context, use usb_submit_urb() If a thread in your driver uses this call, 179 * make sure your disconnect() method can wait for it to complete. Since you 180 * don't have a handle on the URB used, you can't cancel the request. 181 * 182 * Return: 183 * If successful, 0. Otherwise a negative error number. The number of actual 184 * bytes transferred will be stored in the @actual_length parameter. 185 */ 186 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 187 void *data, int len, int *actual_length, int timeout) 188 { 189 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 190 } 191 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 192 193 /** 194 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 195 * @usb_dev: pointer to the usb device to send the message to 196 * @pipe: endpoint "pipe" to send the message to 197 * @data: pointer to the data to send 198 * @len: length in bytes of the data to send 199 * @actual_length: pointer to a location to put the actual length transferred 200 * in bytes 201 * @timeout: time in msecs to wait for the message to complete before 202 * timing out (if 0 the wait is forever) 203 * 204 * Context: !in_interrupt () 205 * 206 * This function sends a simple bulk message to a specified endpoint 207 * and waits for the message to complete, or timeout. 208 * 209 * Don't use this function from within an interrupt context. If you need 210 * an asynchronous message, or need to send a message from within interrupt 211 * context, use usb_submit_urb() If a thread in your driver uses this call, 212 * make sure your disconnect() method can wait for it to complete. Since you 213 * don't have a handle on the URB used, you can't cancel the request. 214 * 215 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 216 * users are forced to abuse this routine by using it to submit URBs for 217 * interrupt endpoints. We will take the liberty of creating an interrupt URB 218 * (with the default interval) if the target is an interrupt endpoint. 219 * 220 * Return: 221 * If successful, 0. Otherwise a negative error number. The number of actual 222 * bytes transferred will be stored in the @actual_length parameter. 223 * 224 */ 225 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 226 void *data, int len, int *actual_length, int timeout) 227 { 228 struct urb *urb; 229 struct usb_host_endpoint *ep; 230 231 ep = usb_pipe_endpoint(usb_dev, pipe); 232 if (!ep || len < 0) 233 return -EINVAL; 234 235 urb = usb_alloc_urb(0, GFP_KERNEL); 236 if (!urb) 237 return -ENOMEM; 238 239 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 240 USB_ENDPOINT_XFER_INT) { 241 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 242 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 243 usb_api_blocking_completion, NULL, 244 ep->desc.bInterval); 245 } else 246 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 247 usb_api_blocking_completion, NULL); 248 249 return usb_start_wait_urb(urb, timeout, actual_length); 250 } 251 EXPORT_SYMBOL_GPL(usb_bulk_msg); 252 253 /*-------------------------------------------------------------------*/ 254 255 static void sg_clean(struct usb_sg_request *io) 256 { 257 if (io->urbs) { 258 while (io->entries--) 259 usb_free_urb(io->urbs[io->entries]); 260 kfree(io->urbs); 261 io->urbs = NULL; 262 } 263 io->dev = NULL; 264 } 265 266 static void sg_complete(struct urb *urb) 267 { 268 struct usb_sg_request *io = urb->context; 269 int status = urb->status; 270 271 spin_lock(&io->lock); 272 273 /* In 2.5 we require hcds' endpoint queues not to progress after fault 274 * reports, until the completion callback (this!) returns. That lets 275 * device driver code (like this routine) unlink queued urbs first, 276 * if it needs to, since the HC won't work on them at all. So it's 277 * not possible for page N+1 to overwrite page N, and so on. 278 * 279 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 280 * complete before the HCD can get requests away from hardware, 281 * though never during cleanup after a hard fault. 282 */ 283 if (io->status 284 && (io->status != -ECONNRESET 285 || status != -ECONNRESET) 286 && urb->actual_length) { 287 dev_err(io->dev->bus->controller, 288 "dev %s ep%d%s scatterlist error %d/%d\n", 289 io->dev->devpath, 290 usb_endpoint_num(&urb->ep->desc), 291 usb_urb_dir_in(urb) ? "in" : "out", 292 status, io->status); 293 /* BUG (); */ 294 } 295 296 if (io->status == 0 && status && status != -ECONNRESET) { 297 int i, found, retval; 298 299 io->status = status; 300 301 /* the previous urbs, and this one, completed already. 302 * unlink pending urbs so they won't rx/tx bad data. 303 * careful: unlink can sometimes be synchronous... 304 */ 305 spin_unlock(&io->lock); 306 for (i = 0, found = 0; i < io->entries; i++) { 307 if (!io->urbs[i]) 308 continue; 309 if (found) { 310 usb_block_urb(io->urbs[i]); 311 retval = usb_unlink_urb(io->urbs[i]); 312 if (retval != -EINPROGRESS && 313 retval != -ENODEV && 314 retval != -EBUSY && 315 retval != -EIDRM) 316 dev_err(&io->dev->dev, 317 "%s, unlink --> %d\n", 318 __func__, retval); 319 } else if (urb == io->urbs[i]) 320 found = 1; 321 } 322 spin_lock(&io->lock); 323 } 324 325 /* on the last completion, signal usb_sg_wait() */ 326 io->bytes += urb->actual_length; 327 io->count--; 328 if (!io->count) 329 complete(&io->complete); 330 331 spin_unlock(&io->lock); 332 } 333 334 335 /** 336 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 337 * @io: request block being initialized. until usb_sg_wait() returns, 338 * treat this as a pointer to an opaque block of memory, 339 * @dev: the usb device that will send or receive the data 340 * @pipe: endpoint "pipe" used to transfer the data 341 * @period: polling rate for interrupt endpoints, in frames or 342 * (for high speed endpoints) microframes; ignored for bulk 343 * @sg: scatterlist entries 344 * @nents: how many entries in the scatterlist 345 * @length: how many bytes to send from the scatterlist, or zero to 346 * send every byte identified in the list. 347 * @mem_flags: SLAB_* flags affecting memory allocations in this call 348 * 349 * This initializes a scatter/gather request, allocating resources such as 350 * I/O mappings and urb memory (except maybe memory used by USB controller 351 * drivers). 352 * 353 * The request must be issued using usb_sg_wait(), which waits for the I/O to 354 * complete (or to be canceled) and then cleans up all resources allocated by 355 * usb_sg_init(). 356 * 357 * The request may be canceled with usb_sg_cancel(), either before or after 358 * usb_sg_wait() is called. 359 * 360 * Return: Zero for success, else a negative errno value. 361 */ 362 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 363 unsigned pipe, unsigned period, struct scatterlist *sg, 364 int nents, size_t length, gfp_t mem_flags) 365 { 366 int i; 367 int urb_flags; 368 int use_sg; 369 370 if (!io || !dev || !sg 371 || usb_pipecontrol(pipe) 372 || usb_pipeisoc(pipe) 373 || nents <= 0) 374 return -EINVAL; 375 376 spin_lock_init(&io->lock); 377 io->dev = dev; 378 io->pipe = pipe; 379 380 if (dev->bus->sg_tablesize > 0) { 381 use_sg = true; 382 io->entries = 1; 383 } else { 384 use_sg = false; 385 io->entries = nents; 386 } 387 388 /* initialize all the urbs we'll use */ 389 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags); 390 if (!io->urbs) 391 goto nomem; 392 393 urb_flags = URB_NO_INTERRUPT; 394 if (usb_pipein(pipe)) 395 urb_flags |= URB_SHORT_NOT_OK; 396 397 for_each_sg(sg, sg, io->entries, i) { 398 struct urb *urb; 399 unsigned len; 400 401 urb = usb_alloc_urb(0, mem_flags); 402 if (!urb) { 403 io->entries = i; 404 goto nomem; 405 } 406 io->urbs[i] = urb; 407 408 urb->dev = NULL; 409 urb->pipe = pipe; 410 urb->interval = period; 411 urb->transfer_flags = urb_flags; 412 urb->complete = sg_complete; 413 urb->context = io; 414 urb->sg = sg; 415 416 if (use_sg) { 417 /* There is no single transfer buffer */ 418 urb->transfer_buffer = NULL; 419 urb->num_sgs = nents; 420 421 /* A length of zero means transfer the whole sg list */ 422 len = length; 423 if (len == 0) { 424 struct scatterlist *sg2; 425 int j; 426 427 for_each_sg(sg, sg2, nents, j) 428 len += sg2->length; 429 } 430 } else { 431 /* 432 * Some systems can't use DMA; they use PIO instead. 433 * For their sakes, transfer_buffer is set whenever 434 * possible. 435 */ 436 if (!PageHighMem(sg_page(sg))) 437 urb->transfer_buffer = sg_virt(sg); 438 else 439 urb->transfer_buffer = NULL; 440 441 len = sg->length; 442 if (length) { 443 len = min_t(size_t, len, length); 444 length -= len; 445 if (length == 0) 446 io->entries = i + 1; 447 } 448 } 449 urb->transfer_buffer_length = len; 450 } 451 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 452 453 /* transaction state */ 454 io->count = io->entries; 455 io->status = 0; 456 io->bytes = 0; 457 init_completion(&io->complete); 458 return 0; 459 460 nomem: 461 sg_clean(io); 462 return -ENOMEM; 463 } 464 EXPORT_SYMBOL_GPL(usb_sg_init); 465 466 /** 467 * usb_sg_wait - synchronously execute scatter/gather request 468 * @io: request block handle, as initialized with usb_sg_init(). 469 * some fields become accessible when this call returns. 470 * Context: !in_interrupt () 471 * 472 * This function blocks until the specified I/O operation completes. It 473 * leverages the grouping of the related I/O requests to get good transfer 474 * rates, by queueing the requests. At higher speeds, such queuing can 475 * significantly improve USB throughput. 476 * 477 * There are three kinds of completion for this function. 478 * 479 * (1) success, where io->status is zero. The number of io->bytes 480 * transferred is as requested. 481 * (2) error, where io->status is a negative errno value. The number 482 * of io->bytes transferred before the error is usually less 483 * than requested, and can be nonzero. 484 * (3) cancellation, a type of error with status -ECONNRESET that 485 * is initiated by usb_sg_cancel(). 486 * 487 * When this function returns, all memory allocated through usb_sg_init() or 488 * this call will have been freed. The request block parameter may still be 489 * passed to usb_sg_cancel(), or it may be freed. It could also be 490 * reinitialized and then reused. 491 * 492 * Data Transfer Rates: 493 * 494 * Bulk transfers are valid for full or high speed endpoints. 495 * The best full speed data rate is 19 packets of 64 bytes each 496 * per frame, or 1216 bytes per millisecond. 497 * The best high speed data rate is 13 packets of 512 bytes each 498 * per microframe, or 52 KBytes per millisecond. 499 * 500 * The reason to use interrupt transfers through this API would most likely 501 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 502 * could be transferred. That capability is less useful for low or full 503 * speed interrupt endpoints, which allow at most one packet per millisecond, 504 * of at most 8 or 64 bytes (respectively). 505 * 506 * It is not necessary to call this function to reserve bandwidth for devices 507 * under an xHCI host controller, as the bandwidth is reserved when the 508 * configuration or interface alt setting is selected. 509 */ 510 void usb_sg_wait(struct usb_sg_request *io) 511 { 512 int i; 513 int entries = io->entries; 514 515 /* queue the urbs. */ 516 spin_lock_irq(&io->lock); 517 i = 0; 518 while (i < entries && !io->status) { 519 int retval; 520 521 io->urbs[i]->dev = io->dev; 522 spin_unlock_irq(&io->lock); 523 524 retval = usb_submit_urb(io->urbs[i], GFP_NOIO); 525 526 switch (retval) { 527 /* maybe we retrying will recover */ 528 case -ENXIO: /* hc didn't queue this one */ 529 case -EAGAIN: 530 case -ENOMEM: 531 retval = 0; 532 yield(); 533 break; 534 535 /* no error? continue immediately. 536 * 537 * NOTE: to work better with UHCI (4K I/O buffer may 538 * need 3K of TDs) it may be good to limit how many 539 * URBs are queued at once; N milliseconds? 540 */ 541 case 0: 542 ++i; 543 cpu_relax(); 544 break; 545 546 /* fail any uncompleted urbs */ 547 default: 548 io->urbs[i]->status = retval; 549 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 550 __func__, retval); 551 usb_sg_cancel(io); 552 } 553 spin_lock_irq(&io->lock); 554 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 555 io->status = retval; 556 } 557 io->count -= entries - i; 558 if (io->count == 0) 559 complete(&io->complete); 560 spin_unlock_irq(&io->lock); 561 562 /* OK, yes, this could be packaged as non-blocking. 563 * So could the submit loop above ... but it's easier to 564 * solve neither problem than to solve both! 565 */ 566 wait_for_completion(&io->complete); 567 568 sg_clean(io); 569 } 570 EXPORT_SYMBOL_GPL(usb_sg_wait); 571 572 /** 573 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 574 * @io: request block, initialized with usb_sg_init() 575 * 576 * This stops a request after it has been started by usb_sg_wait(). 577 * It can also prevents one initialized by usb_sg_init() from starting, 578 * so that call just frees resources allocated to the request. 579 */ 580 void usb_sg_cancel(struct usb_sg_request *io) 581 { 582 unsigned long flags; 583 int i, retval; 584 585 spin_lock_irqsave(&io->lock, flags); 586 if (io->status) { 587 spin_unlock_irqrestore(&io->lock, flags); 588 return; 589 } 590 /* shut everything down */ 591 io->status = -ECONNRESET; 592 spin_unlock_irqrestore(&io->lock, flags); 593 594 for (i = io->entries - 1; i >= 0; --i) { 595 usb_block_urb(io->urbs[i]); 596 597 retval = usb_unlink_urb(io->urbs[i]); 598 if (retval != -EINPROGRESS 599 && retval != -ENODEV 600 && retval != -EBUSY 601 && retval != -EIDRM) 602 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 603 __func__, retval); 604 } 605 } 606 EXPORT_SYMBOL_GPL(usb_sg_cancel); 607 608 /*-------------------------------------------------------------------*/ 609 610 /** 611 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 612 * @dev: the device whose descriptor is being retrieved 613 * @type: the descriptor type (USB_DT_*) 614 * @index: the number of the descriptor 615 * @buf: where to put the descriptor 616 * @size: how big is "buf"? 617 * Context: !in_interrupt () 618 * 619 * Gets a USB descriptor. Convenience functions exist to simplify 620 * getting some types of descriptors. Use 621 * usb_get_string() or usb_string() for USB_DT_STRING. 622 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 623 * are part of the device structure. 624 * In addition to a number of USB-standard descriptors, some 625 * devices also use class-specific or vendor-specific descriptors. 626 * 627 * This call is synchronous, and may not be used in an interrupt context. 628 * 629 * Return: The number of bytes received on success, or else the status code 630 * returned by the underlying usb_control_msg() call. 631 */ 632 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 633 unsigned char index, void *buf, int size) 634 { 635 int i; 636 int result; 637 638 memset(buf, 0, size); /* Make sure we parse really received data */ 639 640 for (i = 0; i < 3; ++i) { 641 /* retry on length 0 or error; some devices are flakey */ 642 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 643 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 644 (type << 8) + index, 0, buf, size, 645 USB_CTRL_GET_TIMEOUT); 646 if (result <= 0 && result != -ETIMEDOUT) 647 continue; 648 if (result > 1 && ((u8 *)buf)[1] != type) { 649 result = -ENODATA; 650 continue; 651 } 652 break; 653 } 654 return result; 655 } 656 EXPORT_SYMBOL_GPL(usb_get_descriptor); 657 658 /** 659 * usb_get_string - gets a string descriptor 660 * @dev: the device whose string descriptor is being retrieved 661 * @langid: code for language chosen (from string descriptor zero) 662 * @index: the number of the descriptor 663 * @buf: where to put the string 664 * @size: how big is "buf"? 665 * Context: !in_interrupt () 666 * 667 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 668 * in little-endian byte order). 669 * The usb_string() function will often be a convenient way to turn 670 * these strings into kernel-printable form. 671 * 672 * Strings may be referenced in device, configuration, interface, or other 673 * descriptors, and could also be used in vendor-specific ways. 674 * 675 * This call is synchronous, and may not be used in an interrupt context. 676 * 677 * Return: The number of bytes received on success, or else the status code 678 * returned by the underlying usb_control_msg() call. 679 */ 680 static int usb_get_string(struct usb_device *dev, unsigned short langid, 681 unsigned char index, void *buf, int size) 682 { 683 int i; 684 int result; 685 686 for (i = 0; i < 3; ++i) { 687 /* retry on length 0 or stall; some devices are flakey */ 688 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 689 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 690 (USB_DT_STRING << 8) + index, langid, buf, size, 691 USB_CTRL_GET_TIMEOUT); 692 if (result == 0 || result == -EPIPE) 693 continue; 694 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 695 result = -ENODATA; 696 continue; 697 } 698 break; 699 } 700 return result; 701 } 702 703 static void usb_try_string_workarounds(unsigned char *buf, int *length) 704 { 705 int newlength, oldlength = *length; 706 707 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 708 if (!isprint(buf[newlength]) || buf[newlength + 1]) 709 break; 710 711 if (newlength > 2) { 712 buf[0] = newlength; 713 *length = newlength; 714 } 715 } 716 717 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 718 unsigned int index, unsigned char *buf) 719 { 720 int rc; 721 722 /* Try to read the string descriptor by asking for the maximum 723 * possible number of bytes */ 724 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 725 rc = -EIO; 726 else 727 rc = usb_get_string(dev, langid, index, buf, 255); 728 729 /* If that failed try to read the descriptor length, then 730 * ask for just that many bytes */ 731 if (rc < 2) { 732 rc = usb_get_string(dev, langid, index, buf, 2); 733 if (rc == 2) 734 rc = usb_get_string(dev, langid, index, buf, buf[0]); 735 } 736 737 if (rc >= 2) { 738 if (!buf[0] && !buf[1]) 739 usb_try_string_workarounds(buf, &rc); 740 741 /* There might be extra junk at the end of the descriptor */ 742 if (buf[0] < rc) 743 rc = buf[0]; 744 745 rc = rc - (rc & 1); /* force a multiple of two */ 746 } 747 748 if (rc < 2) 749 rc = (rc < 0 ? rc : -EINVAL); 750 751 return rc; 752 } 753 754 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 755 { 756 int err; 757 758 if (dev->have_langid) 759 return 0; 760 761 if (dev->string_langid < 0) 762 return -EPIPE; 763 764 err = usb_string_sub(dev, 0, 0, tbuf); 765 766 /* If the string was reported but is malformed, default to english 767 * (0x0409) */ 768 if (err == -ENODATA || (err > 0 && err < 4)) { 769 dev->string_langid = 0x0409; 770 dev->have_langid = 1; 771 dev_err(&dev->dev, 772 "language id specifier not provided by device, defaulting to English\n"); 773 return 0; 774 } 775 776 /* In case of all other errors, we assume the device is not able to 777 * deal with strings at all. Set string_langid to -1 in order to 778 * prevent any string to be retrieved from the device */ 779 if (err < 0) { 780 dev_info(&dev->dev, "string descriptor 0 read error: %d\n", 781 err); 782 dev->string_langid = -1; 783 return -EPIPE; 784 } 785 786 /* always use the first langid listed */ 787 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 788 dev->have_langid = 1; 789 dev_dbg(&dev->dev, "default language 0x%04x\n", 790 dev->string_langid); 791 return 0; 792 } 793 794 /** 795 * usb_string - returns UTF-8 version of a string descriptor 796 * @dev: the device whose string descriptor is being retrieved 797 * @index: the number of the descriptor 798 * @buf: where to put the string 799 * @size: how big is "buf"? 800 * Context: !in_interrupt () 801 * 802 * This converts the UTF-16LE encoded strings returned by devices, from 803 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 804 * that are more usable in most kernel contexts. Note that this function 805 * chooses strings in the first language supported by the device. 806 * 807 * This call is synchronous, and may not be used in an interrupt context. 808 * 809 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 810 */ 811 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 812 { 813 unsigned char *tbuf; 814 int err; 815 816 if (dev->state == USB_STATE_SUSPENDED) 817 return -EHOSTUNREACH; 818 if (size <= 0 || !buf || !index) 819 return -EINVAL; 820 buf[0] = 0; 821 tbuf = kmalloc(256, GFP_NOIO); 822 if (!tbuf) 823 return -ENOMEM; 824 825 err = usb_get_langid(dev, tbuf); 826 if (err < 0) 827 goto errout; 828 829 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 830 if (err < 0) 831 goto errout; 832 833 size--; /* leave room for trailing NULL char in output buffer */ 834 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 835 UTF16_LITTLE_ENDIAN, buf, size); 836 buf[err] = 0; 837 838 if (tbuf[1] != USB_DT_STRING) 839 dev_dbg(&dev->dev, 840 "wrong descriptor type %02x for string %d (\"%s\")\n", 841 tbuf[1], index, buf); 842 843 errout: 844 kfree(tbuf); 845 return err; 846 } 847 EXPORT_SYMBOL_GPL(usb_string); 848 849 /* one UTF-8-encoded 16-bit character has at most three bytes */ 850 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 851 852 /** 853 * usb_cache_string - read a string descriptor and cache it for later use 854 * @udev: the device whose string descriptor is being read 855 * @index: the descriptor index 856 * 857 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 858 * or %NULL if the index is 0 or the string could not be read. 859 */ 860 char *usb_cache_string(struct usb_device *udev, int index) 861 { 862 char *buf; 863 char *smallbuf = NULL; 864 int len; 865 866 if (index <= 0) 867 return NULL; 868 869 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 870 if (buf) { 871 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 872 if (len > 0) { 873 smallbuf = kmalloc(++len, GFP_NOIO); 874 if (!smallbuf) 875 return buf; 876 memcpy(smallbuf, buf, len); 877 } 878 kfree(buf); 879 } 880 return smallbuf; 881 } 882 883 /* 884 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 885 * @dev: the device whose device descriptor is being updated 886 * @size: how much of the descriptor to read 887 * Context: !in_interrupt () 888 * 889 * Updates the copy of the device descriptor stored in the device structure, 890 * which dedicates space for this purpose. 891 * 892 * Not exported, only for use by the core. If drivers really want to read 893 * the device descriptor directly, they can call usb_get_descriptor() with 894 * type = USB_DT_DEVICE and index = 0. 895 * 896 * This call is synchronous, and may not be used in an interrupt context. 897 * 898 * Return: The number of bytes received on success, or else the status code 899 * returned by the underlying usb_control_msg() call. 900 */ 901 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 902 { 903 struct usb_device_descriptor *desc; 904 int ret; 905 906 if (size > sizeof(*desc)) 907 return -EINVAL; 908 desc = kmalloc(sizeof(*desc), GFP_NOIO); 909 if (!desc) 910 return -ENOMEM; 911 912 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 913 if (ret >= 0) 914 memcpy(&dev->descriptor, desc, size); 915 kfree(desc); 916 return ret; 917 } 918 919 /* 920 * usb_set_isoch_delay - informs the device of the packet transmit delay 921 * @dev: the device whose delay is to be informed 922 * Context: !in_interrupt() 923 * 924 * Since this is an optional request, we don't bother if it fails. 925 */ 926 int usb_set_isoch_delay(struct usb_device *dev) 927 { 928 /* skip hub devices */ 929 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB) 930 return 0; 931 932 /* skip non-SS/non-SSP devices */ 933 if (dev->speed < USB_SPEED_SUPER) 934 return 0; 935 936 return usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 937 USB_REQ_SET_ISOCH_DELAY, 938 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE, 939 cpu_to_le16(dev->hub_delay), 0, NULL, 0, 940 USB_CTRL_SET_TIMEOUT); 941 } 942 943 /** 944 * usb_get_status - issues a GET_STATUS call 945 * @dev: the device whose status is being checked 946 * @recip: USB_RECIP_*; for device, interface, or endpoint 947 * @type: USB_STATUS_TYPE_*; for standard or PTM status types 948 * @target: zero (for device), else interface or endpoint number 949 * @data: pointer to two bytes of bitmap data 950 * Context: !in_interrupt () 951 * 952 * Returns device, interface, or endpoint status. Normally only of 953 * interest to see if the device is self powered, or has enabled the 954 * remote wakeup facility; or whether a bulk or interrupt endpoint 955 * is halted ("stalled"). 956 * 957 * Bits in these status bitmaps are set using the SET_FEATURE request, 958 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 959 * function should be used to clear halt ("stall") status. 960 * 961 * This call is synchronous, and may not be used in an interrupt context. 962 * 963 * Returns 0 and the status value in *@data (in host byte order) on success, 964 * or else the status code from the underlying usb_control_msg() call. 965 */ 966 int usb_get_status(struct usb_device *dev, int recip, int type, int target, 967 void *data) 968 { 969 int ret; 970 void *status; 971 int length; 972 973 switch (type) { 974 case USB_STATUS_TYPE_STANDARD: 975 length = 2; 976 break; 977 case USB_STATUS_TYPE_PTM: 978 if (recip != USB_RECIP_DEVICE) 979 return -EINVAL; 980 981 length = 4; 982 break; 983 default: 984 return -EINVAL; 985 } 986 987 status = kmalloc(length, GFP_KERNEL); 988 if (!status) 989 return -ENOMEM; 990 991 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 992 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD, 993 target, status, length, USB_CTRL_GET_TIMEOUT); 994 995 switch (ret) { 996 case 4: 997 if (type != USB_STATUS_TYPE_PTM) { 998 ret = -EIO; 999 break; 1000 } 1001 1002 *(u32 *) data = le32_to_cpu(*(__le32 *) status); 1003 ret = 0; 1004 break; 1005 case 2: 1006 if (type != USB_STATUS_TYPE_STANDARD) { 1007 ret = -EIO; 1008 break; 1009 } 1010 1011 *(u16 *) data = le16_to_cpu(*(__le16 *) status); 1012 ret = 0; 1013 break; 1014 default: 1015 ret = -EIO; 1016 } 1017 1018 kfree(status); 1019 return ret; 1020 } 1021 EXPORT_SYMBOL_GPL(usb_get_status); 1022 1023 /** 1024 * usb_clear_halt - tells device to clear endpoint halt/stall condition 1025 * @dev: device whose endpoint is halted 1026 * @pipe: endpoint "pipe" being cleared 1027 * Context: !in_interrupt () 1028 * 1029 * This is used to clear halt conditions for bulk and interrupt endpoints, 1030 * as reported by URB completion status. Endpoints that are halted are 1031 * sometimes referred to as being "stalled". Such endpoints are unable 1032 * to transmit or receive data until the halt status is cleared. Any URBs 1033 * queued for such an endpoint should normally be unlinked by the driver 1034 * before clearing the halt condition, as described in sections 5.7.5 1035 * and 5.8.5 of the USB 2.0 spec. 1036 * 1037 * Note that control and isochronous endpoints don't halt, although control 1038 * endpoints report "protocol stall" (for unsupported requests) using the 1039 * same status code used to report a true stall. 1040 * 1041 * This call is synchronous, and may not be used in an interrupt context. 1042 * 1043 * Return: Zero on success, or else the status code returned by the 1044 * underlying usb_control_msg() call. 1045 */ 1046 int usb_clear_halt(struct usb_device *dev, int pipe) 1047 { 1048 int result; 1049 int endp = usb_pipeendpoint(pipe); 1050 1051 if (usb_pipein(pipe)) 1052 endp |= USB_DIR_IN; 1053 1054 /* we don't care if it wasn't halted first. in fact some devices 1055 * (like some ibmcam model 1 units) seem to expect hosts to make 1056 * this request for iso endpoints, which can't halt! 1057 */ 1058 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1059 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1060 USB_ENDPOINT_HALT, endp, NULL, 0, 1061 USB_CTRL_SET_TIMEOUT); 1062 1063 /* don't un-halt or force to DATA0 except on success */ 1064 if (result < 0) 1065 return result; 1066 1067 /* NOTE: seems like Microsoft and Apple don't bother verifying 1068 * the clear "took", so some devices could lock up if you check... 1069 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1070 * 1071 * NOTE: make sure the logic here doesn't diverge much from 1072 * the copy in usb-storage, for as long as we need two copies. 1073 */ 1074 1075 usb_reset_endpoint(dev, endp); 1076 1077 return 0; 1078 } 1079 EXPORT_SYMBOL_GPL(usb_clear_halt); 1080 1081 static int create_intf_ep_devs(struct usb_interface *intf) 1082 { 1083 struct usb_device *udev = interface_to_usbdev(intf); 1084 struct usb_host_interface *alt = intf->cur_altsetting; 1085 int i; 1086 1087 if (intf->ep_devs_created || intf->unregistering) 1088 return 0; 1089 1090 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1091 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1092 intf->ep_devs_created = 1; 1093 return 0; 1094 } 1095 1096 static void remove_intf_ep_devs(struct usb_interface *intf) 1097 { 1098 struct usb_host_interface *alt = intf->cur_altsetting; 1099 int i; 1100 1101 if (!intf->ep_devs_created) 1102 return; 1103 1104 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1105 usb_remove_ep_devs(&alt->endpoint[i]); 1106 intf->ep_devs_created = 0; 1107 } 1108 1109 /** 1110 * usb_disable_endpoint -- Disable an endpoint by address 1111 * @dev: the device whose endpoint is being disabled 1112 * @epaddr: the endpoint's address. Endpoint number for output, 1113 * endpoint number + USB_DIR_IN for input 1114 * @reset_hardware: flag to erase any endpoint state stored in the 1115 * controller hardware 1116 * 1117 * Disables the endpoint for URB submission and nukes all pending URBs. 1118 * If @reset_hardware is set then also deallocates hcd/hardware state 1119 * for the endpoint. 1120 */ 1121 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1122 bool reset_hardware) 1123 { 1124 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1125 struct usb_host_endpoint *ep; 1126 1127 if (!dev) 1128 return; 1129 1130 if (usb_endpoint_out(epaddr)) { 1131 ep = dev->ep_out[epnum]; 1132 if (reset_hardware) 1133 dev->ep_out[epnum] = NULL; 1134 } else { 1135 ep = dev->ep_in[epnum]; 1136 if (reset_hardware) 1137 dev->ep_in[epnum] = NULL; 1138 } 1139 if (ep) { 1140 ep->enabled = 0; 1141 usb_hcd_flush_endpoint(dev, ep); 1142 if (reset_hardware) 1143 usb_hcd_disable_endpoint(dev, ep); 1144 } 1145 } 1146 1147 /** 1148 * usb_reset_endpoint - Reset an endpoint's state. 1149 * @dev: the device whose endpoint is to be reset 1150 * @epaddr: the endpoint's address. Endpoint number for output, 1151 * endpoint number + USB_DIR_IN for input 1152 * 1153 * Resets any host-side endpoint state such as the toggle bit, 1154 * sequence number or current window. 1155 */ 1156 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1157 { 1158 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1159 struct usb_host_endpoint *ep; 1160 1161 if (usb_endpoint_out(epaddr)) 1162 ep = dev->ep_out[epnum]; 1163 else 1164 ep = dev->ep_in[epnum]; 1165 if (ep) 1166 usb_hcd_reset_endpoint(dev, ep); 1167 } 1168 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1169 1170 1171 /** 1172 * usb_disable_interface -- Disable all endpoints for an interface 1173 * @dev: the device whose interface is being disabled 1174 * @intf: pointer to the interface descriptor 1175 * @reset_hardware: flag to erase any endpoint state stored in the 1176 * controller hardware 1177 * 1178 * Disables all the endpoints for the interface's current altsetting. 1179 */ 1180 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1181 bool reset_hardware) 1182 { 1183 struct usb_host_interface *alt = intf->cur_altsetting; 1184 int i; 1185 1186 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1187 usb_disable_endpoint(dev, 1188 alt->endpoint[i].desc.bEndpointAddress, 1189 reset_hardware); 1190 } 1191 } 1192 1193 /** 1194 * usb_disable_device - Disable all the endpoints for a USB device 1195 * @dev: the device whose endpoints are being disabled 1196 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1197 * 1198 * Disables all the device's endpoints, potentially including endpoint 0. 1199 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1200 * pending urbs) and usbcore state for the interfaces, so that usbcore 1201 * must usb_set_configuration() before any interfaces could be used. 1202 */ 1203 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1204 { 1205 int i; 1206 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1207 1208 /* getting rid of interfaces will disconnect 1209 * any drivers bound to them (a key side effect) 1210 */ 1211 if (dev->actconfig) { 1212 /* 1213 * FIXME: In order to avoid self-deadlock involving the 1214 * bandwidth_mutex, we have to mark all the interfaces 1215 * before unregistering any of them. 1216 */ 1217 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1218 dev->actconfig->interface[i]->unregistering = 1; 1219 1220 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1221 struct usb_interface *interface; 1222 1223 /* remove this interface if it has been registered */ 1224 interface = dev->actconfig->interface[i]; 1225 if (!device_is_registered(&interface->dev)) 1226 continue; 1227 dev_dbg(&dev->dev, "unregistering interface %s\n", 1228 dev_name(&interface->dev)); 1229 remove_intf_ep_devs(interface); 1230 device_del(&interface->dev); 1231 } 1232 1233 /* Now that the interfaces are unbound, nobody should 1234 * try to access them. 1235 */ 1236 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1237 put_device(&dev->actconfig->interface[i]->dev); 1238 dev->actconfig->interface[i] = NULL; 1239 } 1240 1241 if (dev->usb2_hw_lpm_enabled == 1) 1242 usb_set_usb2_hardware_lpm(dev, 0); 1243 usb_unlocked_disable_lpm(dev); 1244 usb_disable_ltm(dev); 1245 1246 dev->actconfig = NULL; 1247 if (dev->state == USB_STATE_CONFIGURED) 1248 usb_set_device_state(dev, USB_STATE_ADDRESS); 1249 } 1250 1251 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1252 skip_ep0 ? "non-ep0" : "all"); 1253 if (hcd->driver->check_bandwidth) { 1254 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1255 for (i = skip_ep0; i < 16; ++i) { 1256 usb_disable_endpoint(dev, i, false); 1257 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1258 } 1259 /* Remove endpoints from the host controller internal state */ 1260 mutex_lock(hcd->bandwidth_mutex); 1261 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1262 mutex_unlock(hcd->bandwidth_mutex); 1263 /* Second pass: remove endpoint pointers */ 1264 } 1265 for (i = skip_ep0; i < 16; ++i) { 1266 usb_disable_endpoint(dev, i, true); 1267 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1268 } 1269 } 1270 1271 /** 1272 * usb_enable_endpoint - Enable an endpoint for USB communications 1273 * @dev: the device whose interface is being enabled 1274 * @ep: the endpoint 1275 * @reset_ep: flag to reset the endpoint state 1276 * 1277 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1278 * For control endpoints, both the input and output sides are handled. 1279 */ 1280 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1281 bool reset_ep) 1282 { 1283 int epnum = usb_endpoint_num(&ep->desc); 1284 int is_out = usb_endpoint_dir_out(&ep->desc); 1285 int is_control = usb_endpoint_xfer_control(&ep->desc); 1286 1287 if (reset_ep) 1288 usb_hcd_reset_endpoint(dev, ep); 1289 if (is_out || is_control) 1290 dev->ep_out[epnum] = ep; 1291 if (!is_out || is_control) 1292 dev->ep_in[epnum] = ep; 1293 ep->enabled = 1; 1294 } 1295 1296 /** 1297 * usb_enable_interface - Enable all the endpoints for an interface 1298 * @dev: the device whose interface is being enabled 1299 * @intf: pointer to the interface descriptor 1300 * @reset_eps: flag to reset the endpoints' state 1301 * 1302 * Enables all the endpoints for the interface's current altsetting. 1303 */ 1304 void usb_enable_interface(struct usb_device *dev, 1305 struct usb_interface *intf, bool reset_eps) 1306 { 1307 struct usb_host_interface *alt = intf->cur_altsetting; 1308 int i; 1309 1310 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1311 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1312 } 1313 1314 /** 1315 * usb_set_interface - Makes a particular alternate setting be current 1316 * @dev: the device whose interface is being updated 1317 * @interface: the interface being updated 1318 * @alternate: the setting being chosen. 1319 * Context: !in_interrupt () 1320 * 1321 * This is used to enable data transfers on interfaces that may not 1322 * be enabled by default. Not all devices support such configurability. 1323 * Only the driver bound to an interface may change its setting. 1324 * 1325 * Within any given configuration, each interface may have several 1326 * alternative settings. These are often used to control levels of 1327 * bandwidth consumption. For example, the default setting for a high 1328 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1329 * while interrupt transfers of up to 3KBytes per microframe are legal. 1330 * Also, isochronous endpoints may never be part of an 1331 * interface's default setting. To access such bandwidth, alternate 1332 * interface settings must be made current. 1333 * 1334 * Note that in the Linux USB subsystem, bandwidth associated with 1335 * an endpoint in a given alternate setting is not reserved until an URB 1336 * is submitted that needs that bandwidth. Some other operating systems 1337 * allocate bandwidth early, when a configuration is chosen. 1338 * 1339 * This call is synchronous, and may not be used in an interrupt context. 1340 * Also, drivers must not change altsettings while urbs are scheduled for 1341 * endpoints in that interface; all such urbs must first be completed 1342 * (perhaps forced by unlinking). 1343 * 1344 * Return: Zero on success, or else the status code returned by the 1345 * underlying usb_control_msg() call. 1346 */ 1347 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1348 { 1349 struct usb_interface *iface; 1350 struct usb_host_interface *alt; 1351 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1352 int i, ret, manual = 0; 1353 unsigned int epaddr; 1354 unsigned int pipe; 1355 1356 if (dev->state == USB_STATE_SUSPENDED) 1357 return -EHOSTUNREACH; 1358 1359 iface = usb_ifnum_to_if(dev, interface); 1360 if (!iface) { 1361 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1362 interface); 1363 return -EINVAL; 1364 } 1365 if (iface->unregistering) 1366 return -ENODEV; 1367 1368 alt = usb_altnum_to_altsetting(iface, alternate); 1369 if (!alt) { 1370 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1371 alternate); 1372 return -EINVAL; 1373 } 1374 1375 /* Make sure we have enough bandwidth for this alternate interface. 1376 * Remove the current alt setting and add the new alt setting. 1377 */ 1378 mutex_lock(hcd->bandwidth_mutex); 1379 /* Disable LPM, and re-enable it once the new alt setting is installed, 1380 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1381 */ 1382 if (usb_disable_lpm(dev)) { 1383 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__); 1384 mutex_unlock(hcd->bandwidth_mutex); 1385 return -ENOMEM; 1386 } 1387 /* Changing alt-setting also frees any allocated streams */ 1388 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++) 1389 iface->cur_altsetting->endpoint[i].streams = 0; 1390 1391 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1392 if (ret < 0) { 1393 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1394 alternate); 1395 usb_enable_lpm(dev); 1396 mutex_unlock(hcd->bandwidth_mutex); 1397 return ret; 1398 } 1399 1400 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1401 ret = -EPIPE; 1402 else 1403 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1404 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1405 alternate, interface, NULL, 0, 5000); 1406 1407 /* 9.4.10 says devices don't need this and are free to STALL the 1408 * request if the interface only has one alternate setting. 1409 */ 1410 if (ret == -EPIPE && iface->num_altsetting == 1) { 1411 dev_dbg(&dev->dev, 1412 "manual set_interface for iface %d, alt %d\n", 1413 interface, alternate); 1414 manual = 1; 1415 } else if (ret < 0) { 1416 /* Re-instate the old alt setting */ 1417 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1418 usb_enable_lpm(dev); 1419 mutex_unlock(hcd->bandwidth_mutex); 1420 return ret; 1421 } 1422 mutex_unlock(hcd->bandwidth_mutex); 1423 1424 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1425 * when they implement async or easily-killable versions of this or 1426 * other "should-be-internal" functions (like clear_halt). 1427 * should hcd+usbcore postprocess control requests? 1428 */ 1429 1430 /* prevent submissions using previous endpoint settings */ 1431 if (iface->cur_altsetting != alt) { 1432 remove_intf_ep_devs(iface); 1433 usb_remove_sysfs_intf_files(iface); 1434 } 1435 usb_disable_interface(dev, iface, true); 1436 1437 iface->cur_altsetting = alt; 1438 1439 /* Now that the interface is installed, re-enable LPM. */ 1440 usb_unlocked_enable_lpm(dev); 1441 1442 /* If the interface only has one altsetting and the device didn't 1443 * accept the request, we attempt to carry out the equivalent action 1444 * by manually clearing the HALT feature for each endpoint in the 1445 * new altsetting. 1446 */ 1447 if (manual) { 1448 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1449 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1450 pipe = __create_pipe(dev, 1451 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1452 (usb_endpoint_out(epaddr) ? 1453 USB_DIR_OUT : USB_DIR_IN); 1454 1455 usb_clear_halt(dev, pipe); 1456 } 1457 } 1458 1459 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1460 * 1461 * Note: 1462 * Despite EP0 is always present in all interfaces/AS, the list of 1463 * endpoints from the descriptor does not contain EP0. Due to its 1464 * omnipresence one might expect EP0 being considered "affected" by 1465 * any SetInterface request and hence assume toggles need to be reset. 1466 * However, EP0 toggles are re-synced for every individual transfer 1467 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1468 * (Likewise, EP0 never "halts" on well designed devices.) 1469 */ 1470 usb_enable_interface(dev, iface, true); 1471 if (device_is_registered(&iface->dev)) { 1472 usb_create_sysfs_intf_files(iface); 1473 create_intf_ep_devs(iface); 1474 } 1475 return 0; 1476 } 1477 EXPORT_SYMBOL_GPL(usb_set_interface); 1478 1479 /** 1480 * usb_reset_configuration - lightweight device reset 1481 * @dev: the device whose configuration is being reset 1482 * 1483 * This issues a standard SET_CONFIGURATION request to the device using 1484 * the current configuration. The effect is to reset most USB-related 1485 * state in the device, including interface altsettings (reset to zero), 1486 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1487 * endpoints). Other usbcore state is unchanged, including bindings of 1488 * usb device drivers to interfaces. 1489 * 1490 * Because this affects multiple interfaces, avoid using this with composite 1491 * (multi-interface) devices. Instead, the driver for each interface may 1492 * use usb_set_interface() on the interfaces it claims. Be careful though; 1493 * some devices don't support the SET_INTERFACE request, and others won't 1494 * reset all the interface state (notably endpoint state). Resetting the whole 1495 * configuration would affect other drivers' interfaces. 1496 * 1497 * The caller must own the device lock. 1498 * 1499 * Return: Zero on success, else a negative error code. 1500 */ 1501 int usb_reset_configuration(struct usb_device *dev) 1502 { 1503 int i, retval; 1504 struct usb_host_config *config; 1505 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1506 1507 if (dev->state == USB_STATE_SUSPENDED) 1508 return -EHOSTUNREACH; 1509 1510 /* caller must have locked the device and must own 1511 * the usb bus readlock (so driver bindings are stable); 1512 * calls during probe() are fine 1513 */ 1514 1515 for (i = 1; i < 16; ++i) { 1516 usb_disable_endpoint(dev, i, true); 1517 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1518 } 1519 1520 config = dev->actconfig; 1521 retval = 0; 1522 mutex_lock(hcd->bandwidth_mutex); 1523 /* Disable LPM, and re-enable it once the configuration is reset, so 1524 * that the xHCI driver can recalculate the U1/U2 timeouts. 1525 */ 1526 if (usb_disable_lpm(dev)) { 1527 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 1528 mutex_unlock(hcd->bandwidth_mutex); 1529 return -ENOMEM; 1530 } 1531 /* Make sure we have enough bandwidth for each alternate setting 0 */ 1532 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1533 struct usb_interface *intf = config->interface[i]; 1534 struct usb_host_interface *alt; 1535 1536 alt = usb_altnum_to_altsetting(intf, 0); 1537 if (!alt) 1538 alt = &intf->altsetting[0]; 1539 if (alt != intf->cur_altsetting) 1540 retval = usb_hcd_alloc_bandwidth(dev, NULL, 1541 intf->cur_altsetting, alt); 1542 if (retval < 0) 1543 break; 1544 } 1545 /* If not, reinstate the old alternate settings */ 1546 if (retval < 0) { 1547 reset_old_alts: 1548 for (i--; i >= 0; i--) { 1549 struct usb_interface *intf = config->interface[i]; 1550 struct usb_host_interface *alt; 1551 1552 alt = usb_altnum_to_altsetting(intf, 0); 1553 if (!alt) 1554 alt = &intf->altsetting[0]; 1555 if (alt != intf->cur_altsetting) 1556 usb_hcd_alloc_bandwidth(dev, NULL, 1557 alt, intf->cur_altsetting); 1558 } 1559 usb_enable_lpm(dev); 1560 mutex_unlock(hcd->bandwidth_mutex); 1561 return retval; 1562 } 1563 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1564 USB_REQ_SET_CONFIGURATION, 0, 1565 config->desc.bConfigurationValue, 0, 1566 NULL, 0, USB_CTRL_SET_TIMEOUT); 1567 if (retval < 0) 1568 goto reset_old_alts; 1569 mutex_unlock(hcd->bandwidth_mutex); 1570 1571 /* re-init hc/hcd interface/endpoint state */ 1572 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1573 struct usb_interface *intf = config->interface[i]; 1574 struct usb_host_interface *alt; 1575 1576 alt = usb_altnum_to_altsetting(intf, 0); 1577 1578 /* No altsetting 0? We'll assume the first altsetting. 1579 * We could use a GetInterface call, but if a device is 1580 * so non-compliant that it doesn't have altsetting 0 1581 * then I wouldn't trust its reply anyway. 1582 */ 1583 if (!alt) 1584 alt = &intf->altsetting[0]; 1585 1586 if (alt != intf->cur_altsetting) { 1587 remove_intf_ep_devs(intf); 1588 usb_remove_sysfs_intf_files(intf); 1589 } 1590 intf->cur_altsetting = alt; 1591 usb_enable_interface(dev, intf, true); 1592 if (device_is_registered(&intf->dev)) { 1593 usb_create_sysfs_intf_files(intf); 1594 create_intf_ep_devs(intf); 1595 } 1596 } 1597 /* Now that the interfaces are installed, re-enable LPM. */ 1598 usb_unlocked_enable_lpm(dev); 1599 return 0; 1600 } 1601 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1602 1603 static void usb_release_interface(struct device *dev) 1604 { 1605 struct usb_interface *intf = to_usb_interface(dev); 1606 struct usb_interface_cache *intfc = 1607 altsetting_to_usb_interface_cache(intf->altsetting); 1608 1609 kref_put(&intfc->ref, usb_release_interface_cache); 1610 usb_put_dev(interface_to_usbdev(intf)); 1611 of_node_put(dev->of_node); 1612 kfree(intf); 1613 } 1614 1615 /* 1616 * usb_deauthorize_interface - deauthorize an USB interface 1617 * 1618 * @intf: USB interface structure 1619 */ 1620 void usb_deauthorize_interface(struct usb_interface *intf) 1621 { 1622 struct device *dev = &intf->dev; 1623 1624 device_lock(dev->parent); 1625 1626 if (intf->authorized) { 1627 device_lock(dev); 1628 intf->authorized = 0; 1629 device_unlock(dev); 1630 1631 usb_forced_unbind_intf(intf); 1632 } 1633 1634 device_unlock(dev->parent); 1635 } 1636 1637 /* 1638 * usb_authorize_interface - authorize an USB interface 1639 * 1640 * @intf: USB interface structure 1641 */ 1642 void usb_authorize_interface(struct usb_interface *intf) 1643 { 1644 struct device *dev = &intf->dev; 1645 1646 if (!intf->authorized) { 1647 device_lock(dev); 1648 intf->authorized = 1; /* authorize interface */ 1649 device_unlock(dev); 1650 } 1651 } 1652 1653 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1654 { 1655 struct usb_device *usb_dev; 1656 struct usb_interface *intf; 1657 struct usb_host_interface *alt; 1658 1659 intf = to_usb_interface(dev); 1660 usb_dev = interface_to_usbdev(intf); 1661 alt = intf->cur_altsetting; 1662 1663 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1664 alt->desc.bInterfaceClass, 1665 alt->desc.bInterfaceSubClass, 1666 alt->desc.bInterfaceProtocol)) 1667 return -ENOMEM; 1668 1669 if (add_uevent_var(env, 1670 "MODALIAS=usb:" 1671 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1672 le16_to_cpu(usb_dev->descriptor.idVendor), 1673 le16_to_cpu(usb_dev->descriptor.idProduct), 1674 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1675 usb_dev->descriptor.bDeviceClass, 1676 usb_dev->descriptor.bDeviceSubClass, 1677 usb_dev->descriptor.bDeviceProtocol, 1678 alt->desc.bInterfaceClass, 1679 alt->desc.bInterfaceSubClass, 1680 alt->desc.bInterfaceProtocol, 1681 alt->desc.bInterfaceNumber)) 1682 return -ENOMEM; 1683 1684 return 0; 1685 } 1686 1687 struct device_type usb_if_device_type = { 1688 .name = "usb_interface", 1689 .release = usb_release_interface, 1690 .uevent = usb_if_uevent, 1691 }; 1692 1693 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1694 struct usb_host_config *config, 1695 u8 inum) 1696 { 1697 struct usb_interface_assoc_descriptor *retval = NULL; 1698 struct usb_interface_assoc_descriptor *intf_assoc; 1699 int first_intf; 1700 int last_intf; 1701 int i; 1702 1703 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1704 intf_assoc = config->intf_assoc[i]; 1705 if (intf_assoc->bInterfaceCount == 0) 1706 continue; 1707 1708 first_intf = intf_assoc->bFirstInterface; 1709 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1710 if (inum >= first_intf && inum <= last_intf) { 1711 if (!retval) 1712 retval = intf_assoc; 1713 else 1714 dev_err(&dev->dev, "Interface #%d referenced" 1715 " by multiple IADs\n", inum); 1716 } 1717 } 1718 1719 return retval; 1720 } 1721 1722 1723 /* 1724 * Internal function to queue a device reset 1725 * See usb_queue_reset_device() for more details 1726 */ 1727 static void __usb_queue_reset_device(struct work_struct *ws) 1728 { 1729 int rc; 1730 struct usb_interface *iface = 1731 container_of(ws, struct usb_interface, reset_ws); 1732 struct usb_device *udev = interface_to_usbdev(iface); 1733 1734 rc = usb_lock_device_for_reset(udev, iface); 1735 if (rc >= 0) { 1736 usb_reset_device(udev); 1737 usb_unlock_device(udev); 1738 } 1739 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */ 1740 } 1741 1742 1743 /* 1744 * usb_set_configuration - Makes a particular device setting be current 1745 * @dev: the device whose configuration is being updated 1746 * @configuration: the configuration being chosen. 1747 * Context: !in_interrupt(), caller owns the device lock 1748 * 1749 * This is used to enable non-default device modes. Not all devices 1750 * use this kind of configurability; many devices only have one 1751 * configuration. 1752 * 1753 * @configuration is the value of the configuration to be installed. 1754 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1755 * must be non-zero; a value of zero indicates that the device in 1756 * unconfigured. However some devices erroneously use 0 as one of their 1757 * configuration values. To help manage such devices, this routine will 1758 * accept @configuration = -1 as indicating the device should be put in 1759 * an unconfigured state. 1760 * 1761 * USB device configurations may affect Linux interoperability, 1762 * power consumption and the functionality available. For example, 1763 * the default configuration is limited to using 100mA of bus power, 1764 * so that when certain device functionality requires more power, 1765 * and the device is bus powered, that functionality should be in some 1766 * non-default device configuration. Other device modes may also be 1767 * reflected as configuration options, such as whether two ISDN 1768 * channels are available independently; and choosing between open 1769 * standard device protocols (like CDC) or proprietary ones. 1770 * 1771 * Note that a non-authorized device (dev->authorized == 0) will only 1772 * be put in unconfigured mode. 1773 * 1774 * Note that USB has an additional level of device configurability, 1775 * associated with interfaces. That configurability is accessed using 1776 * usb_set_interface(). 1777 * 1778 * This call is synchronous. The calling context must be able to sleep, 1779 * must own the device lock, and must not hold the driver model's USB 1780 * bus mutex; usb interface driver probe() methods cannot use this routine. 1781 * 1782 * Returns zero on success, or else the status code returned by the 1783 * underlying call that failed. On successful completion, each interface 1784 * in the original device configuration has been destroyed, and each one 1785 * in the new configuration has been probed by all relevant usb device 1786 * drivers currently known to the kernel. 1787 */ 1788 int usb_set_configuration(struct usb_device *dev, int configuration) 1789 { 1790 int i, ret; 1791 struct usb_host_config *cp = NULL; 1792 struct usb_interface **new_interfaces = NULL; 1793 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1794 int n, nintf; 1795 1796 if (dev->authorized == 0 || configuration == -1) 1797 configuration = 0; 1798 else { 1799 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1800 if (dev->config[i].desc.bConfigurationValue == 1801 configuration) { 1802 cp = &dev->config[i]; 1803 break; 1804 } 1805 } 1806 } 1807 if ((!cp && configuration != 0)) 1808 return -EINVAL; 1809 1810 /* The USB spec says configuration 0 means unconfigured. 1811 * But if a device includes a configuration numbered 0, 1812 * we will accept it as a correctly configured state. 1813 * Use -1 if you really want to unconfigure the device. 1814 */ 1815 if (cp && configuration == 0) 1816 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1817 1818 /* Allocate memory for new interfaces before doing anything else, 1819 * so that if we run out then nothing will have changed. */ 1820 n = nintf = 0; 1821 if (cp) { 1822 nintf = cp->desc.bNumInterfaces; 1823 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1824 GFP_NOIO); 1825 if (!new_interfaces) 1826 return -ENOMEM; 1827 1828 for (; n < nintf; ++n) { 1829 new_interfaces[n] = kzalloc( 1830 sizeof(struct usb_interface), 1831 GFP_NOIO); 1832 if (!new_interfaces[n]) { 1833 ret = -ENOMEM; 1834 free_interfaces: 1835 while (--n >= 0) 1836 kfree(new_interfaces[n]); 1837 kfree(new_interfaces); 1838 return ret; 1839 } 1840 } 1841 1842 i = dev->bus_mA - usb_get_max_power(dev, cp); 1843 if (i < 0) 1844 dev_warn(&dev->dev, "new config #%d exceeds power " 1845 "limit by %dmA\n", 1846 configuration, -i); 1847 } 1848 1849 /* Wake up the device so we can send it the Set-Config request */ 1850 ret = usb_autoresume_device(dev); 1851 if (ret) 1852 goto free_interfaces; 1853 1854 /* if it's already configured, clear out old state first. 1855 * getting rid of old interfaces means unbinding their drivers. 1856 */ 1857 if (dev->state != USB_STATE_ADDRESS) 1858 usb_disable_device(dev, 1); /* Skip ep0 */ 1859 1860 /* Get rid of pending async Set-Config requests for this device */ 1861 cancel_async_set_config(dev); 1862 1863 /* Make sure we have bandwidth (and available HCD resources) for this 1864 * configuration. Remove endpoints from the schedule if we're dropping 1865 * this configuration to set configuration 0. After this point, the 1866 * host controller will not allow submissions to dropped endpoints. If 1867 * this call fails, the device state is unchanged. 1868 */ 1869 mutex_lock(hcd->bandwidth_mutex); 1870 /* Disable LPM, and re-enable it once the new configuration is 1871 * installed, so that the xHCI driver can recalculate the U1/U2 1872 * timeouts. 1873 */ 1874 if (dev->actconfig && usb_disable_lpm(dev)) { 1875 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 1876 mutex_unlock(hcd->bandwidth_mutex); 1877 ret = -ENOMEM; 1878 goto free_interfaces; 1879 } 1880 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 1881 if (ret < 0) { 1882 if (dev->actconfig) 1883 usb_enable_lpm(dev); 1884 mutex_unlock(hcd->bandwidth_mutex); 1885 usb_autosuspend_device(dev); 1886 goto free_interfaces; 1887 } 1888 1889 /* 1890 * Initialize the new interface structures and the 1891 * hc/hcd/usbcore interface/endpoint state. 1892 */ 1893 for (i = 0; i < nintf; ++i) { 1894 struct usb_interface_cache *intfc; 1895 struct usb_interface *intf; 1896 struct usb_host_interface *alt; 1897 u8 ifnum; 1898 1899 cp->interface[i] = intf = new_interfaces[i]; 1900 intfc = cp->intf_cache[i]; 1901 intf->altsetting = intfc->altsetting; 1902 intf->num_altsetting = intfc->num_altsetting; 1903 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd); 1904 kref_get(&intfc->ref); 1905 1906 alt = usb_altnum_to_altsetting(intf, 0); 1907 1908 /* No altsetting 0? We'll assume the first altsetting. 1909 * We could use a GetInterface call, but if a device is 1910 * so non-compliant that it doesn't have altsetting 0 1911 * then I wouldn't trust its reply anyway. 1912 */ 1913 if (!alt) 1914 alt = &intf->altsetting[0]; 1915 1916 ifnum = alt->desc.bInterfaceNumber; 1917 intf->intf_assoc = find_iad(dev, cp, ifnum); 1918 intf->cur_altsetting = alt; 1919 usb_enable_interface(dev, intf, true); 1920 intf->dev.parent = &dev->dev; 1921 if (usb_of_has_combined_node(dev)) { 1922 device_set_of_node_from_dev(&intf->dev, &dev->dev); 1923 } else { 1924 intf->dev.of_node = usb_of_get_interface_node(dev, 1925 configuration, ifnum); 1926 } 1927 intf->dev.driver = NULL; 1928 intf->dev.bus = &usb_bus_type; 1929 intf->dev.type = &usb_if_device_type; 1930 intf->dev.groups = usb_interface_groups; 1931 /* 1932 * Please refer to usb_alloc_dev() to see why we set 1933 * dma_mask and dma_pfn_offset. 1934 */ 1935 intf->dev.dma_mask = dev->dev.dma_mask; 1936 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset; 1937 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1938 intf->minor = -1; 1939 device_initialize(&intf->dev); 1940 pm_runtime_no_callbacks(&intf->dev); 1941 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum, 1942 dev->devpath, configuration, ifnum); 1943 usb_get_dev(dev); 1944 } 1945 kfree(new_interfaces); 1946 1947 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1948 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1949 NULL, 0, USB_CTRL_SET_TIMEOUT); 1950 if (ret < 0 && cp) { 1951 /* 1952 * All the old state is gone, so what else can we do? 1953 * The device is probably useless now anyway. 1954 */ 1955 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1956 for (i = 0; i < nintf; ++i) { 1957 usb_disable_interface(dev, cp->interface[i], true); 1958 put_device(&cp->interface[i]->dev); 1959 cp->interface[i] = NULL; 1960 } 1961 cp = NULL; 1962 } 1963 1964 dev->actconfig = cp; 1965 mutex_unlock(hcd->bandwidth_mutex); 1966 1967 if (!cp) { 1968 usb_set_device_state(dev, USB_STATE_ADDRESS); 1969 1970 /* Leave LPM disabled while the device is unconfigured. */ 1971 usb_autosuspend_device(dev); 1972 return ret; 1973 } 1974 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1975 1976 if (cp->string == NULL && 1977 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1978 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1979 1980 /* Now that the interfaces are installed, re-enable LPM. */ 1981 usb_unlocked_enable_lpm(dev); 1982 /* Enable LTM if it was turned off by usb_disable_device. */ 1983 usb_enable_ltm(dev); 1984 1985 /* Now that all the interfaces are set up, register them 1986 * to trigger binding of drivers to interfaces. probe() 1987 * routines may install different altsettings and may 1988 * claim() any interfaces not yet bound. Many class drivers 1989 * need that: CDC, audio, video, etc. 1990 */ 1991 for (i = 0; i < nintf; ++i) { 1992 struct usb_interface *intf = cp->interface[i]; 1993 1994 dev_dbg(&dev->dev, 1995 "adding %s (config #%d, interface %d)\n", 1996 dev_name(&intf->dev), configuration, 1997 intf->cur_altsetting->desc.bInterfaceNumber); 1998 device_enable_async_suspend(&intf->dev); 1999 ret = device_add(&intf->dev); 2000 if (ret != 0) { 2001 dev_err(&dev->dev, "device_add(%s) --> %d\n", 2002 dev_name(&intf->dev), ret); 2003 continue; 2004 } 2005 create_intf_ep_devs(intf); 2006 } 2007 2008 usb_autosuspend_device(dev); 2009 return 0; 2010 } 2011 EXPORT_SYMBOL_GPL(usb_set_configuration); 2012 2013 static LIST_HEAD(set_config_list); 2014 static DEFINE_SPINLOCK(set_config_lock); 2015 2016 struct set_config_request { 2017 struct usb_device *udev; 2018 int config; 2019 struct work_struct work; 2020 struct list_head node; 2021 }; 2022 2023 /* Worker routine for usb_driver_set_configuration() */ 2024 static void driver_set_config_work(struct work_struct *work) 2025 { 2026 struct set_config_request *req = 2027 container_of(work, struct set_config_request, work); 2028 struct usb_device *udev = req->udev; 2029 2030 usb_lock_device(udev); 2031 spin_lock(&set_config_lock); 2032 list_del(&req->node); 2033 spin_unlock(&set_config_lock); 2034 2035 if (req->config >= -1) /* Is req still valid? */ 2036 usb_set_configuration(udev, req->config); 2037 usb_unlock_device(udev); 2038 usb_put_dev(udev); 2039 kfree(req); 2040 } 2041 2042 /* Cancel pending Set-Config requests for a device whose configuration 2043 * was just changed 2044 */ 2045 static void cancel_async_set_config(struct usb_device *udev) 2046 { 2047 struct set_config_request *req; 2048 2049 spin_lock(&set_config_lock); 2050 list_for_each_entry(req, &set_config_list, node) { 2051 if (req->udev == udev) 2052 req->config = -999; /* Mark as cancelled */ 2053 } 2054 spin_unlock(&set_config_lock); 2055 } 2056 2057 /** 2058 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 2059 * @udev: the device whose configuration is being updated 2060 * @config: the configuration being chosen. 2061 * Context: In process context, must be able to sleep 2062 * 2063 * Device interface drivers are not allowed to change device configurations. 2064 * This is because changing configurations will destroy the interface the 2065 * driver is bound to and create new ones; it would be like a floppy-disk 2066 * driver telling the computer to replace the floppy-disk drive with a 2067 * tape drive! 2068 * 2069 * Still, in certain specialized circumstances the need may arise. This 2070 * routine gets around the normal restrictions by using a work thread to 2071 * submit the change-config request. 2072 * 2073 * Return: 0 if the request was successfully queued, error code otherwise. 2074 * The caller has no way to know whether the queued request will eventually 2075 * succeed. 2076 */ 2077 int usb_driver_set_configuration(struct usb_device *udev, int config) 2078 { 2079 struct set_config_request *req; 2080 2081 req = kmalloc(sizeof(*req), GFP_KERNEL); 2082 if (!req) 2083 return -ENOMEM; 2084 req->udev = udev; 2085 req->config = config; 2086 INIT_WORK(&req->work, driver_set_config_work); 2087 2088 spin_lock(&set_config_lock); 2089 list_add(&req->node, &set_config_list); 2090 spin_unlock(&set_config_lock); 2091 2092 usb_get_dev(udev); 2093 schedule_work(&req->work); 2094 return 0; 2095 } 2096 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2097 2098 /** 2099 * cdc_parse_cdc_header - parse the extra headers present in CDC devices 2100 * @hdr: the place to put the results of the parsing 2101 * @intf: the interface for which parsing is requested 2102 * @buffer: pointer to the extra headers to be parsed 2103 * @buflen: length of the extra headers 2104 * 2105 * This evaluates the extra headers present in CDC devices which 2106 * bind the interfaces for data and control and provide details 2107 * about the capabilities of the device. 2108 * 2109 * Return: number of descriptors parsed or -EINVAL 2110 * if the header is contradictory beyond salvage 2111 */ 2112 2113 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr, 2114 struct usb_interface *intf, 2115 u8 *buffer, 2116 int buflen) 2117 { 2118 /* duplicates are ignored */ 2119 struct usb_cdc_union_desc *union_header = NULL; 2120 2121 /* duplicates are not tolerated */ 2122 struct usb_cdc_header_desc *header = NULL; 2123 struct usb_cdc_ether_desc *ether = NULL; 2124 struct usb_cdc_mdlm_detail_desc *detail = NULL; 2125 struct usb_cdc_mdlm_desc *desc = NULL; 2126 2127 unsigned int elength; 2128 int cnt = 0; 2129 2130 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header)); 2131 hdr->phonet_magic_present = false; 2132 while (buflen > 0) { 2133 elength = buffer[0]; 2134 if (!elength) { 2135 dev_err(&intf->dev, "skipping garbage byte\n"); 2136 elength = 1; 2137 goto next_desc; 2138 } 2139 if ((buflen < elength) || (elength < 3)) { 2140 dev_err(&intf->dev, "invalid descriptor buffer length\n"); 2141 break; 2142 } 2143 if (buffer[1] != USB_DT_CS_INTERFACE) { 2144 dev_err(&intf->dev, "skipping garbage\n"); 2145 goto next_desc; 2146 } 2147 2148 switch (buffer[2]) { 2149 case USB_CDC_UNION_TYPE: /* we've found it */ 2150 if (elength < sizeof(struct usb_cdc_union_desc)) 2151 goto next_desc; 2152 if (union_header) { 2153 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n"); 2154 goto next_desc; 2155 } 2156 union_header = (struct usb_cdc_union_desc *)buffer; 2157 break; 2158 case USB_CDC_COUNTRY_TYPE: 2159 if (elength < sizeof(struct usb_cdc_country_functional_desc)) 2160 goto next_desc; 2161 hdr->usb_cdc_country_functional_desc = 2162 (struct usb_cdc_country_functional_desc *)buffer; 2163 break; 2164 case USB_CDC_HEADER_TYPE: 2165 if (elength != sizeof(struct usb_cdc_header_desc)) 2166 goto next_desc; 2167 if (header) 2168 return -EINVAL; 2169 header = (struct usb_cdc_header_desc *)buffer; 2170 break; 2171 case USB_CDC_ACM_TYPE: 2172 if (elength < sizeof(struct usb_cdc_acm_descriptor)) 2173 goto next_desc; 2174 hdr->usb_cdc_acm_descriptor = 2175 (struct usb_cdc_acm_descriptor *)buffer; 2176 break; 2177 case USB_CDC_ETHERNET_TYPE: 2178 if (elength != sizeof(struct usb_cdc_ether_desc)) 2179 goto next_desc; 2180 if (ether) 2181 return -EINVAL; 2182 ether = (struct usb_cdc_ether_desc *)buffer; 2183 break; 2184 case USB_CDC_CALL_MANAGEMENT_TYPE: 2185 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor)) 2186 goto next_desc; 2187 hdr->usb_cdc_call_mgmt_descriptor = 2188 (struct usb_cdc_call_mgmt_descriptor *)buffer; 2189 break; 2190 case USB_CDC_DMM_TYPE: 2191 if (elength < sizeof(struct usb_cdc_dmm_desc)) 2192 goto next_desc; 2193 hdr->usb_cdc_dmm_desc = 2194 (struct usb_cdc_dmm_desc *)buffer; 2195 break; 2196 case USB_CDC_MDLM_TYPE: 2197 if (elength < sizeof(struct usb_cdc_mdlm_desc *)) 2198 goto next_desc; 2199 if (desc) 2200 return -EINVAL; 2201 desc = (struct usb_cdc_mdlm_desc *)buffer; 2202 break; 2203 case USB_CDC_MDLM_DETAIL_TYPE: 2204 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *)) 2205 goto next_desc; 2206 if (detail) 2207 return -EINVAL; 2208 detail = (struct usb_cdc_mdlm_detail_desc *)buffer; 2209 break; 2210 case USB_CDC_NCM_TYPE: 2211 if (elength < sizeof(struct usb_cdc_ncm_desc)) 2212 goto next_desc; 2213 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer; 2214 break; 2215 case USB_CDC_MBIM_TYPE: 2216 if (elength < sizeof(struct usb_cdc_mbim_desc)) 2217 goto next_desc; 2218 2219 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer; 2220 break; 2221 case USB_CDC_MBIM_EXTENDED_TYPE: 2222 if (elength < sizeof(struct usb_cdc_mbim_extended_desc)) 2223 break; 2224 hdr->usb_cdc_mbim_extended_desc = 2225 (struct usb_cdc_mbim_extended_desc *)buffer; 2226 break; 2227 case CDC_PHONET_MAGIC_NUMBER: 2228 hdr->phonet_magic_present = true; 2229 break; 2230 default: 2231 /* 2232 * there are LOTS more CDC descriptors that 2233 * could legitimately be found here. 2234 */ 2235 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n", 2236 buffer[2], elength); 2237 goto next_desc; 2238 } 2239 cnt++; 2240 next_desc: 2241 buflen -= elength; 2242 buffer += elength; 2243 } 2244 hdr->usb_cdc_union_desc = union_header; 2245 hdr->usb_cdc_header_desc = header; 2246 hdr->usb_cdc_mdlm_detail_desc = detail; 2247 hdr->usb_cdc_mdlm_desc = desc; 2248 hdr->usb_cdc_ether_desc = ether; 2249 return cnt; 2250 } 2251 2252 EXPORT_SYMBOL(cdc_parse_cdc_header); 2253