1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/device.h> 14 #include <linux/usb/quirks.h> 15 #include <asm/byteorder.h> 16 #include <asm/scatterlist.h> 17 18 #include "hcd.h" /* for usbcore internals */ 19 #include "usb.h" 20 21 static void usb_api_blocking_completion(struct urb *urb) 22 { 23 complete((struct completion *)urb->context); 24 } 25 26 27 /* 28 * Starts urb and waits for completion or timeout. Note that this call 29 * is NOT interruptible. Many device driver i/o requests should be 30 * interruptible and therefore these drivers should implement their 31 * own interruptible routines. 32 */ 33 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 34 { 35 struct completion done; 36 unsigned long expire; 37 int status; 38 39 init_completion(&done); 40 urb->context = &done; 41 urb->actual_length = 0; 42 status = usb_submit_urb(urb, GFP_NOIO); 43 if (unlikely(status)) 44 goto out; 45 46 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 47 if (!wait_for_completion_timeout(&done, expire)) { 48 49 dev_dbg(&urb->dev->dev, 50 "%s timed out on ep%d%s len=%d/%d\n", 51 current->comm, 52 usb_pipeendpoint(urb->pipe), 53 usb_pipein(urb->pipe) ? "in" : "out", 54 urb->actual_length, 55 urb->transfer_buffer_length); 56 57 usb_kill_urb(urb); 58 status = urb->status == -ENOENT ? -ETIMEDOUT : urb->status; 59 } else 60 status = urb->status; 61 out: 62 if (actual_length) 63 *actual_length = urb->actual_length; 64 65 usb_free_urb(urb); 66 return status; 67 } 68 69 /*-------------------------------------------------------------------*/ 70 // returns status (negative) or length (positive) 71 static int usb_internal_control_msg(struct usb_device *usb_dev, 72 unsigned int pipe, 73 struct usb_ctrlrequest *cmd, 74 void *data, int len, int timeout) 75 { 76 struct urb *urb; 77 int retv; 78 int length; 79 80 urb = usb_alloc_urb(0, GFP_NOIO); 81 if (!urb) 82 return -ENOMEM; 83 84 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 85 len, usb_api_blocking_completion, NULL); 86 87 retv = usb_start_wait_urb(urb, timeout, &length); 88 if (retv < 0) 89 return retv; 90 else 91 return length; 92 } 93 94 /** 95 * usb_control_msg - Builds a control urb, sends it off and waits for completion 96 * @dev: pointer to the usb device to send the message to 97 * @pipe: endpoint "pipe" to send the message to 98 * @request: USB message request value 99 * @requesttype: USB message request type value 100 * @value: USB message value 101 * @index: USB message index value 102 * @data: pointer to the data to send 103 * @size: length in bytes of the data to send 104 * @timeout: time in msecs to wait for the message to complete before 105 * timing out (if 0 the wait is forever) 106 * Context: !in_interrupt () 107 * 108 * This function sends a simple control message to a specified endpoint 109 * and waits for the message to complete, or timeout. 110 * 111 * If successful, it returns the number of bytes transferred, otherwise a negative error number. 112 * 113 * Don't use this function from within an interrupt context, like a 114 * bottom half handler. If you need an asynchronous message, or need to send 115 * a message from within interrupt context, use usb_submit_urb() 116 * If a thread in your driver uses this call, make sure your disconnect() 117 * method can wait for it to complete. Since you don't have a handle on 118 * the URB used, you can't cancel the request. 119 */ 120 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, 121 __u16 value, __u16 index, void *data, __u16 size, int timeout) 122 { 123 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 124 int ret; 125 126 if (!dr) 127 return -ENOMEM; 128 129 dr->bRequestType= requesttype; 130 dr->bRequest = request; 131 dr->wValue = cpu_to_le16p(&value); 132 dr->wIndex = cpu_to_le16p(&index); 133 dr->wLength = cpu_to_le16p(&size); 134 135 //dbg("usb_control_msg"); 136 137 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 138 139 kfree(dr); 140 141 return ret; 142 } 143 144 145 /** 146 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 147 * @usb_dev: pointer to the usb device to send the message to 148 * @pipe: endpoint "pipe" to send the message to 149 * @data: pointer to the data to send 150 * @len: length in bytes of the data to send 151 * @actual_length: pointer to a location to put the actual length transferred in bytes 152 * @timeout: time in msecs to wait for the message to complete before 153 * timing out (if 0 the wait is forever) 154 * Context: !in_interrupt () 155 * 156 * This function sends a simple interrupt message to a specified endpoint and 157 * waits for the message to complete, or timeout. 158 * 159 * If successful, it returns 0, otherwise a negative error number. The number 160 * of actual bytes transferred will be stored in the actual_length paramater. 161 * 162 * Don't use this function from within an interrupt context, like a bottom half 163 * handler. If you need an asynchronous message, or need to send a message 164 * from within interrupt context, use usb_submit_urb() If a thread in your 165 * driver uses this call, make sure your disconnect() method can wait for it to 166 * complete. Since you don't have a handle on the URB used, you can't cancel 167 * the request. 168 */ 169 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 170 void *data, int len, int *actual_length, int timeout) 171 { 172 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 173 } 174 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 175 176 /** 177 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 178 * @usb_dev: pointer to the usb device to send the message to 179 * @pipe: endpoint "pipe" to send the message to 180 * @data: pointer to the data to send 181 * @len: length in bytes of the data to send 182 * @actual_length: pointer to a location to put the actual length transferred in bytes 183 * @timeout: time in msecs to wait for the message to complete before 184 * timing out (if 0 the wait is forever) 185 * Context: !in_interrupt () 186 * 187 * This function sends a simple bulk message to a specified endpoint 188 * and waits for the message to complete, or timeout. 189 * 190 * If successful, it returns 0, otherwise a negative error number. 191 * The number of actual bytes transferred will be stored in the 192 * actual_length paramater. 193 * 194 * Don't use this function from within an interrupt context, like a 195 * bottom half handler. If you need an asynchronous message, or need to 196 * send a message from within interrupt context, use usb_submit_urb() 197 * If a thread in your driver uses this call, make sure your disconnect() 198 * method can wait for it to complete. Since you don't have a handle on 199 * the URB used, you can't cancel the request. 200 * 201 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT 202 * ioctl, users are forced to abuse this routine by using it to submit 203 * URBs for interrupt endpoints. We will take the liberty of creating 204 * an interrupt URB (with the default interval) if the target is an 205 * interrupt endpoint. 206 */ 207 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 208 void *data, int len, int *actual_length, int timeout) 209 { 210 struct urb *urb; 211 struct usb_host_endpoint *ep; 212 213 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 214 [usb_pipeendpoint(pipe)]; 215 if (!ep || len < 0) 216 return -EINVAL; 217 218 urb = usb_alloc_urb(0, GFP_KERNEL); 219 if (!urb) 220 return -ENOMEM; 221 222 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 223 USB_ENDPOINT_XFER_INT) { 224 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 225 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 226 usb_api_blocking_completion, NULL, 227 ep->desc.bInterval); 228 } else 229 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 230 usb_api_blocking_completion, NULL); 231 232 return usb_start_wait_urb(urb, timeout, actual_length); 233 } 234 235 /*-------------------------------------------------------------------*/ 236 237 static void sg_clean (struct usb_sg_request *io) 238 { 239 if (io->urbs) { 240 while (io->entries--) 241 usb_free_urb (io->urbs [io->entries]); 242 kfree (io->urbs); 243 io->urbs = NULL; 244 } 245 if (io->dev->dev.dma_mask != NULL) 246 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents); 247 io->dev = NULL; 248 } 249 250 static void sg_complete (struct urb *urb) 251 { 252 struct usb_sg_request *io = urb->context; 253 254 spin_lock (&io->lock); 255 256 /* In 2.5 we require hcds' endpoint queues not to progress after fault 257 * reports, until the completion callback (this!) returns. That lets 258 * device driver code (like this routine) unlink queued urbs first, 259 * if it needs to, since the HC won't work on them at all. So it's 260 * not possible for page N+1 to overwrite page N, and so on. 261 * 262 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 263 * complete before the HCD can get requests away from hardware, 264 * though never during cleanup after a hard fault. 265 */ 266 if (io->status 267 && (io->status != -ECONNRESET 268 || urb->status != -ECONNRESET) 269 && urb->actual_length) { 270 dev_err (io->dev->bus->controller, 271 "dev %s ep%d%s scatterlist error %d/%d\n", 272 io->dev->devpath, 273 usb_pipeendpoint (urb->pipe), 274 usb_pipein (urb->pipe) ? "in" : "out", 275 urb->status, io->status); 276 // BUG (); 277 } 278 279 if (io->status == 0 && urb->status && urb->status != -ECONNRESET) { 280 int i, found, status; 281 282 io->status = urb->status; 283 284 /* the previous urbs, and this one, completed already. 285 * unlink pending urbs so they won't rx/tx bad data. 286 * careful: unlink can sometimes be synchronous... 287 */ 288 spin_unlock (&io->lock); 289 for (i = 0, found = 0; i < io->entries; i++) { 290 if (!io->urbs [i] || !io->urbs [i]->dev) 291 continue; 292 if (found) { 293 status = usb_unlink_urb (io->urbs [i]); 294 if (status != -EINPROGRESS 295 && status != -ENODEV 296 && status != -EBUSY) 297 dev_err (&io->dev->dev, 298 "%s, unlink --> %d\n", 299 __FUNCTION__, status); 300 } else if (urb == io->urbs [i]) 301 found = 1; 302 } 303 spin_lock (&io->lock); 304 } 305 urb->dev = NULL; 306 307 /* on the last completion, signal usb_sg_wait() */ 308 io->bytes += urb->actual_length; 309 io->count--; 310 if (!io->count) 311 complete (&io->complete); 312 313 spin_unlock (&io->lock); 314 } 315 316 317 /** 318 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 319 * @io: request block being initialized. until usb_sg_wait() returns, 320 * treat this as a pointer to an opaque block of memory, 321 * @dev: the usb device that will send or receive the data 322 * @pipe: endpoint "pipe" used to transfer the data 323 * @period: polling rate for interrupt endpoints, in frames or 324 * (for high speed endpoints) microframes; ignored for bulk 325 * @sg: scatterlist entries 326 * @nents: how many entries in the scatterlist 327 * @length: how many bytes to send from the scatterlist, or zero to 328 * send every byte identified in the list. 329 * @mem_flags: SLAB_* flags affecting memory allocations in this call 330 * 331 * Returns zero for success, else a negative errno value. This initializes a 332 * scatter/gather request, allocating resources such as I/O mappings and urb 333 * memory (except maybe memory used by USB controller drivers). 334 * 335 * The request must be issued using usb_sg_wait(), which waits for the I/O to 336 * complete (or to be canceled) and then cleans up all resources allocated by 337 * usb_sg_init(). 338 * 339 * The request may be canceled with usb_sg_cancel(), either before or after 340 * usb_sg_wait() is called. 341 */ 342 int usb_sg_init ( 343 struct usb_sg_request *io, 344 struct usb_device *dev, 345 unsigned pipe, 346 unsigned period, 347 struct scatterlist *sg, 348 int nents, 349 size_t length, 350 gfp_t mem_flags 351 ) 352 { 353 int i; 354 int urb_flags; 355 int dma; 356 357 if (!io || !dev || !sg 358 || usb_pipecontrol (pipe) 359 || usb_pipeisoc (pipe) 360 || nents <= 0) 361 return -EINVAL; 362 363 spin_lock_init (&io->lock); 364 io->dev = dev; 365 io->pipe = pipe; 366 io->sg = sg; 367 io->nents = nents; 368 369 /* not all host controllers use DMA (like the mainstream pci ones); 370 * they can use PIO (sl811) or be software over another transport. 371 */ 372 dma = (dev->dev.dma_mask != NULL); 373 if (dma) 374 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents); 375 else 376 io->entries = nents; 377 378 /* initialize all the urbs we'll use */ 379 if (io->entries <= 0) 380 return io->entries; 381 382 io->count = io->entries; 383 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags); 384 if (!io->urbs) 385 goto nomem; 386 387 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT; 388 if (usb_pipein (pipe)) 389 urb_flags |= URB_SHORT_NOT_OK; 390 391 for (i = 0; i < io->entries; i++) { 392 unsigned len; 393 394 io->urbs [i] = usb_alloc_urb (0, mem_flags); 395 if (!io->urbs [i]) { 396 io->entries = i; 397 goto nomem; 398 } 399 400 io->urbs [i]->dev = NULL; 401 io->urbs [i]->pipe = pipe; 402 io->urbs [i]->interval = period; 403 io->urbs [i]->transfer_flags = urb_flags; 404 405 io->urbs [i]->complete = sg_complete; 406 io->urbs [i]->context = io; 407 408 /* 409 * Some systems need to revert to PIO when DMA is temporarily 410 * unavailable. For their sakes, both transfer_buffer and 411 * transfer_dma are set when possible. However this can only 412 * work on systems without HIGHMEM, since DMA buffers located 413 * in high memory are not directly addressable by the CPU for 414 * PIO ... so when HIGHMEM is in use, transfer_buffer is NULL 415 * to prevent stale pointers and to help spot bugs. 416 */ 417 if (dma) { 418 io->urbs [i]->transfer_dma = sg_dma_address (sg + i); 419 len = sg_dma_len (sg + i); 420 #ifdef CONFIG_HIGHMEM 421 io->urbs[i]->transfer_buffer = NULL; 422 #else 423 io->urbs[i]->transfer_buffer = 424 page_address(sg[i].page) + sg[i].offset; 425 #endif 426 } else { 427 /* hc may use _only_ transfer_buffer */ 428 io->urbs [i]->transfer_buffer = 429 page_address (sg [i].page) + sg [i].offset; 430 len = sg [i].length; 431 } 432 433 if (length) { 434 len = min_t (unsigned, len, length); 435 length -= len; 436 if (length == 0) 437 io->entries = i + 1; 438 } 439 io->urbs [i]->transfer_buffer_length = len; 440 } 441 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT; 442 443 /* transaction state */ 444 io->status = 0; 445 io->bytes = 0; 446 init_completion (&io->complete); 447 return 0; 448 449 nomem: 450 sg_clean (io); 451 return -ENOMEM; 452 } 453 454 455 /** 456 * usb_sg_wait - synchronously execute scatter/gather request 457 * @io: request block handle, as initialized with usb_sg_init(). 458 * some fields become accessible when this call returns. 459 * Context: !in_interrupt () 460 * 461 * This function blocks until the specified I/O operation completes. It 462 * leverages the grouping of the related I/O requests to get good transfer 463 * rates, by queueing the requests. At higher speeds, such queuing can 464 * significantly improve USB throughput. 465 * 466 * There are three kinds of completion for this function. 467 * (1) success, where io->status is zero. The number of io->bytes 468 * transferred is as requested. 469 * (2) error, where io->status is a negative errno value. The number 470 * of io->bytes transferred before the error is usually less 471 * than requested, and can be nonzero. 472 * (3) cancellation, a type of error with status -ECONNRESET that 473 * is initiated by usb_sg_cancel(). 474 * 475 * When this function returns, all memory allocated through usb_sg_init() or 476 * this call will have been freed. The request block parameter may still be 477 * passed to usb_sg_cancel(), or it may be freed. It could also be 478 * reinitialized and then reused. 479 * 480 * Data Transfer Rates: 481 * 482 * Bulk transfers are valid for full or high speed endpoints. 483 * The best full speed data rate is 19 packets of 64 bytes each 484 * per frame, or 1216 bytes per millisecond. 485 * The best high speed data rate is 13 packets of 512 bytes each 486 * per microframe, or 52 KBytes per millisecond. 487 * 488 * The reason to use interrupt transfers through this API would most likely 489 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 490 * could be transferred. That capability is less useful for low or full 491 * speed interrupt endpoints, which allow at most one packet per millisecond, 492 * of at most 8 or 64 bytes (respectively). 493 */ 494 void usb_sg_wait (struct usb_sg_request *io) 495 { 496 int i, entries = io->entries; 497 498 /* queue the urbs. */ 499 spin_lock_irq (&io->lock); 500 i = 0; 501 while (i < entries && !io->status) { 502 int retval; 503 504 io->urbs [i]->dev = io->dev; 505 retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC); 506 507 /* after we submit, let completions or cancelations fire; 508 * we handshake using io->status. 509 */ 510 spin_unlock_irq (&io->lock); 511 switch (retval) { 512 /* maybe we retrying will recover */ 513 case -ENXIO: // hc didn't queue this one 514 case -EAGAIN: 515 case -ENOMEM: 516 io->urbs[i]->dev = NULL; 517 retval = 0; 518 yield (); 519 break; 520 521 /* no error? continue immediately. 522 * 523 * NOTE: to work better with UHCI (4K I/O buffer may 524 * need 3K of TDs) it may be good to limit how many 525 * URBs are queued at once; N milliseconds? 526 */ 527 case 0: 528 ++i; 529 cpu_relax (); 530 break; 531 532 /* fail any uncompleted urbs */ 533 default: 534 io->urbs [i]->dev = NULL; 535 io->urbs [i]->status = retval; 536 dev_dbg (&io->dev->dev, "%s, submit --> %d\n", 537 __FUNCTION__, retval); 538 usb_sg_cancel (io); 539 } 540 spin_lock_irq (&io->lock); 541 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 542 io->status = retval; 543 } 544 io->count -= entries - i; 545 if (io->count == 0) 546 complete (&io->complete); 547 spin_unlock_irq (&io->lock); 548 549 /* OK, yes, this could be packaged as non-blocking. 550 * So could the submit loop above ... but it's easier to 551 * solve neither problem than to solve both! 552 */ 553 wait_for_completion (&io->complete); 554 555 sg_clean (io); 556 } 557 558 /** 559 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 560 * @io: request block, initialized with usb_sg_init() 561 * 562 * This stops a request after it has been started by usb_sg_wait(). 563 * It can also prevents one initialized by usb_sg_init() from starting, 564 * so that call just frees resources allocated to the request. 565 */ 566 void usb_sg_cancel (struct usb_sg_request *io) 567 { 568 unsigned long flags; 569 570 spin_lock_irqsave (&io->lock, flags); 571 572 /* shut everything down, if it didn't already */ 573 if (!io->status) { 574 int i; 575 576 io->status = -ECONNRESET; 577 spin_unlock (&io->lock); 578 for (i = 0; i < io->entries; i++) { 579 int retval; 580 581 if (!io->urbs [i]->dev) 582 continue; 583 retval = usb_unlink_urb (io->urbs [i]); 584 if (retval != -EINPROGRESS && retval != -EBUSY) 585 dev_warn (&io->dev->dev, "%s, unlink --> %d\n", 586 __FUNCTION__, retval); 587 } 588 spin_lock (&io->lock); 589 } 590 spin_unlock_irqrestore (&io->lock, flags); 591 } 592 593 /*-------------------------------------------------------------------*/ 594 595 /** 596 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 597 * @dev: the device whose descriptor is being retrieved 598 * @type: the descriptor type (USB_DT_*) 599 * @index: the number of the descriptor 600 * @buf: where to put the descriptor 601 * @size: how big is "buf"? 602 * Context: !in_interrupt () 603 * 604 * Gets a USB descriptor. Convenience functions exist to simplify 605 * getting some types of descriptors. Use 606 * usb_get_string() or usb_string() for USB_DT_STRING. 607 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 608 * are part of the device structure. 609 * In addition to a number of USB-standard descriptors, some 610 * devices also use class-specific or vendor-specific descriptors. 611 * 612 * This call is synchronous, and may not be used in an interrupt context. 613 * 614 * Returns the number of bytes received on success, or else the status code 615 * returned by the underlying usb_control_msg() call. 616 */ 617 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) 618 { 619 int i; 620 int result; 621 622 memset(buf,0,size); // Make sure we parse really received data 623 624 for (i = 0; i < 3; ++i) { 625 /* retry on length 0 or stall; some devices are flakey */ 626 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 627 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 628 (type << 8) + index, 0, buf, size, 629 USB_CTRL_GET_TIMEOUT); 630 if (result == 0 || result == -EPIPE) 631 continue; 632 if (result > 1 && ((u8 *)buf)[1] != type) { 633 result = -EPROTO; 634 continue; 635 } 636 break; 637 } 638 return result; 639 } 640 641 /** 642 * usb_get_string - gets a string descriptor 643 * @dev: the device whose string descriptor is being retrieved 644 * @langid: code for language chosen (from string descriptor zero) 645 * @index: the number of the descriptor 646 * @buf: where to put the string 647 * @size: how big is "buf"? 648 * Context: !in_interrupt () 649 * 650 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 651 * in little-endian byte order). 652 * The usb_string() function will often be a convenient way to turn 653 * these strings into kernel-printable form. 654 * 655 * Strings may be referenced in device, configuration, interface, or other 656 * descriptors, and could also be used in vendor-specific ways. 657 * 658 * This call is synchronous, and may not be used in an interrupt context. 659 * 660 * Returns the number of bytes received on success, or else the status code 661 * returned by the underlying usb_control_msg() call. 662 */ 663 static int usb_get_string(struct usb_device *dev, unsigned short langid, 664 unsigned char index, void *buf, int size) 665 { 666 int i; 667 int result; 668 669 for (i = 0; i < 3; ++i) { 670 /* retry on length 0 or stall; some devices are flakey */ 671 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 672 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 673 (USB_DT_STRING << 8) + index, langid, buf, size, 674 USB_CTRL_GET_TIMEOUT); 675 if (!(result == 0 || result == -EPIPE)) 676 break; 677 } 678 return result; 679 } 680 681 static void usb_try_string_workarounds(unsigned char *buf, int *length) 682 { 683 int newlength, oldlength = *length; 684 685 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 686 if (!isprint(buf[newlength]) || buf[newlength + 1]) 687 break; 688 689 if (newlength > 2) { 690 buf[0] = newlength; 691 *length = newlength; 692 } 693 } 694 695 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 696 unsigned int index, unsigned char *buf) 697 { 698 int rc; 699 700 /* Try to read the string descriptor by asking for the maximum 701 * possible number of bytes */ 702 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 703 rc = -EIO; 704 else 705 rc = usb_get_string(dev, langid, index, buf, 255); 706 707 /* If that failed try to read the descriptor length, then 708 * ask for just that many bytes */ 709 if (rc < 2) { 710 rc = usb_get_string(dev, langid, index, buf, 2); 711 if (rc == 2) 712 rc = usb_get_string(dev, langid, index, buf, buf[0]); 713 } 714 715 if (rc >= 2) { 716 if (!buf[0] && !buf[1]) 717 usb_try_string_workarounds(buf, &rc); 718 719 /* There might be extra junk at the end of the descriptor */ 720 if (buf[0] < rc) 721 rc = buf[0]; 722 723 rc = rc - (rc & 1); /* force a multiple of two */ 724 } 725 726 if (rc < 2) 727 rc = (rc < 0 ? rc : -EINVAL); 728 729 return rc; 730 } 731 732 /** 733 * usb_string - returns ISO 8859-1 version of a string descriptor 734 * @dev: the device whose string descriptor is being retrieved 735 * @index: the number of the descriptor 736 * @buf: where to put the string 737 * @size: how big is "buf"? 738 * Context: !in_interrupt () 739 * 740 * This converts the UTF-16LE encoded strings returned by devices, from 741 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 742 * that are more usable in most kernel contexts. Note that all characters 743 * in the chosen descriptor that can't be encoded using ISO-8859-1 744 * are converted to the question mark ("?") character, and this function 745 * chooses strings in the first language supported by the device. 746 * 747 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 748 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 749 * and is appropriate for use many uses of English and several other 750 * Western European languages. (But it doesn't include the "Euro" symbol.) 751 * 752 * This call is synchronous, and may not be used in an interrupt context. 753 * 754 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 755 */ 756 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 757 { 758 unsigned char *tbuf; 759 int err; 760 unsigned int u, idx; 761 762 if (dev->state == USB_STATE_SUSPENDED) 763 return -EHOSTUNREACH; 764 if (size <= 0 || !buf || !index) 765 return -EINVAL; 766 buf[0] = 0; 767 tbuf = kmalloc(256, GFP_KERNEL); 768 if (!tbuf) 769 return -ENOMEM; 770 771 /* get langid for strings if it's not yet known */ 772 if (!dev->have_langid) { 773 err = usb_string_sub(dev, 0, 0, tbuf); 774 if (err < 0) { 775 dev_err (&dev->dev, 776 "string descriptor 0 read error: %d\n", 777 err); 778 goto errout; 779 } else if (err < 4) { 780 dev_err (&dev->dev, "string descriptor 0 too short\n"); 781 err = -EINVAL; 782 goto errout; 783 } else { 784 dev->have_langid = 1; 785 dev->string_langid = tbuf[2] | (tbuf[3]<< 8); 786 /* always use the first langid listed */ 787 dev_dbg (&dev->dev, "default language 0x%04x\n", 788 dev->string_langid); 789 } 790 } 791 792 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 793 if (err < 0) 794 goto errout; 795 796 size--; /* leave room for trailing NULL char in output buffer */ 797 for (idx = 0, u = 2; u < err; u += 2) { 798 if (idx >= size) 799 break; 800 if (tbuf[u+1]) /* high byte */ 801 buf[idx++] = '?'; /* non ISO-8859-1 character */ 802 else 803 buf[idx++] = tbuf[u]; 804 } 805 buf[idx] = 0; 806 err = idx; 807 808 if (tbuf[1] != USB_DT_STRING) 809 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf); 810 811 errout: 812 kfree(tbuf); 813 return err; 814 } 815 816 /** 817 * usb_cache_string - read a string descriptor and cache it for later use 818 * @udev: the device whose string descriptor is being read 819 * @index: the descriptor index 820 * 821 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 822 * or NULL if the index is 0 or the string could not be read. 823 */ 824 char *usb_cache_string(struct usb_device *udev, int index) 825 { 826 char *buf; 827 char *smallbuf = NULL; 828 int len; 829 830 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) { 831 if ((len = usb_string(udev, index, buf, 256)) > 0) { 832 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL) 833 return buf; 834 memcpy(smallbuf, buf, len); 835 } 836 kfree(buf); 837 } 838 return smallbuf; 839 } 840 841 /* 842 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 843 * @dev: the device whose device descriptor is being updated 844 * @size: how much of the descriptor to read 845 * Context: !in_interrupt () 846 * 847 * Updates the copy of the device descriptor stored in the device structure, 848 * which dedicates space for this purpose. 849 * 850 * Not exported, only for use by the core. If drivers really want to read 851 * the device descriptor directly, they can call usb_get_descriptor() with 852 * type = USB_DT_DEVICE and index = 0. 853 * 854 * This call is synchronous, and may not be used in an interrupt context. 855 * 856 * Returns the number of bytes received on success, or else the status code 857 * returned by the underlying usb_control_msg() call. 858 */ 859 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 860 { 861 struct usb_device_descriptor *desc; 862 int ret; 863 864 if (size > sizeof(*desc)) 865 return -EINVAL; 866 desc = kmalloc(sizeof(*desc), GFP_NOIO); 867 if (!desc) 868 return -ENOMEM; 869 870 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 871 if (ret >= 0) 872 memcpy(&dev->descriptor, desc, size); 873 kfree(desc); 874 return ret; 875 } 876 877 /** 878 * usb_get_status - issues a GET_STATUS call 879 * @dev: the device whose status is being checked 880 * @type: USB_RECIP_*; for device, interface, or endpoint 881 * @target: zero (for device), else interface or endpoint number 882 * @data: pointer to two bytes of bitmap data 883 * Context: !in_interrupt () 884 * 885 * Returns device, interface, or endpoint status. Normally only of 886 * interest to see if the device is self powered, or has enabled the 887 * remote wakeup facility; or whether a bulk or interrupt endpoint 888 * is halted ("stalled"). 889 * 890 * Bits in these status bitmaps are set using the SET_FEATURE request, 891 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 892 * function should be used to clear halt ("stall") status. 893 * 894 * This call is synchronous, and may not be used in an interrupt context. 895 * 896 * Returns the number of bytes received on success, or else the status code 897 * returned by the underlying usb_control_msg() call. 898 */ 899 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 900 { 901 int ret; 902 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 903 904 if (!status) 905 return -ENOMEM; 906 907 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 908 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 909 sizeof(*status), USB_CTRL_GET_TIMEOUT); 910 911 *(u16 *)data = *status; 912 kfree(status); 913 return ret; 914 } 915 916 /** 917 * usb_clear_halt - tells device to clear endpoint halt/stall condition 918 * @dev: device whose endpoint is halted 919 * @pipe: endpoint "pipe" being cleared 920 * Context: !in_interrupt () 921 * 922 * This is used to clear halt conditions for bulk and interrupt endpoints, 923 * as reported by URB completion status. Endpoints that are halted are 924 * sometimes referred to as being "stalled". Such endpoints are unable 925 * to transmit or receive data until the halt status is cleared. Any URBs 926 * queued for such an endpoint should normally be unlinked by the driver 927 * before clearing the halt condition, as described in sections 5.7.5 928 * and 5.8.5 of the USB 2.0 spec. 929 * 930 * Note that control and isochronous endpoints don't halt, although control 931 * endpoints report "protocol stall" (for unsupported requests) using the 932 * same status code used to report a true stall. 933 * 934 * This call is synchronous, and may not be used in an interrupt context. 935 * 936 * Returns zero on success, or else the status code returned by the 937 * underlying usb_control_msg() call. 938 */ 939 int usb_clear_halt(struct usb_device *dev, int pipe) 940 { 941 int result; 942 int endp = usb_pipeendpoint(pipe); 943 944 if (usb_pipein (pipe)) 945 endp |= USB_DIR_IN; 946 947 /* we don't care if it wasn't halted first. in fact some devices 948 * (like some ibmcam model 1 units) seem to expect hosts to make 949 * this request for iso endpoints, which can't halt! 950 */ 951 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 952 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 953 USB_ENDPOINT_HALT, endp, NULL, 0, 954 USB_CTRL_SET_TIMEOUT); 955 956 /* don't un-halt or force to DATA0 except on success */ 957 if (result < 0) 958 return result; 959 960 /* NOTE: seems like Microsoft and Apple don't bother verifying 961 * the clear "took", so some devices could lock up if you check... 962 * such as the Hagiwara FlashGate DUAL. So we won't bother. 963 * 964 * NOTE: make sure the logic here doesn't diverge much from 965 * the copy in usb-storage, for as long as we need two copies. 966 */ 967 968 /* toggle was reset by the clear */ 969 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 970 971 return 0; 972 } 973 974 /** 975 * usb_disable_endpoint -- Disable an endpoint by address 976 * @dev: the device whose endpoint is being disabled 977 * @epaddr: the endpoint's address. Endpoint number for output, 978 * endpoint number + USB_DIR_IN for input 979 * 980 * Deallocates hcd/hardware state for this endpoint ... and nukes all 981 * pending urbs. 982 * 983 * If the HCD hasn't registered a disable() function, this sets the 984 * endpoint's maxpacket size to 0 to prevent further submissions. 985 */ 986 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 987 { 988 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 989 struct usb_host_endpoint *ep; 990 991 if (!dev) 992 return; 993 994 if (usb_endpoint_out(epaddr)) { 995 ep = dev->ep_out[epnum]; 996 dev->ep_out[epnum] = NULL; 997 } else { 998 ep = dev->ep_in[epnum]; 999 dev->ep_in[epnum] = NULL; 1000 } 1001 if (ep && dev->bus) 1002 usb_hcd_endpoint_disable(dev, ep); 1003 } 1004 1005 /** 1006 * usb_disable_interface -- Disable all endpoints for an interface 1007 * @dev: the device whose interface is being disabled 1008 * @intf: pointer to the interface descriptor 1009 * 1010 * Disables all the endpoints for the interface's current altsetting. 1011 */ 1012 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 1013 { 1014 struct usb_host_interface *alt = intf->cur_altsetting; 1015 int i; 1016 1017 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1018 usb_disable_endpoint(dev, 1019 alt->endpoint[i].desc.bEndpointAddress); 1020 } 1021 } 1022 1023 /* 1024 * usb_disable_device - Disable all the endpoints for a USB device 1025 * @dev: the device whose endpoints are being disabled 1026 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1027 * 1028 * Disables all the device's endpoints, potentially including endpoint 0. 1029 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1030 * pending urbs) and usbcore state for the interfaces, so that usbcore 1031 * must usb_set_configuration() before any interfaces could be used. 1032 */ 1033 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1034 { 1035 int i; 1036 1037 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__, 1038 skip_ep0 ? "non-ep0" : "all"); 1039 for (i = skip_ep0; i < 16; ++i) { 1040 usb_disable_endpoint(dev, i); 1041 usb_disable_endpoint(dev, i + USB_DIR_IN); 1042 } 1043 dev->toggle[0] = dev->toggle[1] = 0; 1044 1045 /* getting rid of interfaces will disconnect 1046 * any drivers bound to them (a key side effect) 1047 */ 1048 if (dev->actconfig) { 1049 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1050 struct usb_interface *interface; 1051 1052 /* remove this interface if it has been registered */ 1053 interface = dev->actconfig->interface[i]; 1054 if (!device_is_registered(&interface->dev)) 1055 continue; 1056 dev_dbg (&dev->dev, "unregistering interface %s\n", 1057 interface->dev.bus_id); 1058 usb_remove_sysfs_intf_files(interface); 1059 device_del (&interface->dev); 1060 } 1061 1062 /* Now that the interfaces are unbound, nobody should 1063 * try to access them. 1064 */ 1065 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1066 put_device (&dev->actconfig->interface[i]->dev); 1067 dev->actconfig->interface[i] = NULL; 1068 } 1069 dev->actconfig = NULL; 1070 if (dev->state == USB_STATE_CONFIGURED) 1071 usb_set_device_state(dev, USB_STATE_ADDRESS); 1072 } 1073 } 1074 1075 1076 /* 1077 * usb_enable_endpoint - Enable an endpoint for USB communications 1078 * @dev: the device whose interface is being enabled 1079 * @ep: the endpoint 1080 * 1081 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1082 * For control endpoints, both the input and output sides are handled. 1083 */ 1084 static void 1085 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1086 { 1087 unsigned int epaddr = ep->desc.bEndpointAddress; 1088 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1089 int is_control; 1090 1091 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) 1092 == USB_ENDPOINT_XFER_CONTROL); 1093 if (usb_endpoint_out(epaddr) || is_control) { 1094 usb_settoggle(dev, epnum, 1, 0); 1095 dev->ep_out[epnum] = ep; 1096 } 1097 if (!usb_endpoint_out(epaddr) || is_control) { 1098 usb_settoggle(dev, epnum, 0, 0); 1099 dev->ep_in[epnum] = ep; 1100 } 1101 } 1102 1103 /* 1104 * usb_enable_interface - Enable all the endpoints for an interface 1105 * @dev: the device whose interface is being enabled 1106 * @intf: pointer to the interface descriptor 1107 * 1108 * Enables all the endpoints for the interface's current altsetting. 1109 */ 1110 static void usb_enable_interface(struct usb_device *dev, 1111 struct usb_interface *intf) 1112 { 1113 struct usb_host_interface *alt = intf->cur_altsetting; 1114 int i; 1115 1116 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1117 usb_enable_endpoint(dev, &alt->endpoint[i]); 1118 } 1119 1120 /** 1121 * usb_set_interface - Makes a particular alternate setting be current 1122 * @dev: the device whose interface is being updated 1123 * @interface: the interface being updated 1124 * @alternate: the setting being chosen. 1125 * Context: !in_interrupt () 1126 * 1127 * This is used to enable data transfers on interfaces that may not 1128 * be enabled by default. Not all devices support such configurability. 1129 * Only the driver bound to an interface may change its setting. 1130 * 1131 * Within any given configuration, each interface may have several 1132 * alternative settings. These are often used to control levels of 1133 * bandwidth consumption. For example, the default setting for a high 1134 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1135 * while interrupt transfers of up to 3KBytes per microframe are legal. 1136 * Also, isochronous endpoints may never be part of an 1137 * interface's default setting. To access such bandwidth, alternate 1138 * interface settings must be made current. 1139 * 1140 * Note that in the Linux USB subsystem, bandwidth associated with 1141 * an endpoint in a given alternate setting is not reserved until an URB 1142 * is submitted that needs that bandwidth. Some other operating systems 1143 * allocate bandwidth early, when a configuration is chosen. 1144 * 1145 * This call is synchronous, and may not be used in an interrupt context. 1146 * Also, drivers must not change altsettings while urbs are scheduled for 1147 * endpoints in that interface; all such urbs must first be completed 1148 * (perhaps forced by unlinking). 1149 * 1150 * Returns zero on success, or else the status code returned by the 1151 * underlying usb_control_msg() call. 1152 */ 1153 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1154 { 1155 struct usb_interface *iface; 1156 struct usb_host_interface *alt; 1157 int ret; 1158 int manual = 0; 1159 1160 if (dev->state == USB_STATE_SUSPENDED) 1161 return -EHOSTUNREACH; 1162 1163 iface = usb_ifnum_to_if(dev, interface); 1164 if (!iface) { 1165 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1166 interface); 1167 return -EINVAL; 1168 } 1169 1170 alt = usb_altnum_to_altsetting(iface, alternate); 1171 if (!alt) { 1172 warn("selecting invalid altsetting %d", alternate); 1173 return -EINVAL; 1174 } 1175 1176 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1177 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1178 alternate, interface, NULL, 0, 5000); 1179 1180 /* 9.4.10 says devices don't need this and are free to STALL the 1181 * request if the interface only has one alternate setting. 1182 */ 1183 if (ret == -EPIPE && iface->num_altsetting == 1) { 1184 dev_dbg(&dev->dev, 1185 "manual set_interface for iface %d, alt %d\n", 1186 interface, alternate); 1187 manual = 1; 1188 } else if (ret < 0) 1189 return ret; 1190 1191 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1192 * when they implement async or easily-killable versions of this or 1193 * other "should-be-internal" functions (like clear_halt). 1194 * should hcd+usbcore postprocess control requests? 1195 */ 1196 1197 /* prevent submissions using previous endpoint settings */ 1198 if (device_is_registered(&iface->dev)) 1199 usb_remove_sysfs_intf_files(iface); 1200 usb_disable_interface(dev, iface); 1201 1202 iface->cur_altsetting = alt; 1203 1204 /* If the interface only has one altsetting and the device didn't 1205 * accept the request, we attempt to carry out the equivalent action 1206 * by manually clearing the HALT feature for each endpoint in the 1207 * new altsetting. 1208 */ 1209 if (manual) { 1210 int i; 1211 1212 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1213 unsigned int epaddr = 1214 alt->endpoint[i].desc.bEndpointAddress; 1215 unsigned int pipe = 1216 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr) 1217 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN); 1218 1219 usb_clear_halt(dev, pipe); 1220 } 1221 } 1222 1223 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1224 * 1225 * Note: 1226 * Despite EP0 is always present in all interfaces/AS, the list of 1227 * endpoints from the descriptor does not contain EP0. Due to its 1228 * omnipresence one might expect EP0 being considered "affected" by 1229 * any SetInterface request and hence assume toggles need to be reset. 1230 * However, EP0 toggles are re-synced for every individual transfer 1231 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1232 * (Likewise, EP0 never "halts" on well designed devices.) 1233 */ 1234 usb_enable_interface(dev, iface); 1235 if (device_is_registered(&iface->dev)) 1236 usb_create_sysfs_intf_files(iface); 1237 1238 return 0; 1239 } 1240 1241 /** 1242 * usb_reset_configuration - lightweight device reset 1243 * @dev: the device whose configuration is being reset 1244 * 1245 * This issues a standard SET_CONFIGURATION request to the device using 1246 * the current configuration. The effect is to reset most USB-related 1247 * state in the device, including interface altsettings (reset to zero), 1248 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1249 * endpoints). Other usbcore state is unchanged, including bindings of 1250 * usb device drivers to interfaces. 1251 * 1252 * Because this affects multiple interfaces, avoid using this with composite 1253 * (multi-interface) devices. Instead, the driver for each interface may 1254 * use usb_set_interface() on the interfaces it claims. Be careful though; 1255 * some devices don't support the SET_INTERFACE request, and others won't 1256 * reset all the interface state (notably data toggles). Resetting the whole 1257 * configuration would affect other drivers' interfaces. 1258 * 1259 * The caller must own the device lock. 1260 * 1261 * Returns zero on success, else a negative error code. 1262 */ 1263 int usb_reset_configuration(struct usb_device *dev) 1264 { 1265 int i, retval; 1266 struct usb_host_config *config; 1267 1268 if (dev->state == USB_STATE_SUSPENDED) 1269 return -EHOSTUNREACH; 1270 1271 /* caller must have locked the device and must own 1272 * the usb bus readlock (so driver bindings are stable); 1273 * calls during probe() are fine 1274 */ 1275 1276 for (i = 1; i < 16; ++i) { 1277 usb_disable_endpoint(dev, i); 1278 usb_disable_endpoint(dev, i + USB_DIR_IN); 1279 } 1280 1281 config = dev->actconfig; 1282 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1283 USB_REQ_SET_CONFIGURATION, 0, 1284 config->desc.bConfigurationValue, 0, 1285 NULL, 0, USB_CTRL_SET_TIMEOUT); 1286 if (retval < 0) 1287 return retval; 1288 1289 dev->toggle[0] = dev->toggle[1] = 0; 1290 1291 /* re-init hc/hcd interface/endpoint state */ 1292 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1293 struct usb_interface *intf = config->interface[i]; 1294 struct usb_host_interface *alt; 1295 1296 if (device_is_registered(&intf->dev)) 1297 usb_remove_sysfs_intf_files(intf); 1298 alt = usb_altnum_to_altsetting(intf, 0); 1299 1300 /* No altsetting 0? We'll assume the first altsetting. 1301 * We could use a GetInterface call, but if a device is 1302 * so non-compliant that it doesn't have altsetting 0 1303 * then I wouldn't trust its reply anyway. 1304 */ 1305 if (!alt) 1306 alt = &intf->altsetting[0]; 1307 1308 intf->cur_altsetting = alt; 1309 usb_enable_interface(dev, intf); 1310 if (device_is_registered(&intf->dev)) 1311 usb_create_sysfs_intf_files(intf); 1312 } 1313 return 0; 1314 } 1315 1316 void usb_release_interface(struct device *dev) 1317 { 1318 struct usb_interface *intf = to_usb_interface(dev); 1319 struct usb_interface_cache *intfc = 1320 altsetting_to_usb_interface_cache(intf->altsetting); 1321 1322 kref_put(&intfc->ref, usb_release_interface_cache); 1323 kfree(intf); 1324 } 1325 1326 #ifdef CONFIG_HOTPLUG 1327 static int usb_if_uevent(struct device *dev, char **envp, int num_envp, 1328 char *buffer, int buffer_size) 1329 { 1330 struct usb_device *usb_dev; 1331 struct usb_interface *intf; 1332 struct usb_host_interface *alt; 1333 int i = 0; 1334 int length = 0; 1335 1336 if (!dev) 1337 return -ENODEV; 1338 1339 /* driver is often null here; dev_dbg() would oops */ 1340 pr_debug ("usb %s: uevent\n", dev->bus_id); 1341 1342 intf = to_usb_interface(dev); 1343 usb_dev = interface_to_usbdev(intf); 1344 alt = intf->cur_altsetting; 1345 1346 if (add_uevent_var(envp, num_envp, &i, 1347 buffer, buffer_size, &length, 1348 "INTERFACE=%d/%d/%d", 1349 alt->desc.bInterfaceClass, 1350 alt->desc.bInterfaceSubClass, 1351 alt->desc.bInterfaceProtocol)) 1352 return -ENOMEM; 1353 1354 if (add_uevent_var(envp, num_envp, &i, 1355 buffer, buffer_size, &length, 1356 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1357 le16_to_cpu(usb_dev->descriptor.idVendor), 1358 le16_to_cpu(usb_dev->descriptor.idProduct), 1359 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1360 usb_dev->descriptor.bDeviceClass, 1361 usb_dev->descriptor.bDeviceSubClass, 1362 usb_dev->descriptor.bDeviceProtocol, 1363 alt->desc.bInterfaceClass, 1364 alt->desc.bInterfaceSubClass, 1365 alt->desc.bInterfaceProtocol)) 1366 return -ENOMEM; 1367 1368 envp[i] = NULL; 1369 return 0; 1370 } 1371 1372 #else 1373 1374 static int usb_if_uevent(struct device *dev, char **envp, 1375 int num_envp, char *buffer, int buffer_size) 1376 { 1377 return -ENODEV; 1378 } 1379 #endif /* CONFIG_HOTPLUG */ 1380 1381 struct device_type usb_if_device_type = { 1382 .name = "usb_interface", 1383 .release = usb_release_interface, 1384 .uevent = usb_if_uevent, 1385 }; 1386 1387 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1388 struct usb_host_config *config, 1389 u8 inum) 1390 { 1391 struct usb_interface_assoc_descriptor *retval = NULL; 1392 struct usb_interface_assoc_descriptor *intf_assoc; 1393 int first_intf; 1394 int last_intf; 1395 int i; 1396 1397 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1398 intf_assoc = config->intf_assoc[i]; 1399 if (intf_assoc->bInterfaceCount == 0) 1400 continue; 1401 1402 first_intf = intf_assoc->bFirstInterface; 1403 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1404 if (inum >= first_intf && inum <= last_intf) { 1405 if (!retval) 1406 retval = intf_assoc; 1407 else 1408 dev_err(&dev->dev, "Interface #%d referenced" 1409 " by multiple IADs\n", inum); 1410 } 1411 } 1412 1413 return retval; 1414 } 1415 1416 1417 /* 1418 * usb_set_configuration - Makes a particular device setting be current 1419 * @dev: the device whose configuration is being updated 1420 * @configuration: the configuration being chosen. 1421 * Context: !in_interrupt(), caller owns the device lock 1422 * 1423 * This is used to enable non-default device modes. Not all devices 1424 * use this kind of configurability; many devices only have one 1425 * configuration. 1426 * 1427 * @configuration is the value of the configuration to be installed. 1428 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1429 * must be non-zero; a value of zero indicates that the device in 1430 * unconfigured. However some devices erroneously use 0 as one of their 1431 * configuration values. To help manage such devices, this routine will 1432 * accept @configuration = -1 as indicating the device should be put in 1433 * an unconfigured state. 1434 * 1435 * USB device configurations may affect Linux interoperability, 1436 * power consumption and the functionality available. For example, 1437 * the default configuration is limited to using 100mA of bus power, 1438 * so that when certain device functionality requires more power, 1439 * and the device is bus powered, that functionality should be in some 1440 * non-default device configuration. Other device modes may also be 1441 * reflected as configuration options, such as whether two ISDN 1442 * channels are available independently; and choosing between open 1443 * standard device protocols (like CDC) or proprietary ones. 1444 * 1445 * Note that USB has an additional level of device configurability, 1446 * associated with interfaces. That configurability is accessed using 1447 * usb_set_interface(). 1448 * 1449 * This call is synchronous. The calling context must be able to sleep, 1450 * must own the device lock, and must not hold the driver model's USB 1451 * bus mutex; usb device driver probe() methods cannot use this routine. 1452 * 1453 * Returns zero on success, or else the status code returned by the 1454 * underlying call that failed. On successful completion, each interface 1455 * in the original device configuration has been destroyed, and each one 1456 * in the new configuration has been probed by all relevant usb device 1457 * drivers currently known to the kernel. 1458 */ 1459 int usb_set_configuration(struct usb_device *dev, int configuration) 1460 { 1461 int i, ret; 1462 struct usb_host_config *cp = NULL; 1463 struct usb_interface **new_interfaces = NULL; 1464 int n, nintf; 1465 1466 if (configuration == -1) 1467 configuration = 0; 1468 else { 1469 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1470 if (dev->config[i].desc.bConfigurationValue == 1471 configuration) { 1472 cp = &dev->config[i]; 1473 break; 1474 } 1475 } 1476 } 1477 if ((!cp && configuration != 0)) 1478 return -EINVAL; 1479 1480 /* The USB spec says configuration 0 means unconfigured. 1481 * But if a device includes a configuration numbered 0, 1482 * we will accept it as a correctly configured state. 1483 * Use -1 if you really want to unconfigure the device. 1484 */ 1485 if (cp && configuration == 0) 1486 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1487 1488 /* Allocate memory for new interfaces before doing anything else, 1489 * so that if we run out then nothing will have changed. */ 1490 n = nintf = 0; 1491 if (cp) { 1492 nintf = cp->desc.bNumInterfaces; 1493 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1494 GFP_KERNEL); 1495 if (!new_interfaces) { 1496 dev_err(&dev->dev, "Out of memory"); 1497 return -ENOMEM; 1498 } 1499 1500 for (; n < nintf; ++n) { 1501 new_interfaces[n] = kzalloc( 1502 sizeof(struct usb_interface), 1503 GFP_KERNEL); 1504 if (!new_interfaces[n]) { 1505 dev_err(&dev->dev, "Out of memory"); 1506 ret = -ENOMEM; 1507 free_interfaces: 1508 while (--n >= 0) 1509 kfree(new_interfaces[n]); 1510 kfree(new_interfaces); 1511 return ret; 1512 } 1513 } 1514 1515 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1516 if (i < 0) 1517 dev_warn(&dev->dev, "new config #%d exceeds power " 1518 "limit by %dmA\n", 1519 configuration, -i); 1520 } 1521 1522 /* Wake up the device so we can send it the Set-Config request */ 1523 ret = usb_autoresume_device(dev); 1524 if (ret) 1525 goto free_interfaces; 1526 1527 /* if it's already configured, clear out old state first. 1528 * getting rid of old interfaces means unbinding their drivers. 1529 */ 1530 if (dev->state != USB_STATE_ADDRESS) 1531 usb_disable_device (dev, 1); // Skip ep0 1532 1533 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1534 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1535 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) { 1536 1537 /* All the old state is gone, so what else can we do? 1538 * The device is probably useless now anyway. 1539 */ 1540 cp = NULL; 1541 } 1542 1543 dev->actconfig = cp; 1544 if (!cp) { 1545 usb_set_device_state(dev, USB_STATE_ADDRESS); 1546 usb_autosuspend_device(dev); 1547 goto free_interfaces; 1548 } 1549 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1550 1551 /* Initialize the new interface structures and the 1552 * hc/hcd/usbcore interface/endpoint state. 1553 */ 1554 for (i = 0; i < nintf; ++i) { 1555 struct usb_interface_cache *intfc; 1556 struct usb_interface *intf; 1557 struct usb_host_interface *alt; 1558 1559 cp->interface[i] = intf = new_interfaces[i]; 1560 intfc = cp->intf_cache[i]; 1561 intf->altsetting = intfc->altsetting; 1562 intf->num_altsetting = intfc->num_altsetting; 1563 intf->intf_assoc = find_iad(dev, cp, i); 1564 kref_get(&intfc->ref); 1565 1566 alt = usb_altnum_to_altsetting(intf, 0); 1567 1568 /* No altsetting 0? We'll assume the first altsetting. 1569 * We could use a GetInterface call, but if a device is 1570 * so non-compliant that it doesn't have altsetting 0 1571 * then I wouldn't trust its reply anyway. 1572 */ 1573 if (!alt) 1574 alt = &intf->altsetting[0]; 1575 1576 intf->cur_altsetting = alt; 1577 usb_enable_interface(dev, intf); 1578 intf->dev.parent = &dev->dev; 1579 intf->dev.driver = NULL; 1580 intf->dev.bus = &usb_bus_type; 1581 intf->dev.type = &usb_if_device_type; 1582 intf->dev.dma_mask = dev->dev.dma_mask; 1583 device_initialize (&intf->dev); 1584 mark_quiesced(intf); 1585 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d", 1586 dev->bus->busnum, dev->devpath, 1587 configuration, alt->desc.bInterfaceNumber); 1588 } 1589 kfree(new_interfaces); 1590 1591 if (cp->string == NULL) 1592 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1593 1594 /* Now that all the interfaces are set up, register them 1595 * to trigger binding of drivers to interfaces. probe() 1596 * routines may install different altsettings and may 1597 * claim() any interfaces not yet bound. Many class drivers 1598 * need that: CDC, audio, video, etc. 1599 */ 1600 for (i = 0; i < nintf; ++i) { 1601 struct usb_interface *intf = cp->interface[i]; 1602 1603 dev_dbg (&dev->dev, 1604 "adding %s (config #%d, interface %d)\n", 1605 intf->dev.bus_id, configuration, 1606 intf->cur_altsetting->desc.bInterfaceNumber); 1607 ret = device_add (&intf->dev); 1608 if (ret != 0) { 1609 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1610 intf->dev.bus_id, ret); 1611 continue; 1612 } 1613 usb_create_sysfs_intf_files (intf); 1614 } 1615 1616 usb_autosuspend_device(dev); 1617 return 0; 1618 } 1619 1620 struct set_config_request { 1621 struct usb_device *udev; 1622 int config; 1623 struct work_struct work; 1624 }; 1625 1626 /* Worker routine for usb_driver_set_configuration() */ 1627 static void driver_set_config_work(struct work_struct *work) 1628 { 1629 struct set_config_request *req = 1630 container_of(work, struct set_config_request, work); 1631 1632 usb_lock_device(req->udev); 1633 usb_set_configuration(req->udev, req->config); 1634 usb_unlock_device(req->udev); 1635 usb_put_dev(req->udev); 1636 kfree(req); 1637 } 1638 1639 /** 1640 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1641 * @udev: the device whose configuration is being updated 1642 * @config: the configuration being chosen. 1643 * Context: In process context, must be able to sleep 1644 * 1645 * Device interface drivers are not allowed to change device configurations. 1646 * This is because changing configurations will destroy the interface the 1647 * driver is bound to and create new ones; it would be like a floppy-disk 1648 * driver telling the computer to replace the floppy-disk drive with a 1649 * tape drive! 1650 * 1651 * Still, in certain specialized circumstances the need may arise. This 1652 * routine gets around the normal restrictions by using a work thread to 1653 * submit the change-config request. 1654 * 1655 * Returns 0 if the request was succesfully queued, error code otherwise. 1656 * The caller has no way to know whether the queued request will eventually 1657 * succeed. 1658 */ 1659 int usb_driver_set_configuration(struct usb_device *udev, int config) 1660 { 1661 struct set_config_request *req; 1662 1663 req = kmalloc(sizeof(*req), GFP_KERNEL); 1664 if (!req) 1665 return -ENOMEM; 1666 req->udev = udev; 1667 req->config = config; 1668 INIT_WORK(&req->work, driver_set_config_work); 1669 1670 usb_get_dev(udev); 1671 schedule_work(&req->work); 1672 return 0; 1673 } 1674 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1675 1676 // synchronous request completion model 1677 EXPORT_SYMBOL(usb_control_msg); 1678 EXPORT_SYMBOL(usb_bulk_msg); 1679 1680 EXPORT_SYMBOL(usb_sg_init); 1681 EXPORT_SYMBOL(usb_sg_cancel); 1682 EXPORT_SYMBOL(usb_sg_wait); 1683 1684 // synchronous control message convenience routines 1685 EXPORT_SYMBOL(usb_get_descriptor); 1686 EXPORT_SYMBOL(usb_get_status); 1687 EXPORT_SYMBOL(usb_string); 1688 1689 // synchronous calls that also maintain usbcore state 1690 EXPORT_SYMBOL(usb_clear_halt); 1691 EXPORT_SYMBOL(usb_reset_configuration); 1692 EXPORT_SYMBOL(usb_set_interface); 1693 1694