1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/nls.h> 14 #include <linux/device.h> 15 #include <linux/scatterlist.h> 16 #include <linux/usb/quirks.h> 17 #include <asm/byteorder.h> 18 19 #include "hcd.h" /* for usbcore internals */ 20 #include "usb.h" 21 22 static void cancel_async_set_config(struct usb_device *udev); 23 24 struct api_context { 25 struct completion done; 26 int status; 27 }; 28 29 static void usb_api_blocking_completion(struct urb *urb) 30 { 31 struct api_context *ctx = urb->context; 32 33 ctx->status = urb->status; 34 complete(&ctx->done); 35 } 36 37 38 /* 39 * Starts urb and waits for completion or timeout. Note that this call 40 * is NOT interruptible. Many device driver i/o requests should be 41 * interruptible and therefore these drivers should implement their 42 * own interruptible routines. 43 */ 44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 45 { 46 struct api_context ctx; 47 unsigned long expire; 48 int retval; 49 50 init_completion(&ctx.done); 51 urb->context = &ctx; 52 urb->actual_length = 0; 53 retval = usb_submit_urb(urb, GFP_NOIO); 54 if (unlikely(retval)) 55 goto out; 56 57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 58 if (!wait_for_completion_timeout(&ctx.done, expire)) { 59 usb_kill_urb(urb); 60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 61 62 dev_dbg(&urb->dev->dev, 63 "%s timed out on ep%d%s len=%u/%u\n", 64 current->comm, 65 usb_endpoint_num(&urb->ep->desc), 66 usb_urb_dir_in(urb) ? "in" : "out", 67 urb->actual_length, 68 urb->transfer_buffer_length); 69 } else 70 retval = ctx.status; 71 out: 72 if (actual_length) 73 *actual_length = urb->actual_length; 74 75 usb_free_urb(urb); 76 return retval; 77 } 78 79 /*-------------------------------------------------------------------*/ 80 /* returns status (negative) or length (positive) */ 81 static int usb_internal_control_msg(struct usb_device *usb_dev, 82 unsigned int pipe, 83 struct usb_ctrlrequest *cmd, 84 void *data, int len, int timeout) 85 { 86 struct urb *urb; 87 int retv; 88 int length; 89 90 urb = usb_alloc_urb(0, GFP_NOIO); 91 if (!urb) 92 return -ENOMEM; 93 94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 95 len, usb_api_blocking_completion, NULL); 96 97 retv = usb_start_wait_urb(urb, timeout, &length); 98 if (retv < 0) 99 return retv; 100 else 101 return length; 102 } 103 104 /** 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion 106 * @dev: pointer to the usb device to send the message to 107 * @pipe: endpoint "pipe" to send the message to 108 * @request: USB message request value 109 * @requesttype: USB message request type value 110 * @value: USB message value 111 * @index: USB message index value 112 * @data: pointer to the data to send 113 * @size: length in bytes of the data to send 114 * @timeout: time in msecs to wait for the message to complete before timing 115 * out (if 0 the wait is forever) 116 * 117 * Context: !in_interrupt () 118 * 119 * This function sends a simple control message to a specified endpoint and 120 * waits for the message to complete, or timeout. 121 * 122 * If successful, it returns the number of bytes transferred, otherwise a 123 * negative error number. 124 * 125 * Don't use this function from within an interrupt context, like a bottom half 126 * handler. If you need an asynchronous message, or need to send a message 127 * from within interrupt context, use usb_submit_urb(). 128 * If a thread in your driver uses this call, make sure your disconnect() 129 * method can wait for it to complete. Since you don't have a handle on the 130 * URB used, you can't cancel the request. 131 */ 132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 133 __u8 requesttype, __u16 value, __u16 index, void *data, 134 __u16 size, int timeout) 135 { 136 struct usb_ctrlrequest *dr; 137 int ret; 138 139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 140 if (!dr) 141 return -ENOMEM; 142 143 dr->bRequestType = requesttype; 144 dr->bRequest = request; 145 dr->wValue = cpu_to_le16(value); 146 dr->wIndex = cpu_to_le16(index); 147 dr->wLength = cpu_to_le16(size); 148 149 /* dbg("usb_control_msg"); */ 150 151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 152 153 kfree(dr); 154 155 return ret; 156 } 157 EXPORT_SYMBOL_GPL(usb_control_msg); 158 159 /** 160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 161 * @usb_dev: pointer to the usb device to send the message to 162 * @pipe: endpoint "pipe" to send the message to 163 * @data: pointer to the data to send 164 * @len: length in bytes of the data to send 165 * @actual_length: pointer to a location to put the actual length transferred 166 * in bytes 167 * @timeout: time in msecs to wait for the message to complete before 168 * timing out (if 0 the wait is forever) 169 * 170 * Context: !in_interrupt () 171 * 172 * This function sends a simple interrupt message to a specified endpoint and 173 * waits for the message to complete, or timeout. 174 * 175 * If successful, it returns 0, otherwise a negative error number. The number 176 * of actual bytes transferred will be stored in the actual_length paramater. 177 * 178 * Don't use this function from within an interrupt context, like a bottom half 179 * handler. If you need an asynchronous message, or need to send a message 180 * from within interrupt context, use usb_submit_urb() If a thread in your 181 * driver uses this call, make sure your disconnect() method can wait for it to 182 * complete. Since you don't have a handle on the URB used, you can't cancel 183 * the request. 184 */ 185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 186 void *data, int len, int *actual_length, int timeout) 187 { 188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 189 } 190 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 191 192 /** 193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 194 * @usb_dev: pointer to the usb device to send the message to 195 * @pipe: endpoint "pipe" to send the message to 196 * @data: pointer to the data to send 197 * @len: length in bytes of the data to send 198 * @actual_length: pointer to a location to put the actual length transferred 199 * in bytes 200 * @timeout: time in msecs to wait for the message to complete before 201 * timing out (if 0 the wait is forever) 202 * 203 * Context: !in_interrupt () 204 * 205 * This function sends a simple bulk message to a specified endpoint 206 * and waits for the message to complete, or timeout. 207 * 208 * If successful, it returns 0, otherwise a negative error number. The number 209 * of actual bytes transferred will be stored in the actual_length paramater. 210 * 211 * Don't use this function from within an interrupt context, like a bottom half 212 * handler. If you need an asynchronous message, or need to send a message 213 * from within interrupt context, use usb_submit_urb() If a thread in your 214 * driver uses this call, make sure your disconnect() method can wait for it to 215 * complete. Since you don't have a handle on the URB used, you can't cancel 216 * the request. 217 * 218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 219 * users are forced to abuse this routine by using it to submit URBs for 220 * interrupt endpoints. We will take the liberty of creating an interrupt URB 221 * (with the default interval) if the target is an interrupt endpoint. 222 */ 223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 224 void *data, int len, int *actual_length, int timeout) 225 { 226 struct urb *urb; 227 struct usb_host_endpoint *ep; 228 229 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 230 [usb_pipeendpoint(pipe)]; 231 if (!ep || len < 0) 232 return -EINVAL; 233 234 urb = usb_alloc_urb(0, GFP_KERNEL); 235 if (!urb) 236 return -ENOMEM; 237 238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 239 USB_ENDPOINT_XFER_INT) { 240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 241 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 242 usb_api_blocking_completion, NULL, 243 ep->desc.bInterval); 244 } else 245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 246 usb_api_blocking_completion, NULL); 247 248 return usb_start_wait_urb(urb, timeout, actual_length); 249 } 250 EXPORT_SYMBOL_GPL(usb_bulk_msg); 251 252 /*-------------------------------------------------------------------*/ 253 254 static void sg_clean(struct usb_sg_request *io) 255 { 256 if (io->urbs) { 257 while (io->entries--) 258 usb_free_urb(io->urbs [io->entries]); 259 kfree(io->urbs); 260 io->urbs = NULL; 261 } 262 if (io->dev->dev.dma_mask != NULL) 263 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe), 264 io->sg, io->nents); 265 io->dev = NULL; 266 } 267 268 static void sg_complete(struct urb *urb) 269 { 270 struct usb_sg_request *io = urb->context; 271 int status = urb->status; 272 273 spin_lock(&io->lock); 274 275 /* In 2.5 we require hcds' endpoint queues not to progress after fault 276 * reports, until the completion callback (this!) returns. That lets 277 * device driver code (like this routine) unlink queued urbs first, 278 * if it needs to, since the HC won't work on them at all. So it's 279 * not possible for page N+1 to overwrite page N, and so on. 280 * 281 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 282 * complete before the HCD can get requests away from hardware, 283 * though never during cleanup after a hard fault. 284 */ 285 if (io->status 286 && (io->status != -ECONNRESET 287 || status != -ECONNRESET) 288 && urb->actual_length) { 289 dev_err(io->dev->bus->controller, 290 "dev %s ep%d%s scatterlist error %d/%d\n", 291 io->dev->devpath, 292 usb_endpoint_num(&urb->ep->desc), 293 usb_urb_dir_in(urb) ? "in" : "out", 294 status, io->status); 295 /* BUG (); */ 296 } 297 298 if (io->status == 0 && status && status != -ECONNRESET) { 299 int i, found, retval; 300 301 io->status = status; 302 303 /* the previous urbs, and this one, completed already. 304 * unlink pending urbs so they won't rx/tx bad data. 305 * careful: unlink can sometimes be synchronous... 306 */ 307 spin_unlock(&io->lock); 308 for (i = 0, found = 0; i < io->entries; i++) { 309 if (!io->urbs [i] || !io->urbs [i]->dev) 310 continue; 311 if (found) { 312 retval = usb_unlink_urb(io->urbs [i]); 313 if (retval != -EINPROGRESS && 314 retval != -ENODEV && 315 retval != -EBUSY) 316 dev_err(&io->dev->dev, 317 "%s, unlink --> %d\n", 318 __func__, retval); 319 } else if (urb == io->urbs [i]) 320 found = 1; 321 } 322 spin_lock(&io->lock); 323 } 324 urb->dev = NULL; 325 326 /* on the last completion, signal usb_sg_wait() */ 327 io->bytes += urb->actual_length; 328 io->count--; 329 if (!io->count) 330 complete(&io->complete); 331 332 spin_unlock(&io->lock); 333 } 334 335 336 /** 337 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 338 * @io: request block being initialized. until usb_sg_wait() returns, 339 * treat this as a pointer to an opaque block of memory, 340 * @dev: the usb device that will send or receive the data 341 * @pipe: endpoint "pipe" used to transfer the data 342 * @period: polling rate for interrupt endpoints, in frames or 343 * (for high speed endpoints) microframes; ignored for bulk 344 * @sg: scatterlist entries 345 * @nents: how many entries in the scatterlist 346 * @length: how many bytes to send from the scatterlist, or zero to 347 * send every byte identified in the list. 348 * @mem_flags: SLAB_* flags affecting memory allocations in this call 349 * 350 * Returns zero for success, else a negative errno value. This initializes a 351 * scatter/gather request, allocating resources such as I/O mappings and urb 352 * memory (except maybe memory used by USB controller drivers). 353 * 354 * The request must be issued using usb_sg_wait(), which waits for the I/O to 355 * complete (or to be canceled) and then cleans up all resources allocated by 356 * usb_sg_init(). 357 * 358 * The request may be canceled with usb_sg_cancel(), either before or after 359 * usb_sg_wait() is called. 360 */ 361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 362 unsigned pipe, unsigned period, struct scatterlist *sg, 363 int nents, size_t length, gfp_t mem_flags) 364 { 365 int i; 366 int urb_flags; 367 int dma; 368 369 if (!io || !dev || !sg 370 || usb_pipecontrol(pipe) 371 || usb_pipeisoc(pipe) 372 || nents <= 0) 373 return -EINVAL; 374 375 spin_lock_init(&io->lock); 376 io->dev = dev; 377 io->pipe = pipe; 378 io->sg = sg; 379 io->nents = nents; 380 381 /* not all host controllers use DMA (like the mainstream pci ones); 382 * they can use PIO (sl811) or be software over another transport. 383 */ 384 dma = (dev->dev.dma_mask != NULL); 385 if (dma) 386 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe), 387 sg, nents); 388 else 389 io->entries = nents; 390 391 /* initialize all the urbs we'll use */ 392 if (io->entries <= 0) 393 return io->entries; 394 395 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags); 396 if (!io->urbs) 397 goto nomem; 398 399 urb_flags = URB_NO_INTERRUPT; 400 if (dma) 401 urb_flags |= URB_NO_TRANSFER_DMA_MAP; 402 if (usb_pipein(pipe)) 403 urb_flags |= URB_SHORT_NOT_OK; 404 405 for_each_sg(sg, sg, io->entries, i) { 406 unsigned len; 407 408 io->urbs[i] = usb_alloc_urb(0, mem_flags); 409 if (!io->urbs[i]) { 410 io->entries = i; 411 goto nomem; 412 } 413 414 io->urbs[i]->dev = NULL; 415 io->urbs[i]->pipe = pipe; 416 io->urbs[i]->interval = period; 417 io->urbs[i]->transfer_flags = urb_flags; 418 419 io->urbs[i]->complete = sg_complete; 420 io->urbs[i]->context = io; 421 422 /* 423 * Some systems need to revert to PIO when DMA is temporarily 424 * unavailable. For their sakes, both transfer_buffer and 425 * transfer_dma are set when possible. However this can only 426 * work on systems without: 427 * 428 * - HIGHMEM, since DMA buffers located in high memory are 429 * not directly addressable by the CPU for PIO; 430 * 431 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to 432 * make virtually discontiguous buffers be "dma-contiguous" 433 * so that PIO and DMA need diferent numbers of URBs. 434 * 435 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL 436 * to prevent stale pointers and to help spot bugs. 437 */ 438 if (dma) { 439 io->urbs[i]->transfer_dma = sg_dma_address(sg); 440 len = sg_dma_len(sg); 441 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU) 442 io->urbs[i]->transfer_buffer = NULL; 443 #else 444 io->urbs[i]->transfer_buffer = sg_virt(sg); 445 #endif 446 } else { 447 /* hc may use _only_ transfer_buffer */ 448 io->urbs[i]->transfer_buffer = sg_virt(sg); 449 len = sg->length; 450 } 451 452 if (length) { 453 len = min_t(unsigned, len, length); 454 length -= len; 455 if (length == 0) 456 io->entries = i + 1; 457 } 458 io->urbs[i]->transfer_buffer_length = len; 459 } 460 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 461 462 /* transaction state */ 463 io->count = io->entries; 464 io->status = 0; 465 io->bytes = 0; 466 init_completion(&io->complete); 467 return 0; 468 469 nomem: 470 sg_clean(io); 471 return -ENOMEM; 472 } 473 EXPORT_SYMBOL_GPL(usb_sg_init); 474 475 /** 476 * usb_sg_wait - synchronously execute scatter/gather request 477 * @io: request block handle, as initialized with usb_sg_init(). 478 * some fields become accessible when this call returns. 479 * Context: !in_interrupt () 480 * 481 * This function blocks until the specified I/O operation completes. It 482 * leverages the grouping of the related I/O requests to get good transfer 483 * rates, by queueing the requests. At higher speeds, such queuing can 484 * significantly improve USB throughput. 485 * 486 * There are three kinds of completion for this function. 487 * (1) success, where io->status is zero. The number of io->bytes 488 * transferred is as requested. 489 * (2) error, where io->status is a negative errno value. The number 490 * of io->bytes transferred before the error is usually less 491 * than requested, and can be nonzero. 492 * (3) cancellation, a type of error with status -ECONNRESET that 493 * is initiated by usb_sg_cancel(). 494 * 495 * When this function returns, all memory allocated through usb_sg_init() or 496 * this call will have been freed. The request block parameter may still be 497 * passed to usb_sg_cancel(), or it may be freed. It could also be 498 * reinitialized and then reused. 499 * 500 * Data Transfer Rates: 501 * 502 * Bulk transfers are valid for full or high speed endpoints. 503 * The best full speed data rate is 19 packets of 64 bytes each 504 * per frame, or 1216 bytes per millisecond. 505 * The best high speed data rate is 13 packets of 512 bytes each 506 * per microframe, or 52 KBytes per millisecond. 507 * 508 * The reason to use interrupt transfers through this API would most likely 509 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 510 * could be transferred. That capability is less useful for low or full 511 * speed interrupt endpoints, which allow at most one packet per millisecond, 512 * of at most 8 or 64 bytes (respectively). 513 */ 514 void usb_sg_wait(struct usb_sg_request *io) 515 { 516 int i; 517 int entries = io->entries; 518 519 /* queue the urbs. */ 520 spin_lock_irq(&io->lock); 521 i = 0; 522 while (i < entries && !io->status) { 523 int retval; 524 525 io->urbs[i]->dev = io->dev; 526 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC); 527 528 /* after we submit, let completions or cancelations fire; 529 * we handshake using io->status. 530 */ 531 spin_unlock_irq(&io->lock); 532 switch (retval) { 533 /* maybe we retrying will recover */ 534 case -ENXIO: /* hc didn't queue this one */ 535 case -EAGAIN: 536 case -ENOMEM: 537 io->urbs[i]->dev = NULL; 538 retval = 0; 539 yield(); 540 break; 541 542 /* no error? continue immediately. 543 * 544 * NOTE: to work better with UHCI (4K I/O buffer may 545 * need 3K of TDs) it may be good to limit how many 546 * URBs are queued at once; N milliseconds? 547 */ 548 case 0: 549 ++i; 550 cpu_relax(); 551 break; 552 553 /* fail any uncompleted urbs */ 554 default: 555 io->urbs[i]->dev = NULL; 556 io->urbs[i]->status = retval; 557 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 558 __func__, retval); 559 usb_sg_cancel(io); 560 } 561 spin_lock_irq(&io->lock); 562 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 563 io->status = retval; 564 } 565 io->count -= entries - i; 566 if (io->count == 0) 567 complete(&io->complete); 568 spin_unlock_irq(&io->lock); 569 570 /* OK, yes, this could be packaged as non-blocking. 571 * So could the submit loop above ... but it's easier to 572 * solve neither problem than to solve both! 573 */ 574 wait_for_completion(&io->complete); 575 576 sg_clean(io); 577 } 578 EXPORT_SYMBOL_GPL(usb_sg_wait); 579 580 /** 581 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 582 * @io: request block, initialized with usb_sg_init() 583 * 584 * This stops a request after it has been started by usb_sg_wait(). 585 * It can also prevents one initialized by usb_sg_init() from starting, 586 * so that call just frees resources allocated to the request. 587 */ 588 void usb_sg_cancel(struct usb_sg_request *io) 589 { 590 unsigned long flags; 591 592 spin_lock_irqsave(&io->lock, flags); 593 594 /* shut everything down, if it didn't already */ 595 if (!io->status) { 596 int i; 597 598 io->status = -ECONNRESET; 599 spin_unlock(&io->lock); 600 for (i = 0; i < io->entries; i++) { 601 int retval; 602 603 if (!io->urbs [i]->dev) 604 continue; 605 retval = usb_unlink_urb(io->urbs [i]); 606 if (retval != -EINPROGRESS && retval != -EBUSY) 607 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 608 __func__, retval); 609 } 610 spin_lock(&io->lock); 611 } 612 spin_unlock_irqrestore(&io->lock, flags); 613 } 614 EXPORT_SYMBOL_GPL(usb_sg_cancel); 615 616 /*-------------------------------------------------------------------*/ 617 618 /** 619 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 620 * @dev: the device whose descriptor is being retrieved 621 * @type: the descriptor type (USB_DT_*) 622 * @index: the number of the descriptor 623 * @buf: where to put the descriptor 624 * @size: how big is "buf"? 625 * Context: !in_interrupt () 626 * 627 * Gets a USB descriptor. Convenience functions exist to simplify 628 * getting some types of descriptors. Use 629 * usb_get_string() or usb_string() for USB_DT_STRING. 630 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 631 * are part of the device structure. 632 * In addition to a number of USB-standard descriptors, some 633 * devices also use class-specific or vendor-specific descriptors. 634 * 635 * This call is synchronous, and may not be used in an interrupt context. 636 * 637 * Returns the number of bytes received on success, or else the status code 638 * returned by the underlying usb_control_msg() call. 639 */ 640 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 641 unsigned char index, void *buf, int size) 642 { 643 int i; 644 int result; 645 646 memset(buf, 0, size); /* Make sure we parse really received data */ 647 648 for (i = 0; i < 3; ++i) { 649 /* retry on length 0 or error; some devices are flakey */ 650 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 651 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 652 (type << 8) + index, 0, buf, size, 653 USB_CTRL_GET_TIMEOUT); 654 if (result <= 0 && result != -ETIMEDOUT) 655 continue; 656 if (result > 1 && ((u8 *)buf)[1] != type) { 657 result = -ENODATA; 658 continue; 659 } 660 break; 661 } 662 return result; 663 } 664 EXPORT_SYMBOL_GPL(usb_get_descriptor); 665 666 /** 667 * usb_get_string - gets a string descriptor 668 * @dev: the device whose string descriptor is being retrieved 669 * @langid: code for language chosen (from string descriptor zero) 670 * @index: the number of the descriptor 671 * @buf: where to put the string 672 * @size: how big is "buf"? 673 * Context: !in_interrupt () 674 * 675 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 676 * in little-endian byte order). 677 * The usb_string() function will often be a convenient way to turn 678 * these strings into kernel-printable form. 679 * 680 * Strings may be referenced in device, configuration, interface, or other 681 * descriptors, and could also be used in vendor-specific ways. 682 * 683 * This call is synchronous, and may not be used in an interrupt context. 684 * 685 * Returns the number of bytes received on success, or else the status code 686 * returned by the underlying usb_control_msg() call. 687 */ 688 static int usb_get_string(struct usb_device *dev, unsigned short langid, 689 unsigned char index, void *buf, int size) 690 { 691 int i; 692 int result; 693 694 for (i = 0; i < 3; ++i) { 695 /* retry on length 0 or stall; some devices are flakey */ 696 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 697 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 698 (USB_DT_STRING << 8) + index, langid, buf, size, 699 USB_CTRL_GET_TIMEOUT); 700 if (result == 0 || result == -EPIPE) 701 continue; 702 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 703 result = -ENODATA; 704 continue; 705 } 706 break; 707 } 708 return result; 709 } 710 711 static void usb_try_string_workarounds(unsigned char *buf, int *length) 712 { 713 int newlength, oldlength = *length; 714 715 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 716 if (!isprint(buf[newlength]) || buf[newlength + 1]) 717 break; 718 719 if (newlength > 2) { 720 buf[0] = newlength; 721 *length = newlength; 722 } 723 } 724 725 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 726 unsigned int index, unsigned char *buf) 727 { 728 int rc; 729 730 /* Try to read the string descriptor by asking for the maximum 731 * possible number of bytes */ 732 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 733 rc = -EIO; 734 else 735 rc = usb_get_string(dev, langid, index, buf, 255); 736 737 /* If that failed try to read the descriptor length, then 738 * ask for just that many bytes */ 739 if (rc < 2) { 740 rc = usb_get_string(dev, langid, index, buf, 2); 741 if (rc == 2) 742 rc = usb_get_string(dev, langid, index, buf, buf[0]); 743 } 744 745 if (rc >= 2) { 746 if (!buf[0] && !buf[1]) 747 usb_try_string_workarounds(buf, &rc); 748 749 /* There might be extra junk at the end of the descriptor */ 750 if (buf[0] < rc) 751 rc = buf[0]; 752 753 rc = rc - (rc & 1); /* force a multiple of two */ 754 } 755 756 if (rc < 2) 757 rc = (rc < 0 ? rc : -EINVAL); 758 759 return rc; 760 } 761 762 /** 763 * usb_string - returns UTF-8 version of a string descriptor 764 * @dev: the device whose string descriptor is being retrieved 765 * @index: the number of the descriptor 766 * @buf: where to put the string 767 * @size: how big is "buf"? 768 * Context: !in_interrupt () 769 * 770 * This converts the UTF-16LE encoded strings returned by devices, from 771 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 772 * that are more usable in most kernel contexts. Note that this function 773 * chooses strings in the first language supported by the device. 774 * 775 * This call is synchronous, and may not be used in an interrupt context. 776 * 777 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 778 */ 779 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 780 { 781 unsigned char *tbuf; 782 int err; 783 784 if (dev->state == USB_STATE_SUSPENDED) 785 return -EHOSTUNREACH; 786 if (size <= 0 || !buf || !index) 787 return -EINVAL; 788 buf[0] = 0; 789 tbuf = kmalloc(256, GFP_NOIO); 790 if (!tbuf) 791 return -ENOMEM; 792 793 /* get langid for strings if it's not yet known */ 794 if (!dev->have_langid) { 795 err = usb_string_sub(dev, 0, 0, tbuf); 796 if (err < 0) { 797 dev_err(&dev->dev, 798 "string descriptor 0 read error: %d\n", 799 err); 800 } else if (err < 4) { 801 dev_err(&dev->dev, "string descriptor 0 too short\n"); 802 } else { 803 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 804 /* always use the first langid listed */ 805 dev_dbg(&dev->dev, "default language 0x%04x\n", 806 dev->string_langid); 807 } 808 809 dev->have_langid = 1; 810 } 811 812 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 813 if (err < 0) 814 goto errout; 815 816 size--; /* leave room for trailing NULL char in output buffer */ 817 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 818 UTF16_LITTLE_ENDIAN, buf, size); 819 buf[err] = 0; 820 821 if (tbuf[1] != USB_DT_STRING) 822 dev_dbg(&dev->dev, 823 "wrong descriptor type %02x for string %d (\"%s\")\n", 824 tbuf[1], index, buf); 825 826 errout: 827 kfree(tbuf); 828 return err; 829 } 830 EXPORT_SYMBOL_GPL(usb_string); 831 832 /* one UTF-8-encoded 16-bit character has at most three bytes */ 833 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 834 835 /** 836 * usb_cache_string - read a string descriptor and cache it for later use 837 * @udev: the device whose string descriptor is being read 838 * @index: the descriptor index 839 * 840 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 841 * or NULL if the index is 0 or the string could not be read. 842 */ 843 char *usb_cache_string(struct usb_device *udev, int index) 844 { 845 char *buf; 846 char *smallbuf = NULL; 847 int len; 848 849 if (index <= 0) 850 return NULL; 851 852 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_KERNEL); 853 if (buf) { 854 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 855 if (len > 0) { 856 smallbuf = kmalloc(++len, GFP_KERNEL); 857 if (!smallbuf) 858 return buf; 859 memcpy(smallbuf, buf, len); 860 } 861 kfree(buf); 862 } 863 return smallbuf; 864 } 865 866 /* 867 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 868 * @dev: the device whose device descriptor is being updated 869 * @size: how much of the descriptor to read 870 * Context: !in_interrupt () 871 * 872 * Updates the copy of the device descriptor stored in the device structure, 873 * which dedicates space for this purpose. 874 * 875 * Not exported, only for use by the core. If drivers really want to read 876 * the device descriptor directly, they can call usb_get_descriptor() with 877 * type = USB_DT_DEVICE and index = 0. 878 * 879 * This call is synchronous, and may not be used in an interrupt context. 880 * 881 * Returns the number of bytes received on success, or else the status code 882 * returned by the underlying usb_control_msg() call. 883 */ 884 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 885 { 886 struct usb_device_descriptor *desc; 887 int ret; 888 889 if (size > sizeof(*desc)) 890 return -EINVAL; 891 desc = kmalloc(sizeof(*desc), GFP_NOIO); 892 if (!desc) 893 return -ENOMEM; 894 895 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 896 if (ret >= 0) 897 memcpy(&dev->descriptor, desc, size); 898 kfree(desc); 899 return ret; 900 } 901 902 /** 903 * usb_get_status - issues a GET_STATUS call 904 * @dev: the device whose status is being checked 905 * @type: USB_RECIP_*; for device, interface, or endpoint 906 * @target: zero (for device), else interface or endpoint number 907 * @data: pointer to two bytes of bitmap data 908 * Context: !in_interrupt () 909 * 910 * Returns device, interface, or endpoint status. Normally only of 911 * interest to see if the device is self powered, or has enabled the 912 * remote wakeup facility; or whether a bulk or interrupt endpoint 913 * is halted ("stalled"). 914 * 915 * Bits in these status bitmaps are set using the SET_FEATURE request, 916 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 917 * function should be used to clear halt ("stall") status. 918 * 919 * This call is synchronous, and may not be used in an interrupt context. 920 * 921 * Returns the number of bytes received on success, or else the status code 922 * returned by the underlying usb_control_msg() call. 923 */ 924 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 925 { 926 int ret; 927 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 928 929 if (!status) 930 return -ENOMEM; 931 932 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 933 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 934 sizeof(*status), USB_CTRL_GET_TIMEOUT); 935 936 *(u16 *)data = *status; 937 kfree(status); 938 return ret; 939 } 940 EXPORT_SYMBOL_GPL(usb_get_status); 941 942 /** 943 * usb_clear_halt - tells device to clear endpoint halt/stall condition 944 * @dev: device whose endpoint is halted 945 * @pipe: endpoint "pipe" being cleared 946 * Context: !in_interrupt () 947 * 948 * This is used to clear halt conditions for bulk and interrupt endpoints, 949 * as reported by URB completion status. Endpoints that are halted are 950 * sometimes referred to as being "stalled". Such endpoints are unable 951 * to transmit or receive data until the halt status is cleared. Any URBs 952 * queued for such an endpoint should normally be unlinked by the driver 953 * before clearing the halt condition, as described in sections 5.7.5 954 * and 5.8.5 of the USB 2.0 spec. 955 * 956 * Note that control and isochronous endpoints don't halt, although control 957 * endpoints report "protocol stall" (for unsupported requests) using the 958 * same status code used to report a true stall. 959 * 960 * This call is synchronous, and may not be used in an interrupt context. 961 * 962 * Returns zero on success, or else the status code returned by the 963 * underlying usb_control_msg() call. 964 */ 965 int usb_clear_halt(struct usb_device *dev, int pipe) 966 { 967 int result; 968 int endp = usb_pipeendpoint(pipe); 969 970 if (usb_pipein(pipe)) 971 endp |= USB_DIR_IN; 972 973 /* we don't care if it wasn't halted first. in fact some devices 974 * (like some ibmcam model 1 units) seem to expect hosts to make 975 * this request for iso endpoints, which can't halt! 976 */ 977 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 978 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 979 USB_ENDPOINT_HALT, endp, NULL, 0, 980 USB_CTRL_SET_TIMEOUT); 981 982 /* don't un-halt or force to DATA0 except on success */ 983 if (result < 0) 984 return result; 985 986 /* NOTE: seems like Microsoft and Apple don't bother verifying 987 * the clear "took", so some devices could lock up if you check... 988 * such as the Hagiwara FlashGate DUAL. So we won't bother. 989 * 990 * NOTE: make sure the logic here doesn't diverge much from 991 * the copy in usb-storage, for as long as we need two copies. 992 */ 993 994 usb_reset_endpoint(dev, endp); 995 996 return 0; 997 } 998 EXPORT_SYMBOL_GPL(usb_clear_halt); 999 1000 static int create_intf_ep_devs(struct usb_interface *intf) 1001 { 1002 struct usb_device *udev = interface_to_usbdev(intf); 1003 struct usb_host_interface *alt = intf->cur_altsetting; 1004 int i; 1005 1006 if (intf->ep_devs_created || intf->unregistering) 1007 return 0; 1008 1009 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1010 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1011 intf->ep_devs_created = 1; 1012 return 0; 1013 } 1014 1015 static void remove_intf_ep_devs(struct usb_interface *intf) 1016 { 1017 struct usb_host_interface *alt = intf->cur_altsetting; 1018 int i; 1019 1020 if (!intf->ep_devs_created) 1021 return; 1022 1023 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1024 usb_remove_ep_devs(&alt->endpoint[i]); 1025 intf->ep_devs_created = 0; 1026 } 1027 1028 /** 1029 * usb_disable_endpoint -- Disable an endpoint by address 1030 * @dev: the device whose endpoint is being disabled 1031 * @epaddr: the endpoint's address. Endpoint number for output, 1032 * endpoint number + USB_DIR_IN for input 1033 * @reset_hardware: flag to erase any endpoint state stored in the 1034 * controller hardware 1035 * 1036 * Disables the endpoint for URB submission and nukes all pending URBs. 1037 * If @reset_hardware is set then also deallocates hcd/hardware state 1038 * for the endpoint. 1039 */ 1040 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1041 bool reset_hardware) 1042 { 1043 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1044 struct usb_host_endpoint *ep; 1045 1046 if (!dev) 1047 return; 1048 1049 if (usb_endpoint_out(epaddr)) { 1050 ep = dev->ep_out[epnum]; 1051 if (reset_hardware) 1052 dev->ep_out[epnum] = NULL; 1053 } else { 1054 ep = dev->ep_in[epnum]; 1055 if (reset_hardware) 1056 dev->ep_in[epnum] = NULL; 1057 } 1058 if (ep) { 1059 ep->enabled = 0; 1060 usb_hcd_flush_endpoint(dev, ep); 1061 if (reset_hardware) 1062 usb_hcd_disable_endpoint(dev, ep); 1063 } 1064 } 1065 1066 /** 1067 * usb_reset_endpoint - Reset an endpoint's state. 1068 * @dev: the device whose endpoint is to be reset 1069 * @epaddr: the endpoint's address. Endpoint number for output, 1070 * endpoint number + USB_DIR_IN for input 1071 * 1072 * Resets any host-side endpoint state such as the toggle bit, 1073 * sequence number or current window. 1074 */ 1075 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1076 { 1077 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1078 struct usb_host_endpoint *ep; 1079 1080 if (usb_endpoint_out(epaddr)) 1081 ep = dev->ep_out[epnum]; 1082 else 1083 ep = dev->ep_in[epnum]; 1084 if (ep) 1085 usb_hcd_reset_endpoint(dev, ep); 1086 } 1087 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1088 1089 1090 /** 1091 * usb_disable_interface -- Disable all endpoints for an interface 1092 * @dev: the device whose interface is being disabled 1093 * @intf: pointer to the interface descriptor 1094 * @reset_hardware: flag to erase any endpoint state stored in the 1095 * controller hardware 1096 * 1097 * Disables all the endpoints for the interface's current altsetting. 1098 */ 1099 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1100 bool reset_hardware) 1101 { 1102 struct usb_host_interface *alt = intf->cur_altsetting; 1103 int i; 1104 1105 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1106 usb_disable_endpoint(dev, 1107 alt->endpoint[i].desc.bEndpointAddress, 1108 reset_hardware); 1109 } 1110 } 1111 1112 /** 1113 * usb_disable_device - Disable all the endpoints for a USB device 1114 * @dev: the device whose endpoints are being disabled 1115 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1116 * 1117 * Disables all the device's endpoints, potentially including endpoint 0. 1118 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1119 * pending urbs) and usbcore state for the interfaces, so that usbcore 1120 * must usb_set_configuration() before any interfaces could be used. 1121 */ 1122 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1123 { 1124 int i; 1125 1126 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1127 skip_ep0 ? "non-ep0" : "all"); 1128 for (i = skip_ep0; i < 16; ++i) { 1129 usb_disable_endpoint(dev, i, true); 1130 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1131 } 1132 1133 /* getting rid of interfaces will disconnect 1134 * any drivers bound to them (a key side effect) 1135 */ 1136 if (dev->actconfig) { 1137 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1138 struct usb_interface *interface; 1139 1140 /* remove this interface if it has been registered */ 1141 interface = dev->actconfig->interface[i]; 1142 if (!device_is_registered(&interface->dev)) 1143 continue; 1144 dev_dbg(&dev->dev, "unregistering interface %s\n", 1145 dev_name(&interface->dev)); 1146 interface->unregistering = 1; 1147 remove_intf_ep_devs(interface); 1148 device_del(&interface->dev); 1149 } 1150 1151 /* Now that the interfaces are unbound, nobody should 1152 * try to access them. 1153 */ 1154 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1155 put_device(&dev->actconfig->interface[i]->dev); 1156 dev->actconfig->interface[i] = NULL; 1157 } 1158 dev->actconfig = NULL; 1159 if (dev->state == USB_STATE_CONFIGURED) 1160 usb_set_device_state(dev, USB_STATE_ADDRESS); 1161 } 1162 } 1163 1164 /** 1165 * usb_enable_endpoint - Enable an endpoint for USB communications 1166 * @dev: the device whose interface is being enabled 1167 * @ep: the endpoint 1168 * @reset_ep: flag to reset the endpoint state 1169 * 1170 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1171 * For control endpoints, both the input and output sides are handled. 1172 */ 1173 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1174 bool reset_ep) 1175 { 1176 int epnum = usb_endpoint_num(&ep->desc); 1177 int is_out = usb_endpoint_dir_out(&ep->desc); 1178 int is_control = usb_endpoint_xfer_control(&ep->desc); 1179 1180 if (reset_ep) 1181 usb_hcd_reset_endpoint(dev, ep); 1182 if (is_out || is_control) 1183 dev->ep_out[epnum] = ep; 1184 if (!is_out || is_control) 1185 dev->ep_in[epnum] = ep; 1186 ep->enabled = 1; 1187 } 1188 1189 /** 1190 * usb_enable_interface - Enable all the endpoints for an interface 1191 * @dev: the device whose interface is being enabled 1192 * @intf: pointer to the interface descriptor 1193 * @reset_eps: flag to reset the endpoints' state 1194 * 1195 * Enables all the endpoints for the interface's current altsetting. 1196 */ 1197 void usb_enable_interface(struct usb_device *dev, 1198 struct usb_interface *intf, bool reset_eps) 1199 { 1200 struct usb_host_interface *alt = intf->cur_altsetting; 1201 int i; 1202 1203 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1204 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1205 } 1206 1207 /** 1208 * usb_set_interface - Makes a particular alternate setting be current 1209 * @dev: the device whose interface is being updated 1210 * @interface: the interface being updated 1211 * @alternate: the setting being chosen. 1212 * Context: !in_interrupt () 1213 * 1214 * This is used to enable data transfers on interfaces that may not 1215 * be enabled by default. Not all devices support such configurability. 1216 * Only the driver bound to an interface may change its setting. 1217 * 1218 * Within any given configuration, each interface may have several 1219 * alternative settings. These are often used to control levels of 1220 * bandwidth consumption. For example, the default setting for a high 1221 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1222 * while interrupt transfers of up to 3KBytes per microframe are legal. 1223 * Also, isochronous endpoints may never be part of an 1224 * interface's default setting. To access such bandwidth, alternate 1225 * interface settings must be made current. 1226 * 1227 * Note that in the Linux USB subsystem, bandwidth associated with 1228 * an endpoint in a given alternate setting is not reserved until an URB 1229 * is submitted that needs that bandwidth. Some other operating systems 1230 * allocate bandwidth early, when a configuration is chosen. 1231 * 1232 * This call is synchronous, and may not be used in an interrupt context. 1233 * Also, drivers must not change altsettings while urbs are scheduled for 1234 * endpoints in that interface; all such urbs must first be completed 1235 * (perhaps forced by unlinking). 1236 * 1237 * Returns zero on success, or else the status code returned by the 1238 * underlying usb_control_msg() call. 1239 */ 1240 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1241 { 1242 struct usb_interface *iface; 1243 struct usb_host_interface *alt; 1244 int ret; 1245 int manual = 0; 1246 unsigned int epaddr; 1247 unsigned int pipe; 1248 1249 if (dev->state == USB_STATE_SUSPENDED) 1250 return -EHOSTUNREACH; 1251 1252 iface = usb_ifnum_to_if(dev, interface); 1253 if (!iface) { 1254 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1255 interface); 1256 return -EINVAL; 1257 } 1258 1259 alt = usb_altnum_to_altsetting(iface, alternate); 1260 if (!alt) { 1261 dev_warn(&dev->dev, "selecting invalid altsetting %d", 1262 alternate); 1263 return -EINVAL; 1264 } 1265 1266 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1267 ret = -EPIPE; 1268 else 1269 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1270 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1271 alternate, interface, NULL, 0, 5000); 1272 1273 /* 9.4.10 says devices don't need this and are free to STALL the 1274 * request if the interface only has one alternate setting. 1275 */ 1276 if (ret == -EPIPE && iface->num_altsetting == 1) { 1277 dev_dbg(&dev->dev, 1278 "manual set_interface for iface %d, alt %d\n", 1279 interface, alternate); 1280 manual = 1; 1281 } else if (ret < 0) 1282 return ret; 1283 1284 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1285 * when they implement async or easily-killable versions of this or 1286 * other "should-be-internal" functions (like clear_halt). 1287 * should hcd+usbcore postprocess control requests? 1288 */ 1289 1290 /* prevent submissions using previous endpoint settings */ 1291 if (iface->cur_altsetting != alt) { 1292 remove_intf_ep_devs(iface); 1293 usb_remove_sysfs_intf_files(iface); 1294 } 1295 usb_disable_interface(dev, iface, true); 1296 1297 iface->cur_altsetting = alt; 1298 1299 /* If the interface only has one altsetting and the device didn't 1300 * accept the request, we attempt to carry out the equivalent action 1301 * by manually clearing the HALT feature for each endpoint in the 1302 * new altsetting. 1303 */ 1304 if (manual) { 1305 int i; 1306 1307 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1308 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1309 pipe = __create_pipe(dev, 1310 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1311 (usb_endpoint_out(epaddr) ? 1312 USB_DIR_OUT : USB_DIR_IN); 1313 1314 usb_clear_halt(dev, pipe); 1315 } 1316 } 1317 1318 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1319 * 1320 * Note: 1321 * Despite EP0 is always present in all interfaces/AS, the list of 1322 * endpoints from the descriptor does not contain EP0. Due to its 1323 * omnipresence one might expect EP0 being considered "affected" by 1324 * any SetInterface request and hence assume toggles need to be reset. 1325 * However, EP0 toggles are re-synced for every individual transfer 1326 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1327 * (Likewise, EP0 never "halts" on well designed devices.) 1328 */ 1329 usb_enable_interface(dev, iface, true); 1330 if (device_is_registered(&iface->dev)) { 1331 usb_create_sysfs_intf_files(iface); 1332 create_intf_ep_devs(iface); 1333 } 1334 return 0; 1335 } 1336 EXPORT_SYMBOL_GPL(usb_set_interface); 1337 1338 /** 1339 * usb_reset_configuration - lightweight device reset 1340 * @dev: the device whose configuration is being reset 1341 * 1342 * This issues a standard SET_CONFIGURATION request to the device using 1343 * the current configuration. The effect is to reset most USB-related 1344 * state in the device, including interface altsettings (reset to zero), 1345 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1346 * endpoints). Other usbcore state is unchanged, including bindings of 1347 * usb device drivers to interfaces. 1348 * 1349 * Because this affects multiple interfaces, avoid using this with composite 1350 * (multi-interface) devices. Instead, the driver for each interface may 1351 * use usb_set_interface() on the interfaces it claims. Be careful though; 1352 * some devices don't support the SET_INTERFACE request, and others won't 1353 * reset all the interface state (notably endpoint state). Resetting the whole 1354 * configuration would affect other drivers' interfaces. 1355 * 1356 * The caller must own the device lock. 1357 * 1358 * Returns zero on success, else a negative error code. 1359 */ 1360 int usb_reset_configuration(struct usb_device *dev) 1361 { 1362 int i, retval; 1363 struct usb_host_config *config; 1364 1365 if (dev->state == USB_STATE_SUSPENDED) 1366 return -EHOSTUNREACH; 1367 1368 /* caller must have locked the device and must own 1369 * the usb bus readlock (so driver bindings are stable); 1370 * calls during probe() are fine 1371 */ 1372 1373 for (i = 1; i < 16; ++i) { 1374 usb_disable_endpoint(dev, i, true); 1375 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1376 } 1377 1378 config = dev->actconfig; 1379 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1380 USB_REQ_SET_CONFIGURATION, 0, 1381 config->desc.bConfigurationValue, 0, 1382 NULL, 0, USB_CTRL_SET_TIMEOUT); 1383 if (retval < 0) 1384 return retval; 1385 1386 /* re-init hc/hcd interface/endpoint state */ 1387 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1388 struct usb_interface *intf = config->interface[i]; 1389 struct usb_host_interface *alt; 1390 1391 alt = usb_altnum_to_altsetting(intf, 0); 1392 1393 /* No altsetting 0? We'll assume the first altsetting. 1394 * We could use a GetInterface call, but if a device is 1395 * so non-compliant that it doesn't have altsetting 0 1396 * then I wouldn't trust its reply anyway. 1397 */ 1398 if (!alt) 1399 alt = &intf->altsetting[0]; 1400 1401 if (alt != intf->cur_altsetting) { 1402 remove_intf_ep_devs(intf); 1403 usb_remove_sysfs_intf_files(intf); 1404 } 1405 intf->cur_altsetting = alt; 1406 usb_enable_interface(dev, intf, true); 1407 if (device_is_registered(&intf->dev)) { 1408 usb_create_sysfs_intf_files(intf); 1409 create_intf_ep_devs(intf); 1410 } 1411 } 1412 return 0; 1413 } 1414 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1415 1416 static void usb_release_interface(struct device *dev) 1417 { 1418 struct usb_interface *intf = to_usb_interface(dev); 1419 struct usb_interface_cache *intfc = 1420 altsetting_to_usb_interface_cache(intf->altsetting); 1421 1422 kref_put(&intfc->ref, usb_release_interface_cache); 1423 kfree(intf); 1424 } 1425 1426 #ifdef CONFIG_HOTPLUG 1427 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1428 { 1429 struct usb_device *usb_dev; 1430 struct usb_interface *intf; 1431 struct usb_host_interface *alt; 1432 1433 intf = to_usb_interface(dev); 1434 usb_dev = interface_to_usbdev(intf); 1435 alt = intf->cur_altsetting; 1436 1437 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1438 alt->desc.bInterfaceClass, 1439 alt->desc.bInterfaceSubClass, 1440 alt->desc.bInterfaceProtocol)) 1441 return -ENOMEM; 1442 1443 if (add_uevent_var(env, 1444 "MODALIAS=usb:" 1445 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1446 le16_to_cpu(usb_dev->descriptor.idVendor), 1447 le16_to_cpu(usb_dev->descriptor.idProduct), 1448 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1449 usb_dev->descriptor.bDeviceClass, 1450 usb_dev->descriptor.bDeviceSubClass, 1451 usb_dev->descriptor.bDeviceProtocol, 1452 alt->desc.bInterfaceClass, 1453 alt->desc.bInterfaceSubClass, 1454 alt->desc.bInterfaceProtocol)) 1455 return -ENOMEM; 1456 1457 return 0; 1458 } 1459 1460 #else 1461 1462 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1463 { 1464 return -ENODEV; 1465 } 1466 #endif /* CONFIG_HOTPLUG */ 1467 1468 struct device_type usb_if_device_type = { 1469 .name = "usb_interface", 1470 .release = usb_release_interface, 1471 .uevent = usb_if_uevent, 1472 }; 1473 1474 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1475 struct usb_host_config *config, 1476 u8 inum) 1477 { 1478 struct usb_interface_assoc_descriptor *retval = NULL; 1479 struct usb_interface_assoc_descriptor *intf_assoc; 1480 int first_intf; 1481 int last_intf; 1482 int i; 1483 1484 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1485 intf_assoc = config->intf_assoc[i]; 1486 if (intf_assoc->bInterfaceCount == 0) 1487 continue; 1488 1489 first_intf = intf_assoc->bFirstInterface; 1490 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1491 if (inum >= first_intf && inum <= last_intf) { 1492 if (!retval) 1493 retval = intf_assoc; 1494 else 1495 dev_err(&dev->dev, "Interface #%d referenced" 1496 " by multiple IADs\n", inum); 1497 } 1498 } 1499 1500 return retval; 1501 } 1502 1503 1504 /* 1505 * Internal function to queue a device reset 1506 * 1507 * This is initialized into the workstruct in 'struct 1508 * usb_device->reset_ws' that is launched by 1509 * message.c:usb_set_configuration() when initializing each 'struct 1510 * usb_interface'. 1511 * 1512 * It is safe to get the USB device without reference counts because 1513 * the life cycle of @iface is bound to the life cycle of @udev. Then, 1514 * this function will be ran only if @iface is alive (and before 1515 * freeing it any scheduled instances of it will have been cancelled). 1516 * 1517 * We need to set a flag (usb_dev->reset_running) because when we call 1518 * the reset, the interfaces might be unbound. The current interface 1519 * cannot try to remove the queued work as it would cause a deadlock 1520 * (you cannot remove your work from within your executing 1521 * workqueue). This flag lets it know, so that 1522 * usb_cancel_queued_reset() doesn't try to do it. 1523 * 1524 * See usb_queue_reset_device() for more details 1525 */ 1526 void __usb_queue_reset_device(struct work_struct *ws) 1527 { 1528 int rc; 1529 struct usb_interface *iface = 1530 container_of(ws, struct usb_interface, reset_ws); 1531 struct usb_device *udev = interface_to_usbdev(iface); 1532 1533 rc = usb_lock_device_for_reset(udev, iface); 1534 if (rc >= 0) { 1535 iface->reset_running = 1; 1536 usb_reset_device(udev); 1537 iface->reset_running = 0; 1538 usb_unlock_device(udev); 1539 } 1540 } 1541 1542 1543 /* 1544 * usb_set_configuration - Makes a particular device setting be current 1545 * @dev: the device whose configuration is being updated 1546 * @configuration: the configuration being chosen. 1547 * Context: !in_interrupt(), caller owns the device lock 1548 * 1549 * This is used to enable non-default device modes. Not all devices 1550 * use this kind of configurability; many devices only have one 1551 * configuration. 1552 * 1553 * @configuration is the value of the configuration to be installed. 1554 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1555 * must be non-zero; a value of zero indicates that the device in 1556 * unconfigured. However some devices erroneously use 0 as one of their 1557 * configuration values. To help manage such devices, this routine will 1558 * accept @configuration = -1 as indicating the device should be put in 1559 * an unconfigured state. 1560 * 1561 * USB device configurations may affect Linux interoperability, 1562 * power consumption and the functionality available. For example, 1563 * the default configuration is limited to using 100mA of bus power, 1564 * so that when certain device functionality requires more power, 1565 * and the device is bus powered, that functionality should be in some 1566 * non-default device configuration. Other device modes may also be 1567 * reflected as configuration options, such as whether two ISDN 1568 * channels are available independently; and choosing between open 1569 * standard device protocols (like CDC) or proprietary ones. 1570 * 1571 * Note that a non-authorized device (dev->authorized == 0) will only 1572 * be put in unconfigured mode. 1573 * 1574 * Note that USB has an additional level of device configurability, 1575 * associated with interfaces. That configurability is accessed using 1576 * usb_set_interface(). 1577 * 1578 * This call is synchronous. The calling context must be able to sleep, 1579 * must own the device lock, and must not hold the driver model's USB 1580 * bus mutex; usb interface driver probe() methods cannot use this routine. 1581 * 1582 * Returns zero on success, or else the status code returned by the 1583 * underlying call that failed. On successful completion, each interface 1584 * in the original device configuration has been destroyed, and each one 1585 * in the new configuration has been probed by all relevant usb device 1586 * drivers currently known to the kernel. 1587 */ 1588 int usb_set_configuration(struct usb_device *dev, int configuration) 1589 { 1590 int i, ret; 1591 struct usb_host_config *cp = NULL; 1592 struct usb_interface **new_interfaces = NULL; 1593 int n, nintf; 1594 1595 if (dev->authorized == 0 || configuration == -1) 1596 configuration = 0; 1597 else { 1598 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1599 if (dev->config[i].desc.bConfigurationValue == 1600 configuration) { 1601 cp = &dev->config[i]; 1602 break; 1603 } 1604 } 1605 } 1606 if ((!cp && configuration != 0)) 1607 return -EINVAL; 1608 1609 /* The USB spec says configuration 0 means unconfigured. 1610 * But if a device includes a configuration numbered 0, 1611 * we will accept it as a correctly configured state. 1612 * Use -1 if you really want to unconfigure the device. 1613 */ 1614 if (cp && configuration == 0) 1615 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1616 1617 /* Allocate memory for new interfaces before doing anything else, 1618 * so that if we run out then nothing will have changed. */ 1619 n = nintf = 0; 1620 if (cp) { 1621 nintf = cp->desc.bNumInterfaces; 1622 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1623 GFP_KERNEL); 1624 if (!new_interfaces) { 1625 dev_err(&dev->dev, "Out of memory\n"); 1626 return -ENOMEM; 1627 } 1628 1629 for (; n < nintf; ++n) { 1630 new_interfaces[n] = kzalloc( 1631 sizeof(struct usb_interface), 1632 GFP_KERNEL); 1633 if (!new_interfaces[n]) { 1634 dev_err(&dev->dev, "Out of memory\n"); 1635 ret = -ENOMEM; 1636 free_interfaces: 1637 while (--n >= 0) 1638 kfree(new_interfaces[n]); 1639 kfree(new_interfaces); 1640 return ret; 1641 } 1642 } 1643 1644 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1645 if (i < 0) 1646 dev_warn(&dev->dev, "new config #%d exceeds power " 1647 "limit by %dmA\n", 1648 configuration, -i); 1649 } 1650 1651 /* Wake up the device so we can send it the Set-Config request */ 1652 ret = usb_autoresume_device(dev); 1653 if (ret) 1654 goto free_interfaces; 1655 1656 /* if it's already configured, clear out old state first. 1657 * getting rid of old interfaces means unbinding their drivers. 1658 */ 1659 if (dev->state != USB_STATE_ADDRESS) 1660 usb_disable_device(dev, 1); /* Skip ep0 */ 1661 1662 /* Get rid of pending async Set-Config requests for this device */ 1663 cancel_async_set_config(dev); 1664 1665 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1666 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1667 NULL, 0, USB_CTRL_SET_TIMEOUT); 1668 if (ret < 0) { 1669 /* All the old state is gone, so what else can we do? 1670 * The device is probably useless now anyway. 1671 */ 1672 cp = NULL; 1673 } 1674 1675 dev->actconfig = cp; 1676 if (!cp) { 1677 usb_set_device_state(dev, USB_STATE_ADDRESS); 1678 usb_autosuspend_device(dev); 1679 goto free_interfaces; 1680 } 1681 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1682 1683 /* Initialize the new interface structures and the 1684 * hc/hcd/usbcore interface/endpoint state. 1685 */ 1686 for (i = 0; i < nintf; ++i) { 1687 struct usb_interface_cache *intfc; 1688 struct usb_interface *intf; 1689 struct usb_host_interface *alt; 1690 1691 cp->interface[i] = intf = new_interfaces[i]; 1692 intfc = cp->intf_cache[i]; 1693 intf->altsetting = intfc->altsetting; 1694 intf->num_altsetting = intfc->num_altsetting; 1695 intf->intf_assoc = find_iad(dev, cp, i); 1696 kref_get(&intfc->ref); 1697 1698 alt = usb_altnum_to_altsetting(intf, 0); 1699 1700 /* No altsetting 0? We'll assume the first altsetting. 1701 * We could use a GetInterface call, but if a device is 1702 * so non-compliant that it doesn't have altsetting 0 1703 * then I wouldn't trust its reply anyway. 1704 */ 1705 if (!alt) 1706 alt = &intf->altsetting[0]; 1707 1708 intf->cur_altsetting = alt; 1709 usb_enable_interface(dev, intf, true); 1710 intf->dev.parent = &dev->dev; 1711 intf->dev.driver = NULL; 1712 intf->dev.bus = &usb_bus_type; 1713 intf->dev.type = &usb_if_device_type; 1714 intf->dev.groups = usb_interface_groups; 1715 intf->dev.dma_mask = dev->dev.dma_mask; 1716 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1717 device_initialize(&intf->dev); 1718 mark_quiesced(intf); 1719 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1720 dev->bus->busnum, dev->devpath, 1721 configuration, alt->desc.bInterfaceNumber); 1722 } 1723 kfree(new_interfaces); 1724 1725 if (cp->string == NULL && 1726 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1727 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1728 1729 /* Now that all the interfaces are set up, register them 1730 * to trigger binding of drivers to interfaces. probe() 1731 * routines may install different altsettings and may 1732 * claim() any interfaces not yet bound. Many class drivers 1733 * need that: CDC, audio, video, etc. 1734 */ 1735 for (i = 0; i < nintf; ++i) { 1736 struct usb_interface *intf = cp->interface[i]; 1737 1738 dev_dbg(&dev->dev, 1739 "adding %s (config #%d, interface %d)\n", 1740 dev_name(&intf->dev), configuration, 1741 intf->cur_altsetting->desc.bInterfaceNumber); 1742 ret = device_add(&intf->dev); 1743 if (ret != 0) { 1744 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1745 dev_name(&intf->dev), ret); 1746 continue; 1747 } 1748 create_intf_ep_devs(intf); 1749 } 1750 1751 usb_autosuspend_device(dev); 1752 return 0; 1753 } 1754 1755 static LIST_HEAD(set_config_list); 1756 static DEFINE_SPINLOCK(set_config_lock); 1757 1758 struct set_config_request { 1759 struct usb_device *udev; 1760 int config; 1761 struct work_struct work; 1762 struct list_head node; 1763 }; 1764 1765 /* Worker routine for usb_driver_set_configuration() */ 1766 static void driver_set_config_work(struct work_struct *work) 1767 { 1768 struct set_config_request *req = 1769 container_of(work, struct set_config_request, work); 1770 struct usb_device *udev = req->udev; 1771 1772 usb_lock_device(udev); 1773 spin_lock(&set_config_lock); 1774 list_del(&req->node); 1775 spin_unlock(&set_config_lock); 1776 1777 if (req->config >= -1) /* Is req still valid? */ 1778 usb_set_configuration(udev, req->config); 1779 usb_unlock_device(udev); 1780 usb_put_dev(udev); 1781 kfree(req); 1782 } 1783 1784 /* Cancel pending Set-Config requests for a device whose configuration 1785 * was just changed 1786 */ 1787 static void cancel_async_set_config(struct usb_device *udev) 1788 { 1789 struct set_config_request *req; 1790 1791 spin_lock(&set_config_lock); 1792 list_for_each_entry(req, &set_config_list, node) { 1793 if (req->udev == udev) 1794 req->config = -999; /* Mark as cancelled */ 1795 } 1796 spin_unlock(&set_config_lock); 1797 } 1798 1799 /** 1800 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1801 * @udev: the device whose configuration is being updated 1802 * @config: the configuration being chosen. 1803 * Context: In process context, must be able to sleep 1804 * 1805 * Device interface drivers are not allowed to change device configurations. 1806 * This is because changing configurations will destroy the interface the 1807 * driver is bound to and create new ones; it would be like a floppy-disk 1808 * driver telling the computer to replace the floppy-disk drive with a 1809 * tape drive! 1810 * 1811 * Still, in certain specialized circumstances the need may arise. This 1812 * routine gets around the normal restrictions by using a work thread to 1813 * submit the change-config request. 1814 * 1815 * Returns 0 if the request was succesfully queued, error code otherwise. 1816 * The caller has no way to know whether the queued request will eventually 1817 * succeed. 1818 */ 1819 int usb_driver_set_configuration(struct usb_device *udev, int config) 1820 { 1821 struct set_config_request *req; 1822 1823 req = kmalloc(sizeof(*req), GFP_KERNEL); 1824 if (!req) 1825 return -ENOMEM; 1826 req->udev = udev; 1827 req->config = config; 1828 INIT_WORK(&req->work, driver_set_config_work); 1829 1830 spin_lock(&set_config_lock); 1831 list_add(&req->node, &set_config_list); 1832 spin_unlock(&set_config_lock); 1833 1834 usb_get_dev(udev); 1835 schedule_work(&req->work); 1836 return 0; 1837 } 1838 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1839