xref: /linux/drivers/usb/core/message.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <linux/usb/quirks.h>
15 #include <asm/byteorder.h>
16 #include <asm/scatterlist.h>
17 
18 #include "hcd.h"	/* for usbcore internals */
19 #include "usb.h"
20 
21 static void usb_api_blocking_completion(struct urb *urb)
22 {
23 	complete((struct completion *)urb->context);
24 }
25 
26 
27 /*
28  * Starts urb and waits for completion or timeout. Note that this call
29  * is NOT interruptible. Many device driver i/o requests should be
30  * interruptible and therefore these drivers should implement their
31  * own interruptible routines.
32  */
33 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
34 {
35 	struct completion done;
36 	unsigned long expire;
37 	int status;
38 
39 	init_completion(&done);
40 	urb->context = &done;
41 	urb->actual_length = 0;
42 	status = usb_submit_urb(urb, GFP_NOIO);
43 	if (unlikely(status))
44 		goto out;
45 
46 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
47 	if (!wait_for_completion_timeout(&done, expire)) {
48 
49 		dev_dbg(&urb->dev->dev,
50 			"%s timed out on ep%d%s len=%d/%d\n",
51 			current->comm,
52 			usb_pipeendpoint(urb->pipe),
53 			usb_pipein(urb->pipe) ? "in" : "out",
54 			urb->actual_length,
55 			urb->transfer_buffer_length);
56 
57 		usb_kill_urb(urb);
58 		status = urb->status == -ENOENT ? -ETIMEDOUT : urb->status;
59 	} else
60 		status = urb->status;
61 out:
62 	if (actual_length)
63 		*actual_length = urb->actual_length;
64 
65 	usb_free_urb(urb);
66 	return status;
67 }
68 
69 /*-------------------------------------------------------------------*/
70 // returns status (negative) or length (positive)
71 static int usb_internal_control_msg(struct usb_device *usb_dev,
72 				    unsigned int pipe,
73 				    struct usb_ctrlrequest *cmd,
74 				    void *data, int len, int timeout)
75 {
76 	struct urb *urb;
77 	int retv;
78 	int length;
79 
80 	urb = usb_alloc_urb(0, GFP_NOIO);
81 	if (!urb)
82 		return -ENOMEM;
83 
84 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
85 			     len, usb_api_blocking_completion, NULL);
86 
87 	retv = usb_start_wait_urb(urb, timeout, &length);
88 	if (retv < 0)
89 		return retv;
90 	else
91 		return length;
92 }
93 
94 /**
95  *	usb_control_msg - Builds a control urb, sends it off and waits for completion
96  *	@dev: pointer to the usb device to send the message to
97  *	@pipe: endpoint "pipe" to send the message to
98  *	@request: USB message request value
99  *	@requesttype: USB message request type value
100  *	@value: USB message value
101  *	@index: USB message index value
102  *	@data: pointer to the data to send
103  *	@size: length in bytes of the data to send
104  *	@timeout: time in msecs to wait for the message to complete before
105  *		timing out (if 0 the wait is forever)
106  *	Context: !in_interrupt ()
107  *
108  *	This function sends a simple control message to a specified endpoint
109  *	and waits for the message to complete, or timeout.
110  *
111  *	If successful, it returns the number of bytes transferred, otherwise a negative error number.
112  *
113  *	Don't use this function from within an interrupt context, like a
114  *	bottom half handler.  If you need an asynchronous message, or need to send
115  *	a message from within interrupt context, use usb_submit_urb()
116  *      If a thread in your driver uses this call, make sure your disconnect()
117  *      method can wait for it to complete.  Since you don't have a handle on
118  *      the URB used, you can't cancel the request.
119  */
120 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
121 			 __u16 value, __u16 index, void *data, __u16 size, int timeout)
122 {
123 	struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
124 	int ret;
125 
126 	if (!dr)
127 		return -ENOMEM;
128 
129 	dr->bRequestType= requesttype;
130 	dr->bRequest = request;
131 	dr->wValue = cpu_to_le16p(&value);
132 	dr->wIndex = cpu_to_le16p(&index);
133 	dr->wLength = cpu_to_le16p(&size);
134 
135 	//dbg("usb_control_msg");
136 
137 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
138 
139 	kfree(dr);
140 
141 	return ret;
142 }
143 
144 
145 /**
146  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
147  * @usb_dev: pointer to the usb device to send the message to
148  * @pipe: endpoint "pipe" to send the message to
149  * @data: pointer to the data to send
150  * @len: length in bytes of the data to send
151  * @actual_length: pointer to a location to put the actual length transferred in bytes
152  * @timeout: time in msecs to wait for the message to complete before
153  *	timing out (if 0 the wait is forever)
154  * Context: !in_interrupt ()
155  *
156  * This function sends a simple interrupt message to a specified endpoint and
157  * waits for the message to complete, or timeout.
158  *
159  * If successful, it returns 0, otherwise a negative error number.  The number
160  * of actual bytes transferred will be stored in the actual_length paramater.
161  *
162  * Don't use this function from within an interrupt context, like a bottom half
163  * handler.  If you need an asynchronous message, or need to send a message
164  * from within interrupt context, use usb_submit_urb() If a thread in your
165  * driver uses this call, make sure your disconnect() method can wait for it to
166  * complete.  Since you don't have a handle on the URB used, you can't cancel
167  * the request.
168  */
169 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
170 		      void *data, int len, int *actual_length, int timeout)
171 {
172 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
173 }
174 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
175 
176 /**
177  *	usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
178  *	@usb_dev: pointer to the usb device to send the message to
179  *	@pipe: endpoint "pipe" to send the message to
180  *	@data: pointer to the data to send
181  *	@len: length in bytes of the data to send
182  *	@actual_length: pointer to a location to put the actual length transferred in bytes
183  *	@timeout: time in msecs to wait for the message to complete before
184  *		timing out (if 0 the wait is forever)
185  *	Context: !in_interrupt ()
186  *
187  *	This function sends a simple bulk message to a specified endpoint
188  *	and waits for the message to complete, or timeout.
189  *
190  *	If successful, it returns 0, otherwise a negative error number.
191  *	The number of actual bytes transferred will be stored in the
192  *	actual_length paramater.
193  *
194  *	Don't use this function from within an interrupt context, like a
195  *	bottom half handler.  If you need an asynchronous message, or need to
196  *	send a message from within interrupt context, use usb_submit_urb()
197  *      If a thread in your driver uses this call, make sure your disconnect()
198  *      method can wait for it to complete.  Since you don't have a handle on
199  *      the URB used, you can't cancel the request.
200  *
201  *	Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
202  *	ioctl, users are forced to abuse this routine by using it to submit
203  *	URBs for interrupt endpoints.  We will take the liberty of creating
204  *	an interrupt URB (with the default interval) if the target is an
205  *	interrupt endpoint.
206  */
207 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
208 			void *data, int len, int *actual_length, int timeout)
209 {
210 	struct urb *urb;
211 	struct usb_host_endpoint *ep;
212 
213 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
214 			[usb_pipeendpoint(pipe)];
215 	if (!ep || len < 0)
216 		return -EINVAL;
217 
218 	urb = usb_alloc_urb(0, GFP_KERNEL);
219 	if (!urb)
220 		return -ENOMEM;
221 
222 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
223 			USB_ENDPOINT_XFER_INT) {
224 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
225 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
226 				usb_api_blocking_completion, NULL,
227 				ep->desc.bInterval);
228 	} else
229 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
230 				usb_api_blocking_completion, NULL);
231 
232 	return usb_start_wait_urb(urb, timeout, actual_length);
233 }
234 
235 /*-------------------------------------------------------------------*/
236 
237 static void sg_clean (struct usb_sg_request *io)
238 {
239 	if (io->urbs) {
240 		while (io->entries--)
241 			usb_free_urb (io->urbs [io->entries]);
242 		kfree (io->urbs);
243 		io->urbs = NULL;
244 	}
245 	if (io->dev->dev.dma_mask != NULL)
246 		usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
247 	io->dev = NULL;
248 }
249 
250 static void sg_complete (struct urb *urb)
251 {
252 	struct usb_sg_request	*io = urb->context;
253 
254 	spin_lock (&io->lock);
255 
256 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
257 	 * reports, until the completion callback (this!) returns.  That lets
258 	 * device driver code (like this routine) unlink queued urbs first,
259 	 * if it needs to, since the HC won't work on them at all.  So it's
260 	 * not possible for page N+1 to overwrite page N, and so on.
261 	 *
262 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
263 	 * complete before the HCD can get requests away from hardware,
264 	 * though never during cleanup after a hard fault.
265 	 */
266 	if (io->status
267 			&& (io->status != -ECONNRESET
268 				|| urb->status != -ECONNRESET)
269 			&& urb->actual_length) {
270 		dev_err (io->dev->bus->controller,
271 			"dev %s ep%d%s scatterlist error %d/%d\n",
272 			io->dev->devpath,
273 			usb_pipeendpoint (urb->pipe),
274 			usb_pipein (urb->pipe) ? "in" : "out",
275 			urb->status, io->status);
276 		// BUG ();
277 	}
278 
279 	if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
280 		int		i, found, status;
281 
282 		io->status = urb->status;
283 
284 		/* the previous urbs, and this one, completed already.
285 		 * unlink pending urbs so they won't rx/tx bad data.
286 		 * careful: unlink can sometimes be synchronous...
287 		 */
288 		spin_unlock (&io->lock);
289 		for (i = 0, found = 0; i < io->entries; i++) {
290 			if (!io->urbs [i] || !io->urbs [i]->dev)
291 				continue;
292 			if (found) {
293 				status = usb_unlink_urb (io->urbs [i]);
294 				if (status != -EINPROGRESS
295 						&& status != -ENODEV
296 						&& status != -EBUSY)
297 					dev_err (&io->dev->dev,
298 						"%s, unlink --> %d\n",
299 						__FUNCTION__, status);
300 			} else if (urb == io->urbs [i])
301 				found = 1;
302 		}
303 		spin_lock (&io->lock);
304 	}
305 	urb->dev = NULL;
306 
307 	/* on the last completion, signal usb_sg_wait() */
308 	io->bytes += urb->actual_length;
309 	io->count--;
310 	if (!io->count)
311 		complete (&io->complete);
312 
313 	spin_unlock (&io->lock);
314 }
315 
316 
317 /**
318  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
319  * @io: request block being initialized.  until usb_sg_wait() returns,
320  *	treat this as a pointer to an opaque block of memory,
321  * @dev: the usb device that will send or receive the data
322  * @pipe: endpoint "pipe" used to transfer the data
323  * @period: polling rate for interrupt endpoints, in frames or
324  * 	(for high speed endpoints) microframes; ignored for bulk
325  * @sg: scatterlist entries
326  * @nents: how many entries in the scatterlist
327  * @length: how many bytes to send from the scatterlist, or zero to
328  * 	send every byte identified in the list.
329  * @mem_flags: SLAB_* flags affecting memory allocations in this call
330  *
331  * Returns zero for success, else a negative errno value.  This initializes a
332  * scatter/gather request, allocating resources such as I/O mappings and urb
333  * memory (except maybe memory used by USB controller drivers).
334  *
335  * The request must be issued using usb_sg_wait(), which waits for the I/O to
336  * complete (or to be canceled) and then cleans up all resources allocated by
337  * usb_sg_init().
338  *
339  * The request may be canceled with usb_sg_cancel(), either before or after
340  * usb_sg_wait() is called.
341  */
342 int usb_sg_init (
343 	struct usb_sg_request	*io,
344 	struct usb_device	*dev,
345 	unsigned		pipe,
346 	unsigned		period,
347 	struct scatterlist	*sg,
348 	int			nents,
349 	size_t			length,
350 	gfp_t			mem_flags
351 )
352 {
353 	int			i;
354 	int			urb_flags;
355 	int			dma;
356 
357 	if (!io || !dev || !sg
358 			|| usb_pipecontrol (pipe)
359 			|| usb_pipeisoc (pipe)
360 			|| nents <= 0)
361 		return -EINVAL;
362 
363 	spin_lock_init (&io->lock);
364 	io->dev = dev;
365 	io->pipe = pipe;
366 	io->sg = sg;
367 	io->nents = nents;
368 
369 	/* not all host controllers use DMA (like the mainstream pci ones);
370 	 * they can use PIO (sl811) or be software over another transport.
371 	 */
372 	dma = (dev->dev.dma_mask != NULL);
373 	if (dma)
374 		io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
375 	else
376 		io->entries = nents;
377 
378 	/* initialize all the urbs we'll use */
379 	if (io->entries <= 0)
380 		return io->entries;
381 
382 	io->count = io->entries;
383 	io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
384 	if (!io->urbs)
385 		goto nomem;
386 
387 	urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
388 	if (usb_pipein (pipe))
389 		urb_flags |= URB_SHORT_NOT_OK;
390 
391 	for (i = 0; i < io->entries; i++) {
392 		unsigned		len;
393 
394 		io->urbs [i] = usb_alloc_urb (0, mem_flags);
395 		if (!io->urbs [i]) {
396 			io->entries = i;
397 			goto nomem;
398 		}
399 
400 		io->urbs [i]->dev = NULL;
401 		io->urbs [i]->pipe = pipe;
402 		io->urbs [i]->interval = period;
403 		io->urbs [i]->transfer_flags = urb_flags;
404 
405 		io->urbs [i]->complete = sg_complete;
406 		io->urbs [i]->context = io;
407 
408 		/*
409 		 * Some systems need to revert to PIO when DMA is temporarily
410 		 * unavailable.  For their sakes, both transfer_buffer and
411 		 * transfer_dma are set when possible.  However this can only
412 		 * work on systems without HIGHMEM, since DMA buffers located
413 		 * in high memory are not directly addressable by the CPU for
414 		 * PIO ... so when HIGHMEM is in use, transfer_buffer is NULL
415 		 * to prevent stale pointers and to help spot bugs.
416 		 */
417 		if (dma) {
418 			io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
419 			len = sg_dma_len (sg + i);
420 #ifdef CONFIG_HIGHMEM
421 			io->urbs[i]->transfer_buffer = NULL;
422 #else
423 			io->urbs[i]->transfer_buffer =
424 				page_address(sg[i].page) + sg[i].offset;
425 #endif
426 		} else {
427 			/* hc may use _only_ transfer_buffer */
428 			io->urbs [i]->transfer_buffer =
429 				page_address (sg [i].page) + sg [i].offset;
430 			len = sg [i].length;
431 		}
432 
433 		if (length) {
434 			len = min_t (unsigned, len, length);
435 			length -= len;
436 			if (length == 0)
437 				io->entries = i + 1;
438 		}
439 		io->urbs [i]->transfer_buffer_length = len;
440 	}
441 	io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
442 
443 	/* transaction state */
444 	io->status = 0;
445 	io->bytes = 0;
446 	init_completion (&io->complete);
447 	return 0;
448 
449 nomem:
450 	sg_clean (io);
451 	return -ENOMEM;
452 }
453 
454 
455 /**
456  * usb_sg_wait - synchronously execute scatter/gather request
457  * @io: request block handle, as initialized with usb_sg_init().
458  * 	some fields become accessible when this call returns.
459  * Context: !in_interrupt ()
460  *
461  * This function blocks until the specified I/O operation completes.  It
462  * leverages the grouping of the related I/O requests to get good transfer
463  * rates, by queueing the requests.  At higher speeds, such queuing can
464  * significantly improve USB throughput.
465  *
466  * There are three kinds of completion for this function.
467  * (1) success, where io->status is zero.  The number of io->bytes
468  *     transferred is as requested.
469  * (2) error, where io->status is a negative errno value.  The number
470  *     of io->bytes transferred before the error is usually less
471  *     than requested, and can be nonzero.
472  * (3) cancellation, a type of error with status -ECONNRESET that
473  *     is initiated by usb_sg_cancel().
474  *
475  * When this function returns, all memory allocated through usb_sg_init() or
476  * this call will have been freed.  The request block parameter may still be
477  * passed to usb_sg_cancel(), or it may be freed.  It could also be
478  * reinitialized and then reused.
479  *
480  * Data Transfer Rates:
481  *
482  * Bulk transfers are valid for full or high speed endpoints.
483  * The best full speed data rate is 19 packets of 64 bytes each
484  * per frame, or 1216 bytes per millisecond.
485  * The best high speed data rate is 13 packets of 512 bytes each
486  * per microframe, or 52 KBytes per millisecond.
487  *
488  * The reason to use interrupt transfers through this API would most likely
489  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
490  * could be transferred.  That capability is less useful for low or full
491  * speed interrupt endpoints, which allow at most one packet per millisecond,
492  * of at most 8 or 64 bytes (respectively).
493  */
494 void usb_sg_wait (struct usb_sg_request *io)
495 {
496 	int		i, entries = io->entries;
497 
498 	/* queue the urbs.  */
499 	spin_lock_irq (&io->lock);
500 	i = 0;
501 	while (i < entries && !io->status) {
502 		int	retval;
503 
504 		io->urbs [i]->dev = io->dev;
505 		retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC);
506 
507 		/* after we submit, let completions or cancelations fire;
508 		 * we handshake using io->status.
509 		 */
510 		spin_unlock_irq (&io->lock);
511 		switch (retval) {
512 			/* maybe we retrying will recover */
513 		case -ENXIO:	// hc didn't queue this one
514 		case -EAGAIN:
515 		case -ENOMEM:
516 			io->urbs[i]->dev = NULL;
517 			retval = 0;
518 			yield ();
519 			break;
520 
521 			/* no error? continue immediately.
522 			 *
523 			 * NOTE: to work better with UHCI (4K I/O buffer may
524 			 * need 3K of TDs) it may be good to limit how many
525 			 * URBs are queued at once; N milliseconds?
526 			 */
527 		case 0:
528 			++i;
529 			cpu_relax ();
530 			break;
531 
532 			/* fail any uncompleted urbs */
533 		default:
534 			io->urbs [i]->dev = NULL;
535 			io->urbs [i]->status = retval;
536 			dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
537 				__FUNCTION__, retval);
538 			usb_sg_cancel (io);
539 		}
540 		spin_lock_irq (&io->lock);
541 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
542 			io->status = retval;
543 	}
544 	io->count -= entries - i;
545 	if (io->count == 0)
546 		complete (&io->complete);
547 	spin_unlock_irq (&io->lock);
548 
549 	/* OK, yes, this could be packaged as non-blocking.
550 	 * So could the submit loop above ... but it's easier to
551 	 * solve neither problem than to solve both!
552 	 */
553 	wait_for_completion (&io->complete);
554 
555 	sg_clean (io);
556 }
557 
558 /**
559  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
560  * @io: request block, initialized with usb_sg_init()
561  *
562  * This stops a request after it has been started by usb_sg_wait().
563  * It can also prevents one initialized by usb_sg_init() from starting,
564  * so that call just frees resources allocated to the request.
565  */
566 void usb_sg_cancel (struct usb_sg_request *io)
567 {
568 	unsigned long	flags;
569 
570 	spin_lock_irqsave (&io->lock, flags);
571 
572 	/* shut everything down, if it didn't already */
573 	if (!io->status) {
574 		int	i;
575 
576 		io->status = -ECONNRESET;
577 		spin_unlock (&io->lock);
578 		for (i = 0; i < io->entries; i++) {
579 			int	retval;
580 
581 			if (!io->urbs [i]->dev)
582 				continue;
583 			retval = usb_unlink_urb (io->urbs [i]);
584 			if (retval != -EINPROGRESS && retval != -EBUSY)
585 				dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
586 					__FUNCTION__, retval);
587 		}
588 		spin_lock (&io->lock);
589 	}
590 	spin_unlock_irqrestore (&io->lock, flags);
591 }
592 
593 /*-------------------------------------------------------------------*/
594 
595 /**
596  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
597  * @dev: the device whose descriptor is being retrieved
598  * @type: the descriptor type (USB_DT_*)
599  * @index: the number of the descriptor
600  * @buf: where to put the descriptor
601  * @size: how big is "buf"?
602  * Context: !in_interrupt ()
603  *
604  * Gets a USB descriptor.  Convenience functions exist to simplify
605  * getting some types of descriptors.  Use
606  * usb_get_string() or usb_string() for USB_DT_STRING.
607  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
608  * are part of the device structure.
609  * In addition to a number of USB-standard descriptors, some
610  * devices also use class-specific or vendor-specific descriptors.
611  *
612  * This call is synchronous, and may not be used in an interrupt context.
613  *
614  * Returns the number of bytes received on success, or else the status code
615  * returned by the underlying usb_control_msg() call.
616  */
617 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
618 {
619 	int i;
620 	int result;
621 
622 	memset(buf,0,size);	// Make sure we parse really received data
623 
624 	for (i = 0; i < 3; ++i) {
625 		/* retry on length 0 or stall; some devices are flakey */
626 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
627 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
628 				(type << 8) + index, 0, buf, size,
629 				USB_CTRL_GET_TIMEOUT);
630 		if (result == 0 || result == -EPIPE)
631 			continue;
632 		if (result > 1 && ((u8 *)buf)[1] != type) {
633 			result = -EPROTO;
634 			continue;
635 		}
636 		break;
637 	}
638 	return result;
639 }
640 
641 /**
642  * usb_get_string - gets a string descriptor
643  * @dev: the device whose string descriptor is being retrieved
644  * @langid: code for language chosen (from string descriptor zero)
645  * @index: the number of the descriptor
646  * @buf: where to put the string
647  * @size: how big is "buf"?
648  * Context: !in_interrupt ()
649  *
650  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
651  * in little-endian byte order).
652  * The usb_string() function will often be a convenient way to turn
653  * these strings into kernel-printable form.
654  *
655  * Strings may be referenced in device, configuration, interface, or other
656  * descriptors, and could also be used in vendor-specific ways.
657  *
658  * This call is synchronous, and may not be used in an interrupt context.
659  *
660  * Returns the number of bytes received on success, or else the status code
661  * returned by the underlying usb_control_msg() call.
662  */
663 static int usb_get_string(struct usb_device *dev, unsigned short langid,
664 			  unsigned char index, void *buf, int size)
665 {
666 	int i;
667 	int result;
668 
669 	for (i = 0; i < 3; ++i) {
670 		/* retry on length 0 or stall; some devices are flakey */
671 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
672 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
673 			(USB_DT_STRING << 8) + index, langid, buf, size,
674 			USB_CTRL_GET_TIMEOUT);
675 		if (!(result == 0 || result == -EPIPE))
676 			break;
677 	}
678 	return result;
679 }
680 
681 static void usb_try_string_workarounds(unsigned char *buf, int *length)
682 {
683 	int newlength, oldlength = *length;
684 
685 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
686 		if (!isprint(buf[newlength]) || buf[newlength + 1])
687 			break;
688 
689 	if (newlength > 2) {
690 		buf[0] = newlength;
691 		*length = newlength;
692 	}
693 }
694 
695 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
696 		unsigned int index, unsigned char *buf)
697 {
698 	int rc;
699 
700 	/* Try to read the string descriptor by asking for the maximum
701 	 * possible number of bytes */
702 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
703 		rc = -EIO;
704 	else
705 		rc = usb_get_string(dev, langid, index, buf, 255);
706 
707 	/* If that failed try to read the descriptor length, then
708 	 * ask for just that many bytes */
709 	if (rc < 2) {
710 		rc = usb_get_string(dev, langid, index, buf, 2);
711 		if (rc == 2)
712 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
713 	}
714 
715 	if (rc >= 2) {
716 		if (!buf[0] && !buf[1])
717 			usb_try_string_workarounds(buf, &rc);
718 
719 		/* There might be extra junk at the end of the descriptor */
720 		if (buf[0] < rc)
721 			rc = buf[0];
722 
723 		rc = rc - (rc & 1); /* force a multiple of two */
724 	}
725 
726 	if (rc < 2)
727 		rc = (rc < 0 ? rc : -EINVAL);
728 
729 	return rc;
730 }
731 
732 /**
733  * usb_string - returns ISO 8859-1 version of a string descriptor
734  * @dev: the device whose string descriptor is being retrieved
735  * @index: the number of the descriptor
736  * @buf: where to put the string
737  * @size: how big is "buf"?
738  * Context: !in_interrupt ()
739  *
740  * This converts the UTF-16LE encoded strings returned by devices, from
741  * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
742  * that are more usable in most kernel contexts.  Note that all characters
743  * in the chosen descriptor that can't be encoded using ISO-8859-1
744  * are converted to the question mark ("?") character, and this function
745  * chooses strings in the first language supported by the device.
746  *
747  * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
748  * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
749  * and is appropriate for use many uses of English and several other
750  * Western European languages.  (But it doesn't include the "Euro" symbol.)
751  *
752  * This call is synchronous, and may not be used in an interrupt context.
753  *
754  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
755  */
756 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
757 {
758 	unsigned char *tbuf;
759 	int err;
760 	unsigned int u, idx;
761 
762 	if (dev->state == USB_STATE_SUSPENDED)
763 		return -EHOSTUNREACH;
764 	if (size <= 0 || !buf || !index)
765 		return -EINVAL;
766 	buf[0] = 0;
767 	tbuf = kmalloc(256, GFP_KERNEL);
768 	if (!tbuf)
769 		return -ENOMEM;
770 
771 	/* get langid for strings if it's not yet known */
772 	if (!dev->have_langid) {
773 		err = usb_string_sub(dev, 0, 0, tbuf);
774 		if (err < 0) {
775 			dev_err (&dev->dev,
776 				"string descriptor 0 read error: %d\n",
777 				err);
778 			goto errout;
779 		} else if (err < 4) {
780 			dev_err (&dev->dev, "string descriptor 0 too short\n");
781 			err = -EINVAL;
782 			goto errout;
783 		} else {
784 			dev->have_langid = 1;
785 			dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
786 				/* always use the first langid listed */
787 			dev_dbg (&dev->dev, "default language 0x%04x\n",
788 				dev->string_langid);
789 		}
790 	}
791 
792 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
793 	if (err < 0)
794 		goto errout;
795 
796 	size--;		/* leave room for trailing NULL char in output buffer */
797 	for (idx = 0, u = 2; u < err; u += 2) {
798 		if (idx >= size)
799 			break;
800 		if (tbuf[u+1])			/* high byte */
801 			buf[idx++] = '?';  /* non ISO-8859-1 character */
802 		else
803 			buf[idx++] = tbuf[u];
804 	}
805 	buf[idx] = 0;
806 	err = idx;
807 
808 	if (tbuf[1] != USB_DT_STRING)
809 		dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
810 
811  errout:
812 	kfree(tbuf);
813 	return err;
814 }
815 
816 /**
817  * usb_cache_string - read a string descriptor and cache it for later use
818  * @udev: the device whose string descriptor is being read
819  * @index: the descriptor index
820  *
821  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
822  * or NULL if the index is 0 or the string could not be read.
823  */
824 char *usb_cache_string(struct usb_device *udev, int index)
825 {
826 	char *buf;
827 	char *smallbuf = NULL;
828 	int len;
829 
830 	if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
831 		if ((len = usb_string(udev, index, buf, 256)) > 0) {
832 			if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
833 				return buf;
834 			memcpy(smallbuf, buf, len);
835 		}
836 		kfree(buf);
837 	}
838 	return smallbuf;
839 }
840 
841 /*
842  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
843  * @dev: the device whose device descriptor is being updated
844  * @size: how much of the descriptor to read
845  * Context: !in_interrupt ()
846  *
847  * Updates the copy of the device descriptor stored in the device structure,
848  * which dedicates space for this purpose.
849  *
850  * Not exported, only for use by the core.  If drivers really want to read
851  * the device descriptor directly, they can call usb_get_descriptor() with
852  * type = USB_DT_DEVICE and index = 0.
853  *
854  * This call is synchronous, and may not be used in an interrupt context.
855  *
856  * Returns the number of bytes received on success, or else the status code
857  * returned by the underlying usb_control_msg() call.
858  */
859 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
860 {
861 	struct usb_device_descriptor *desc;
862 	int ret;
863 
864 	if (size > sizeof(*desc))
865 		return -EINVAL;
866 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
867 	if (!desc)
868 		return -ENOMEM;
869 
870 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
871 	if (ret >= 0)
872 		memcpy(&dev->descriptor, desc, size);
873 	kfree(desc);
874 	return ret;
875 }
876 
877 /**
878  * usb_get_status - issues a GET_STATUS call
879  * @dev: the device whose status is being checked
880  * @type: USB_RECIP_*; for device, interface, or endpoint
881  * @target: zero (for device), else interface or endpoint number
882  * @data: pointer to two bytes of bitmap data
883  * Context: !in_interrupt ()
884  *
885  * Returns device, interface, or endpoint status.  Normally only of
886  * interest to see if the device is self powered, or has enabled the
887  * remote wakeup facility; or whether a bulk or interrupt endpoint
888  * is halted ("stalled").
889  *
890  * Bits in these status bitmaps are set using the SET_FEATURE request,
891  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
892  * function should be used to clear halt ("stall") status.
893  *
894  * This call is synchronous, and may not be used in an interrupt context.
895  *
896  * Returns the number of bytes received on success, or else the status code
897  * returned by the underlying usb_control_msg() call.
898  */
899 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
900 {
901 	int ret;
902 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
903 
904 	if (!status)
905 		return -ENOMEM;
906 
907 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
908 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
909 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
910 
911 	*(u16 *)data = *status;
912 	kfree(status);
913 	return ret;
914 }
915 
916 /**
917  * usb_clear_halt - tells device to clear endpoint halt/stall condition
918  * @dev: device whose endpoint is halted
919  * @pipe: endpoint "pipe" being cleared
920  * Context: !in_interrupt ()
921  *
922  * This is used to clear halt conditions for bulk and interrupt endpoints,
923  * as reported by URB completion status.  Endpoints that are halted are
924  * sometimes referred to as being "stalled".  Such endpoints are unable
925  * to transmit or receive data until the halt status is cleared.  Any URBs
926  * queued for such an endpoint should normally be unlinked by the driver
927  * before clearing the halt condition, as described in sections 5.7.5
928  * and 5.8.5 of the USB 2.0 spec.
929  *
930  * Note that control and isochronous endpoints don't halt, although control
931  * endpoints report "protocol stall" (for unsupported requests) using the
932  * same status code used to report a true stall.
933  *
934  * This call is synchronous, and may not be used in an interrupt context.
935  *
936  * Returns zero on success, or else the status code returned by the
937  * underlying usb_control_msg() call.
938  */
939 int usb_clear_halt(struct usb_device *dev, int pipe)
940 {
941 	int result;
942 	int endp = usb_pipeendpoint(pipe);
943 
944 	if (usb_pipein (pipe))
945 		endp |= USB_DIR_IN;
946 
947 	/* we don't care if it wasn't halted first. in fact some devices
948 	 * (like some ibmcam model 1 units) seem to expect hosts to make
949 	 * this request for iso endpoints, which can't halt!
950 	 */
951 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
952 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
953 		USB_ENDPOINT_HALT, endp, NULL, 0,
954 		USB_CTRL_SET_TIMEOUT);
955 
956 	/* don't un-halt or force to DATA0 except on success */
957 	if (result < 0)
958 		return result;
959 
960 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
961 	 * the clear "took", so some devices could lock up if you check...
962 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
963 	 *
964 	 * NOTE:  make sure the logic here doesn't diverge much from
965 	 * the copy in usb-storage, for as long as we need two copies.
966 	 */
967 
968 	/* toggle was reset by the clear */
969 	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
970 
971 	return 0;
972 }
973 
974 /**
975  * usb_disable_endpoint -- Disable an endpoint by address
976  * @dev: the device whose endpoint is being disabled
977  * @epaddr: the endpoint's address.  Endpoint number for output,
978  *	endpoint number + USB_DIR_IN for input
979  *
980  * Deallocates hcd/hardware state for this endpoint ... and nukes all
981  * pending urbs.
982  *
983  * If the HCD hasn't registered a disable() function, this sets the
984  * endpoint's maxpacket size to 0 to prevent further submissions.
985  */
986 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
987 {
988 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
989 	struct usb_host_endpoint *ep;
990 
991 	if (!dev)
992 		return;
993 
994 	if (usb_endpoint_out(epaddr)) {
995 		ep = dev->ep_out[epnum];
996 		dev->ep_out[epnum] = NULL;
997 	} else {
998 		ep = dev->ep_in[epnum];
999 		dev->ep_in[epnum] = NULL;
1000 	}
1001 	if (ep && dev->bus)
1002 		usb_hcd_endpoint_disable(dev, ep);
1003 }
1004 
1005 /**
1006  * usb_disable_interface -- Disable all endpoints for an interface
1007  * @dev: the device whose interface is being disabled
1008  * @intf: pointer to the interface descriptor
1009  *
1010  * Disables all the endpoints for the interface's current altsetting.
1011  */
1012 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1013 {
1014 	struct usb_host_interface *alt = intf->cur_altsetting;
1015 	int i;
1016 
1017 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1018 		usb_disable_endpoint(dev,
1019 				alt->endpoint[i].desc.bEndpointAddress);
1020 	}
1021 }
1022 
1023 /*
1024  * usb_disable_device - Disable all the endpoints for a USB device
1025  * @dev: the device whose endpoints are being disabled
1026  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1027  *
1028  * Disables all the device's endpoints, potentially including endpoint 0.
1029  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1030  * pending urbs) and usbcore state for the interfaces, so that usbcore
1031  * must usb_set_configuration() before any interfaces could be used.
1032  */
1033 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1034 {
1035 	int i;
1036 
1037 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1038 			skip_ep0 ? "non-ep0" : "all");
1039 	for (i = skip_ep0; i < 16; ++i) {
1040 		usb_disable_endpoint(dev, i);
1041 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1042 	}
1043 	dev->toggle[0] = dev->toggle[1] = 0;
1044 
1045 	/* getting rid of interfaces will disconnect
1046 	 * any drivers bound to them (a key side effect)
1047 	 */
1048 	if (dev->actconfig) {
1049 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1050 			struct usb_interface	*interface;
1051 
1052 			/* remove this interface if it has been registered */
1053 			interface = dev->actconfig->interface[i];
1054 			if (!device_is_registered(&interface->dev))
1055 				continue;
1056 			dev_dbg (&dev->dev, "unregistering interface %s\n",
1057 				interface->dev.bus_id);
1058 			usb_remove_sysfs_intf_files(interface);
1059 			device_del (&interface->dev);
1060 		}
1061 
1062 		/* Now that the interfaces are unbound, nobody should
1063 		 * try to access them.
1064 		 */
1065 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1066 			put_device (&dev->actconfig->interface[i]->dev);
1067 			dev->actconfig->interface[i] = NULL;
1068 		}
1069 		dev->actconfig = NULL;
1070 		if (dev->state == USB_STATE_CONFIGURED)
1071 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1072 	}
1073 }
1074 
1075 
1076 /*
1077  * usb_enable_endpoint - Enable an endpoint for USB communications
1078  * @dev: the device whose interface is being enabled
1079  * @ep: the endpoint
1080  *
1081  * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1082  * For control endpoints, both the input and output sides are handled.
1083  */
1084 static void
1085 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1086 {
1087 	unsigned int epaddr = ep->desc.bEndpointAddress;
1088 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1089 	int is_control;
1090 
1091 	is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1092 			== USB_ENDPOINT_XFER_CONTROL);
1093 	if (usb_endpoint_out(epaddr) || is_control) {
1094 		usb_settoggle(dev, epnum, 1, 0);
1095 		dev->ep_out[epnum] = ep;
1096 	}
1097 	if (!usb_endpoint_out(epaddr) || is_control) {
1098 		usb_settoggle(dev, epnum, 0, 0);
1099 		dev->ep_in[epnum] = ep;
1100 	}
1101 }
1102 
1103 /*
1104  * usb_enable_interface - Enable all the endpoints for an interface
1105  * @dev: the device whose interface is being enabled
1106  * @intf: pointer to the interface descriptor
1107  *
1108  * Enables all the endpoints for the interface's current altsetting.
1109  */
1110 static void usb_enable_interface(struct usb_device *dev,
1111 				 struct usb_interface *intf)
1112 {
1113 	struct usb_host_interface *alt = intf->cur_altsetting;
1114 	int i;
1115 
1116 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1117 		usb_enable_endpoint(dev, &alt->endpoint[i]);
1118 }
1119 
1120 /**
1121  * usb_set_interface - Makes a particular alternate setting be current
1122  * @dev: the device whose interface is being updated
1123  * @interface: the interface being updated
1124  * @alternate: the setting being chosen.
1125  * Context: !in_interrupt ()
1126  *
1127  * This is used to enable data transfers on interfaces that may not
1128  * be enabled by default.  Not all devices support such configurability.
1129  * Only the driver bound to an interface may change its setting.
1130  *
1131  * Within any given configuration, each interface may have several
1132  * alternative settings.  These are often used to control levels of
1133  * bandwidth consumption.  For example, the default setting for a high
1134  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1135  * while interrupt transfers of up to 3KBytes per microframe are legal.
1136  * Also, isochronous endpoints may never be part of an
1137  * interface's default setting.  To access such bandwidth, alternate
1138  * interface settings must be made current.
1139  *
1140  * Note that in the Linux USB subsystem, bandwidth associated with
1141  * an endpoint in a given alternate setting is not reserved until an URB
1142  * is submitted that needs that bandwidth.  Some other operating systems
1143  * allocate bandwidth early, when a configuration is chosen.
1144  *
1145  * This call is synchronous, and may not be used in an interrupt context.
1146  * Also, drivers must not change altsettings while urbs are scheduled for
1147  * endpoints in that interface; all such urbs must first be completed
1148  * (perhaps forced by unlinking).
1149  *
1150  * Returns zero on success, or else the status code returned by the
1151  * underlying usb_control_msg() call.
1152  */
1153 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1154 {
1155 	struct usb_interface *iface;
1156 	struct usb_host_interface *alt;
1157 	int ret;
1158 	int manual = 0;
1159 
1160 	if (dev->state == USB_STATE_SUSPENDED)
1161 		return -EHOSTUNREACH;
1162 
1163 	iface = usb_ifnum_to_if(dev, interface);
1164 	if (!iface) {
1165 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1166 			interface);
1167 		return -EINVAL;
1168 	}
1169 
1170 	alt = usb_altnum_to_altsetting(iface, alternate);
1171 	if (!alt) {
1172 		warn("selecting invalid altsetting %d", alternate);
1173 		return -EINVAL;
1174 	}
1175 
1176 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1177 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1178 				   alternate, interface, NULL, 0, 5000);
1179 
1180 	/* 9.4.10 says devices don't need this and are free to STALL the
1181 	 * request if the interface only has one alternate setting.
1182 	 */
1183 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1184 		dev_dbg(&dev->dev,
1185 			"manual set_interface for iface %d, alt %d\n",
1186 			interface, alternate);
1187 		manual = 1;
1188 	} else if (ret < 0)
1189 		return ret;
1190 
1191 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1192 	 * when they implement async or easily-killable versions of this or
1193 	 * other "should-be-internal" functions (like clear_halt).
1194 	 * should hcd+usbcore postprocess control requests?
1195 	 */
1196 
1197 	/* prevent submissions using previous endpoint settings */
1198 	if (device_is_registered(&iface->dev))
1199 		usb_remove_sysfs_intf_files(iface);
1200 	usb_disable_interface(dev, iface);
1201 
1202 	iface->cur_altsetting = alt;
1203 
1204 	/* If the interface only has one altsetting and the device didn't
1205 	 * accept the request, we attempt to carry out the equivalent action
1206 	 * by manually clearing the HALT feature for each endpoint in the
1207 	 * new altsetting.
1208 	 */
1209 	if (manual) {
1210 		int i;
1211 
1212 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1213 			unsigned int epaddr =
1214 				alt->endpoint[i].desc.bEndpointAddress;
1215 			unsigned int pipe =
1216 	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1217 	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1218 
1219 			usb_clear_halt(dev, pipe);
1220 		}
1221 	}
1222 
1223 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1224 	 *
1225 	 * Note:
1226 	 * Despite EP0 is always present in all interfaces/AS, the list of
1227 	 * endpoints from the descriptor does not contain EP0. Due to its
1228 	 * omnipresence one might expect EP0 being considered "affected" by
1229 	 * any SetInterface request and hence assume toggles need to be reset.
1230 	 * However, EP0 toggles are re-synced for every individual transfer
1231 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1232 	 * (Likewise, EP0 never "halts" on well designed devices.)
1233 	 */
1234 	usb_enable_interface(dev, iface);
1235 	if (device_is_registered(&iface->dev))
1236 		usb_create_sysfs_intf_files(iface);
1237 
1238 	return 0;
1239 }
1240 
1241 /**
1242  * usb_reset_configuration - lightweight device reset
1243  * @dev: the device whose configuration is being reset
1244  *
1245  * This issues a standard SET_CONFIGURATION request to the device using
1246  * the current configuration.  The effect is to reset most USB-related
1247  * state in the device, including interface altsettings (reset to zero),
1248  * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1249  * endpoints).  Other usbcore state is unchanged, including bindings of
1250  * usb device drivers to interfaces.
1251  *
1252  * Because this affects multiple interfaces, avoid using this with composite
1253  * (multi-interface) devices.  Instead, the driver for each interface may
1254  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1255  * some devices don't support the SET_INTERFACE request, and others won't
1256  * reset all the interface state (notably data toggles).  Resetting the whole
1257  * configuration would affect other drivers' interfaces.
1258  *
1259  * The caller must own the device lock.
1260  *
1261  * Returns zero on success, else a negative error code.
1262  */
1263 int usb_reset_configuration(struct usb_device *dev)
1264 {
1265 	int			i, retval;
1266 	struct usb_host_config	*config;
1267 
1268 	if (dev->state == USB_STATE_SUSPENDED)
1269 		return -EHOSTUNREACH;
1270 
1271 	/* caller must have locked the device and must own
1272 	 * the usb bus readlock (so driver bindings are stable);
1273 	 * calls during probe() are fine
1274 	 */
1275 
1276 	for (i = 1; i < 16; ++i) {
1277 		usb_disable_endpoint(dev, i);
1278 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1279 	}
1280 
1281 	config = dev->actconfig;
1282 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1283 			USB_REQ_SET_CONFIGURATION, 0,
1284 			config->desc.bConfigurationValue, 0,
1285 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1286 	if (retval < 0)
1287 		return retval;
1288 
1289 	dev->toggle[0] = dev->toggle[1] = 0;
1290 
1291 	/* re-init hc/hcd interface/endpoint state */
1292 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1293 		struct usb_interface *intf = config->interface[i];
1294 		struct usb_host_interface *alt;
1295 
1296 		if (device_is_registered(&intf->dev))
1297 			usb_remove_sysfs_intf_files(intf);
1298 		alt = usb_altnum_to_altsetting(intf, 0);
1299 
1300 		/* No altsetting 0?  We'll assume the first altsetting.
1301 		 * We could use a GetInterface call, but if a device is
1302 		 * so non-compliant that it doesn't have altsetting 0
1303 		 * then I wouldn't trust its reply anyway.
1304 		 */
1305 		if (!alt)
1306 			alt = &intf->altsetting[0];
1307 
1308 		intf->cur_altsetting = alt;
1309 		usb_enable_interface(dev, intf);
1310 		if (device_is_registered(&intf->dev))
1311 			usb_create_sysfs_intf_files(intf);
1312 	}
1313 	return 0;
1314 }
1315 
1316 void usb_release_interface(struct device *dev)
1317 {
1318 	struct usb_interface *intf = to_usb_interface(dev);
1319 	struct usb_interface_cache *intfc =
1320 			altsetting_to_usb_interface_cache(intf->altsetting);
1321 
1322 	kref_put(&intfc->ref, usb_release_interface_cache);
1323 	kfree(intf);
1324 }
1325 
1326 #ifdef	CONFIG_HOTPLUG
1327 static int usb_if_uevent(struct device *dev, char **envp, int num_envp,
1328 		 char *buffer, int buffer_size)
1329 {
1330 	struct usb_device *usb_dev;
1331 	struct usb_interface *intf;
1332 	struct usb_host_interface *alt;
1333 	int i = 0;
1334 	int length = 0;
1335 
1336 	if (!dev)
1337 		return -ENODEV;
1338 
1339 	/* driver is often null here; dev_dbg() would oops */
1340 	pr_debug ("usb %s: uevent\n", dev->bus_id);
1341 
1342 	intf = to_usb_interface(dev);
1343 	usb_dev = interface_to_usbdev(intf);
1344 	alt = intf->cur_altsetting;
1345 
1346 	if (add_uevent_var(envp, num_envp, &i,
1347 		   buffer, buffer_size, &length,
1348 		   "INTERFACE=%d/%d/%d",
1349 		   alt->desc.bInterfaceClass,
1350 		   alt->desc.bInterfaceSubClass,
1351 		   alt->desc.bInterfaceProtocol))
1352 		return -ENOMEM;
1353 
1354 	if (add_uevent_var(envp, num_envp, &i,
1355 		   buffer, buffer_size, &length,
1356 		   "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1357 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1358 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1359 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1360 		   usb_dev->descriptor.bDeviceClass,
1361 		   usb_dev->descriptor.bDeviceSubClass,
1362 		   usb_dev->descriptor.bDeviceProtocol,
1363 		   alt->desc.bInterfaceClass,
1364 		   alt->desc.bInterfaceSubClass,
1365 		   alt->desc.bInterfaceProtocol))
1366 		return -ENOMEM;
1367 
1368 	envp[i] = NULL;
1369 	return 0;
1370 }
1371 
1372 #else
1373 
1374 static int usb_if_uevent(struct device *dev, char **envp,
1375 			 int num_envp, char *buffer, int buffer_size)
1376 {
1377 	return -ENODEV;
1378 }
1379 #endif	/* CONFIG_HOTPLUG */
1380 
1381 struct device_type usb_if_device_type = {
1382 	.name =		"usb_interface",
1383 	.release =	usb_release_interface,
1384 	.uevent =	usb_if_uevent,
1385 };
1386 
1387 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1388 						       struct usb_host_config *config,
1389 						       u8 inum)
1390 {
1391 	struct usb_interface_assoc_descriptor *retval = NULL;
1392 	struct usb_interface_assoc_descriptor *intf_assoc;
1393 	int first_intf;
1394 	int last_intf;
1395 	int i;
1396 
1397 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1398 		intf_assoc = config->intf_assoc[i];
1399 		if (intf_assoc->bInterfaceCount == 0)
1400 			continue;
1401 
1402 		first_intf = intf_assoc->bFirstInterface;
1403 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1404 		if (inum >= first_intf && inum <= last_intf) {
1405 			if (!retval)
1406 				retval = intf_assoc;
1407 			else
1408 				dev_err(&dev->dev, "Interface #%d referenced"
1409 					" by multiple IADs\n", inum);
1410 		}
1411 	}
1412 
1413 	return retval;
1414 }
1415 
1416 
1417 /*
1418  * usb_set_configuration - Makes a particular device setting be current
1419  * @dev: the device whose configuration is being updated
1420  * @configuration: the configuration being chosen.
1421  * Context: !in_interrupt(), caller owns the device lock
1422  *
1423  * This is used to enable non-default device modes.  Not all devices
1424  * use this kind of configurability; many devices only have one
1425  * configuration.
1426  *
1427  * @configuration is the value of the configuration to be installed.
1428  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1429  * must be non-zero; a value of zero indicates that the device in
1430  * unconfigured.  However some devices erroneously use 0 as one of their
1431  * configuration values.  To help manage such devices, this routine will
1432  * accept @configuration = -1 as indicating the device should be put in
1433  * an unconfigured state.
1434  *
1435  * USB device configurations may affect Linux interoperability,
1436  * power consumption and the functionality available.  For example,
1437  * the default configuration is limited to using 100mA of bus power,
1438  * so that when certain device functionality requires more power,
1439  * and the device is bus powered, that functionality should be in some
1440  * non-default device configuration.  Other device modes may also be
1441  * reflected as configuration options, such as whether two ISDN
1442  * channels are available independently; and choosing between open
1443  * standard device protocols (like CDC) or proprietary ones.
1444  *
1445  * Note that USB has an additional level of device configurability,
1446  * associated with interfaces.  That configurability is accessed using
1447  * usb_set_interface().
1448  *
1449  * This call is synchronous. The calling context must be able to sleep,
1450  * must own the device lock, and must not hold the driver model's USB
1451  * bus mutex; usb device driver probe() methods cannot use this routine.
1452  *
1453  * Returns zero on success, or else the status code returned by the
1454  * underlying call that failed.  On successful completion, each interface
1455  * in the original device configuration has been destroyed, and each one
1456  * in the new configuration has been probed by all relevant usb device
1457  * drivers currently known to the kernel.
1458  */
1459 int usb_set_configuration(struct usb_device *dev, int configuration)
1460 {
1461 	int i, ret;
1462 	struct usb_host_config *cp = NULL;
1463 	struct usb_interface **new_interfaces = NULL;
1464 	int n, nintf;
1465 
1466 	if (configuration == -1)
1467 		configuration = 0;
1468 	else {
1469 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1470 			if (dev->config[i].desc.bConfigurationValue ==
1471 					configuration) {
1472 				cp = &dev->config[i];
1473 				break;
1474 			}
1475 		}
1476 	}
1477 	if ((!cp && configuration != 0))
1478 		return -EINVAL;
1479 
1480 	/* The USB spec says configuration 0 means unconfigured.
1481 	 * But if a device includes a configuration numbered 0,
1482 	 * we will accept it as a correctly configured state.
1483 	 * Use -1 if you really want to unconfigure the device.
1484 	 */
1485 	if (cp && configuration == 0)
1486 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1487 
1488 	/* Allocate memory for new interfaces before doing anything else,
1489 	 * so that if we run out then nothing will have changed. */
1490 	n = nintf = 0;
1491 	if (cp) {
1492 		nintf = cp->desc.bNumInterfaces;
1493 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1494 				GFP_KERNEL);
1495 		if (!new_interfaces) {
1496 			dev_err(&dev->dev, "Out of memory");
1497 			return -ENOMEM;
1498 		}
1499 
1500 		for (; n < nintf; ++n) {
1501 			new_interfaces[n] = kzalloc(
1502 					sizeof(struct usb_interface),
1503 					GFP_KERNEL);
1504 			if (!new_interfaces[n]) {
1505 				dev_err(&dev->dev, "Out of memory");
1506 				ret = -ENOMEM;
1507 free_interfaces:
1508 				while (--n >= 0)
1509 					kfree(new_interfaces[n]);
1510 				kfree(new_interfaces);
1511 				return ret;
1512 			}
1513 		}
1514 
1515 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1516 		if (i < 0)
1517 			dev_warn(&dev->dev, "new config #%d exceeds power "
1518 					"limit by %dmA\n",
1519 					configuration, -i);
1520 	}
1521 
1522 	/* Wake up the device so we can send it the Set-Config request */
1523 	ret = usb_autoresume_device(dev);
1524 	if (ret)
1525 		goto free_interfaces;
1526 
1527 	/* if it's already configured, clear out old state first.
1528 	 * getting rid of old interfaces means unbinding their drivers.
1529 	 */
1530 	if (dev->state != USB_STATE_ADDRESS)
1531 		usb_disable_device (dev, 1);	// Skip ep0
1532 
1533 	if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1534 			USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1535 			NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) {
1536 
1537 		/* All the old state is gone, so what else can we do?
1538 		 * The device is probably useless now anyway.
1539 		 */
1540 		cp = NULL;
1541 	}
1542 
1543 	dev->actconfig = cp;
1544 	if (!cp) {
1545 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1546 		usb_autosuspend_device(dev);
1547 		goto free_interfaces;
1548 	}
1549 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1550 
1551 	/* Initialize the new interface structures and the
1552 	 * hc/hcd/usbcore interface/endpoint state.
1553 	 */
1554 	for (i = 0; i < nintf; ++i) {
1555 		struct usb_interface_cache *intfc;
1556 		struct usb_interface *intf;
1557 		struct usb_host_interface *alt;
1558 
1559 		cp->interface[i] = intf = new_interfaces[i];
1560 		intfc = cp->intf_cache[i];
1561 		intf->altsetting = intfc->altsetting;
1562 		intf->num_altsetting = intfc->num_altsetting;
1563 		intf->intf_assoc = find_iad(dev, cp, i);
1564 		kref_get(&intfc->ref);
1565 
1566 		alt = usb_altnum_to_altsetting(intf, 0);
1567 
1568 		/* No altsetting 0?  We'll assume the first altsetting.
1569 		 * We could use a GetInterface call, but if a device is
1570 		 * so non-compliant that it doesn't have altsetting 0
1571 		 * then I wouldn't trust its reply anyway.
1572 		 */
1573 		if (!alt)
1574 			alt = &intf->altsetting[0];
1575 
1576 		intf->cur_altsetting = alt;
1577 		usb_enable_interface(dev, intf);
1578 		intf->dev.parent = &dev->dev;
1579 		intf->dev.driver = NULL;
1580 		intf->dev.bus = &usb_bus_type;
1581 		intf->dev.type = &usb_if_device_type;
1582 		intf->dev.dma_mask = dev->dev.dma_mask;
1583 		device_initialize (&intf->dev);
1584 		mark_quiesced(intf);
1585 		sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1586 			 dev->bus->busnum, dev->devpath,
1587 			 configuration, alt->desc.bInterfaceNumber);
1588 	}
1589 	kfree(new_interfaces);
1590 
1591 	if (cp->string == NULL)
1592 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1593 
1594 	/* Now that all the interfaces are set up, register them
1595 	 * to trigger binding of drivers to interfaces.  probe()
1596 	 * routines may install different altsettings and may
1597 	 * claim() any interfaces not yet bound.  Many class drivers
1598 	 * need that: CDC, audio, video, etc.
1599 	 */
1600 	for (i = 0; i < nintf; ++i) {
1601 		struct usb_interface *intf = cp->interface[i];
1602 
1603 		dev_dbg (&dev->dev,
1604 			"adding %s (config #%d, interface %d)\n",
1605 			intf->dev.bus_id, configuration,
1606 			intf->cur_altsetting->desc.bInterfaceNumber);
1607 		ret = device_add (&intf->dev);
1608 		if (ret != 0) {
1609 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1610 				intf->dev.bus_id, ret);
1611 			continue;
1612 		}
1613 		usb_create_sysfs_intf_files (intf);
1614 	}
1615 
1616 	usb_autosuspend_device(dev);
1617 	return 0;
1618 }
1619 
1620 struct set_config_request {
1621 	struct usb_device	*udev;
1622 	int			config;
1623 	struct work_struct	work;
1624 };
1625 
1626 /* Worker routine for usb_driver_set_configuration() */
1627 static void driver_set_config_work(struct work_struct *work)
1628 {
1629 	struct set_config_request *req =
1630 		container_of(work, struct set_config_request, work);
1631 
1632 	usb_lock_device(req->udev);
1633 	usb_set_configuration(req->udev, req->config);
1634 	usb_unlock_device(req->udev);
1635 	usb_put_dev(req->udev);
1636 	kfree(req);
1637 }
1638 
1639 /**
1640  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1641  * @udev: the device whose configuration is being updated
1642  * @config: the configuration being chosen.
1643  * Context: In process context, must be able to sleep
1644  *
1645  * Device interface drivers are not allowed to change device configurations.
1646  * This is because changing configurations will destroy the interface the
1647  * driver is bound to and create new ones; it would be like a floppy-disk
1648  * driver telling the computer to replace the floppy-disk drive with a
1649  * tape drive!
1650  *
1651  * Still, in certain specialized circumstances the need may arise.  This
1652  * routine gets around the normal restrictions by using a work thread to
1653  * submit the change-config request.
1654  *
1655  * Returns 0 if the request was succesfully queued, error code otherwise.
1656  * The caller has no way to know whether the queued request will eventually
1657  * succeed.
1658  */
1659 int usb_driver_set_configuration(struct usb_device *udev, int config)
1660 {
1661 	struct set_config_request *req;
1662 
1663 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1664 	if (!req)
1665 		return -ENOMEM;
1666 	req->udev = udev;
1667 	req->config = config;
1668 	INIT_WORK(&req->work, driver_set_config_work);
1669 
1670 	usb_get_dev(udev);
1671 	schedule_work(&req->work);
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1675 
1676 // synchronous request completion model
1677 EXPORT_SYMBOL(usb_control_msg);
1678 EXPORT_SYMBOL(usb_bulk_msg);
1679 
1680 EXPORT_SYMBOL(usb_sg_init);
1681 EXPORT_SYMBOL(usb_sg_cancel);
1682 EXPORT_SYMBOL(usb_sg_wait);
1683 
1684 // synchronous control message convenience routines
1685 EXPORT_SYMBOL(usb_get_descriptor);
1686 EXPORT_SYMBOL(usb_get_status);
1687 EXPORT_SYMBOL(usb_string);
1688 
1689 // synchronous calls that also maintain usbcore state
1690 EXPORT_SYMBOL(usb_clear_halt);
1691 EXPORT_SYMBOL(usb_reset_configuration);
1692 EXPORT_SYMBOL(usb_set_interface);
1693 
1694