xref: /linux/drivers/usb/core/message.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <asm/byteorder.h>
15 #include <asm/scatterlist.h>
16 
17 #include "hcd.h"	/* for usbcore internals */
18 #include "usb.h"
19 
20 static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs)
21 {
22 	complete((struct completion *)urb->context);
23 }
24 
25 
26 static void timeout_kill(unsigned long data)
27 {
28 	struct urb	*urb = (struct urb *) data;
29 
30 	usb_unlink_urb(urb);
31 }
32 
33 // Starts urb and waits for completion or timeout
34 // note that this call is NOT interruptible, while
35 // many device driver i/o requests should be interruptible
36 static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length)
37 {
38 	struct completion	done;
39 	struct timer_list	timer;
40 	int			status;
41 
42 	init_completion(&done);
43 	urb->context = &done;
44 	urb->actual_length = 0;
45 	status = usb_submit_urb(urb, GFP_NOIO);
46 
47 	if (status == 0) {
48 		if (timeout > 0) {
49 			init_timer(&timer);
50 			timer.expires = jiffies + msecs_to_jiffies(timeout);
51 			timer.data = (unsigned long)urb;
52 			timer.function = timeout_kill;
53 			/* grr.  timeout _should_ include submit delays. */
54 			add_timer(&timer);
55 		}
56 		wait_for_completion(&done);
57 		status = urb->status;
58 		/* note:  HCDs return ETIMEDOUT for other reasons too */
59 		if (status == -ECONNRESET) {
60 			dev_dbg(&urb->dev->dev,
61 				"%s timed out on ep%d%s len=%d/%d\n",
62 				current->comm,
63 				usb_pipeendpoint(urb->pipe),
64 				usb_pipein(urb->pipe) ? "in" : "out",
65 				urb->actual_length,
66 				urb->transfer_buffer_length
67 				);
68 			if (urb->actual_length > 0)
69 				status = 0;
70 			else
71 				status = -ETIMEDOUT;
72 		}
73 		if (timeout > 0)
74 			del_timer_sync(&timer);
75 	}
76 
77 	if (actual_length)
78 		*actual_length = urb->actual_length;
79 	usb_free_urb(urb);
80 	return status;
81 }
82 
83 /*-------------------------------------------------------------------*/
84 // returns status (negative) or length (positive)
85 static int usb_internal_control_msg(struct usb_device *usb_dev,
86 				    unsigned int pipe,
87 				    struct usb_ctrlrequest *cmd,
88 				    void *data, int len, int timeout)
89 {
90 	struct urb *urb;
91 	int retv;
92 	int length;
93 
94 	urb = usb_alloc_urb(0, GFP_NOIO);
95 	if (!urb)
96 		return -ENOMEM;
97 
98 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
99 			     len, usb_api_blocking_completion, NULL);
100 
101 	retv = usb_start_wait_urb(urb, timeout, &length);
102 	if (retv < 0)
103 		return retv;
104 	else
105 		return length;
106 }
107 
108 /**
109  *	usb_control_msg - Builds a control urb, sends it off and waits for completion
110  *	@dev: pointer to the usb device to send the message to
111  *	@pipe: endpoint "pipe" to send the message to
112  *	@request: USB message request value
113  *	@requesttype: USB message request type value
114  *	@value: USB message value
115  *	@index: USB message index value
116  *	@data: pointer to the data to send
117  *	@size: length in bytes of the data to send
118  *	@timeout: time in msecs to wait for the message to complete before
119  *		timing out (if 0 the wait is forever)
120  *	Context: !in_interrupt ()
121  *
122  *	This function sends a simple control message to a specified endpoint
123  *	and waits for the message to complete, or timeout.
124  *
125  *	If successful, it returns the number of bytes transferred, otherwise a negative error number.
126  *
127  *	Don't use this function from within an interrupt context, like a
128  *	bottom half handler.  If you need an asynchronous message, or need to send
129  *	a message from within interrupt context, use usb_submit_urb()
130  *      If a thread in your driver uses this call, make sure your disconnect()
131  *      method can wait for it to complete.  Since you don't have a handle on
132  *      the URB used, you can't cancel the request.
133  */
134 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
135 			 __u16 value, __u16 index, void *data, __u16 size, int timeout)
136 {
137 	struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
138 	int ret;
139 
140 	if (!dr)
141 		return -ENOMEM;
142 
143 	dr->bRequestType= requesttype;
144 	dr->bRequest = request;
145 	dr->wValue = cpu_to_le16p(&value);
146 	dr->wIndex = cpu_to_le16p(&index);
147 	dr->wLength = cpu_to_le16p(&size);
148 
149 	//dbg("usb_control_msg");
150 
151 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152 
153 	kfree(dr);
154 
155 	return ret;
156 }
157 
158 
159 /**
160  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161  * @usb_dev: pointer to the usb device to send the message to
162  * @pipe: endpoint "pipe" to send the message to
163  * @data: pointer to the data to send
164  * @len: length in bytes of the data to send
165  * @actual_length: pointer to a location to put the actual length transferred in bytes
166  * @timeout: time in msecs to wait for the message to complete before
167  *	timing out (if 0 the wait is forever)
168  * Context: !in_interrupt ()
169  *
170  * This function sends a simple interrupt message to a specified endpoint and
171  * waits for the message to complete, or timeout.
172  *
173  * If successful, it returns 0, otherwise a negative error number.  The number
174  * of actual bytes transferred will be stored in the actual_length paramater.
175  *
176  * Don't use this function from within an interrupt context, like a bottom half
177  * handler.  If you need an asynchronous message, or need to send a message
178  * from within interrupt context, use usb_submit_urb() If a thread in your
179  * driver uses this call, make sure your disconnect() method can wait for it to
180  * complete.  Since you don't have a handle on the URB used, you can't cancel
181  * the request.
182  */
183 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
184 		      void *data, int len, int *actual_length, int timeout)
185 {
186 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
187 }
188 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
189 
190 /**
191  *	usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
192  *	@usb_dev: pointer to the usb device to send the message to
193  *	@pipe: endpoint "pipe" to send the message to
194  *	@data: pointer to the data to send
195  *	@len: length in bytes of the data to send
196  *	@actual_length: pointer to a location to put the actual length transferred in bytes
197  *	@timeout: time in msecs to wait for the message to complete before
198  *		timing out (if 0 the wait is forever)
199  *	Context: !in_interrupt ()
200  *
201  *	This function sends a simple bulk message to a specified endpoint
202  *	and waits for the message to complete, or timeout.
203  *
204  *	If successful, it returns 0, otherwise a negative error number.
205  *	The number of actual bytes transferred will be stored in the
206  *	actual_length paramater.
207  *
208  *	Don't use this function from within an interrupt context, like a
209  *	bottom half handler.  If you need an asynchronous message, or need to
210  *	send a message from within interrupt context, use usb_submit_urb()
211  *      If a thread in your driver uses this call, make sure your disconnect()
212  *      method can wait for it to complete.  Since you don't have a handle on
213  *      the URB used, you can't cancel the request.
214  *
215  *	Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
216  *	ioctl, users are forced to abuse this routine by using it to submit
217  *	URBs for interrupt endpoints.  We will take the liberty of creating
218  *	an interrupt URB (with the default interval) if the target is an
219  *	interrupt endpoint.
220  */
221 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
222 			void *data, int len, int *actual_length, int timeout)
223 {
224 	struct urb *urb;
225 	struct usb_host_endpoint *ep;
226 
227 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
228 			[usb_pipeendpoint(pipe)];
229 	if (!ep || len < 0)
230 		return -EINVAL;
231 
232 	urb = usb_alloc_urb(0, GFP_KERNEL);
233 	if (!urb)
234 		return -ENOMEM;
235 
236 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
237 			USB_ENDPOINT_XFER_INT) {
238 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
239 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
240 				usb_api_blocking_completion, NULL,
241 				ep->desc.bInterval);
242 	} else
243 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
244 				usb_api_blocking_completion, NULL);
245 
246 	return usb_start_wait_urb(urb, timeout, actual_length);
247 }
248 
249 /*-------------------------------------------------------------------*/
250 
251 static void sg_clean (struct usb_sg_request *io)
252 {
253 	if (io->urbs) {
254 		while (io->entries--)
255 			usb_free_urb (io->urbs [io->entries]);
256 		kfree (io->urbs);
257 		io->urbs = NULL;
258 	}
259 	if (io->dev->dev.dma_mask != NULL)
260 		usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
261 	io->dev = NULL;
262 }
263 
264 static void sg_complete (struct urb *urb, struct pt_regs *regs)
265 {
266 	struct usb_sg_request	*io = (struct usb_sg_request *) urb->context;
267 
268 	spin_lock (&io->lock);
269 
270 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
271 	 * reports, until the completion callback (this!) returns.  That lets
272 	 * device driver code (like this routine) unlink queued urbs first,
273 	 * if it needs to, since the HC won't work on them at all.  So it's
274 	 * not possible for page N+1 to overwrite page N, and so on.
275 	 *
276 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
277 	 * complete before the HCD can get requests away from hardware,
278 	 * though never during cleanup after a hard fault.
279 	 */
280 	if (io->status
281 			&& (io->status != -ECONNRESET
282 				|| urb->status != -ECONNRESET)
283 			&& urb->actual_length) {
284 		dev_err (io->dev->bus->controller,
285 			"dev %s ep%d%s scatterlist error %d/%d\n",
286 			io->dev->devpath,
287 			usb_pipeendpoint (urb->pipe),
288 			usb_pipein (urb->pipe) ? "in" : "out",
289 			urb->status, io->status);
290 		// BUG ();
291 	}
292 
293 	if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
294 		int		i, found, status;
295 
296 		io->status = urb->status;
297 
298 		/* the previous urbs, and this one, completed already.
299 		 * unlink pending urbs so they won't rx/tx bad data.
300 		 * careful: unlink can sometimes be synchronous...
301 		 */
302 		spin_unlock (&io->lock);
303 		for (i = 0, found = 0; i < io->entries; i++) {
304 			if (!io->urbs [i] || !io->urbs [i]->dev)
305 				continue;
306 			if (found) {
307 				status = usb_unlink_urb (io->urbs [i]);
308 				if (status != -EINPROGRESS
309 						&& status != -ENODEV
310 						&& status != -EBUSY)
311 					dev_err (&io->dev->dev,
312 						"%s, unlink --> %d\n",
313 						__FUNCTION__, status);
314 			} else if (urb == io->urbs [i])
315 				found = 1;
316 		}
317 		spin_lock (&io->lock);
318 	}
319 	urb->dev = NULL;
320 
321 	/* on the last completion, signal usb_sg_wait() */
322 	io->bytes += urb->actual_length;
323 	io->count--;
324 	if (!io->count)
325 		complete (&io->complete);
326 
327 	spin_unlock (&io->lock);
328 }
329 
330 
331 /**
332  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
333  * @io: request block being initialized.  until usb_sg_wait() returns,
334  *	treat this as a pointer to an opaque block of memory,
335  * @dev: the usb device that will send or receive the data
336  * @pipe: endpoint "pipe" used to transfer the data
337  * @period: polling rate for interrupt endpoints, in frames or
338  * 	(for high speed endpoints) microframes; ignored for bulk
339  * @sg: scatterlist entries
340  * @nents: how many entries in the scatterlist
341  * @length: how many bytes to send from the scatterlist, or zero to
342  * 	send every byte identified in the list.
343  * @mem_flags: SLAB_* flags affecting memory allocations in this call
344  *
345  * Returns zero for success, else a negative errno value.  This initializes a
346  * scatter/gather request, allocating resources such as I/O mappings and urb
347  * memory (except maybe memory used by USB controller drivers).
348  *
349  * The request must be issued using usb_sg_wait(), which waits for the I/O to
350  * complete (or to be canceled) and then cleans up all resources allocated by
351  * usb_sg_init().
352  *
353  * The request may be canceled with usb_sg_cancel(), either before or after
354  * usb_sg_wait() is called.
355  */
356 int usb_sg_init (
357 	struct usb_sg_request	*io,
358 	struct usb_device	*dev,
359 	unsigned		pipe,
360 	unsigned		period,
361 	struct scatterlist	*sg,
362 	int			nents,
363 	size_t			length,
364 	gfp_t			mem_flags
365 )
366 {
367 	int			i;
368 	int			urb_flags;
369 	int			dma;
370 
371 	if (!io || !dev || !sg
372 			|| usb_pipecontrol (pipe)
373 			|| usb_pipeisoc (pipe)
374 			|| nents <= 0)
375 		return -EINVAL;
376 
377 	spin_lock_init (&io->lock);
378 	io->dev = dev;
379 	io->pipe = pipe;
380 	io->sg = sg;
381 	io->nents = nents;
382 
383 	/* not all host controllers use DMA (like the mainstream pci ones);
384 	 * they can use PIO (sl811) or be software over another transport.
385 	 */
386 	dma = (dev->dev.dma_mask != NULL);
387 	if (dma)
388 		io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
389 	else
390 		io->entries = nents;
391 
392 	/* initialize all the urbs we'll use */
393 	if (io->entries <= 0)
394 		return io->entries;
395 
396 	io->count = io->entries;
397 	io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
398 	if (!io->urbs)
399 		goto nomem;
400 
401 	urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
402 	if (usb_pipein (pipe))
403 		urb_flags |= URB_SHORT_NOT_OK;
404 
405 	for (i = 0; i < io->entries; i++) {
406 		unsigned		len;
407 
408 		io->urbs [i] = usb_alloc_urb (0, mem_flags);
409 		if (!io->urbs [i]) {
410 			io->entries = i;
411 			goto nomem;
412 		}
413 
414 		io->urbs [i]->dev = NULL;
415 		io->urbs [i]->pipe = pipe;
416 		io->urbs [i]->interval = period;
417 		io->urbs [i]->transfer_flags = urb_flags;
418 
419 		io->urbs [i]->complete = sg_complete;
420 		io->urbs [i]->context = io;
421 		io->urbs [i]->status = -EINPROGRESS;
422 		io->urbs [i]->actual_length = 0;
423 
424 		if (dma) {
425 			/* hc may use _only_ transfer_dma */
426 			io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
427 			len = sg_dma_len (sg + i);
428 		} else {
429 			/* hc may use _only_ transfer_buffer */
430 			io->urbs [i]->transfer_buffer =
431 				page_address (sg [i].page) + sg [i].offset;
432 			len = sg [i].length;
433 		}
434 
435 		if (length) {
436 			len = min_t (unsigned, len, length);
437 			length -= len;
438 			if (length == 0)
439 				io->entries = i + 1;
440 		}
441 		io->urbs [i]->transfer_buffer_length = len;
442 	}
443 	io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
444 
445 	/* transaction state */
446 	io->status = 0;
447 	io->bytes = 0;
448 	init_completion (&io->complete);
449 	return 0;
450 
451 nomem:
452 	sg_clean (io);
453 	return -ENOMEM;
454 }
455 
456 
457 /**
458  * usb_sg_wait - synchronously execute scatter/gather request
459  * @io: request block handle, as initialized with usb_sg_init().
460  * 	some fields become accessible when this call returns.
461  * Context: !in_interrupt ()
462  *
463  * This function blocks until the specified I/O operation completes.  It
464  * leverages the grouping of the related I/O requests to get good transfer
465  * rates, by queueing the requests.  At higher speeds, such queuing can
466  * significantly improve USB throughput.
467  *
468  * There are three kinds of completion for this function.
469  * (1) success, where io->status is zero.  The number of io->bytes
470  *     transferred is as requested.
471  * (2) error, where io->status is a negative errno value.  The number
472  *     of io->bytes transferred before the error is usually less
473  *     than requested, and can be nonzero.
474  * (3) cancellation, a type of error with status -ECONNRESET that
475  *     is initiated by usb_sg_cancel().
476  *
477  * When this function returns, all memory allocated through usb_sg_init() or
478  * this call will have been freed.  The request block parameter may still be
479  * passed to usb_sg_cancel(), or it may be freed.  It could also be
480  * reinitialized and then reused.
481  *
482  * Data Transfer Rates:
483  *
484  * Bulk transfers are valid for full or high speed endpoints.
485  * The best full speed data rate is 19 packets of 64 bytes each
486  * per frame, or 1216 bytes per millisecond.
487  * The best high speed data rate is 13 packets of 512 bytes each
488  * per microframe, or 52 KBytes per millisecond.
489  *
490  * The reason to use interrupt transfers through this API would most likely
491  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
492  * could be transferred.  That capability is less useful for low or full
493  * speed interrupt endpoints, which allow at most one packet per millisecond,
494  * of at most 8 or 64 bytes (respectively).
495  */
496 void usb_sg_wait (struct usb_sg_request *io)
497 {
498 	int		i, entries = io->entries;
499 
500 	/* queue the urbs.  */
501 	spin_lock_irq (&io->lock);
502 	for (i = 0; i < entries && !io->status; i++) {
503 		int	retval;
504 
505 		io->urbs [i]->dev = io->dev;
506 		retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC);
507 
508 		/* after we submit, let completions or cancelations fire;
509 		 * we handshake using io->status.
510 		 */
511 		spin_unlock_irq (&io->lock);
512 		switch (retval) {
513 			/* maybe we retrying will recover */
514 		case -ENXIO:	// hc didn't queue this one
515 		case -EAGAIN:
516 		case -ENOMEM:
517 			io->urbs[i]->dev = NULL;
518 			retval = 0;
519 			i--;
520 			yield ();
521 			break;
522 
523 			/* no error? continue immediately.
524 			 *
525 			 * NOTE: to work better with UHCI (4K I/O buffer may
526 			 * need 3K of TDs) it may be good to limit how many
527 			 * URBs are queued at once; N milliseconds?
528 			 */
529 		case 0:
530 			cpu_relax ();
531 			break;
532 
533 			/* fail any uncompleted urbs */
534 		default:
535 			io->urbs [i]->dev = NULL;
536 			io->urbs [i]->status = retval;
537 			dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
538 				__FUNCTION__, retval);
539 			usb_sg_cancel (io);
540 		}
541 		spin_lock_irq (&io->lock);
542 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
543 			io->status = retval;
544 	}
545 	io->count -= entries - i;
546 	if (io->count == 0)
547 		complete (&io->complete);
548 	spin_unlock_irq (&io->lock);
549 
550 	/* OK, yes, this could be packaged as non-blocking.
551 	 * So could the submit loop above ... but it's easier to
552 	 * solve neither problem than to solve both!
553 	 */
554 	wait_for_completion (&io->complete);
555 
556 	sg_clean (io);
557 }
558 
559 /**
560  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
561  * @io: request block, initialized with usb_sg_init()
562  *
563  * This stops a request after it has been started by usb_sg_wait().
564  * It can also prevents one initialized by usb_sg_init() from starting,
565  * so that call just frees resources allocated to the request.
566  */
567 void usb_sg_cancel (struct usb_sg_request *io)
568 {
569 	unsigned long	flags;
570 
571 	spin_lock_irqsave (&io->lock, flags);
572 
573 	/* shut everything down, if it didn't already */
574 	if (!io->status) {
575 		int	i;
576 
577 		io->status = -ECONNRESET;
578 		spin_unlock (&io->lock);
579 		for (i = 0; i < io->entries; i++) {
580 			int	retval;
581 
582 			if (!io->urbs [i]->dev)
583 				continue;
584 			retval = usb_unlink_urb (io->urbs [i]);
585 			if (retval != -EINPROGRESS && retval != -EBUSY)
586 				dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
587 					__FUNCTION__, retval);
588 		}
589 		spin_lock (&io->lock);
590 	}
591 	spin_unlock_irqrestore (&io->lock, flags);
592 }
593 
594 /*-------------------------------------------------------------------*/
595 
596 /**
597  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
598  * @dev: the device whose descriptor is being retrieved
599  * @type: the descriptor type (USB_DT_*)
600  * @index: the number of the descriptor
601  * @buf: where to put the descriptor
602  * @size: how big is "buf"?
603  * Context: !in_interrupt ()
604  *
605  * Gets a USB descriptor.  Convenience functions exist to simplify
606  * getting some types of descriptors.  Use
607  * usb_get_string() or usb_string() for USB_DT_STRING.
608  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
609  * are part of the device structure.
610  * In addition to a number of USB-standard descriptors, some
611  * devices also use class-specific or vendor-specific descriptors.
612  *
613  * This call is synchronous, and may not be used in an interrupt context.
614  *
615  * Returns the number of bytes received on success, or else the status code
616  * returned by the underlying usb_control_msg() call.
617  */
618 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
619 {
620 	int i;
621 	int result;
622 
623 	memset(buf,0,size);	// Make sure we parse really received data
624 
625 	for (i = 0; i < 3; ++i) {
626 		/* retry on length 0 or stall; some devices are flakey */
627 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
628 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
629 				(type << 8) + index, 0, buf, size,
630 				USB_CTRL_GET_TIMEOUT);
631 		if (result == 0 || result == -EPIPE)
632 			continue;
633 		if (result > 1 && ((u8 *)buf)[1] != type) {
634 			result = -EPROTO;
635 			continue;
636 		}
637 		break;
638 	}
639 	return result;
640 }
641 
642 /**
643  * usb_get_string - gets a string descriptor
644  * @dev: the device whose string descriptor is being retrieved
645  * @langid: code for language chosen (from string descriptor zero)
646  * @index: the number of the descriptor
647  * @buf: where to put the string
648  * @size: how big is "buf"?
649  * Context: !in_interrupt ()
650  *
651  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
652  * in little-endian byte order).
653  * The usb_string() function will often be a convenient way to turn
654  * these strings into kernel-printable form.
655  *
656  * Strings may be referenced in device, configuration, interface, or other
657  * descriptors, and could also be used in vendor-specific ways.
658  *
659  * This call is synchronous, and may not be used in an interrupt context.
660  *
661  * Returns the number of bytes received on success, or else the status code
662  * returned by the underlying usb_control_msg() call.
663  */
664 static int usb_get_string(struct usb_device *dev, unsigned short langid,
665 			  unsigned char index, void *buf, int size)
666 {
667 	int i;
668 	int result;
669 
670 	for (i = 0; i < 3; ++i) {
671 		/* retry on length 0 or stall; some devices are flakey */
672 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
673 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
674 			(USB_DT_STRING << 8) + index, langid, buf, size,
675 			USB_CTRL_GET_TIMEOUT);
676 		if (!(result == 0 || result == -EPIPE))
677 			break;
678 	}
679 	return result;
680 }
681 
682 static void usb_try_string_workarounds(unsigned char *buf, int *length)
683 {
684 	int newlength, oldlength = *length;
685 
686 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
687 		if (!isprint(buf[newlength]) || buf[newlength + 1])
688 			break;
689 
690 	if (newlength > 2) {
691 		buf[0] = newlength;
692 		*length = newlength;
693 	}
694 }
695 
696 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
697 		unsigned int index, unsigned char *buf)
698 {
699 	int rc;
700 
701 	/* Try to read the string descriptor by asking for the maximum
702 	 * possible number of bytes */
703 	rc = usb_get_string(dev, langid, index, buf, 255);
704 
705 	/* If that failed try to read the descriptor length, then
706 	 * ask for just that many bytes */
707 	if (rc < 2) {
708 		rc = usb_get_string(dev, langid, index, buf, 2);
709 		if (rc == 2)
710 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
711 	}
712 
713 	if (rc >= 2) {
714 		if (!buf[0] && !buf[1])
715 			usb_try_string_workarounds(buf, &rc);
716 
717 		/* There might be extra junk at the end of the descriptor */
718 		if (buf[0] < rc)
719 			rc = buf[0];
720 
721 		rc = rc - (rc & 1); /* force a multiple of two */
722 	}
723 
724 	if (rc < 2)
725 		rc = (rc < 0 ? rc : -EINVAL);
726 
727 	return rc;
728 }
729 
730 /**
731  * usb_string - returns ISO 8859-1 version of a string descriptor
732  * @dev: the device whose string descriptor is being retrieved
733  * @index: the number of the descriptor
734  * @buf: where to put the string
735  * @size: how big is "buf"?
736  * Context: !in_interrupt ()
737  *
738  * This converts the UTF-16LE encoded strings returned by devices, from
739  * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
740  * that are more usable in most kernel contexts.  Note that all characters
741  * in the chosen descriptor that can't be encoded using ISO-8859-1
742  * are converted to the question mark ("?") character, and this function
743  * chooses strings in the first language supported by the device.
744  *
745  * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
746  * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
747  * and is appropriate for use many uses of English and several other
748  * Western European languages.  (But it doesn't include the "Euro" symbol.)
749  *
750  * This call is synchronous, and may not be used in an interrupt context.
751  *
752  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
753  */
754 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
755 {
756 	unsigned char *tbuf;
757 	int err;
758 	unsigned int u, idx;
759 
760 	if (dev->state == USB_STATE_SUSPENDED)
761 		return -EHOSTUNREACH;
762 	if (size <= 0 || !buf || !index)
763 		return -EINVAL;
764 	buf[0] = 0;
765 	tbuf = kmalloc(256, GFP_KERNEL);
766 	if (!tbuf)
767 		return -ENOMEM;
768 
769 	/* get langid for strings if it's not yet known */
770 	if (!dev->have_langid) {
771 		err = usb_string_sub(dev, 0, 0, tbuf);
772 		if (err < 0) {
773 			dev_err (&dev->dev,
774 				"string descriptor 0 read error: %d\n",
775 				err);
776 			goto errout;
777 		} else if (err < 4) {
778 			dev_err (&dev->dev, "string descriptor 0 too short\n");
779 			err = -EINVAL;
780 			goto errout;
781 		} else {
782 			dev->have_langid = -1;
783 			dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
784 				/* always use the first langid listed */
785 			dev_dbg (&dev->dev, "default language 0x%04x\n",
786 				dev->string_langid);
787 		}
788 	}
789 
790 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
791 	if (err < 0)
792 		goto errout;
793 
794 	size--;		/* leave room for trailing NULL char in output buffer */
795 	for (idx = 0, u = 2; u < err; u += 2) {
796 		if (idx >= size)
797 			break;
798 		if (tbuf[u+1])			/* high byte */
799 			buf[idx++] = '?';  /* non ISO-8859-1 character */
800 		else
801 			buf[idx++] = tbuf[u];
802 	}
803 	buf[idx] = 0;
804 	err = idx;
805 
806 	if (tbuf[1] != USB_DT_STRING)
807 		dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
808 
809  errout:
810 	kfree(tbuf);
811 	return err;
812 }
813 
814 /**
815  * usb_cache_string - read a string descriptor and cache it for later use
816  * @udev: the device whose string descriptor is being read
817  * @index: the descriptor index
818  *
819  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
820  * or NULL if the index is 0 or the string could not be read.
821  */
822 char *usb_cache_string(struct usb_device *udev, int index)
823 {
824 	char *buf;
825 	char *smallbuf = NULL;
826 	int len;
827 
828 	if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
829 		if ((len = usb_string(udev, index, buf, 256)) > 0) {
830 			if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
831 				return buf;
832 			memcpy(smallbuf, buf, len);
833 		}
834 		kfree(buf);
835 	}
836 	return smallbuf;
837 }
838 
839 /*
840  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
841  * @dev: the device whose device descriptor is being updated
842  * @size: how much of the descriptor to read
843  * Context: !in_interrupt ()
844  *
845  * Updates the copy of the device descriptor stored in the device structure,
846  * which dedicates space for this purpose.  Note that several fields are
847  * converted to the host CPU's byte order:  the USB version (bcdUSB), and
848  * vendors product and version fields (idVendor, idProduct, and bcdDevice).
849  * That lets device drivers compare against non-byteswapped constants.
850  *
851  * Not exported, only for use by the core.  If drivers really want to read
852  * the device descriptor directly, they can call usb_get_descriptor() with
853  * type = USB_DT_DEVICE and index = 0.
854  *
855  * This call is synchronous, and may not be used in an interrupt context.
856  *
857  * Returns the number of bytes received on success, or else the status code
858  * returned by the underlying usb_control_msg() call.
859  */
860 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
861 {
862 	struct usb_device_descriptor *desc;
863 	int ret;
864 
865 	if (size > sizeof(*desc))
866 		return -EINVAL;
867 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
868 	if (!desc)
869 		return -ENOMEM;
870 
871 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
872 	if (ret >= 0)
873 		memcpy(&dev->descriptor, desc, size);
874 	kfree(desc);
875 	return ret;
876 }
877 
878 /**
879  * usb_get_status - issues a GET_STATUS call
880  * @dev: the device whose status is being checked
881  * @type: USB_RECIP_*; for device, interface, or endpoint
882  * @target: zero (for device), else interface or endpoint number
883  * @data: pointer to two bytes of bitmap data
884  * Context: !in_interrupt ()
885  *
886  * Returns device, interface, or endpoint status.  Normally only of
887  * interest to see if the device is self powered, or has enabled the
888  * remote wakeup facility; or whether a bulk or interrupt endpoint
889  * is halted ("stalled").
890  *
891  * Bits in these status bitmaps are set using the SET_FEATURE request,
892  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
893  * function should be used to clear halt ("stall") status.
894  *
895  * This call is synchronous, and may not be used in an interrupt context.
896  *
897  * Returns the number of bytes received on success, or else the status code
898  * returned by the underlying usb_control_msg() call.
899  */
900 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
901 {
902 	int ret;
903 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
904 
905 	if (!status)
906 		return -ENOMEM;
907 
908 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
909 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
910 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
911 
912 	*(u16 *)data = *status;
913 	kfree(status);
914 	return ret;
915 }
916 
917 /**
918  * usb_clear_halt - tells device to clear endpoint halt/stall condition
919  * @dev: device whose endpoint is halted
920  * @pipe: endpoint "pipe" being cleared
921  * Context: !in_interrupt ()
922  *
923  * This is used to clear halt conditions for bulk and interrupt endpoints,
924  * as reported by URB completion status.  Endpoints that are halted are
925  * sometimes referred to as being "stalled".  Such endpoints are unable
926  * to transmit or receive data until the halt status is cleared.  Any URBs
927  * queued for such an endpoint should normally be unlinked by the driver
928  * before clearing the halt condition, as described in sections 5.7.5
929  * and 5.8.5 of the USB 2.0 spec.
930  *
931  * Note that control and isochronous endpoints don't halt, although control
932  * endpoints report "protocol stall" (for unsupported requests) using the
933  * same status code used to report a true stall.
934  *
935  * This call is synchronous, and may not be used in an interrupt context.
936  *
937  * Returns zero on success, or else the status code returned by the
938  * underlying usb_control_msg() call.
939  */
940 int usb_clear_halt(struct usb_device *dev, int pipe)
941 {
942 	int result;
943 	int endp = usb_pipeendpoint(pipe);
944 
945 	if (usb_pipein (pipe))
946 		endp |= USB_DIR_IN;
947 
948 	/* we don't care if it wasn't halted first. in fact some devices
949 	 * (like some ibmcam model 1 units) seem to expect hosts to make
950 	 * this request for iso endpoints, which can't halt!
951 	 */
952 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
953 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
954 		USB_ENDPOINT_HALT, endp, NULL, 0,
955 		USB_CTRL_SET_TIMEOUT);
956 
957 	/* don't un-halt or force to DATA0 except on success */
958 	if (result < 0)
959 		return result;
960 
961 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
962 	 * the clear "took", so some devices could lock up if you check...
963 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
964 	 *
965 	 * NOTE:  make sure the logic here doesn't diverge much from
966 	 * the copy in usb-storage, for as long as we need two copies.
967 	 */
968 
969 	/* toggle was reset by the clear */
970 	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
971 
972 	return 0;
973 }
974 
975 /**
976  * usb_disable_endpoint -- Disable an endpoint by address
977  * @dev: the device whose endpoint is being disabled
978  * @epaddr: the endpoint's address.  Endpoint number for output,
979  *	endpoint number + USB_DIR_IN for input
980  *
981  * Deallocates hcd/hardware state for this endpoint ... and nukes all
982  * pending urbs.
983  *
984  * If the HCD hasn't registered a disable() function, this sets the
985  * endpoint's maxpacket size to 0 to prevent further submissions.
986  */
987 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
988 {
989 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
990 	struct usb_host_endpoint *ep;
991 
992 	if (!dev)
993 		return;
994 
995 	if (usb_endpoint_out(epaddr)) {
996 		ep = dev->ep_out[epnum];
997 		dev->ep_out[epnum] = NULL;
998 	} else {
999 		ep = dev->ep_in[epnum];
1000 		dev->ep_in[epnum] = NULL;
1001 	}
1002 	if (ep && dev->bus && dev->bus->op && dev->bus->op->disable)
1003 		dev->bus->op->disable(dev, ep);
1004 }
1005 
1006 /**
1007  * usb_disable_interface -- Disable all endpoints for an interface
1008  * @dev: the device whose interface is being disabled
1009  * @intf: pointer to the interface descriptor
1010  *
1011  * Disables all the endpoints for the interface's current altsetting.
1012  */
1013 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1014 {
1015 	struct usb_host_interface *alt = intf->cur_altsetting;
1016 	int i;
1017 
1018 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1019 		usb_disable_endpoint(dev,
1020 				alt->endpoint[i].desc.bEndpointAddress);
1021 	}
1022 }
1023 
1024 /*
1025  * usb_disable_device - Disable all the endpoints for a USB device
1026  * @dev: the device whose endpoints are being disabled
1027  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1028  *
1029  * Disables all the device's endpoints, potentially including endpoint 0.
1030  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1031  * pending urbs) and usbcore state for the interfaces, so that usbcore
1032  * must usb_set_configuration() before any interfaces could be used.
1033  */
1034 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1035 {
1036 	int i;
1037 
1038 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1039 			skip_ep0 ? "non-ep0" : "all");
1040 	for (i = skip_ep0; i < 16; ++i) {
1041 		usb_disable_endpoint(dev, i);
1042 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1043 	}
1044 	dev->toggle[0] = dev->toggle[1] = 0;
1045 
1046 	/* getting rid of interfaces will disconnect
1047 	 * any drivers bound to them (a key side effect)
1048 	 */
1049 	if (dev->actconfig) {
1050 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1051 			struct usb_interface	*interface;
1052 
1053 			/* remove this interface if it has been registered */
1054 			interface = dev->actconfig->interface[i];
1055 			if (!device_is_registered(&interface->dev))
1056 				continue;
1057 			dev_dbg (&dev->dev, "unregistering interface %s\n",
1058 				interface->dev.bus_id);
1059 			usb_remove_sysfs_intf_files(interface);
1060 			device_del (&interface->dev);
1061 		}
1062 
1063 		/* Now that the interfaces are unbound, nobody should
1064 		 * try to access them.
1065 		 */
1066 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1067 			put_device (&dev->actconfig->interface[i]->dev);
1068 			dev->actconfig->interface[i] = NULL;
1069 		}
1070 		dev->actconfig = NULL;
1071 		if (dev->state == USB_STATE_CONFIGURED)
1072 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1073 	}
1074 }
1075 
1076 
1077 /*
1078  * usb_enable_endpoint - Enable an endpoint for USB communications
1079  * @dev: the device whose interface is being enabled
1080  * @ep: the endpoint
1081  *
1082  * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1083  * For control endpoints, both the input and output sides are handled.
1084  */
1085 static void
1086 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1087 {
1088 	unsigned int epaddr = ep->desc.bEndpointAddress;
1089 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1090 	int is_control;
1091 
1092 	is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1093 			== USB_ENDPOINT_XFER_CONTROL);
1094 	if (usb_endpoint_out(epaddr) || is_control) {
1095 		usb_settoggle(dev, epnum, 1, 0);
1096 		dev->ep_out[epnum] = ep;
1097 	}
1098 	if (!usb_endpoint_out(epaddr) || is_control) {
1099 		usb_settoggle(dev, epnum, 0, 0);
1100 		dev->ep_in[epnum] = ep;
1101 	}
1102 }
1103 
1104 /*
1105  * usb_enable_interface - Enable all the endpoints for an interface
1106  * @dev: the device whose interface is being enabled
1107  * @intf: pointer to the interface descriptor
1108  *
1109  * Enables all the endpoints for the interface's current altsetting.
1110  */
1111 static void usb_enable_interface(struct usb_device *dev,
1112 				 struct usb_interface *intf)
1113 {
1114 	struct usb_host_interface *alt = intf->cur_altsetting;
1115 	int i;
1116 
1117 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1118 		usb_enable_endpoint(dev, &alt->endpoint[i]);
1119 }
1120 
1121 /**
1122  * usb_set_interface - Makes a particular alternate setting be current
1123  * @dev: the device whose interface is being updated
1124  * @interface: the interface being updated
1125  * @alternate: the setting being chosen.
1126  * Context: !in_interrupt ()
1127  *
1128  * This is used to enable data transfers on interfaces that may not
1129  * be enabled by default.  Not all devices support such configurability.
1130  * Only the driver bound to an interface may change its setting.
1131  *
1132  * Within any given configuration, each interface may have several
1133  * alternative settings.  These are often used to control levels of
1134  * bandwidth consumption.  For example, the default setting for a high
1135  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1136  * while interrupt transfers of up to 3KBytes per microframe are legal.
1137  * Also, isochronous endpoints may never be part of an
1138  * interface's default setting.  To access such bandwidth, alternate
1139  * interface settings must be made current.
1140  *
1141  * Note that in the Linux USB subsystem, bandwidth associated with
1142  * an endpoint in a given alternate setting is not reserved until an URB
1143  * is submitted that needs that bandwidth.  Some other operating systems
1144  * allocate bandwidth early, when a configuration is chosen.
1145  *
1146  * This call is synchronous, and may not be used in an interrupt context.
1147  * Also, drivers must not change altsettings while urbs are scheduled for
1148  * endpoints in that interface; all such urbs must first be completed
1149  * (perhaps forced by unlinking).
1150  *
1151  * Returns zero on success, or else the status code returned by the
1152  * underlying usb_control_msg() call.
1153  */
1154 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1155 {
1156 	struct usb_interface *iface;
1157 	struct usb_host_interface *alt;
1158 	int ret;
1159 	int manual = 0;
1160 
1161 	if (dev->state == USB_STATE_SUSPENDED)
1162 		return -EHOSTUNREACH;
1163 
1164 	iface = usb_ifnum_to_if(dev, interface);
1165 	if (!iface) {
1166 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1167 			interface);
1168 		return -EINVAL;
1169 	}
1170 
1171 	alt = usb_altnum_to_altsetting(iface, alternate);
1172 	if (!alt) {
1173 		warn("selecting invalid altsetting %d", alternate);
1174 		return -EINVAL;
1175 	}
1176 
1177 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1178 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1179 				   alternate, interface, NULL, 0, 5000);
1180 
1181 	/* 9.4.10 says devices don't need this and are free to STALL the
1182 	 * request if the interface only has one alternate setting.
1183 	 */
1184 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1185 		dev_dbg(&dev->dev,
1186 			"manual set_interface for iface %d, alt %d\n",
1187 			interface, alternate);
1188 		manual = 1;
1189 	} else if (ret < 0)
1190 		return ret;
1191 
1192 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1193 	 * when they implement async or easily-killable versions of this or
1194 	 * other "should-be-internal" functions (like clear_halt).
1195 	 * should hcd+usbcore postprocess control requests?
1196 	 */
1197 
1198 	/* prevent submissions using previous endpoint settings */
1199 	if (device_is_registered(&iface->dev))
1200 		usb_remove_sysfs_intf_files(iface);
1201 	usb_disable_interface(dev, iface);
1202 
1203 	iface->cur_altsetting = alt;
1204 
1205 	/* If the interface only has one altsetting and the device didn't
1206 	 * accept the request, we attempt to carry out the equivalent action
1207 	 * by manually clearing the HALT feature for each endpoint in the
1208 	 * new altsetting.
1209 	 */
1210 	if (manual) {
1211 		int i;
1212 
1213 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1214 			unsigned int epaddr =
1215 				alt->endpoint[i].desc.bEndpointAddress;
1216 			unsigned int pipe =
1217 	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1218 	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1219 
1220 			usb_clear_halt(dev, pipe);
1221 		}
1222 	}
1223 
1224 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1225 	 *
1226 	 * Note:
1227 	 * Despite EP0 is always present in all interfaces/AS, the list of
1228 	 * endpoints from the descriptor does not contain EP0. Due to its
1229 	 * omnipresence one might expect EP0 being considered "affected" by
1230 	 * any SetInterface request and hence assume toggles need to be reset.
1231 	 * However, EP0 toggles are re-synced for every individual transfer
1232 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1233 	 * (Likewise, EP0 never "halts" on well designed devices.)
1234 	 */
1235 	usb_enable_interface(dev, iface);
1236 	if (device_is_registered(&iface->dev))
1237 		usb_create_sysfs_intf_files(iface);
1238 
1239 	return 0;
1240 }
1241 
1242 /**
1243  * usb_reset_configuration - lightweight device reset
1244  * @dev: the device whose configuration is being reset
1245  *
1246  * This issues a standard SET_CONFIGURATION request to the device using
1247  * the current configuration.  The effect is to reset most USB-related
1248  * state in the device, including interface altsettings (reset to zero),
1249  * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1250  * endpoints).  Other usbcore state is unchanged, including bindings of
1251  * usb device drivers to interfaces.
1252  *
1253  * Because this affects multiple interfaces, avoid using this with composite
1254  * (multi-interface) devices.  Instead, the driver for each interface may
1255  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1256  * some devices don't support the SET_INTERFACE request, and others won't
1257  * reset all the interface state (notably data toggles).  Resetting the whole
1258  * configuration would affect other drivers' interfaces.
1259  *
1260  * The caller must own the device lock.
1261  *
1262  * Returns zero on success, else a negative error code.
1263  */
1264 int usb_reset_configuration(struct usb_device *dev)
1265 {
1266 	int			i, retval;
1267 	struct usb_host_config	*config;
1268 
1269 	if (dev->state == USB_STATE_SUSPENDED)
1270 		return -EHOSTUNREACH;
1271 
1272 	/* caller must have locked the device and must own
1273 	 * the usb bus readlock (so driver bindings are stable);
1274 	 * calls during probe() are fine
1275 	 */
1276 
1277 	for (i = 1; i < 16; ++i) {
1278 		usb_disable_endpoint(dev, i);
1279 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1280 	}
1281 
1282 	config = dev->actconfig;
1283 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1284 			USB_REQ_SET_CONFIGURATION, 0,
1285 			config->desc.bConfigurationValue, 0,
1286 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1287 	if (retval < 0)
1288 		return retval;
1289 
1290 	dev->toggle[0] = dev->toggle[1] = 0;
1291 
1292 	/* re-init hc/hcd interface/endpoint state */
1293 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1294 		struct usb_interface *intf = config->interface[i];
1295 		struct usb_host_interface *alt;
1296 
1297 		if (device_is_registered(&intf->dev))
1298 			usb_remove_sysfs_intf_files(intf);
1299 		alt = usb_altnum_to_altsetting(intf, 0);
1300 
1301 		/* No altsetting 0?  We'll assume the first altsetting.
1302 		 * We could use a GetInterface call, but if a device is
1303 		 * so non-compliant that it doesn't have altsetting 0
1304 		 * then I wouldn't trust its reply anyway.
1305 		 */
1306 		if (!alt)
1307 			alt = &intf->altsetting[0];
1308 
1309 		intf->cur_altsetting = alt;
1310 		usb_enable_interface(dev, intf);
1311 		if (device_is_registered(&intf->dev))
1312 			usb_create_sysfs_intf_files(intf);
1313 	}
1314 	return 0;
1315 }
1316 
1317 static void release_interface(struct device *dev)
1318 {
1319 	struct usb_interface *intf = to_usb_interface(dev);
1320 	struct usb_interface_cache *intfc =
1321 			altsetting_to_usb_interface_cache(intf->altsetting);
1322 
1323 	kref_put(&intfc->ref, usb_release_interface_cache);
1324 	kfree(intf);
1325 }
1326 
1327 /*
1328  * usb_set_configuration - Makes a particular device setting be current
1329  * @dev: the device whose configuration is being updated
1330  * @configuration: the configuration being chosen.
1331  * Context: !in_interrupt(), caller owns the device lock
1332  *
1333  * This is used to enable non-default device modes.  Not all devices
1334  * use this kind of configurability; many devices only have one
1335  * configuration.
1336  *
1337  * USB device configurations may affect Linux interoperability,
1338  * power consumption and the functionality available.  For example,
1339  * the default configuration is limited to using 100mA of bus power,
1340  * so that when certain device functionality requires more power,
1341  * and the device is bus powered, that functionality should be in some
1342  * non-default device configuration.  Other device modes may also be
1343  * reflected as configuration options, such as whether two ISDN
1344  * channels are available independently; and choosing between open
1345  * standard device protocols (like CDC) or proprietary ones.
1346  *
1347  * Note that USB has an additional level of device configurability,
1348  * associated with interfaces.  That configurability is accessed using
1349  * usb_set_interface().
1350  *
1351  * This call is synchronous. The calling context must be able to sleep,
1352  * must own the device lock, and must not hold the driver model's USB
1353  * bus rwsem; usb device driver probe() methods cannot use this routine.
1354  *
1355  * Returns zero on success, or else the status code returned by the
1356  * underlying call that failed.  On successful completion, each interface
1357  * in the original device configuration has been destroyed, and each one
1358  * in the new configuration has been probed by all relevant usb device
1359  * drivers currently known to the kernel.
1360  */
1361 int usb_set_configuration(struct usb_device *dev, int configuration)
1362 {
1363 	int i, ret;
1364 	struct usb_host_config *cp = NULL;
1365 	struct usb_interface **new_interfaces = NULL;
1366 	int n, nintf;
1367 
1368 	for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1369 		if (dev->config[i].desc.bConfigurationValue == configuration) {
1370 			cp = &dev->config[i];
1371 			break;
1372 		}
1373 	}
1374 	if ((!cp && configuration != 0))
1375 		return -EINVAL;
1376 
1377 	/* The USB spec says configuration 0 means unconfigured.
1378 	 * But if a device includes a configuration numbered 0,
1379 	 * we will accept it as a correctly configured state.
1380 	 */
1381 	if (cp && configuration == 0)
1382 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1383 
1384 	if (dev->state == USB_STATE_SUSPENDED)
1385 		return -EHOSTUNREACH;
1386 
1387 	/* Allocate memory for new interfaces before doing anything else,
1388 	 * so that if we run out then nothing will have changed. */
1389 	n = nintf = 0;
1390 	if (cp) {
1391 		nintf = cp->desc.bNumInterfaces;
1392 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1393 				GFP_KERNEL);
1394 		if (!new_interfaces) {
1395 			dev_err(&dev->dev, "Out of memory");
1396 			return -ENOMEM;
1397 		}
1398 
1399 		for (; n < nintf; ++n) {
1400 			new_interfaces[n] = kzalloc(
1401 					sizeof(struct usb_interface),
1402 					GFP_KERNEL);
1403 			if (!new_interfaces[n]) {
1404 				dev_err(&dev->dev, "Out of memory");
1405 				ret = -ENOMEM;
1406 free_interfaces:
1407 				while (--n >= 0)
1408 					kfree(new_interfaces[n]);
1409 				kfree(new_interfaces);
1410 				return ret;
1411 			}
1412 		}
1413 
1414 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1415 		if (i < 0)
1416 			dev_warn(&dev->dev, "new config #%d exceeds power "
1417 					"limit by %dmA\n",
1418 					configuration, -i);
1419 	}
1420 
1421 	/* if it's already configured, clear out old state first.
1422 	 * getting rid of old interfaces means unbinding their drivers.
1423 	 */
1424 	if (dev->state != USB_STATE_ADDRESS)
1425 		usb_disable_device (dev, 1);	// Skip ep0
1426 
1427 	if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1428 			USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1429 			NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) {
1430 
1431 		/* All the old state is gone, so what else can we do?
1432 		 * The device is probably useless now anyway.
1433 		 */
1434 		cp = NULL;
1435 	}
1436 
1437 	dev->actconfig = cp;
1438 	if (!cp) {
1439 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1440 		goto free_interfaces;
1441 	}
1442 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1443 
1444 	/* Initialize the new interface structures and the
1445 	 * hc/hcd/usbcore interface/endpoint state.
1446 	 */
1447 	for (i = 0; i < nintf; ++i) {
1448 		struct usb_interface_cache *intfc;
1449 		struct usb_interface *intf;
1450 		struct usb_host_interface *alt;
1451 
1452 		cp->interface[i] = intf = new_interfaces[i];
1453 		intfc = cp->intf_cache[i];
1454 		intf->altsetting = intfc->altsetting;
1455 		intf->num_altsetting = intfc->num_altsetting;
1456 		kref_get(&intfc->ref);
1457 
1458 		alt = usb_altnum_to_altsetting(intf, 0);
1459 
1460 		/* No altsetting 0?  We'll assume the first altsetting.
1461 		 * We could use a GetInterface call, but if a device is
1462 		 * so non-compliant that it doesn't have altsetting 0
1463 		 * then I wouldn't trust its reply anyway.
1464 		 */
1465 		if (!alt)
1466 			alt = &intf->altsetting[0];
1467 
1468 		intf->cur_altsetting = alt;
1469 		usb_enable_interface(dev, intf);
1470 		intf->dev.parent = &dev->dev;
1471 		intf->dev.driver = NULL;
1472 		intf->dev.bus = &usb_bus_type;
1473 		intf->dev.dma_mask = dev->dev.dma_mask;
1474 		intf->dev.release = release_interface;
1475 		device_initialize (&intf->dev);
1476 		mark_quiesced(intf);
1477 		sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1478 			 dev->bus->busnum, dev->devpath,
1479 			 configuration, alt->desc.bInterfaceNumber);
1480 	}
1481 	kfree(new_interfaces);
1482 
1483 	if (cp->string == NULL)
1484 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1485 
1486 	/* Now that all the interfaces are set up, register them
1487 	 * to trigger binding of drivers to interfaces.  probe()
1488 	 * routines may install different altsettings and may
1489 	 * claim() any interfaces not yet bound.  Many class drivers
1490 	 * need that: CDC, audio, video, etc.
1491 	 */
1492 	for (i = 0; i < nintf; ++i) {
1493 		struct usb_interface *intf = cp->interface[i];
1494 
1495 		dev_dbg (&dev->dev,
1496 			"adding %s (config #%d, interface %d)\n",
1497 			intf->dev.bus_id, configuration,
1498 			intf->cur_altsetting->desc.bInterfaceNumber);
1499 		ret = device_add (&intf->dev);
1500 		if (ret != 0) {
1501 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1502 				intf->dev.bus_id, ret);
1503 			continue;
1504 		}
1505 		usb_create_sysfs_intf_files (intf);
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 // synchronous request completion model
1512 EXPORT_SYMBOL(usb_control_msg);
1513 EXPORT_SYMBOL(usb_bulk_msg);
1514 
1515 EXPORT_SYMBOL(usb_sg_init);
1516 EXPORT_SYMBOL(usb_sg_cancel);
1517 EXPORT_SYMBOL(usb_sg_wait);
1518 
1519 // synchronous control message convenience routines
1520 EXPORT_SYMBOL(usb_get_descriptor);
1521 EXPORT_SYMBOL(usb_get_status);
1522 EXPORT_SYMBOL(usb_string);
1523 
1524 // synchronous calls that also maintain usbcore state
1525 EXPORT_SYMBOL(usb_clear_halt);
1526 EXPORT_SYMBOL(usb_reset_configuration);
1527 EXPORT_SYMBOL(usb_set_interface);
1528 
1529