xref: /linux/drivers/usb/core/message.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/quirks.h>
16 #include <asm/byteorder.h>
17 
18 #include "hcd.h"	/* for usbcore internals */
19 #include "usb.h"
20 
21 struct api_context {
22 	struct completion	done;
23 	int			status;
24 };
25 
26 static void usb_api_blocking_completion(struct urb *urb)
27 {
28 	struct api_context *ctx = urb->context;
29 
30 	ctx->status = urb->status;
31 	complete(&ctx->done);
32 }
33 
34 
35 /*
36  * Starts urb and waits for completion or timeout. Note that this call
37  * is NOT interruptible. Many device driver i/o requests should be
38  * interruptible and therefore these drivers should implement their
39  * own interruptible routines.
40  */
41 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
42 {
43 	struct api_context ctx;
44 	unsigned long expire;
45 	int retval;
46 
47 	init_completion(&ctx.done);
48 	urb->context = &ctx;
49 	urb->actual_length = 0;
50 	retval = usb_submit_urb(urb, GFP_NOIO);
51 	if (unlikely(retval))
52 		goto out;
53 
54 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
55 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
56 		usb_kill_urb(urb);
57 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
58 
59 		dev_dbg(&urb->dev->dev,
60 			"%s timed out on ep%d%s len=%d/%d\n",
61 			current->comm,
62 			usb_endpoint_num(&urb->ep->desc),
63 			usb_urb_dir_in(urb) ? "in" : "out",
64 			urb->actual_length,
65 			urb->transfer_buffer_length);
66 	} else
67 		retval = ctx.status;
68 out:
69 	if (actual_length)
70 		*actual_length = urb->actual_length;
71 
72 	usb_free_urb(urb);
73 	return retval;
74 }
75 
76 /*-------------------------------------------------------------------*/
77 /* returns status (negative) or length (positive) */
78 static int usb_internal_control_msg(struct usb_device *usb_dev,
79 				    unsigned int pipe,
80 				    struct usb_ctrlrequest *cmd,
81 				    void *data, int len, int timeout)
82 {
83 	struct urb *urb;
84 	int retv;
85 	int length;
86 
87 	urb = usb_alloc_urb(0, GFP_NOIO);
88 	if (!urb)
89 		return -ENOMEM;
90 
91 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
92 			     len, usb_api_blocking_completion, NULL);
93 
94 	retv = usb_start_wait_urb(urb, timeout, &length);
95 	if (retv < 0)
96 		return retv;
97 	else
98 		return length;
99 }
100 
101 /**
102  * usb_control_msg - Builds a control urb, sends it off and waits for completion
103  * @dev: pointer to the usb device to send the message to
104  * @pipe: endpoint "pipe" to send the message to
105  * @request: USB message request value
106  * @requesttype: USB message request type value
107  * @value: USB message value
108  * @index: USB message index value
109  * @data: pointer to the data to send
110  * @size: length in bytes of the data to send
111  * @timeout: time in msecs to wait for the message to complete before timing
112  *	out (if 0 the wait is forever)
113  *
114  * Context: !in_interrupt ()
115  *
116  * This function sends a simple control message to a specified endpoint and
117  * waits for the message to complete, or timeout.
118  *
119  * If successful, it returns the number of bytes transferred, otherwise a
120  * negative error number.
121  *
122  * Don't use this function from within an interrupt context, like a bottom half
123  * handler.  If you need an asynchronous message, or need to send a message
124  * from within interrupt context, use usb_submit_urb().
125  * If a thread in your driver uses this call, make sure your disconnect()
126  * method can wait for it to complete.  Since you don't have a handle on the
127  * URB used, you can't cancel the request.
128  */
129 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
130 		    __u8 requesttype, __u16 value, __u16 index, void *data,
131 		    __u16 size, int timeout)
132 {
133 	struct usb_ctrlrequest *dr;
134 	int ret;
135 
136 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
137 	if (!dr)
138 		return -ENOMEM;
139 
140 	dr->bRequestType = requesttype;
141 	dr->bRequest = request;
142 	dr->wValue = cpu_to_le16p(&value);
143 	dr->wIndex = cpu_to_le16p(&index);
144 	dr->wLength = cpu_to_le16p(&size);
145 
146 	/* dbg("usb_control_msg"); */
147 
148 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
149 
150 	kfree(dr);
151 
152 	return ret;
153 }
154 EXPORT_SYMBOL_GPL(usb_control_msg);
155 
156 /**
157  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
158  * @usb_dev: pointer to the usb device to send the message to
159  * @pipe: endpoint "pipe" to send the message to
160  * @data: pointer to the data to send
161  * @len: length in bytes of the data to send
162  * @actual_length: pointer to a location to put the actual length transferred
163  *	in bytes
164  * @timeout: time in msecs to wait for the message to complete before
165  *	timing out (if 0 the wait is forever)
166  *
167  * Context: !in_interrupt ()
168  *
169  * This function sends a simple interrupt message to a specified endpoint and
170  * waits for the message to complete, or timeout.
171  *
172  * If successful, it returns 0, otherwise a negative error number.  The number
173  * of actual bytes transferred will be stored in the actual_length paramater.
174  *
175  * Don't use this function from within an interrupt context, like a bottom half
176  * handler.  If you need an asynchronous message, or need to send a message
177  * from within interrupt context, use usb_submit_urb() If a thread in your
178  * driver uses this call, make sure your disconnect() method can wait for it to
179  * complete.  Since you don't have a handle on the URB used, you can't cancel
180  * the request.
181  */
182 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
183 		      void *data, int len, int *actual_length, int timeout)
184 {
185 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
186 }
187 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
188 
189 /**
190  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
191  * @usb_dev: pointer to the usb device to send the message to
192  * @pipe: endpoint "pipe" to send the message to
193  * @data: pointer to the data to send
194  * @len: length in bytes of the data to send
195  * @actual_length: pointer to a location to put the actual length transferred
196  *	in bytes
197  * @timeout: time in msecs to wait for the message to complete before
198  *	timing out (if 0 the wait is forever)
199  *
200  * Context: !in_interrupt ()
201  *
202  * This function sends a simple bulk message to a specified endpoint
203  * and waits for the message to complete, or timeout.
204  *
205  * If successful, it returns 0, otherwise a negative error number.  The number
206  * of actual bytes transferred will be stored in the actual_length paramater.
207  *
208  * Don't use this function from within an interrupt context, like a bottom half
209  * handler.  If you need an asynchronous message, or need to send a message
210  * from within interrupt context, use usb_submit_urb() If a thread in your
211  * driver uses this call, make sure your disconnect() method can wait for it to
212  * complete.  Since you don't have a handle on the URB used, you can't cancel
213  * the request.
214  *
215  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
216  * users are forced to abuse this routine by using it to submit URBs for
217  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
218  * (with the default interval) if the target is an interrupt endpoint.
219  */
220 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
221 		 void *data, int len, int *actual_length, int timeout)
222 {
223 	struct urb *urb;
224 	struct usb_host_endpoint *ep;
225 
226 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
227 			[usb_pipeendpoint(pipe)];
228 	if (!ep || len < 0)
229 		return -EINVAL;
230 
231 	urb = usb_alloc_urb(0, GFP_KERNEL);
232 	if (!urb)
233 		return -ENOMEM;
234 
235 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
236 			USB_ENDPOINT_XFER_INT) {
237 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
238 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
239 				usb_api_blocking_completion, NULL,
240 				ep->desc.bInterval);
241 	} else
242 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
243 				usb_api_blocking_completion, NULL);
244 
245 	return usb_start_wait_urb(urb, timeout, actual_length);
246 }
247 EXPORT_SYMBOL_GPL(usb_bulk_msg);
248 
249 /*-------------------------------------------------------------------*/
250 
251 static void sg_clean(struct usb_sg_request *io)
252 {
253 	if (io->urbs) {
254 		while (io->entries--)
255 			usb_free_urb(io->urbs [io->entries]);
256 		kfree(io->urbs);
257 		io->urbs = NULL;
258 	}
259 	if (io->dev->dev.dma_mask != NULL)
260 		usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
261 				    io->sg, io->nents);
262 	io->dev = NULL;
263 }
264 
265 static void sg_complete(struct urb *urb)
266 {
267 	struct usb_sg_request *io = urb->context;
268 	int status = urb->status;
269 
270 	spin_lock(&io->lock);
271 
272 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
273 	 * reports, until the completion callback (this!) returns.  That lets
274 	 * device driver code (like this routine) unlink queued urbs first,
275 	 * if it needs to, since the HC won't work on them at all.  So it's
276 	 * not possible for page N+1 to overwrite page N, and so on.
277 	 *
278 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
279 	 * complete before the HCD can get requests away from hardware,
280 	 * though never during cleanup after a hard fault.
281 	 */
282 	if (io->status
283 			&& (io->status != -ECONNRESET
284 				|| status != -ECONNRESET)
285 			&& urb->actual_length) {
286 		dev_err(io->dev->bus->controller,
287 			"dev %s ep%d%s scatterlist error %d/%d\n",
288 			io->dev->devpath,
289 			usb_endpoint_num(&urb->ep->desc),
290 			usb_urb_dir_in(urb) ? "in" : "out",
291 			status, io->status);
292 		/* BUG (); */
293 	}
294 
295 	if (io->status == 0 && status && status != -ECONNRESET) {
296 		int i, found, retval;
297 
298 		io->status = status;
299 
300 		/* the previous urbs, and this one, completed already.
301 		 * unlink pending urbs so they won't rx/tx bad data.
302 		 * careful: unlink can sometimes be synchronous...
303 		 */
304 		spin_unlock(&io->lock);
305 		for (i = 0, found = 0; i < io->entries; i++) {
306 			if (!io->urbs [i] || !io->urbs [i]->dev)
307 				continue;
308 			if (found) {
309 				retval = usb_unlink_urb(io->urbs [i]);
310 				if (retval != -EINPROGRESS &&
311 				    retval != -ENODEV &&
312 				    retval != -EBUSY)
313 					dev_err(&io->dev->dev,
314 						"%s, unlink --> %d\n",
315 						__func__, retval);
316 			} else if (urb == io->urbs [i])
317 				found = 1;
318 		}
319 		spin_lock(&io->lock);
320 	}
321 	urb->dev = NULL;
322 
323 	/* on the last completion, signal usb_sg_wait() */
324 	io->bytes += urb->actual_length;
325 	io->count--;
326 	if (!io->count)
327 		complete(&io->complete);
328 
329 	spin_unlock(&io->lock);
330 }
331 
332 
333 /**
334  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
335  * @io: request block being initialized.  until usb_sg_wait() returns,
336  *	treat this as a pointer to an opaque block of memory,
337  * @dev: the usb device that will send or receive the data
338  * @pipe: endpoint "pipe" used to transfer the data
339  * @period: polling rate for interrupt endpoints, in frames or
340  * 	(for high speed endpoints) microframes; ignored for bulk
341  * @sg: scatterlist entries
342  * @nents: how many entries in the scatterlist
343  * @length: how many bytes to send from the scatterlist, or zero to
344  * 	send every byte identified in the list.
345  * @mem_flags: SLAB_* flags affecting memory allocations in this call
346  *
347  * Returns zero for success, else a negative errno value.  This initializes a
348  * scatter/gather request, allocating resources such as I/O mappings and urb
349  * memory (except maybe memory used by USB controller drivers).
350  *
351  * The request must be issued using usb_sg_wait(), which waits for the I/O to
352  * complete (or to be canceled) and then cleans up all resources allocated by
353  * usb_sg_init().
354  *
355  * The request may be canceled with usb_sg_cancel(), either before or after
356  * usb_sg_wait() is called.
357  */
358 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
359 		unsigned pipe, unsigned	period, struct scatterlist *sg,
360 		int nents, size_t length, gfp_t mem_flags)
361 {
362 	int i;
363 	int urb_flags;
364 	int dma;
365 
366 	if (!io || !dev || !sg
367 			|| usb_pipecontrol(pipe)
368 			|| usb_pipeisoc(pipe)
369 			|| nents <= 0)
370 		return -EINVAL;
371 
372 	spin_lock_init(&io->lock);
373 	io->dev = dev;
374 	io->pipe = pipe;
375 	io->sg = sg;
376 	io->nents = nents;
377 
378 	/* not all host controllers use DMA (like the mainstream pci ones);
379 	 * they can use PIO (sl811) or be software over another transport.
380 	 */
381 	dma = (dev->dev.dma_mask != NULL);
382 	if (dma)
383 		io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
384 						sg, nents);
385 	else
386 		io->entries = nents;
387 
388 	/* initialize all the urbs we'll use */
389 	if (io->entries <= 0)
390 		return io->entries;
391 
392 	io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
393 	if (!io->urbs)
394 		goto nomem;
395 
396 	urb_flags = URB_NO_INTERRUPT;
397 	if (dma)
398 		urb_flags |= URB_NO_TRANSFER_DMA_MAP;
399 	if (usb_pipein(pipe))
400 		urb_flags |= URB_SHORT_NOT_OK;
401 
402 	for_each_sg(sg, sg, io->entries, i) {
403 		unsigned len;
404 
405 		io->urbs[i] = usb_alloc_urb(0, mem_flags);
406 		if (!io->urbs[i]) {
407 			io->entries = i;
408 			goto nomem;
409 		}
410 
411 		io->urbs[i]->dev = NULL;
412 		io->urbs[i]->pipe = pipe;
413 		io->urbs[i]->interval = period;
414 		io->urbs[i]->transfer_flags = urb_flags;
415 
416 		io->urbs[i]->complete = sg_complete;
417 		io->urbs[i]->context = io;
418 
419 		/*
420 		 * Some systems need to revert to PIO when DMA is temporarily
421 		 * unavailable.  For their sakes, both transfer_buffer and
422 		 * transfer_dma are set when possible.  However this can only
423 		 * work on systems without:
424 		 *
425 		 *  - HIGHMEM, since DMA buffers located in high memory are
426 		 *    not directly addressable by the CPU for PIO;
427 		 *
428 		 *  - IOMMU, since dma_map_sg() is allowed to use an IOMMU to
429 		 *    make virtually discontiguous buffers be "dma-contiguous"
430 		 *    so that PIO and DMA need diferent numbers of URBs.
431 		 *
432 		 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL
433 		 * to prevent stale pointers and to help spot bugs.
434 		 */
435 		if (dma) {
436 			io->urbs[i]->transfer_dma = sg_dma_address(sg);
437 			len = sg_dma_len(sg);
438 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU)
439 			io->urbs[i]->transfer_buffer = NULL;
440 #else
441 			io->urbs[i]->transfer_buffer = sg_virt(sg);
442 #endif
443 		} else {
444 			/* hc may use _only_ transfer_buffer */
445 			io->urbs[i]->transfer_buffer = sg_virt(sg);
446 			len = sg->length;
447 		}
448 
449 		if (length) {
450 			len = min_t(unsigned, len, length);
451 			length -= len;
452 			if (length == 0)
453 				io->entries = i + 1;
454 		}
455 		io->urbs[i]->transfer_buffer_length = len;
456 	}
457 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
458 
459 	/* transaction state */
460 	io->count = io->entries;
461 	io->status = 0;
462 	io->bytes = 0;
463 	init_completion(&io->complete);
464 	return 0;
465 
466 nomem:
467 	sg_clean(io);
468 	return -ENOMEM;
469 }
470 EXPORT_SYMBOL_GPL(usb_sg_init);
471 
472 /**
473  * usb_sg_wait - synchronously execute scatter/gather request
474  * @io: request block handle, as initialized with usb_sg_init().
475  * 	some fields become accessible when this call returns.
476  * Context: !in_interrupt ()
477  *
478  * This function blocks until the specified I/O operation completes.  It
479  * leverages the grouping of the related I/O requests to get good transfer
480  * rates, by queueing the requests.  At higher speeds, such queuing can
481  * significantly improve USB throughput.
482  *
483  * There are three kinds of completion for this function.
484  * (1) success, where io->status is zero.  The number of io->bytes
485  *     transferred is as requested.
486  * (2) error, where io->status is a negative errno value.  The number
487  *     of io->bytes transferred before the error is usually less
488  *     than requested, and can be nonzero.
489  * (3) cancellation, a type of error with status -ECONNRESET that
490  *     is initiated by usb_sg_cancel().
491  *
492  * When this function returns, all memory allocated through usb_sg_init() or
493  * this call will have been freed.  The request block parameter may still be
494  * passed to usb_sg_cancel(), or it may be freed.  It could also be
495  * reinitialized and then reused.
496  *
497  * Data Transfer Rates:
498  *
499  * Bulk transfers are valid for full or high speed endpoints.
500  * The best full speed data rate is 19 packets of 64 bytes each
501  * per frame, or 1216 bytes per millisecond.
502  * The best high speed data rate is 13 packets of 512 bytes each
503  * per microframe, or 52 KBytes per millisecond.
504  *
505  * The reason to use interrupt transfers through this API would most likely
506  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
507  * could be transferred.  That capability is less useful for low or full
508  * speed interrupt endpoints, which allow at most one packet per millisecond,
509  * of at most 8 or 64 bytes (respectively).
510  */
511 void usb_sg_wait(struct usb_sg_request *io)
512 {
513 	int i;
514 	int entries = io->entries;
515 
516 	/* queue the urbs.  */
517 	spin_lock_irq(&io->lock);
518 	i = 0;
519 	while (i < entries && !io->status) {
520 		int retval;
521 
522 		io->urbs[i]->dev = io->dev;
523 		retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
524 
525 		/* after we submit, let completions or cancelations fire;
526 		 * we handshake using io->status.
527 		 */
528 		spin_unlock_irq(&io->lock);
529 		switch (retval) {
530 			/* maybe we retrying will recover */
531 		case -ENXIO:	/* hc didn't queue this one */
532 		case -EAGAIN:
533 		case -ENOMEM:
534 			io->urbs[i]->dev = NULL;
535 			retval = 0;
536 			yield();
537 			break;
538 
539 			/* no error? continue immediately.
540 			 *
541 			 * NOTE: to work better with UHCI (4K I/O buffer may
542 			 * need 3K of TDs) it may be good to limit how many
543 			 * URBs are queued at once; N milliseconds?
544 			 */
545 		case 0:
546 			++i;
547 			cpu_relax();
548 			break;
549 
550 			/* fail any uncompleted urbs */
551 		default:
552 			io->urbs[i]->dev = NULL;
553 			io->urbs[i]->status = retval;
554 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
555 				__func__, retval);
556 			usb_sg_cancel(io);
557 		}
558 		spin_lock_irq(&io->lock);
559 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
560 			io->status = retval;
561 	}
562 	io->count -= entries - i;
563 	if (io->count == 0)
564 		complete(&io->complete);
565 	spin_unlock_irq(&io->lock);
566 
567 	/* OK, yes, this could be packaged as non-blocking.
568 	 * So could the submit loop above ... but it's easier to
569 	 * solve neither problem than to solve both!
570 	 */
571 	wait_for_completion(&io->complete);
572 
573 	sg_clean(io);
574 }
575 EXPORT_SYMBOL_GPL(usb_sg_wait);
576 
577 /**
578  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
579  * @io: request block, initialized with usb_sg_init()
580  *
581  * This stops a request after it has been started by usb_sg_wait().
582  * It can also prevents one initialized by usb_sg_init() from starting,
583  * so that call just frees resources allocated to the request.
584  */
585 void usb_sg_cancel(struct usb_sg_request *io)
586 {
587 	unsigned long flags;
588 
589 	spin_lock_irqsave(&io->lock, flags);
590 
591 	/* shut everything down, if it didn't already */
592 	if (!io->status) {
593 		int i;
594 
595 		io->status = -ECONNRESET;
596 		spin_unlock(&io->lock);
597 		for (i = 0; i < io->entries; i++) {
598 			int retval;
599 
600 			if (!io->urbs [i]->dev)
601 				continue;
602 			retval = usb_unlink_urb(io->urbs [i]);
603 			if (retval != -EINPROGRESS && retval != -EBUSY)
604 				dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
605 					__func__, retval);
606 		}
607 		spin_lock(&io->lock);
608 	}
609 	spin_unlock_irqrestore(&io->lock, flags);
610 }
611 EXPORT_SYMBOL_GPL(usb_sg_cancel);
612 
613 /*-------------------------------------------------------------------*/
614 
615 /**
616  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
617  * @dev: the device whose descriptor is being retrieved
618  * @type: the descriptor type (USB_DT_*)
619  * @index: the number of the descriptor
620  * @buf: where to put the descriptor
621  * @size: how big is "buf"?
622  * Context: !in_interrupt ()
623  *
624  * Gets a USB descriptor.  Convenience functions exist to simplify
625  * getting some types of descriptors.  Use
626  * usb_get_string() or usb_string() for USB_DT_STRING.
627  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
628  * are part of the device structure.
629  * In addition to a number of USB-standard descriptors, some
630  * devices also use class-specific or vendor-specific descriptors.
631  *
632  * This call is synchronous, and may not be used in an interrupt context.
633  *
634  * Returns the number of bytes received on success, or else the status code
635  * returned by the underlying usb_control_msg() call.
636  */
637 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
638 		       unsigned char index, void *buf, int size)
639 {
640 	int i;
641 	int result;
642 
643 	memset(buf, 0, size);	/* Make sure we parse really received data */
644 
645 	for (i = 0; i < 3; ++i) {
646 		/* retry on length 0 or error; some devices are flakey */
647 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
648 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
649 				(type << 8) + index, 0, buf, size,
650 				USB_CTRL_GET_TIMEOUT);
651 		if (result <= 0 && result != -ETIMEDOUT)
652 			continue;
653 		if (result > 1 && ((u8 *)buf)[1] != type) {
654 			result = -EPROTO;
655 			continue;
656 		}
657 		break;
658 	}
659 	return result;
660 }
661 EXPORT_SYMBOL_GPL(usb_get_descriptor);
662 
663 /**
664  * usb_get_string - gets a string descriptor
665  * @dev: the device whose string descriptor is being retrieved
666  * @langid: code for language chosen (from string descriptor zero)
667  * @index: the number of the descriptor
668  * @buf: where to put the string
669  * @size: how big is "buf"?
670  * Context: !in_interrupt ()
671  *
672  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
673  * in little-endian byte order).
674  * The usb_string() function will often be a convenient way to turn
675  * these strings into kernel-printable form.
676  *
677  * Strings may be referenced in device, configuration, interface, or other
678  * descriptors, and could also be used in vendor-specific ways.
679  *
680  * This call is synchronous, and may not be used in an interrupt context.
681  *
682  * Returns the number of bytes received on success, or else the status code
683  * returned by the underlying usb_control_msg() call.
684  */
685 static int usb_get_string(struct usb_device *dev, unsigned short langid,
686 			  unsigned char index, void *buf, int size)
687 {
688 	int i;
689 	int result;
690 
691 	for (i = 0; i < 3; ++i) {
692 		/* retry on length 0 or stall; some devices are flakey */
693 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
694 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
695 			(USB_DT_STRING << 8) + index, langid, buf, size,
696 			USB_CTRL_GET_TIMEOUT);
697 		if (!(result == 0 || result == -EPIPE))
698 			break;
699 	}
700 	return result;
701 }
702 
703 static void usb_try_string_workarounds(unsigned char *buf, int *length)
704 {
705 	int newlength, oldlength = *length;
706 
707 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
708 		if (!isprint(buf[newlength]) || buf[newlength + 1])
709 			break;
710 
711 	if (newlength > 2) {
712 		buf[0] = newlength;
713 		*length = newlength;
714 	}
715 }
716 
717 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
718 			  unsigned int index, unsigned char *buf)
719 {
720 	int rc;
721 
722 	/* Try to read the string descriptor by asking for the maximum
723 	 * possible number of bytes */
724 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
725 		rc = -EIO;
726 	else
727 		rc = usb_get_string(dev, langid, index, buf, 255);
728 
729 	/* If that failed try to read the descriptor length, then
730 	 * ask for just that many bytes */
731 	if (rc < 2) {
732 		rc = usb_get_string(dev, langid, index, buf, 2);
733 		if (rc == 2)
734 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
735 	}
736 
737 	if (rc >= 2) {
738 		if (!buf[0] && !buf[1])
739 			usb_try_string_workarounds(buf, &rc);
740 
741 		/* There might be extra junk at the end of the descriptor */
742 		if (buf[0] < rc)
743 			rc = buf[0];
744 
745 		rc = rc - (rc & 1); /* force a multiple of two */
746 	}
747 
748 	if (rc < 2)
749 		rc = (rc < 0 ? rc : -EINVAL);
750 
751 	return rc;
752 }
753 
754 /**
755  * usb_string - returns ISO 8859-1 version of a string descriptor
756  * @dev: the device whose string descriptor is being retrieved
757  * @index: the number of the descriptor
758  * @buf: where to put the string
759  * @size: how big is "buf"?
760  * Context: !in_interrupt ()
761  *
762  * This converts the UTF-16LE encoded strings returned by devices, from
763  * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
764  * that are more usable in most kernel contexts.  Note that all characters
765  * in the chosen descriptor that can't be encoded using ISO-8859-1
766  * are converted to the question mark ("?") character, and this function
767  * chooses strings in the first language supported by the device.
768  *
769  * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
770  * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
771  * and is appropriate for use many uses of English and several other
772  * Western European languages.  (But it doesn't include the "Euro" symbol.)
773  *
774  * This call is synchronous, and may not be used in an interrupt context.
775  *
776  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
777  */
778 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
779 {
780 	unsigned char *tbuf;
781 	int err;
782 	unsigned int u, idx;
783 
784 	if (dev->state == USB_STATE_SUSPENDED)
785 		return -EHOSTUNREACH;
786 	if (size <= 0 || !buf || !index)
787 		return -EINVAL;
788 	buf[0] = 0;
789 	tbuf = kmalloc(256, GFP_NOIO);
790 	if (!tbuf)
791 		return -ENOMEM;
792 
793 	/* get langid for strings if it's not yet known */
794 	if (!dev->have_langid) {
795 		err = usb_string_sub(dev, 0, 0, tbuf);
796 		if (err < 0) {
797 			dev_err(&dev->dev,
798 				"string descriptor 0 read error: %d\n",
799 				err);
800 			goto errout;
801 		} else if (err < 4) {
802 			dev_err(&dev->dev, "string descriptor 0 too short\n");
803 			err = -EINVAL;
804 			goto errout;
805 		} else {
806 			dev->have_langid = 1;
807 			dev->string_langid = tbuf[2] | (tbuf[3] << 8);
808 			/* always use the first langid listed */
809 			dev_dbg(&dev->dev, "default language 0x%04x\n",
810 				dev->string_langid);
811 		}
812 	}
813 
814 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
815 	if (err < 0)
816 		goto errout;
817 
818 	size--;		/* leave room for trailing NULL char in output buffer */
819 	for (idx = 0, u = 2; u < err; u += 2) {
820 		if (idx >= size)
821 			break;
822 		if (tbuf[u+1])			/* high byte */
823 			buf[idx++] = '?';  /* non ISO-8859-1 character */
824 		else
825 			buf[idx++] = tbuf[u];
826 	}
827 	buf[idx] = 0;
828 	err = idx;
829 
830 	if (tbuf[1] != USB_DT_STRING)
831 		dev_dbg(&dev->dev,
832 			"wrong descriptor type %02x for string %d (\"%s\")\n",
833 			tbuf[1], index, buf);
834 
835  errout:
836 	kfree(tbuf);
837 	return err;
838 }
839 EXPORT_SYMBOL_GPL(usb_string);
840 
841 /**
842  * usb_cache_string - read a string descriptor and cache it for later use
843  * @udev: the device whose string descriptor is being read
844  * @index: the descriptor index
845  *
846  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
847  * or NULL if the index is 0 or the string could not be read.
848  */
849 char *usb_cache_string(struct usb_device *udev, int index)
850 {
851 	char *buf;
852 	char *smallbuf = NULL;
853 	int len;
854 
855 	if (index <= 0)
856 		return NULL;
857 
858 	buf = kmalloc(256, GFP_KERNEL);
859 	if (buf) {
860 		len = usb_string(udev, index, buf, 256);
861 		if (len > 0) {
862 			smallbuf = kmalloc(++len, GFP_KERNEL);
863 			if (!smallbuf)
864 				return buf;
865 			memcpy(smallbuf, buf, len);
866 		}
867 		kfree(buf);
868 	}
869 	return smallbuf;
870 }
871 
872 /*
873  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
874  * @dev: the device whose device descriptor is being updated
875  * @size: how much of the descriptor to read
876  * Context: !in_interrupt ()
877  *
878  * Updates the copy of the device descriptor stored in the device structure,
879  * which dedicates space for this purpose.
880  *
881  * Not exported, only for use by the core.  If drivers really want to read
882  * the device descriptor directly, they can call usb_get_descriptor() with
883  * type = USB_DT_DEVICE and index = 0.
884  *
885  * This call is synchronous, and may not be used in an interrupt context.
886  *
887  * Returns the number of bytes received on success, or else the status code
888  * returned by the underlying usb_control_msg() call.
889  */
890 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
891 {
892 	struct usb_device_descriptor *desc;
893 	int ret;
894 
895 	if (size > sizeof(*desc))
896 		return -EINVAL;
897 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
898 	if (!desc)
899 		return -ENOMEM;
900 
901 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
902 	if (ret >= 0)
903 		memcpy(&dev->descriptor, desc, size);
904 	kfree(desc);
905 	return ret;
906 }
907 
908 /**
909  * usb_get_status - issues a GET_STATUS call
910  * @dev: the device whose status is being checked
911  * @type: USB_RECIP_*; for device, interface, or endpoint
912  * @target: zero (for device), else interface or endpoint number
913  * @data: pointer to two bytes of bitmap data
914  * Context: !in_interrupt ()
915  *
916  * Returns device, interface, or endpoint status.  Normally only of
917  * interest to see if the device is self powered, or has enabled the
918  * remote wakeup facility; or whether a bulk or interrupt endpoint
919  * is halted ("stalled").
920  *
921  * Bits in these status bitmaps are set using the SET_FEATURE request,
922  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
923  * function should be used to clear halt ("stall") status.
924  *
925  * This call is synchronous, and may not be used in an interrupt context.
926  *
927  * Returns the number of bytes received on success, or else the status code
928  * returned by the underlying usb_control_msg() call.
929  */
930 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
931 {
932 	int ret;
933 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
934 
935 	if (!status)
936 		return -ENOMEM;
937 
938 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
939 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
940 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
941 
942 	*(u16 *)data = *status;
943 	kfree(status);
944 	return ret;
945 }
946 EXPORT_SYMBOL_GPL(usb_get_status);
947 
948 /**
949  * usb_clear_halt - tells device to clear endpoint halt/stall condition
950  * @dev: device whose endpoint is halted
951  * @pipe: endpoint "pipe" being cleared
952  * Context: !in_interrupt ()
953  *
954  * This is used to clear halt conditions for bulk and interrupt endpoints,
955  * as reported by URB completion status.  Endpoints that are halted are
956  * sometimes referred to as being "stalled".  Such endpoints are unable
957  * to transmit or receive data until the halt status is cleared.  Any URBs
958  * queued for such an endpoint should normally be unlinked by the driver
959  * before clearing the halt condition, as described in sections 5.7.5
960  * and 5.8.5 of the USB 2.0 spec.
961  *
962  * Note that control and isochronous endpoints don't halt, although control
963  * endpoints report "protocol stall" (for unsupported requests) using the
964  * same status code used to report a true stall.
965  *
966  * This call is synchronous, and may not be used in an interrupt context.
967  *
968  * Returns zero on success, or else the status code returned by the
969  * underlying usb_control_msg() call.
970  */
971 int usb_clear_halt(struct usb_device *dev, int pipe)
972 {
973 	int result;
974 	int endp = usb_pipeendpoint(pipe);
975 
976 	if (usb_pipein(pipe))
977 		endp |= USB_DIR_IN;
978 
979 	/* we don't care if it wasn't halted first. in fact some devices
980 	 * (like some ibmcam model 1 units) seem to expect hosts to make
981 	 * this request for iso endpoints, which can't halt!
982 	 */
983 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
984 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
985 		USB_ENDPOINT_HALT, endp, NULL, 0,
986 		USB_CTRL_SET_TIMEOUT);
987 
988 	/* don't un-halt or force to DATA0 except on success */
989 	if (result < 0)
990 		return result;
991 
992 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
993 	 * the clear "took", so some devices could lock up if you check...
994 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
995 	 *
996 	 * NOTE:  make sure the logic here doesn't diverge much from
997 	 * the copy in usb-storage, for as long as we need two copies.
998 	 */
999 
1000 	/* toggle was reset by the clear */
1001 	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
1002 
1003 	return 0;
1004 }
1005 EXPORT_SYMBOL_GPL(usb_clear_halt);
1006 
1007 /**
1008  * usb_disable_endpoint -- Disable an endpoint by address
1009  * @dev: the device whose endpoint is being disabled
1010  * @epaddr: the endpoint's address.  Endpoint number for output,
1011  *	endpoint number + USB_DIR_IN for input
1012  *
1013  * Deallocates hcd/hardware state for this endpoint ... and nukes all
1014  * pending urbs.
1015  *
1016  * If the HCD hasn't registered a disable() function, this sets the
1017  * endpoint's maxpacket size to 0 to prevent further submissions.
1018  */
1019 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
1020 {
1021 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1022 	struct usb_host_endpoint *ep;
1023 
1024 	if (!dev)
1025 		return;
1026 
1027 	if (usb_endpoint_out(epaddr)) {
1028 		ep = dev->ep_out[epnum];
1029 		dev->ep_out[epnum] = NULL;
1030 	} else {
1031 		ep = dev->ep_in[epnum];
1032 		dev->ep_in[epnum] = NULL;
1033 	}
1034 	if (ep) {
1035 		ep->enabled = 0;
1036 		usb_hcd_flush_endpoint(dev, ep);
1037 		usb_hcd_disable_endpoint(dev, ep);
1038 	}
1039 }
1040 
1041 /**
1042  * usb_disable_interface -- Disable all endpoints for an interface
1043  * @dev: the device whose interface is being disabled
1044  * @intf: pointer to the interface descriptor
1045  *
1046  * Disables all the endpoints for the interface's current altsetting.
1047  */
1048 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1049 {
1050 	struct usb_host_interface *alt = intf->cur_altsetting;
1051 	int i;
1052 
1053 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1054 		usb_disable_endpoint(dev,
1055 				alt->endpoint[i].desc.bEndpointAddress);
1056 	}
1057 }
1058 
1059 /**
1060  * usb_disable_device - Disable all the endpoints for a USB device
1061  * @dev: the device whose endpoints are being disabled
1062  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1063  *
1064  * Disables all the device's endpoints, potentially including endpoint 0.
1065  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1066  * pending urbs) and usbcore state for the interfaces, so that usbcore
1067  * must usb_set_configuration() before any interfaces could be used.
1068  */
1069 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1070 {
1071 	int i;
1072 
1073 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1074 		skip_ep0 ? "non-ep0" : "all");
1075 	for (i = skip_ep0; i < 16; ++i) {
1076 		usb_disable_endpoint(dev, i);
1077 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1078 	}
1079 	dev->toggle[0] = dev->toggle[1] = 0;
1080 
1081 	/* getting rid of interfaces will disconnect
1082 	 * any drivers bound to them (a key side effect)
1083 	 */
1084 	if (dev->actconfig) {
1085 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1086 			struct usb_interface	*interface;
1087 
1088 			/* remove this interface if it has been registered */
1089 			interface = dev->actconfig->interface[i];
1090 			if (!device_is_registered(&interface->dev))
1091 				continue;
1092 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1093 				dev_name(&interface->dev));
1094 			usb_remove_sysfs_intf_files(interface);
1095 			device_del(&interface->dev);
1096 		}
1097 
1098 		/* Now that the interfaces are unbound, nobody should
1099 		 * try to access them.
1100 		 */
1101 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1102 			put_device(&dev->actconfig->interface[i]->dev);
1103 			dev->actconfig->interface[i] = NULL;
1104 		}
1105 		dev->actconfig = NULL;
1106 		if (dev->state == USB_STATE_CONFIGURED)
1107 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1108 	}
1109 }
1110 
1111 /**
1112  * usb_enable_endpoint - Enable an endpoint for USB communications
1113  * @dev: the device whose interface is being enabled
1114  * @ep: the endpoint
1115  *
1116  * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1117  * For control endpoints, both the input and output sides are handled.
1118  */
1119 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1120 {
1121 	int epnum = usb_endpoint_num(&ep->desc);
1122 	int is_out = usb_endpoint_dir_out(&ep->desc);
1123 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1124 
1125 	if (is_out || is_control) {
1126 		usb_settoggle(dev, epnum, 1, 0);
1127 		dev->ep_out[epnum] = ep;
1128 	}
1129 	if (!is_out || is_control) {
1130 		usb_settoggle(dev, epnum, 0, 0);
1131 		dev->ep_in[epnum] = ep;
1132 	}
1133 	ep->enabled = 1;
1134 }
1135 
1136 /**
1137  * usb_enable_interface - Enable all the endpoints for an interface
1138  * @dev: the device whose interface is being enabled
1139  * @intf: pointer to the interface descriptor
1140  *
1141  * Enables all the endpoints for the interface's current altsetting.
1142  */
1143 static void usb_enable_interface(struct usb_device *dev,
1144 				 struct usb_interface *intf)
1145 {
1146 	struct usb_host_interface *alt = intf->cur_altsetting;
1147 	int i;
1148 
1149 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1150 		usb_enable_endpoint(dev, &alt->endpoint[i]);
1151 }
1152 
1153 /**
1154  * usb_set_interface - Makes a particular alternate setting be current
1155  * @dev: the device whose interface is being updated
1156  * @interface: the interface being updated
1157  * @alternate: the setting being chosen.
1158  * Context: !in_interrupt ()
1159  *
1160  * This is used to enable data transfers on interfaces that may not
1161  * be enabled by default.  Not all devices support such configurability.
1162  * Only the driver bound to an interface may change its setting.
1163  *
1164  * Within any given configuration, each interface may have several
1165  * alternative settings.  These are often used to control levels of
1166  * bandwidth consumption.  For example, the default setting for a high
1167  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1168  * while interrupt transfers of up to 3KBytes per microframe are legal.
1169  * Also, isochronous endpoints may never be part of an
1170  * interface's default setting.  To access such bandwidth, alternate
1171  * interface settings must be made current.
1172  *
1173  * Note that in the Linux USB subsystem, bandwidth associated with
1174  * an endpoint in a given alternate setting is not reserved until an URB
1175  * is submitted that needs that bandwidth.  Some other operating systems
1176  * allocate bandwidth early, when a configuration is chosen.
1177  *
1178  * This call is synchronous, and may not be used in an interrupt context.
1179  * Also, drivers must not change altsettings while urbs are scheduled for
1180  * endpoints in that interface; all such urbs must first be completed
1181  * (perhaps forced by unlinking).
1182  *
1183  * Returns zero on success, or else the status code returned by the
1184  * underlying usb_control_msg() call.
1185  */
1186 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1187 {
1188 	struct usb_interface *iface;
1189 	struct usb_host_interface *alt;
1190 	int ret;
1191 	int manual = 0;
1192 	unsigned int epaddr;
1193 	unsigned int pipe;
1194 
1195 	if (dev->state == USB_STATE_SUSPENDED)
1196 		return -EHOSTUNREACH;
1197 
1198 	iface = usb_ifnum_to_if(dev, interface);
1199 	if (!iface) {
1200 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1201 			interface);
1202 		return -EINVAL;
1203 	}
1204 
1205 	alt = usb_altnum_to_altsetting(iface, alternate);
1206 	if (!alt) {
1207 		dev_warn(&dev->dev, "selecting invalid altsetting %d",
1208 			 alternate);
1209 		return -EINVAL;
1210 	}
1211 
1212 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1213 		ret = -EPIPE;
1214 	else
1215 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1216 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1217 				   alternate, interface, NULL, 0, 5000);
1218 
1219 	/* 9.4.10 says devices don't need this and are free to STALL the
1220 	 * request if the interface only has one alternate setting.
1221 	 */
1222 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1223 		dev_dbg(&dev->dev,
1224 			"manual set_interface for iface %d, alt %d\n",
1225 			interface, alternate);
1226 		manual = 1;
1227 	} else if (ret < 0)
1228 		return ret;
1229 
1230 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1231 	 * when they implement async or easily-killable versions of this or
1232 	 * other "should-be-internal" functions (like clear_halt).
1233 	 * should hcd+usbcore postprocess control requests?
1234 	 */
1235 
1236 	/* prevent submissions using previous endpoint settings */
1237 	if (iface->cur_altsetting != alt)
1238 		usb_remove_sysfs_intf_files(iface);
1239 	usb_disable_interface(dev, iface);
1240 
1241 	iface->cur_altsetting = alt;
1242 
1243 	/* If the interface only has one altsetting and the device didn't
1244 	 * accept the request, we attempt to carry out the equivalent action
1245 	 * by manually clearing the HALT feature for each endpoint in the
1246 	 * new altsetting.
1247 	 */
1248 	if (manual) {
1249 		int i;
1250 
1251 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1252 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1253 			pipe = __create_pipe(dev,
1254 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1255 					(usb_endpoint_out(epaddr) ?
1256 					USB_DIR_OUT : USB_DIR_IN);
1257 
1258 			usb_clear_halt(dev, pipe);
1259 		}
1260 	}
1261 
1262 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1263 	 *
1264 	 * Note:
1265 	 * Despite EP0 is always present in all interfaces/AS, the list of
1266 	 * endpoints from the descriptor does not contain EP0. Due to its
1267 	 * omnipresence one might expect EP0 being considered "affected" by
1268 	 * any SetInterface request and hence assume toggles need to be reset.
1269 	 * However, EP0 toggles are re-synced for every individual transfer
1270 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1271 	 * (Likewise, EP0 never "halts" on well designed devices.)
1272 	 */
1273 	usb_enable_interface(dev, iface);
1274 	if (device_is_registered(&iface->dev))
1275 		usb_create_sysfs_intf_files(iface);
1276 
1277 	return 0;
1278 }
1279 EXPORT_SYMBOL_GPL(usb_set_interface);
1280 
1281 /**
1282  * usb_reset_configuration - lightweight device reset
1283  * @dev: the device whose configuration is being reset
1284  *
1285  * This issues a standard SET_CONFIGURATION request to the device using
1286  * the current configuration.  The effect is to reset most USB-related
1287  * state in the device, including interface altsettings (reset to zero),
1288  * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1289  * endpoints).  Other usbcore state is unchanged, including bindings of
1290  * usb device drivers to interfaces.
1291  *
1292  * Because this affects multiple interfaces, avoid using this with composite
1293  * (multi-interface) devices.  Instead, the driver for each interface may
1294  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1295  * some devices don't support the SET_INTERFACE request, and others won't
1296  * reset all the interface state (notably data toggles).  Resetting the whole
1297  * configuration would affect other drivers' interfaces.
1298  *
1299  * The caller must own the device lock.
1300  *
1301  * Returns zero on success, else a negative error code.
1302  */
1303 int usb_reset_configuration(struct usb_device *dev)
1304 {
1305 	int			i, retval;
1306 	struct usb_host_config	*config;
1307 
1308 	if (dev->state == USB_STATE_SUSPENDED)
1309 		return -EHOSTUNREACH;
1310 
1311 	/* caller must have locked the device and must own
1312 	 * the usb bus readlock (so driver bindings are stable);
1313 	 * calls during probe() are fine
1314 	 */
1315 
1316 	for (i = 1; i < 16; ++i) {
1317 		usb_disable_endpoint(dev, i);
1318 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1319 	}
1320 
1321 	config = dev->actconfig;
1322 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1323 			USB_REQ_SET_CONFIGURATION, 0,
1324 			config->desc.bConfigurationValue, 0,
1325 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1326 	if (retval < 0)
1327 		return retval;
1328 
1329 	dev->toggle[0] = dev->toggle[1] = 0;
1330 
1331 	/* re-init hc/hcd interface/endpoint state */
1332 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1333 		struct usb_interface *intf = config->interface[i];
1334 		struct usb_host_interface *alt;
1335 
1336 		usb_remove_sysfs_intf_files(intf);
1337 		alt = usb_altnum_to_altsetting(intf, 0);
1338 
1339 		/* No altsetting 0?  We'll assume the first altsetting.
1340 		 * We could use a GetInterface call, but if a device is
1341 		 * so non-compliant that it doesn't have altsetting 0
1342 		 * then I wouldn't trust its reply anyway.
1343 		 */
1344 		if (!alt)
1345 			alt = &intf->altsetting[0];
1346 
1347 		intf->cur_altsetting = alt;
1348 		usb_enable_interface(dev, intf);
1349 		if (device_is_registered(&intf->dev))
1350 			usb_create_sysfs_intf_files(intf);
1351 	}
1352 	return 0;
1353 }
1354 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1355 
1356 static void usb_release_interface(struct device *dev)
1357 {
1358 	struct usb_interface *intf = to_usb_interface(dev);
1359 	struct usb_interface_cache *intfc =
1360 			altsetting_to_usb_interface_cache(intf->altsetting);
1361 
1362 	kref_put(&intfc->ref, usb_release_interface_cache);
1363 	kfree(intf);
1364 }
1365 
1366 #ifdef	CONFIG_HOTPLUG
1367 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1368 {
1369 	struct usb_device *usb_dev;
1370 	struct usb_interface *intf;
1371 	struct usb_host_interface *alt;
1372 
1373 	intf = to_usb_interface(dev);
1374 	usb_dev = interface_to_usbdev(intf);
1375 	alt = intf->cur_altsetting;
1376 
1377 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1378 		   alt->desc.bInterfaceClass,
1379 		   alt->desc.bInterfaceSubClass,
1380 		   alt->desc.bInterfaceProtocol))
1381 		return -ENOMEM;
1382 
1383 	if (add_uevent_var(env,
1384 		   "MODALIAS=usb:"
1385 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1386 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1387 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1388 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1389 		   usb_dev->descriptor.bDeviceClass,
1390 		   usb_dev->descriptor.bDeviceSubClass,
1391 		   usb_dev->descriptor.bDeviceProtocol,
1392 		   alt->desc.bInterfaceClass,
1393 		   alt->desc.bInterfaceSubClass,
1394 		   alt->desc.bInterfaceProtocol))
1395 		return -ENOMEM;
1396 
1397 	return 0;
1398 }
1399 
1400 #else
1401 
1402 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1403 {
1404 	return -ENODEV;
1405 }
1406 #endif	/* CONFIG_HOTPLUG */
1407 
1408 struct device_type usb_if_device_type = {
1409 	.name =		"usb_interface",
1410 	.release =	usb_release_interface,
1411 	.uevent =	usb_if_uevent,
1412 };
1413 
1414 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1415 						struct usb_host_config *config,
1416 						u8 inum)
1417 {
1418 	struct usb_interface_assoc_descriptor *retval = NULL;
1419 	struct usb_interface_assoc_descriptor *intf_assoc;
1420 	int first_intf;
1421 	int last_intf;
1422 	int i;
1423 
1424 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1425 		intf_assoc = config->intf_assoc[i];
1426 		if (intf_assoc->bInterfaceCount == 0)
1427 			continue;
1428 
1429 		first_intf = intf_assoc->bFirstInterface;
1430 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1431 		if (inum >= first_intf && inum <= last_intf) {
1432 			if (!retval)
1433 				retval = intf_assoc;
1434 			else
1435 				dev_err(&dev->dev, "Interface #%d referenced"
1436 					" by multiple IADs\n", inum);
1437 		}
1438 	}
1439 
1440 	return retval;
1441 }
1442 
1443 /*
1444  * usb_set_configuration - Makes a particular device setting be current
1445  * @dev: the device whose configuration is being updated
1446  * @configuration: the configuration being chosen.
1447  * Context: !in_interrupt(), caller owns the device lock
1448  *
1449  * This is used to enable non-default device modes.  Not all devices
1450  * use this kind of configurability; many devices only have one
1451  * configuration.
1452  *
1453  * @configuration is the value of the configuration to be installed.
1454  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1455  * must be non-zero; a value of zero indicates that the device in
1456  * unconfigured.  However some devices erroneously use 0 as one of their
1457  * configuration values.  To help manage such devices, this routine will
1458  * accept @configuration = -1 as indicating the device should be put in
1459  * an unconfigured state.
1460  *
1461  * USB device configurations may affect Linux interoperability,
1462  * power consumption and the functionality available.  For example,
1463  * the default configuration is limited to using 100mA of bus power,
1464  * so that when certain device functionality requires more power,
1465  * and the device is bus powered, that functionality should be in some
1466  * non-default device configuration.  Other device modes may also be
1467  * reflected as configuration options, such as whether two ISDN
1468  * channels are available independently; and choosing between open
1469  * standard device protocols (like CDC) or proprietary ones.
1470  *
1471  * Note that a non-authorized device (dev->authorized == 0) will only
1472  * be put in unconfigured mode.
1473  *
1474  * Note that USB has an additional level of device configurability,
1475  * associated with interfaces.  That configurability is accessed using
1476  * usb_set_interface().
1477  *
1478  * This call is synchronous. The calling context must be able to sleep,
1479  * must own the device lock, and must not hold the driver model's USB
1480  * bus mutex; usb interface driver probe() methods cannot use this routine.
1481  *
1482  * Returns zero on success, or else the status code returned by the
1483  * underlying call that failed.  On successful completion, each interface
1484  * in the original device configuration has been destroyed, and each one
1485  * in the new configuration has been probed by all relevant usb device
1486  * drivers currently known to the kernel.
1487  */
1488 int usb_set_configuration(struct usb_device *dev, int configuration)
1489 {
1490 	int i, ret;
1491 	struct usb_host_config *cp = NULL;
1492 	struct usb_interface **new_interfaces = NULL;
1493 	int n, nintf;
1494 
1495 	if (dev->authorized == 0 || configuration == -1)
1496 		configuration = 0;
1497 	else {
1498 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1499 			if (dev->config[i].desc.bConfigurationValue ==
1500 					configuration) {
1501 				cp = &dev->config[i];
1502 				break;
1503 			}
1504 		}
1505 	}
1506 	if ((!cp && configuration != 0))
1507 		return -EINVAL;
1508 
1509 	/* The USB spec says configuration 0 means unconfigured.
1510 	 * But if a device includes a configuration numbered 0,
1511 	 * we will accept it as a correctly configured state.
1512 	 * Use -1 if you really want to unconfigure the device.
1513 	 */
1514 	if (cp && configuration == 0)
1515 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1516 
1517 	/* Allocate memory for new interfaces before doing anything else,
1518 	 * so that if we run out then nothing will have changed. */
1519 	n = nintf = 0;
1520 	if (cp) {
1521 		nintf = cp->desc.bNumInterfaces;
1522 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1523 				GFP_KERNEL);
1524 		if (!new_interfaces) {
1525 			dev_err(&dev->dev, "Out of memory\n");
1526 			return -ENOMEM;
1527 		}
1528 
1529 		for (; n < nintf; ++n) {
1530 			new_interfaces[n] = kzalloc(
1531 					sizeof(struct usb_interface),
1532 					GFP_KERNEL);
1533 			if (!new_interfaces[n]) {
1534 				dev_err(&dev->dev, "Out of memory\n");
1535 				ret = -ENOMEM;
1536 free_interfaces:
1537 				while (--n >= 0)
1538 					kfree(new_interfaces[n]);
1539 				kfree(new_interfaces);
1540 				return ret;
1541 			}
1542 		}
1543 
1544 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1545 		if (i < 0)
1546 			dev_warn(&dev->dev, "new config #%d exceeds power "
1547 					"limit by %dmA\n",
1548 					configuration, -i);
1549 	}
1550 
1551 	/* Wake up the device so we can send it the Set-Config request */
1552 	ret = usb_autoresume_device(dev);
1553 	if (ret)
1554 		goto free_interfaces;
1555 
1556 	/* if it's already configured, clear out old state first.
1557 	 * getting rid of old interfaces means unbinding their drivers.
1558 	 */
1559 	if (dev->state != USB_STATE_ADDRESS)
1560 		usb_disable_device(dev, 1);	/* Skip ep0 */
1561 
1562 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1563 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1564 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1565 	if (ret < 0) {
1566 		/* All the old state is gone, so what else can we do?
1567 		 * The device is probably useless now anyway.
1568 		 */
1569 		cp = NULL;
1570 	}
1571 
1572 	dev->actconfig = cp;
1573 	if (!cp) {
1574 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1575 		usb_autosuspend_device(dev);
1576 		goto free_interfaces;
1577 	}
1578 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1579 
1580 	/* Initialize the new interface structures and the
1581 	 * hc/hcd/usbcore interface/endpoint state.
1582 	 */
1583 	for (i = 0; i < nintf; ++i) {
1584 		struct usb_interface_cache *intfc;
1585 		struct usb_interface *intf;
1586 		struct usb_host_interface *alt;
1587 
1588 		cp->interface[i] = intf = new_interfaces[i];
1589 		intfc = cp->intf_cache[i];
1590 		intf->altsetting = intfc->altsetting;
1591 		intf->num_altsetting = intfc->num_altsetting;
1592 		intf->intf_assoc = find_iad(dev, cp, i);
1593 		kref_get(&intfc->ref);
1594 
1595 		alt = usb_altnum_to_altsetting(intf, 0);
1596 
1597 		/* No altsetting 0?  We'll assume the first altsetting.
1598 		 * We could use a GetInterface call, but if a device is
1599 		 * so non-compliant that it doesn't have altsetting 0
1600 		 * then I wouldn't trust its reply anyway.
1601 		 */
1602 		if (!alt)
1603 			alt = &intf->altsetting[0];
1604 
1605 		intf->cur_altsetting = alt;
1606 		usb_enable_interface(dev, intf);
1607 		intf->dev.parent = &dev->dev;
1608 		intf->dev.driver = NULL;
1609 		intf->dev.bus = &usb_bus_type;
1610 		intf->dev.type = &usb_if_device_type;
1611 		intf->dev.groups = usb_interface_groups;
1612 		intf->dev.dma_mask = dev->dev.dma_mask;
1613 		device_initialize(&intf->dev);
1614 		mark_quiesced(intf);
1615 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1616 			dev->bus->busnum, dev->devpath,
1617 			configuration, alt->desc.bInterfaceNumber);
1618 	}
1619 	kfree(new_interfaces);
1620 
1621 	if (cp->string == NULL)
1622 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1623 
1624 	/* Now that all the interfaces are set up, register them
1625 	 * to trigger binding of drivers to interfaces.  probe()
1626 	 * routines may install different altsettings and may
1627 	 * claim() any interfaces not yet bound.  Many class drivers
1628 	 * need that: CDC, audio, video, etc.
1629 	 */
1630 	for (i = 0; i < nintf; ++i) {
1631 		struct usb_interface *intf = cp->interface[i];
1632 
1633 		dev_dbg(&dev->dev,
1634 			"adding %s (config #%d, interface %d)\n",
1635 			dev_name(&intf->dev), configuration,
1636 			intf->cur_altsetting->desc.bInterfaceNumber);
1637 		ret = device_add(&intf->dev);
1638 		if (ret != 0) {
1639 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1640 				dev_name(&intf->dev), ret);
1641 			continue;
1642 		}
1643 		usb_create_sysfs_intf_files(intf);
1644 	}
1645 
1646 	usb_autosuspend_device(dev);
1647 	return 0;
1648 }
1649 
1650 struct set_config_request {
1651 	struct usb_device	*udev;
1652 	int			config;
1653 	struct work_struct	work;
1654 };
1655 
1656 /* Worker routine for usb_driver_set_configuration() */
1657 static void driver_set_config_work(struct work_struct *work)
1658 {
1659 	struct set_config_request *req =
1660 		container_of(work, struct set_config_request, work);
1661 
1662 	usb_lock_device(req->udev);
1663 	usb_set_configuration(req->udev, req->config);
1664 	usb_unlock_device(req->udev);
1665 	usb_put_dev(req->udev);
1666 	kfree(req);
1667 }
1668 
1669 /**
1670  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1671  * @udev: the device whose configuration is being updated
1672  * @config: the configuration being chosen.
1673  * Context: In process context, must be able to sleep
1674  *
1675  * Device interface drivers are not allowed to change device configurations.
1676  * This is because changing configurations will destroy the interface the
1677  * driver is bound to and create new ones; it would be like a floppy-disk
1678  * driver telling the computer to replace the floppy-disk drive with a
1679  * tape drive!
1680  *
1681  * Still, in certain specialized circumstances the need may arise.  This
1682  * routine gets around the normal restrictions by using a work thread to
1683  * submit the change-config request.
1684  *
1685  * Returns 0 if the request was succesfully queued, error code otherwise.
1686  * The caller has no way to know whether the queued request will eventually
1687  * succeed.
1688  */
1689 int usb_driver_set_configuration(struct usb_device *udev, int config)
1690 {
1691 	struct set_config_request *req;
1692 
1693 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1694 	if (!req)
1695 		return -ENOMEM;
1696 	req->udev = udev;
1697 	req->config = config;
1698 	INIT_WORK(&req->work, driver_set_config_work);
1699 
1700 	usb_get_dev(udev);
1701 	schedule_work(&req->work);
1702 	return 0;
1703 }
1704 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1705