1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * message.c - synchronous message handling 4 * 5 * Released under the GPLv2 only. 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/pci.h> /* for scatterlist macros */ 10 #include <linux/usb.h> 11 #include <linux/module.h> 12 #include <linux/slab.h> 13 #include <linux/mm.h> 14 #include <linux/timer.h> 15 #include <linux/ctype.h> 16 #include <linux/nls.h> 17 #include <linux/device.h> 18 #include <linux/scatterlist.h> 19 #include <linux/usb/cdc.h> 20 #include <linux/usb/quirks.h> 21 #include <linux/usb/hcd.h> /* for usbcore internals */ 22 #include <linux/usb/of.h> 23 #include <asm/byteorder.h> 24 25 #include "usb.h" 26 27 static void cancel_async_set_config(struct usb_device *udev); 28 29 struct api_context { 30 struct completion done; 31 int status; 32 }; 33 34 static void usb_api_blocking_completion(struct urb *urb) 35 { 36 struct api_context *ctx = urb->context; 37 38 ctx->status = urb->status; 39 complete(&ctx->done); 40 } 41 42 43 /* 44 * Starts urb and waits for completion or timeout. Note that this call 45 * is NOT interruptible. Many device driver i/o requests should be 46 * interruptible and therefore these drivers should implement their 47 * own interruptible routines. 48 */ 49 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 50 { 51 struct api_context ctx; 52 unsigned long expire; 53 int retval; 54 55 init_completion(&ctx.done); 56 urb->context = &ctx; 57 urb->actual_length = 0; 58 retval = usb_submit_urb(urb, GFP_NOIO); 59 if (unlikely(retval)) 60 goto out; 61 62 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 63 if (!wait_for_completion_timeout(&ctx.done, expire)) { 64 usb_kill_urb(urb); 65 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 66 67 dev_dbg(&urb->dev->dev, 68 "%s timed out on ep%d%s len=%u/%u\n", 69 current->comm, 70 usb_endpoint_num(&urb->ep->desc), 71 usb_urb_dir_in(urb) ? "in" : "out", 72 urb->actual_length, 73 urb->transfer_buffer_length); 74 } else 75 retval = ctx.status; 76 out: 77 if (actual_length) 78 *actual_length = urb->actual_length; 79 80 usb_free_urb(urb); 81 return retval; 82 } 83 84 /*-------------------------------------------------------------------*/ 85 /* returns status (negative) or length (positive) */ 86 static int usb_internal_control_msg(struct usb_device *usb_dev, 87 unsigned int pipe, 88 struct usb_ctrlrequest *cmd, 89 void *data, int len, int timeout) 90 { 91 struct urb *urb; 92 int retv; 93 int length; 94 95 urb = usb_alloc_urb(0, GFP_NOIO); 96 if (!urb) 97 return -ENOMEM; 98 99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 100 len, usb_api_blocking_completion, NULL); 101 102 retv = usb_start_wait_urb(urb, timeout, &length); 103 if (retv < 0) 104 return retv; 105 else 106 return length; 107 } 108 109 /** 110 * usb_control_msg - Builds a control urb, sends it off and waits for completion 111 * @dev: pointer to the usb device to send the message to 112 * @pipe: endpoint "pipe" to send the message to 113 * @request: USB message request value 114 * @requesttype: USB message request type value 115 * @value: USB message value 116 * @index: USB message index value 117 * @data: pointer to the data to send 118 * @size: length in bytes of the data to send 119 * @timeout: time in msecs to wait for the message to complete before timing 120 * out (if 0 the wait is forever) 121 * 122 * Context: task context, might sleep. 123 * 124 * This function sends a simple control message to a specified endpoint and 125 * waits for the message to complete, or timeout. 126 * 127 * Don't use this function from within an interrupt context. If you need 128 * an asynchronous message, or need to send a message from within interrupt 129 * context, use usb_submit_urb(). If a thread in your driver uses this call, 130 * make sure your disconnect() method can wait for it to complete. Since you 131 * don't have a handle on the URB used, you can't cancel the request. 132 * 133 * Return: If successful, the number of bytes transferred. Otherwise, a negative 134 * error number. 135 */ 136 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 137 __u8 requesttype, __u16 value, __u16 index, void *data, 138 __u16 size, int timeout) 139 { 140 struct usb_ctrlrequest *dr; 141 int ret; 142 143 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 144 if (!dr) 145 return -ENOMEM; 146 147 dr->bRequestType = requesttype; 148 dr->bRequest = request; 149 dr->wValue = cpu_to_le16(value); 150 dr->wIndex = cpu_to_le16(index); 151 dr->wLength = cpu_to_le16(size); 152 153 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 154 155 /* Linger a bit, prior to the next control message. */ 156 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG) 157 msleep(200); 158 159 kfree(dr); 160 161 return ret; 162 } 163 EXPORT_SYMBOL_GPL(usb_control_msg); 164 165 /** 166 * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion 167 * @dev: pointer to the usb device to send the message to 168 * @endpoint: endpoint to send the message to 169 * @request: USB message request value 170 * @requesttype: USB message request type value 171 * @value: USB message value 172 * @index: USB message index value 173 * @driver_data: pointer to the data to send 174 * @size: length in bytes of the data to send 175 * @timeout: time in msecs to wait for the message to complete before timing 176 * out (if 0 the wait is forever) 177 * @memflags: the flags for memory allocation for buffers 178 * 179 * Context: !in_interrupt () 180 * 181 * This function sends a control message to a specified endpoint that is not 182 * expected to fill in a response (i.e. a "send message") and waits for the 183 * message to complete, or timeout. 184 * 185 * Do not use this function from within an interrupt context. If you need 186 * an asynchronous message, or need to send a message from within interrupt 187 * context, use usb_submit_urb(). If a thread in your driver uses this call, 188 * make sure your disconnect() method can wait for it to complete. Since you 189 * don't have a handle on the URB used, you can't cancel the request. 190 * 191 * The data pointer can be made to a reference on the stack, or anywhere else, 192 * as it will not be modified at all. This does not have the restriction that 193 * usb_control_msg() has where the data pointer must be to dynamically allocated 194 * memory (i.e. memory that can be successfully DMAed to a device). 195 * 196 * Return: If successful, 0 is returned, Otherwise, a negative error number. 197 */ 198 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 199 __u8 requesttype, __u16 value, __u16 index, 200 const void *driver_data, __u16 size, int timeout, 201 gfp_t memflags) 202 { 203 unsigned int pipe = usb_sndctrlpipe(dev, endpoint); 204 int ret; 205 u8 *data = NULL; 206 207 if (size) { 208 data = kmemdup(driver_data, size, memflags); 209 if (!data) 210 return -ENOMEM; 211 } 212 213 ret = usb_control_msg(dev, pipe, request, requesttype, value, index, 214 data, size, timeout); 215 kfree(data); 216 217 if (ret < 0) 218 return ret; 219 220 return 0; 221 } 222 EXPORT_SYMBOL_GPL(usb_control_msg_send); 223 224 /** 225 * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion 226 * @dev: pointer to the usb device to send the message to 227 * @endpoint: endpoint to send the message to 228 * @request: USB message request value 229 * @requesttype: USB message request type value 230 * @value: USB message value 231 * @index: USB message index value 232 * @driver_data: pointer to the data to be filled in by the message 233 * @size: length in bytes of the data to be received 234 * @timeout: time in msecs to wait for the message to complete before timing 235 * out (if 0 the wait is forever) 236 * @memflags: the flags for memory allocation for buffers 237 * 238 * Context: !in_interrupt () 239 * 240 * This function sends a control message to a specified endpoint that is 241 * expected to fill in a response (i.e. a "receive message") and waits for the 242 * message to complete, or timeout. 243 * 244 * Do not use this function from within an interrupt context. If you need 245 * an asynchronous message, or need to send a message from within interrupt 246 * context, use usb_submit_urb(). If a thread in your driver uses this call, 247 * make sure your disconnect() method can wait for it to complete. Since you 248 * don't have a handle on the URB used, you can't cancel the request. 249 * 250 * The data pointer can be made to a reference on the stack, or anywhere else 251 * that can be successfully written to. This function does not have the 252 * restriction that usb_control_msg() has where the data pointer must be to 253 * dynamically allocated memory (i.e. memory that can be successfully DMAed to a 254 * device). 255 * 256 * The "whole" message must be properly received from the device in order for 257 * this function to be successful. If a device returns less than the expected 258 * amount of data, then the function will fail. Do not use this for messages 259 * where a variable amount of data might be returned. 260 * 261 * Return: If successful, 0 is returned, Otherwise, a negative error number. 262 */ 263 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 264 __u8 requesttype, __u16 value, __u16 index, 265 void *driver_data, __u16 size, int timeout, 266 gfp_t memflags) 267 { 268 unsigned int pipe = usb_rcvctrlpipe(dev, endpoint); 269 int ret; 270 u8 *data; 271 272 if (!size || !driver_data) 273 return -EINVAL; 274 275 data = kmalloc(size, memflags); 276 if (!data) 277 return -ENOMEM; 278 279 ret = usb_control_msg(dev, pipe, request, requesttype, value, index, 280 data, size, timeout); 281 282 if (ret < 0) 283 goto exit; 284 285 if (ret == size) { 286 memcpy(driver_data, data, size); 287 ret = 0; 288 } else { 289 ret = -EREMOTEIO; 290 } 291 292 exit: 293 kfree(data); 294 return ret; 295 } 296 EXPORT_SYMBOL_GPL(usb_control_msg_recv); 297 298 /** 299 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 300 * @usb_dev: pointer to the usb device to send the message to 301 * @pipe: endpoint "pipe" to send the message to 302 * @data: pointer to the data to send 303 * @len: length in bytes of the data to send 304 * @actual_length: pointer to a location to put the actual length transferred 305 * in bytes 306 * @timeout: time in msecs to wait for the message to complete before 307 * timing out (if 0 the wait is forever) 308 * 309 * Context: task context, might sleep. 310 * 311 * This function sends a simple interrupt message to a specified endpoint and 312 * waits for the message to complete, or timeout. 313 * 314 * Don't use this function from within an interrupt context. If you need 315 * an asynchronous message, or need to send a message from within interrupt 316 * context, use usb_submit_urb() If a thread in your driver uses this call, 317 * make sure your disconnect() method can wait for it to complete. Since you 318 * don't have a handle on the URB used, you can't cancel the request. 319 * 320 * Return: 321 * If successful, 0. Otherwise a negative error number. The number of actual 322 * bytes transferred will be stored in the @actual_length parameter. 323 */ 324 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 325 void *data, int len, int *actual_length, int timeout) 326 { 327 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 328 } 329 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 330 331 /** 332 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 333 * @usb_dev: pointer to the usb device to send the message to 334 * @pipe: endpoint "pipe" to send the message to 335 * @data: pointer to the data to send 336 * @len: length in bytes of the data to send 337 * @actual_length: pointer to a location to put the actual length transferred 338 * in bytes 339 * @timeout: time in msecs to wait for the message to complete before 340 * timing out (if 0 the wait is forever) 341 * 342 * Context: task context, might sleep. 343 * 344 * This function sends a simple bulk message to a specified endpoint 345 * and waits for the message to complete, or timeout. 346 * 347 * Don't use this function from within an interrupt context. If you need 348 * an asynchronous message, or need to send a message from within interrupt 349 * context, use usb_submit_urb() If a thread in your driver uses this call, 350 * make sure your disconnect() method can wait for it to complete. Since you 351 * don't have a handle on the URB used, you can't cancel the request. 352 * 353 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 354 * users are forced to abuse this routine by using it to submit URBs for 355 * interrupt endpoints. We will take the liberty of creating an interrupt URB 356 * (with the default interval) if the target is an interrupt endpoint. 357 * 358 * Return: 359 * If successful, 0. Otherwise a negative error number. The number of actual 360 * bytes transferred will be stored in the @actual_length parameter. 361 * 362 */ 363 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 364 void *data, int len, int *actual_length, int timeout) 365 { 366 struct urb *urb; 367 struct usb_host_endpoint *ep; 368 369 ep = usb_pipe_endpoint(usb_dev, pipe); 370 if (!ep || len < 0) 371 return -EINVAL; 372 373 urb = usb_alloc_urb(0, GFP_KERNEL); 374 if (!urb) 375 return -ENOMEM; 376 377 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 378 USB_ENDPOINT_XFER_INT) { 379 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 380 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 381 usb_api_blocking_completion, NULL, 382 ep->desc.bInterval); 383 } else 384 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 385 usb_api_blocking_completion, NULL); 386 387 return usb_start_wait_urb(urb, timeout, actual_length); 388 } 389 EXPORT_SYMBOL_GPL(usb_bulk_msg); 390 391 /*-------------------------------------------------------------------*/ 392 393 static void sg_clean(struct usb_sg_request *io) 394 { 395 if (io->urbs) { 396 while (io->entries--) 397 usb_free_urb(io->urbs[io->entries]); 398 kfree(io->urbs); 399 io->urbs = NULL; 400 } 401 io->dev = NULL; 402 } 403 404 static void sg_complete(struct urb *urb) 405 { 406 unsigned long flags; 407 struct usb_sg_request *io = urb->context; 408 int status = urb->status; 409 410 spin_lock_irqsave(&io->lock, flags); 411 412 /* In 2.5 we require hcds' endpoint queues not to progress after fault 413 * reports, until the completion callback (this!) returns. That lets 414 * device driver code (like this routine) unlink queued urbs first, 415 * if it needs to, since the HC won't work on them at all. So it's 416 * not possible for page N+1 to overwrite page N, and so on. 417 * 418 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 419 * complete before the HCD can get requests away from hardware, 420 * though never during cleanup after a hard fault. 421 */ 422 if (io->status 423 && (io->status != -ECONNRESET 424 || status != -ECONNRESET) 425 && urb->actual_length) { 426 dev_err(io->dev->bus->controller, 427 "dev %s ep%d%s scatterlist error %d/%d\n", 428 io->dev->devpath, 429 usb_endpoint_num(&urb->ep->desc), 430 usb_urb_dir_in(urb) ? "in" : "out", 431 status, io->status); 432 /* BUG (); */ 433 } 434 435 if (io->status == 0 && status && status != -ECONNRESET) { 436 int i, found, retval; 437 438 io->status = status; 439 440 /* the previous urbs, and this one, completed already. 441 * unlink pending urbs so they won't rx/tx bad data. 442 * careful: unlink can sometimes be synchronous... 443 */ 444 spin_unlock_irqrestore(&io->lock, flags); 445 for (i = 0, found = 0; i < io->entries; i++) { 446 if (!io->urbs[i]) 447 continue; 448 if (found) { 449 usb_block_urb(io->urbs[i]); 450 retval = usb_unlink_urb(io->urbs[i]); 451 if (retval != -EINPROGRESS && 452 retval != -ENODEV && 453 retval != -EBUSY && 454 retval != -EIDRM) 455 dev_err(&io->dev->dev, 456 "%s, unlink --> %d\n", 457 __func__, retval); 458 } else if (urb == io->urbs[i]) 459 found = 1; 460 } 461 spin_lock_irqsave(&io->lock, flags); 462 } 463 464 /* on the last completion, signal usb_sg_wait() */ 465 io->bytes += urb->actual_length; 466 io->count--; 467 if (!io->count) 468 complete(&io->complete); 469 470 spin_unlock_irqrestore(&io->lock, flags); 471 } 472 473 474 /** 475 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 476 * @io: request block being initialized. until usb_sg_wait() returns, 477 * treat this as a pointer to an opaque block of memory, 478 * @dev: the usb device that will send or receive the data 479 * @pipe: endpoint "pipe" used to transfer the data 480 * @period: polling rate for interrupt endpoints, in frames or 481 * (for high speed endpoints) microframes; ignored for bulk 482 * @sg: scatterlist entries 483 * @nents: how many entries in the scatterlist 484 * @length: how many bytes to send from the scatterlist, or zero to 485 * send every byte identified in the list. 486 * @mem_flags: SLAB_* flags affecting memory allocations in this call 487 * 488 * This initializes a scatter/gather request, allocating resources such as 489 * I/O mappings and urb memory (except maybe memory used by USB controller 490 * drivers). 491 * 492 * The request must be issued using usb_sg_wait(), which waits for the I/O to 493 * complete (or to be canceled) and then cleans up all resources allocated by 494 * usb_sg_init(). 495 * 496 * The request may be canceled with usb_sg_cancel(), either before or after 497 * usb_sg_wait() is called. 498 * 499 * Return: Zero for success, else a negative errno value. 500 */ 501 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 502 unsigned pipe, unsigned period, struct scatterlist *sg, 503 int nents, size_t length, gfp_t mem_flags) 504 { 505 int i; 506 int urb_flags; 507 int use_sg; 508 509 if (!io || !dev || !sg 510 || usb_pipecontrol(pipe) 511 || usb_pipeisoc(pipe) 512 || nents <= 0) 513 return -EINVAL; 514 515 spin_lock_init(&io->lock); 516 io->dev = dev; 517 io->pipe = pipe; 518 519 if (dev->bus->sg_tablesize > 0) { 520 use_sg = true; 521 io->entries = 1; 522 } else { 523 use_sg = false; 524 io->entries = nents; 525 } 526 527 /* initialize all the urbs we'll use */ 528 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags); 529 if (!io->urbs) 530 goto nomem; 531 532 urb_flags = URB_NO_INTERRUPT; 533 if (usb_pipein(pipe)) 534 urb_flags |= URB_SHORT_NOT_OK; 535 536 for_each_sg(sg, sg, io->entries, i) { 537 struct urb *urb; 538 unsigned len; 539 540 urb = usb_alloc_urb(0, mem_flags); 541 if (!urb) { 542 io->entries = i; 543 goto nomem; 544 } 545 io->urbs[i] = urb; 546 547 urb->dev = NULL; 548 urb->pipe = pipe; 549 urb->interval = period; 550 urb->transfer_flags = urb_flags; 551 urb->complete = sg_complete; 552 urb->context = io; 553 urb->sg = sg; 554 555 if (use_sg) { 556 /* There is no single transfer buffer */ 557 urb->transfer_buffer = NULL; 558 urb->num_sgs = nents; 559 560 /* A length of zero means transfer the whole sg list */ 561 len = length; 562 if (len == 0) { 563 struct scatterlist *sg2; 564 int j; 565 566 for_each_sg(sg, sg2, nents, j) 567 len += sg2->length; 568 } 569 } else { 570 /* 571 * Some systems can't use DMA; they use PIO instead. 572 * For their sakes, transfer_buffer is set whenever 573 * possible. 574 */ 575 if (!PageHighMem(sg_page(sg))) 576 urb->transfer_buffer = sg_virt(sg); 577 else 578 urb->transfer_buffer = NULL; 579 580 len = sg->length; 581 if (length) { 582 len = min_t(size_t, len, length); 583 length -= len; 584 if (length == 0) 585 io->entries = i + 1; 586 } 587 } 588 urb->transfer_buffer_length = len; 589 } 590 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 591 592 /* transaction state */ 593 io->count = io->entries; 594 io->status = 0; 595 io->bytes = 0; 596 init_completion(&io->complete); 597 return 0; 598 599 nomem: 600 sg_clean(io); 601 return -ENOMEM; 602 } 603 EXPORT_SYMBOL_GPL(usb_sg_init); 604 605 /** 606 * usb_sg_wait - synchronously execute scatter/gather request 607 * @io: request block handle, as initialized with usb_sg_init(). 608 * some fields become accessible when this call returns. 609 * 610 * Context: task context, might sleep. 611 * 612 * This function blocks until the specified I/O operation completes. It 613 * leverages the grouping of the related I/O requests to get good transfer 614 * rates, by queueing the requests. At higher speeds, such queuing can 615 * significantly improve USB throughput. 616 * 617 * There are three kinds of completion for this function. 618 * 619 * (1) success, where io->status is zero. The number of io->bytes 620 * transferred is as requested. 621 * (2) error, where io->status is a negative errno value. The number 622 * of io->bytes transferred before the error is usually less 623 * than requested, and can be nonzero. 624 * (3) cancellation, a type of error with status -ECONNRESET that 625 * is initiated by usb_sg_cancel(). 626 * 627 * When this function returns, all memory allocated through usb_sg_init() or 628 * this call will have been freed. The request block parameter may still be 629 * passed to usb_sg_cancel(), or it may be freed. It could also be 630 * reinitialized and then reused. 631 * 632 * Data Transfer Rates: 633 * 634 * Bulk transfers are valid for full or high speed endpoints. 635 * The best full speed data rate is 19 packets of 64 bytes each 636 * per frame, or 1216 bytes per millisecond. 637 * The best high speed data rate is 13 packets of 512 bytes each 638 * per microframe, or 52 KBytes per millisecond. 639 * 640 * The reason to use interrupt transfers through this API would most likely 641 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 642 * could be transferred. That capability is less useful for low or full 643 * speed interrupt endpoints, which allow at most one packet per millisecond, 644 * of at most 8 or 64 bytes (respectively). 645 * 646 * It is not necessary to call this function to reserve bandwidth for devices 647 * under an xHCI host controller, as the bandwidth is reserved when the 648 * configuration or interface alt setting is selected. 649 */ 650 void usb_sg_wait(struct usb_sg_request *io) 651 { 652 int i; 653 int entries = io->entries; 654 655 /* queue the urbs. */ 656 spin_lock_irq(&io->lock); 657 i = 0; 658 while (i < entries && !io->status) { 659 int retval; 660 661 io->urbs[i]->dev = io->dev; 662 spin_unlock_irq(&io->lock); 663 664 retval = usb_submit_urb(io->urbs[i], GFP_NOIO); 665 666 switch (retval) { 667 /* maybe we retrying will recover */ 668 case -ENXIO: /* hc didn't queue this one */ 669 case -EAGAIN: 670 case -ENOMEM: 671 retval = 0; 672 yield(); 673 break; 674 675 /* no error? continue immediately. 676 * 677 * NOTE: to work better with UHCI (4K I/O buffer may 678 * need 3K of TDs) it may be good to limit how many 679 * URBs are queued at once; N milliseconds? 680 */ 681 case 0: 682 ++i; 683 cpu_relax(); 684 break; 685 686 /* fail any uncompleted urbs */ 687 default: 688 io->urbs[i]->status = retval; 689 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 690 __func__, retval); 691 usb_sg_cancel(io); 692 } 693 spin_lock_irq(&io->lock); 694 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 695 io->status = retval; 696 } 697 io->count -= entries - i; 698 if (io->count == 0) 699 complete(&io->complete); 700 spin_unlock_irq(&io->lock); 701 702 /* OK, yes, this could be packaged as non-blocking. 703 * So could the submit loop above ... but it's easier to 704 * solve neither problem than to solve both! 705 */ 706 wait_for_completion(&io->complete); 707 708 sg_clean(io); 709 } 710 EXPORT_SYMBOL_GPL(usb_sg_wait); 711 712 /** 713 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 714 * @io: request block, initialized with usb_sg_init() 715 * 716 * This stops a request after it has been started by usb_sg_wait(). 717 * It can also prevents one initialized by usb_sg_init() from starting, 718 * so that call just frees resources allocated to the request. 719 */ 720 void usb_sg_cancel(struct usb_sg_request *io) 721 { 722 unsigned long flags; 723 int i, retval; 724 725 spin_lock_irqsave(&io->lock, flags); 726 if (io->status || io->count == 0) { 727 spin_unlock_irqrestore(&io->lock, flags); 728 return; 729 } 730 /* shut everything down */ 731 io->status = -ECONNRESET; 732 io->count++; /* Keep the request alive until we're done */ 733 spin_unlock_irqrestore(&io->lock, flags); 734 735 for (i = io->entries - 1; i >= 0; --i) { 736 usb_block_urb(io->urbs[i]); 737 738 retval = usb_unlink_urb(io->urbs[i]); 739 if (retval != -EINPROGRESS 740 && retval != -ENODEV 741 && retval != -EBUSY 742 && retval != -EIDRM) 743 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 744 __func__, retval); 745 } 746 747 spin_lock_irqsave(&io->lock, flags); 748 io->count--; 749 if (!io->count) 750 complete(&io->complete); 751 spin_unlock_irqrestore(&io->lock, flags); 752 } 753 EXPORT_SYMBOL_GPL(usb_sg_cancel); 754 755 /*-------------------------------------------------------------------*/ 756 757 /** 758 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 759 * @dev: the device whose descriptor is being retrieved 760 * @type: the descriptor type (USB_DT_*) 761 * @index: the number of the descriptor 762 * @buf: where to put the descriptor 763 * @size: how big is "buf"? 764 * 765 * Context: task context, might sleep. 766 * 767 * Gets a USB descriptor. Convenience functions exist to simplify 768 * getting some types of descriptors. Use 769 * usb_get_string() or usb_string() for USB_DT_STRING. 770 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 771 * are part of the device structure. 772 * In addition to a number of USB-standard descriptors, some 773 * devices also use class-specific or vendor-specific descriptors. 774 * 775 * This call is synchronous, and may not be used in an interrupt context. 776 * 777 * Return: The number of bytes received on success, or else the status code 778 * returned by the underlying usb_control_msg() call. 779 */ 780 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 781 unsigned char index, void *buf, int size) 782 { 783 int i; 784 int result; 785 786 if (size <= 0) /* No point in asking for no data */ 787 return -EINVAL; 788 789 memset(buf, 0, size); /* Make sure we parse really received data */ 790 791 for (i = 0; i < 3; ++i) { 792 /* retry on length 0 or error; some devices are flakey */ 793 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 794 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 795 (type << 8) + index, 0, buf, size, 796 USB_CTRL_GET_TIMEOUT); 797 if (result <= 0 && result != -ETIMEDOUT) 798 continue; 799 if (result > 1 && ((u8 *)buf)[1] != type) { 800 result = -ENODATA; 801 continue; 802 } 803 break; 804 } 805 return result; 806 } 807 EXPORT_SYMBOL_GPL(usb_get_descriptor); 808 809 /** 810 * usb_get_string - gets a string descriptor 811 * @dev: the device whose string descriptor is being retrieved 812 * @langid: code for language chosen (from string descriptor zero) 813 * @index: the number of the descriptor 814 * @buf: where to put the string 815 * @size: how big is "buf"? 816 * 817 * Context: task context, might sleep. 818 * 819 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 820 * in little-endian byte order). 821 * The usb_string() function will often be a convenient way to turn 822 * these strings into kernel-printable form. 823 * 824 * Strings may be referenced in device, configuration, interface, or other 825 * descriptors, and could also be used in vendor-specific ways. 826 * 827 * This call is synchronous, and may not be used in an interrupt context. 828 * 829 * Return: The number of bytes received on success, or else the status code 830 * returned by the underlying usb_control_msg() call. 831 */ 832 static int usb_get_string(struct usb_device *dev, unsigned short langid, 833 unsigned char index, void *buf, int size) 834 { 835 int i; 836 int result; 837 838 if (size <= 0) /* No point in asking for no data */ 839 return -EINVAL; 840 841 for (i = 0; i < 3; ++i) { 842 /* retry on length 0 or stall; some devices are flakey */ 843 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 844 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 845 (USB_DT_STRING << 8) + index, langid, buf, size, 846 USB_CTRL_GET_TIMEOUT); 847 if (result == 0 || result == -EPIPE) 848 continue; 849 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 850 result = -ENODATA; 851 continue; 852 } 853 break; 854 } 855 return result; 856 } 857 858 static void usb_try_string_workarounds(unsigned char *buf, int *length) 859 { 860 int newlength, oldlength = *length; 861 862 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 863 if (!isprint(buf[newlength]) || buf[newlength + 1]) 864 break; 865 866 if (newlength > 2) { 867 buf[0] = newlength; 868 *length = newlength; 869 } 870 } 871 872 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 873 unsigned int index, unsigned char *buf) 874 { 875 int rc; 876 877 /* Try to read the string descriptor by asking for the maximum 878 * possible number of bytes */ 879 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 880 rc = -EIO; 881 else 882 rc = usb_get_string(dev, langid, index, buf, 255); 883 884 /* If that failed try to read the descriptor length, then 885 * ask for just that many bytes */ 886 if (rc < 2) { 887 rc = usb_get_string(dev, langid, index, buf, 2); 888 if (rc == 2) 889 rc = usb_get_string(dev, langid, index, buf, buf[0]); 890 } 891 892 if (rc >= 2) { 893 if (!buf[0] && !buf[1]) 894 usb_try_string_workarounds(buf, &rc); 895 896 /* There might be extra junk at the end of the descriptor */ 897 if (buf[0] < rc) 898 rc = buf[0]; 899 900 rc = rc - (rc & 1); /* force a multiple of two */ 901 } 902 903 if (rc < 2) 904 rc = (rc < 0 ? rc : -EINVAL); 905 906 return rc; 907 } 908 909 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 910 { 911 int err; 912 913 if (dev->have_langid) 914 return 0; 915 916 if (dev->string_langid < 0) 917 return -EPIPE; 918 919 err = usb_string_sub(dev, 0, 0, tbuf); 920 921 /* If the string was reported but is malformed, default to english 922 * (0x0409) */ 923 if (err == -ENODATA || (err > 0 && err < 4)) { 924 dev->string_langid = 0x0409; 925 dev->have_langid = 1; 926 dev_err(&dev->dev, 927 "language id specifier not provided by device, defaulting to English\n"); 928 return 0; 929 } 930 931 /* In case of all other errors, we assume the device is not able to 932 * deal with strings at all. Set string_langid to -1 in order to 933 * prevent any string to be retrieved from the device */ 934 if (err < 0) { 935 dev_info(&dev->dev, "string descriptor 0 read error: %d\n", 936 err); 937 dev->string_langid = -1; 938 return -EPIPE; 939 } 940 941 /* always use the first langid listed */ 942 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 943 dev->have_langid = 1; 944 dev_dbg(&dev->dev, "default language 0x%04x\n", 945 dev->string_langid); 946 return 0; 947 } 948 949 /** 950 * usb_string - returns UTF-8 version of a string descriptor 951 * @dev: the device whose string descriptor is being retrieved 952 * @index: the number of the descriptor 953 * @buf: where to put the string 954 * @size: how big is "buf"? 955 * 956 * Context: task context, might sleep. 957 * 958 * This converts the UTF-16LE encoded strings returned by devices, from 959 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 960 * that are more usable in most kernel contexts. Note that this function 961 * chooses strings in the first language supported by the device. 962 * 963 * This call is synchronous, and may not be used in an interrupt context. 964 * 965 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 966 */ 967 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 968 { 969 unsigned char *tbuf; 970 int err; 971 972 if (dev->state == USB_STATE_SUSPENDED) 973 return -EHOSTUNREACH; 974 if (size <= 0 || !buf) 975 return -EINVAL; 976 buf[0] = 0; 977 if (index <= 0 || index >= 256) 978 return -EINVAL; 979 tbuf = kmalloc(256, GFP_NOIO); 980 if (!tbuf) 981 return -ENOMEM; 982 983 err = usb_get_langid(dev, tbuf); 984 if (err < 0) 985 goto errout; 986 987 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 988 if (err < 0) 989 goto errout; 990 991 size--; /* leave room for trailing NULL char in output buffer */ 992 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 993 UTF16_LITTLE_ENDIAN, buf, size); 994 buf[err] = 0; 995 996 if (tbuf[1] != USB_DT_STRING) 997 dev_dbg(&dev->dev, 998 "wrong descriptor type %02x for string %d (\"%s\")\n", 999 tbuf[1], index, buf); 1000 1001 errout: 1002 kfree(tbuf); 1003 return err; 1004 } 1005 EXPORT_SYMBOL_GPL(usb_string); 1006 1007 /* one UTF-8-encoded 16-bit character has at most three bytes */ 1008 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 1009 1010 /** 1011 * usb_cache_string - read a string descriptor and cache it for later use 1012 * @udev: the device whose string descriptor is being read 1013 * @index: the descriptor index 1014 * 1015 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 1016 * or %NULL if the index is 0 or the string could not be read. 1017 */ 1018 char *usb_cache_string(struct usb_device *udev, int index) 1019 { 1020 char *buf; 1021 char *smallbuf = NULL; 1022 int len; 1023 1024 if (index <= 0) 1025 return NULL; 1026 1027 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 1028 if (buf) { 1029 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 1030 if (len > 0) { 1031 smallbuf = kmalloc(++len, GFP_NOIO); 1032 if (!smallbuf) 1033 return buf; 1034 memcpy(smallbuf, buf, len); 1035 } 1036 kfree(buf); 1037 } 1038 return smallbuf; 1039 } 1040 EXPORT_SYMBOL_GPL(usb_cache_string); 1041 1042 /* 1043 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 1044 * @dev: the device whose device descriptor is being updated 1045 * @size: how much of the descriptor to read 1046 * 1047 * Context: task context, might sleep. 1048 * 1049 * Updates the copy of the device descriptor stored in the device structure, 1050 * which dedicates space for this purpose. 1051 * 1052 * Not exported, only for use by the core. If drivers really want to read 1053 * the device descriptor directly, they can call usb_get_descriptor() with 1054 * type = USB_DT_DEVICE and index = 0. 1055 * 1056 * This call is synchronous, and may not be used in an interrupt context. 1057 * 1058 * Return: The number of bytes received on success, or else the status code 1059 * returned by the underlying usb_control_msg() call. 1060 */ 1061 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 1062 { 1063 struct usb_device_descriptor *desc; 1064 int ret; 1065 1066 if (size > sizeof(*desc)) 1067 return -EINVAL; 1068 desc = kmalloc(sizeof(*desc), GFP_NOIO); 1069 if (!desc) 1070 return -ENOMEM; 1071 1072 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 1073 if (ret >= 0) 1074 memcpy(&dev->descriptor, desc, size); 1075 kfree(desc); 1076 return ret; 1077 } 1078 1079 /* 1080 * usb_set_isoch_delay - informs the device of the packet transmit delay 1081 * @dev: the device whose delay is to be informed 1082 * Context: task context, might sleep 1083 * 1084 * Since this is an optional request, we don't bother if it fails. 1085 */ 1086 int usb_set_isoch_delay(struct usb_device *dev) 1087 { 1088 /* skip hub devices */ 1089 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB) 1090 return 0; 1091 1092 /* skip non-SS/non-SSP devices */ 1093 if (dev->speed < USB_SPEED_SUPER) 1094 return 0; 1095 1096 return usb_control_msg_send(dev, 0, 1097 USB_REQ_SET_ISOCH_DELAY, 1098 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE, 1099 dev->hub_delay, 0, NULL, 0, 1100 USB_CTRL_SET_TIMEOUT, 1101 GFP_NOIO); 1102 } 1103 1104 /** 1105 * usb_get_status - issues a GET_STATUS call 1106 * @dev: the device whose status is being checked 1107 * @recip: USB_RECIP_*; for device, interface, or endpoint 1108 * @type: USB_STATUS_TYPE_*; for standard or PTM status types 1109 * @target: zero (for device), else interface or endpoint number 1110 * @data: pointer to two bytes of bitmap data 1111 * 1112 * Context: task context, might sleep. 1113 * 1114 * Returns device, interface, or endpoint status. Normally only of 1115 * interest to see if the device is self powered, or has enabled the 1116 * remote wakeup facility; or whether a bulk or interrupt endpoint 1117 * is halted ("stalled"). 1118 * 1119 * Bits in these status bitmaps are set using the SET_FEATURE request, 1120 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 1121 * function should be used to clear halt ("stall") status. 1122 * 1123 * This call is synchronous, and may not be used in an interrupt context. 1124 * 1125 * Returns 0 and the status value in *@data (in host byte order) on success, 1126 * or else the status code from the underlying usb_control_msg() call. 1127 */ 1128 int usb_get_status(struct usb_device *dev, int recip, int type, int target, 1129 void *data) 1130 { 1131 int ret; 1132 void *status; 1133 int length; 1134 1135 switch (type) { 1136 case USB_STATUS_TYPE_STANDARD: 1137 length = 2; 1138 break; 1139 case USB_STATUS_TYPE_PTM: 1140 if (recip != USB_RECIP_DEVICE) 1141 return -EINVAL; 1142 1143 length = 4; 1144 break; 1145 default: 1146 return -EINVAL; 1147 } 1148 1149 status = kmalloc(length, GFP_KERNEL); 1150 if (!status) 1151 return -ENOMEM; 1152 1153 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 1154 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD, 1155 target, status, length, USB_CTRL_GET_TIMEOUT); 1156 1157 switch (ret) { 1158 case 4: 1159 if (type != USB_STATUS_TYPE_PTM) { 1160 ret = -EIO; 1161 break; 1162 } 1163 1164 *(u32 *) data = le32_to_cpu(*(__le32 *) status); 1165 ret = 0; 1166 break; 1167 case 2: 1168 if (type != USB_STATUS_TYPE_STANDARD) { 1169 ret = -EIO; 1170 break; 1171 } 1172 1173 *(u16 *) data = le16_to_cpu(*(__le16 *) status); 1174 ret = 0; 1175 break; 1176 default: 1177 ret = -EIO; 1178 } 1179 1180 kfree(status); 1181 return ret; 1182 } 1183 EXPORT_SYMBOL_GPL(usb_get_status); 1184 1185 /** 1186 * usb_clear_halt - tells device to clear endpoint halt/stall condition 1187 * @dev: device whose endpoint is halted 1188 * @pipe: endpoint "pipe" being cleared 1189 * 1190 * Context: task context, might sleep. 1191 * 1192 * This is used to clear halt conditions for bulk and interrupt endpoints, 1193 * as reported by URB completion status. Endpoints that are halted are 1194 * sometimes referred to as being "stalled". Such endpoints are unable 1195 * to transmit or receive data until the halt status is cleared. Any URBs 1196 * queued for such an endpoint should normally be unlinked by the driver 1197 * before clearing the halt condition, as described in sections 5.7.5 1198 * and 5.8.5 of the USB 2.0 spec. 1199 * 1200 * Note that control and isochronous endpoints don't halt, although control 1201 * endpoints report "protocol stall" (for unsupported requests) using the 1202 * same status code used to report a true stall. 1203 * 1204 * This call is synchronous, and may not be used in an interrupt context. 1205 * 1206 * Return: Zero on success, or else the status code returned by the 1207 * underlying usb_control_msg() call. 1208 */ 1209 int usb_clear_halt(struct usb_device *dev, int pipe) 1210 { 1211 int result; 1212 int endp = usb_pipeendpoint(pipe); 1213 1214 if (usb_pipein(pipe)) 1215 endp |= USB_DIR_IN; 1216 1217 /* we don't care if it wasn't halted first. in fact some devices 1218 * (like some ibmcam model 1 units) seem to expect hosts to make 1219 * this request for iso endpoints, which can't halt! 1220 */ 1221 result = usb_control_msg_send(dev, 0, 1222 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 1223 USB_ENDPOINT_HALT, endp, NULL, 0, 1224 USB_CTRL_SET_TIMEOUT, GFP_NOIO); 1225 1226 /* don't un-halt or force to DATA0 except on success */ 1227 if (result) 1228 return result; 1229 1230 /* NOTE: seems like Microsoft and Apple don't bother verifying 1231 * the clear "took", so some devices could lock up if you check... 1232 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1233 * 1234 * NOTE: make sure the logic here doesn't diverge much from 1235 * the copy in usb-storage, for as long as we need two copies. 1236 */ 1237 1238 usb_reset_endpoint(dev, endp); 1239 1240 return 0; 1241 } 1242 EXPORT_SYMBOL_GPL(usb_clear_halt); 1243 1244 static int create_intf_ep_devs(struct usb_interface *intf) 1245 { 1246 struct usb_device *udev = interface_to_usbdev(intf); 1247 struct usb_host_interface *alt = intf->cur_altsetting; 1248 int i; 1249 1250 if (intf->ep_devs_created || intf->unregistering) 1251 return 0; 1252 1253 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1254 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1255 intf->ep_devs_created = 1; 1256 return 0; 1257 } 1258 1259 static void remove_intf_ep_devs(struct usb_interface *intf) 1260 { 1261 struct usb_host_interface *alt = intf->cur_altsetting; 1262 int i; 1263 1264 if (!intf->ep_devs_created) 1265 return; 1266 1267 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1268 usb_remove_ep_devs(&alt->endpoint[i]); 1269 intf->ep_devs_created = 0; 1270 } 1271 1272 /** 1273 * usb_disable_endpoint -- Disable an endpoint by address 1274 * @dev: the device whose endpoint is being disabled 1275 * @epaddr: the endpoint's address. Endpoint number for output, 1276 * endpoint number + USB_DIR_IN for input 1277 * @reset_hardware: flag to erase any endpoint state stored in the 1278 * controller hardware 1279 * 1280 * Disables the endpoint for URB submission and nukes all pending URBs. 1281 * If @reset_hardware is set then also deallocates hcd/hardware state 1282 * for the endpoint. 1283 */ 1284 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1285 bool reset_hardware) 1286 { 1287 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1288 struct usb_host_endpoint *ep; 1289 1290 if (!dev) 1291 return; 1292 1293 if (usb_endpoint_out(epaddr)) { 1294 ep = dev->ep_out[epnum]; 1295 if (reset_hardware && epnum != 0) 1296 dev->ep_out[epnum] = NULL; 1297 } else { 1298 ep = dev->ep_in[epnum]; 1299 if (reset_hardware && epnum != 0) 1300 dev->ep_in[epnum] = NULL; 1301 } 1302 if (ep) { 1303 ep->enabled = 0; 1304 usb_hcd_flush_endpoint(dev, ep); 1305 if (reset_hardware) 1306 usb_hcd_disable_endpoint(dev, ep); 1307 } 1308 } 1309 1310 /** 1311 * usb_reset_endpoint - Reset an endpoint's state. 1312 * @dev: the device whose endpoint is to be reset 1313 * @epaddr: the endpoint's address. Endpoint number for output, 1314 * endpoint number + USB_DIR_IN for input 1315 * 1316 * Resets any host-side endpoint state such as the toggle bit, 1317 * sequence number or current window. 1318 */ 1319 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1320 { 1321 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1322 struct usb_host_endpoint *ep; 1323 1324 if (usb_endpoint_out(epaddr)) 1325 ep = dev->ep_out[epnum]; 1326 else 1327 ep = dev->ep_in[epnum]; 1328 if (ep) 1329 usb_hcd_reset_endpoint(dev, ep); 1330 } 1331 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1332 1333 1334 /** 1335 * usb_disable_interface -- Disable all endpoints for an interface 1336 * @dev: the device whose interface is being disabled 1337 * @intf: pointer to the interface descriptor 1338 * @reset_hardware: flag to erase any endpoint state stored in the 1339 * controller hardware 1340 * 1341 * Disables all the endpoints for the interface's current altsetting. 1342 */ 1343 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1344 bool reset_hardware) 1345 { 1346 struct usb_host_interface *alt = intf->cur_altsetting; 1347 int i; 1348 1349 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1350 usb_disable_endpoint(dev, 1351 alt->endpoint[i].desc.bEndpointAddress, 1352 reset_hardware); 1353 } 1354 } 1355 1356 /* 1357 * usb_disable_device_endpoints -- Disable all endpoints for a device 1358 * @dev: the device whose endpoints are being disabled 1359 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1360 */ 1361 static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0) 1362 { 1363 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1364 int i; 1365 1366 if (hcd->driver->check_bandwidth) { 1367 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1368 for (i = skip_ep0; i < 16; ++i) { 1369 usb_disable_endpoint(dev, i, false); 1370 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1371 } 1372 /* Remove endpoints from the host controller internal state */ 1373 mutex_lock(hcd->bandwidth_mutex); 1374 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1375 mutex_unlock(hcd->bandwidth_mutex); 1376 } 1377 /* Second pass: remove endpoint pointers */ 1378 for (i = skip_ep0; i < 16; ++i) { 1379 usb_disable_endpoint(dev, i, true); 1380 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1381 } 1382 } 1383 1384 /** 1385 * usb_disable_device - Disable all the endpoints for a USB device 1386 * @dev: the device whose endpoints are being disabled 1387 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1388 * 1389 * Disables all the device's endpoints, potentially including endpoint 0. 1390 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1391 * pending urbs) and usbcore state for the interfaces, so that usbcore 1392 * must usb_set_configuration() before any interfaces could be used. 1393 */ 1394 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1395 { 1396 int i; 1397 1398 /* getting rid of interfaces will disconnect 1399 * any drivers bound to them (a key side effect) 1400 */ 1401 if (dev->actconfig) { 1402 /* 1403 * FIXME: In order to avoid self-deadlock involving the 1404 * bandwidth_mutex, we have to mark all the interfaces 1405 * before unregistering any of them. 1406 */ 1407 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1408 dev->actconfig->interface[i]->unregistering = 1; 1409 1410 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1411 struct usb_interface *interface; 1412 1413 /* remove this interface if it has been registered */ 1414 interface = dev->actconfig->interface[i]; 1415 if (!device_is_registered(&interface->dev)) 1416 continue; 1417 dev_dbg(&dev->dev, "unregistering interface %s\n", 1418 dev_name(&interface->dev)); 1419 remove_intf_ep_devs(interface); 1420 device_del(&interface->dev); 1421 } 1422 1423 /* Now that the interfaces are unbound, nobody should 1424 * try to access them. 1425 */ 1426 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1427 put_device(&dev->actconfig->interface[i]->dev); 1428 dev->actconfig->interface[i] = NULL; 1429 } 1430 1431 usb_disable_usb2_hardware_lpm(dev); 1432 usb_unlocked_disable_lpm(dev); 1433 usb_disable_ltm(dev); 1434 1435 dev->actconfig = NULL; 1436 if (dev->state == USB_STATE_CONFIGURED) 1437 usb_set_device_state(dev, USB_STATE_ADDRESS); 1438 } 1439 1440 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1441 skip_ep0 ? "non-ep0" : "all"); 1442 1443 usb_disable_device_endpoints(dev, skip_ep0); 1444 } 1445 1446 /** 1447 * usb_enable_endpoint - Enable an endpoint for USB communications 1448 * @dev: the device whose interface is being enabled 1449 * @ep: the endpoint 1450 * @reset_ep: flag to reset the endpoint state 1451 * 1452 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1453 * For control endpoints, both the input and output sides are handled. 1454 */ 1455 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1456 bool reset_ep) 1457 { 1458 int epnum = usb_endpoint_num(&ep->desc); 1459 int is_out = usb_endpoint_dir_out(&ep->desc); 1460 int is_control = usb_endpoint_xfer_control(&ep->desc); 1461 1462 if (reset_ep) 1463 usb_hcd_reset_endpoint(dev, ep); 1464 if (is_out || is_control) 1465 dev->ep_out[epnum] = ep; 1466 if (!is_out || is_control) 1467 dev->ep_in[epnum] = ep; 1468 ep->enabled = 1; 1469 } 1470 1471 /** 1472 * usb_enable_interface - Enable all the endpoints for an interface 1473 * @dev: the device whose interface is being enabled 1474 * @intf: pointer to the interface descriptor 1475 * @reset_eps: flag to reset the endpoints' state 1476 * 1477 * Enables all the endpoints for the interface's current altsetting. 1478 */ 1479 void usb_enable_interface(struct usb_device *dev, 1480 struct usb_interface *intf, bool reset_eps) 1481 { 1482 struct usb_host_interface *alt = intf->cur_altsetting; 1483 int i; 1484 1485 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1486 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1487 } 1488 1489 /** 1490 * usb_set_interface - Makes a particular alternate setting be current 1491 * @dev: the device whose interface is being updated 1492 * @interface: the interface being updated 1493 * @alternate: the setting being chosen. 1494 * 1495 * Context: task context, might sleep. 1496 * 1497 * This is used to enable data transfers on interfaces that may not 1498 * be enabled by default. Not all devices support such configurability. 1499 * Only the driver bound to an interface may change its setting. 1500 * 1501 * Within any given configuration, each interface may have several 1502 * alternative settings. These are often used to control levels of 1503 * bandwidth consumption. For example, the default setting for a high 1504 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1505 * while interrupt transfers of up to 3KBytes per microframe are legal. 1506 * Also, isochronous endpoints may never be part of an 1507 * interface's default setting. To access such bandwidth, alternate 1508 * interface settings must be made current. 1509 * 1510 * Note that in the Linux USB subsystem, bandwidth associated with 1511 * an endpoint in a given alternate setting is not reserved until an URB 1512 * is submitted that needs that bandwidth. Some other operating systems 1513 * allocate bandwidth early, when a configuration is chosen. 1514 * 1515 * xHCI reserves bandwidth and configures the alternate setting in 1516 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting 1517 * may be disabled. Drivers cannot rely on any particular alternate 1518 * setting being in effect after a failure. 1519 * 1520 * This call is synchronous, and may not be used in an interrupt context. 1521 * Also, drivers must not change altsettings while urbs are scheduled for 1522 * endpoints in that interface; all such urbs must first be completed 1523 * (perhaps forced by unlinking). 1524 * 1525 * Return: Zero on success, or else the status code returned by the 1526 * underlying usb_control_msg() call. 1527 */ 1528 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1529 { 1530 struct usb_interface *iface; 1531 struct usb_host_interface *alt; 1532 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1533 int i, ret, manual = 0; 1534 unsigned int epaddr; 1535 unsigned int pipe; 1536 1537 if (dev->state == USB_STATE_SUSPENDED) 1538 return -EHOSTUNREACH; 1539 1540 iface = usb_ifnum_to_if(dev, interface); 1541 if (!iface) { 1542 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1543 interface); 1544 return -EINVAL; 1545 } 1546 if (iface->unregistering) 1547 return -ENODEV; 1548 1549 alt = usb_altnum_to_altsetting(iface, alternate); 1550 if (!alt) { 1551 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1552 alternate); 1553 return -EINVAL; 1554 } 1555 /* 1556 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth, 1557 * including freeing dropped endpoint ring buffers. 1558 * Make sure the interface endpoints are flushed before that 1559 */ 1560 usb_disable_interface(dev, iface, false); 1561 1562 /* Make sure we have enough bandwidth for this alternate interface. 1563 * Remove the current alt setting and add the new alt setting. 1564 */ 1565 mutex_lock(hcd->bandwidth_mutex); 1566 /* Disable LPM, and re-enable it once the new alt setting is installed, 1567 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1568 */ 1569 if (usb_disable_lpm(dev)) { 1570 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__); 1571 mutex_unlock(hcd->bandwidth_mutex); 1572 return -ENOMEM; 1573 } 1574 /* Changing alt-setting also frees any allocated streams */ 1575 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++) 1576 iface->cur_altsetting->endpoint[i].streams = 0; 1577 1578 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1579 if (ret < 0) { 1580 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1581 alternate); 1582 usb_enable_lpm(dev); 1583 mutex_unlock(hcd->bandwidth_mutex); 1584 return ret; 1585 } 1586 1587 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1588 ret = -EPIPE; 1589 else 1590 ret = usb_control_msg_send(dev, 0, 1591 USB_REQ_SET_INTERFACE, 1592 USB_RECIP_INTERFACE, alternate, 1593 interface, NULL, 0, 5000, 1594 GFP_NOIO); 1595 1596 /* 9.4.10 says devices don't need this and are free to STALL the 1597 * request if the interface only has one alternate setting. 1598 */ 1599 if (ret == -EPIPE && iface->num_altsetting == 1) { 1600 dev_dbg(&dev->dev, 1601 "manual set_interface for iface %d, alt %d\n", 1602 interface, alternate); 1603 manual = 1; 1604 } else if (ret) { 1605 /* Re-instate the old alt setting */ 1606 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1607 usb_enable_lpm(dev); 1608 mutex_unlock(hcd->bandwidth_mutex); 1609 return ret; 1610 } 1611 mutex_unlock(hcd->bandwidth_mutex); 1612 1613 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1614 * when they implement async or easily-killable versions of this or 1615 * other "should-be-internal" functions (like clear_halt). 1616 * should hcd+usbcore postprocess control requests? 1617 */ 1618 1619 /* prevent submissions using previous endpoint settings */ 1620 if (iface->cur_altsetting != alt) { 1621 remove_intf_ep_devs(iface); 1622 usb_remove_sysfs_intf_files(iface); 1623 } 1624 usb_disable_interface(dev, iface, true); 1625 1626 iface->cur_altsetting = alt; 1627 1628 /* Now that the interface is installed, re-enable LPM. */ 1629 usb_unlocked_enable_lpm(dev); 1630 1631 /* If the interface only has one altsetting and the device didn't 1632 * accept the request, we attempt to carry out the equivalent action 1633 * by manually clearing the HALT feature for each endpoint in the 1634 * new altsetting. 1635 */ 1636 if (manual) { 1637 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1638 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1639 pipe = __create_pipe(dev, 1640 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1641 (usb_endpoint_out(epaddr) ? 1642 USB_DIR_OUT : USB_DIR_IN); 1643 1644 usb_clear_halt(dev, pipe); 1645 } 1646 } 1647 1648 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1649 * 1650 * Note: 1651 * Despite EP0 is always present in all interfaces/AS, the list of 1652 * endpoints from the descriptor does not contain EP0. Due to its 1653 * omnipresence one might expect EP0 being considered "affected" by 1654 * any SetInterface request and hence assume toggles need to be reset. 1655 * However, EP0 toggles are re-synced for every individual transfer 1656 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1657 * (Likewise, EP0 never "halts" on well designed devices.) 1658 */ 1659 usb_enable_interface(dev, iface, true); 1660 if (device_is_registered(&iface->dev)) { 1661 usb_create_sysfs_intf_files(iface); 1662 create_intf_ep_devs(iface); 1663 } 1664 return 0; 1665 } 1666 EXPORT_SYMBOL_GPL(usb_set_interface); 1667 1668 /** 1669 * usb_reset_configuration - lightweight device reset 1670 * @dev: the device whose configuration is being reset 1671 * 1672 * This issues a standard SET_CONFIGURATION request to the device using 1673 * the current configuration. The effect is to reset most USB-related 1674 * state in the device, including interface altsettings (reset to zero), 1675 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1676 * endpoints). Other usbcore state is unchanged, including bindings of 1677 * usb device drivers to interfaces. 1678 * 1679 * Because this affects multiple interfaces, avoid using this with composite 1680 * (multi-interface) devices. Instead, the driver for each interface may 1681 * use usb_set_interface() on the interfaces it claims. Be careful though; 1682 * some devices don't support the SET_INTERFACE request, and others won't 1683 * reset all the interface state (notably endpoint state). Resetting the whole 1684 * configuration would affect other drivers' interfaces. 1685 * 1686 * The caller must own the device lock. 1687 * 1688 * Return: Zero on success, else a negative error code. 1689 * 1690 * If this routine fails the device will probably be in an unusable state 1691 * with endpoints disabled, and interfaces only partially enabled. 1692 */ 1693 int usb_reset_configuration(struct usb_device *dev) 1694 { 1695 int i, retval; 1696 struct usb_host_config *config; 1697 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1698 1699 if (dev->state == USB_STATE_SUSPENDED) 1700 return -EHOSTUNREACH; 1701 1702 /* caller must have locked the device and must own 1703 * the usb bus readlock (so driver bindings are stable); 1704 * calls during probe() are fine 1705 */ 1706 1707 usb_disable_device_endpoints(dev, 1); /* skip ep0*/ 1708 1709 config = dev->actconfig; 1710 retval = 0; 1711 mutex_lock(hcd->bandwidth_mutex); 1712 /* Disable LPM, and re-enable it once the configuration is reset, so 1713 * that the xHCI driver can recalculate the U1/U2 timeouts. 1714 */ 1715 if (usb_disable_lpm(dev)) { 1716 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 1717 mutex_unlock(hcd->bandwidth_mutex); 1718 return -ENOMEM; 1719 } 1720 1721 /* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */ 1722 retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL); 1723 if (retval < 0) { 1724 usb_enable_lpm(dev); 1725 mutex_unlock(hcd->bandwidth_mutex); 1726 return retval; 1727 } 1728 retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0, 1729 config->desc.bConfigurationValue, 0, 1730 NULL, 0, USB_CTRL_SET_TIMEOUT, 1731 GFP_NOIO); 1732 if (retval) { 1733 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1734 usb_enable_lpm(dev); 1735 mutex_unlock(hcd->bandwidth_mutex); 1736 return retval; 1737 } 1738 mutex_unlock(hcd->bandwidth_mutex); 1739 1740 /* re-init hc/hcd interface/endpoint state */ 1741 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1742 struct usb_interface *intf = config->interface[i]; 1743 struct usb_host_interface *alt; 1744 1745 alt = usb_altnum_to_altsetting(intf, 0); 1746 1747 /* No altsetting 0? We'll assume the first altsetting. 1748 * We could use a GetInterface call, but if a device is 1749 * so non-compliant that it doesn't have altsetting 0 1750 * then I wouldn't trust its reply anyway. 1751 */ 1752 if (!alt) 1753 alt = &intf->altsetting[0]; 1754 1755 if (alt != intf->cur_altsetting) { 1756 remove_intf_ep_devs(intf); 1757 usb_remove_sysfs_intf_files(intf); 1758 } 1759 intf->cur_altsetting = alt; 1760 usb_enable_interface(dev, intf, true); 1761 if (device_is_registered(&intf->dev)) { 1762 usb_create_sysfs_intf_files(intf); 1763 create_intf_ep_devs(intf); 1764 } 1765 } 1766 /* Now that the interfaces are installed, re-enable LPM. */ 1767 usb_unlocked_enable_lpm(dev); 1768 return 0; 1769 } 1770 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1771 1772 static void usb_release_interface(struct device *dev) 1773 { 1774 struct usb_interface *intf = to_usb_interface(dev); 1775 struct usb_interface_cache *intfc = 1776 altsetting_to_usb_interface_cache(intf->altsetting); 1777 1778 kref_put(&intfc->ref, usb_release_interface_cache); 1779 usb_put_dev(interface_to_usbdev(intf)); 1780 of_node_put(dev->of_node); 1781 kfree(intf); 1782 } 1783 1784 /* 1785 * usb_deauthorize_interface - deauthorize an USB interface 1786 * 1787 * @intf: USB interface structure 1788 */ 1789 void usb_deauthorize_interface(struct usb_interface *intf) 1790 { 1791 struct device *dev = &intf->dev; 1792 1793 device_lock(dev->parent); 1794 1795 if (intf->authorized) { 1796 device_lock(dev); 1797 intf->authorized = 0; 1798 device_unlock(dev); 1799 1800 usb_forced_unbind_intf(intf); 1801 } 1802 1803 device_unlock(dev->parent); 1804 } 1805 1806 /* 1807 * usb_authorize_interface - authorize an USB interface 1808 * 1809 * @intf: USB interface structure 1810 */ 1811 void usb_authorize_interface(struct usb_interface *intf) 1812 { 1813 struct device *dev = &intf->dev; 1814 1815 if (!intf->authorized) { 1816 device_lock(dev); 1817 intf->authorized = 1; /* authorize interface */ 1818 device_unlock(dev); 1819 } 1820 } 1821 1822 static int usb_if_uevent(const struct device *dev, struct kobj_uevent_env *env) 1823 { 1824 const struct usb_device *usb_dev; 1825 const struct usb_interface *intf; 1826 const struct usb_host_interface *alt; 1827 1828 intf = to_usb_interface(dev); 1829 usb_dev = interface_to_usbdev(intf); 1830 alt = intf->cur_altsetting; 1831 1832 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1833 alt->desc.bInterfaceClass, 1834 alt->desc.bInterfaceSubClass, 1835 alt->desc.bInterfaceProtocol)) 1836 return -ENOMEM; 1837 1838 if (add_uevent_var(env, 1839 "MODALIAS=usb:" 1840 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1841 le16_to_cpu(usb_dev->descriptor.idVendor), 1842 le16_to_cpu(usb_dev->descriptor.idProduct), 1843 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1844 usb_dev->descriptor.bDeviceClass, 1845 usb_dev->descriptor.bDeviceSubClass, 1846 usb_dev->descriptor.bDeviceProtocol, 1847 alt->desc.bInterfaceClass, 1848 alt->desc.bInterfaceSubClass, 1849 alt->desc.bInterfaceProtocol, 1850 alt->desc.bInterfaceNumber)) 1851 return -ENOMEM; 1852 1853 return 0; 1854 } 1855 1856 struct device_type usb_if_device_type = { 1857 .name = "usb_interface", 1858 .release = usb_release_interface, 1859 .uevent = usb_if_uevent, 1860 }; 1861 1862 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1863 struct usb_host_config *config, 1864 u8 inum) 1865 { 1866 struct usb_interface_assoc_descriptor *retval = NULL; 1867 struct usb_interface_assoc_descriptor *intf_assoc; 1868 int first_intf; 1869 int last_intf; 1870 int i; 1871 1872 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1873 intf_assoc = config->intf_assoc[i]; 1874 if (intf_assoc->bInterfaceCount == 0) 1875 continue; 1876 1877 first_intf = intf_assoc->bFirstInterface; 1878 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1879 if (inum >= first_intf && inum <= last_intf) { 1880 if (!retval) 1881 retval = intf_assoc; 1882 else 1883 dev_err(&dev->dev, "Interface #%d referenced" 1884 " by multiple IADs\n", inum); 1885 } 1886 } 1887 1888 return retval; 1889 } 1890 1891 1892 /* 1893 * Internal function to queue a device reset 1894 * See usb_queue_reset_device() for more details 1895 */ 1896 static void __usb_queue_reset_device(struct work_struct *ws) 1897 { 1898 int rc; 1899 struct usb_interface *iface = 1900 container_of(ws, struct usb_interface, reset_ws); 1901 struct usb_device *udev = interface_to_usbdev(iface); 1902 1903 rc = usb_lock_device_for_reset(udev, iface); 1904 if (rc >= 0) { 1905 usb_reset_device(udev); 1906 usb_unlock_device(udev); 1907 } 1908 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */ 1909 } 1910 1911 1912 /* 1913 * usb_set_configuration - Makes a particular device setting be current 1914 * @dev: the device whose configuration is being updated 1915 * @configuration: the configuration being chosen. 1916 * 1917 * Context: task context, might sleep. Caller holds device lock. 1918 * 1919 * This is used to enable non-default device modes. Not all devices 1920 * use this kind of configurability; many devices only have one 1921 * configuration. 1922 * 1923 * @configuration is the value of the configuration to be installed. 1924 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1925 * must be non-zero; a value of zero indicates that the device in 1926 * unconfigured. However some devices erroneously use 0 as one of their 1927 * configuration values. To help manage such devices, this routine will 1928 * accept @configuration = -1 as indicating the device should be put in 1929 * an unconfigured state. 1930 * 1931 * USB device configurations may affect Linux interoperability, 1932 * power consumption and the functionality available. For example, 1933 * the default configuration is limited to using 100mA of bus power, 1934 * so that when certain device functionality requires more power, 1935 * and the device is bus powered, that functionality should be in some 1936 * non-default device configuration. Other device modes may also be 1937 * reflected as configuration options, such as whether two ISDN 1938 * channels are available independently; and choosing between open 1939 * standard device protocols (like CDC) or proprietary ones. 1940 * 1941 * Note that a non-authorized device (dev->authorized == 0) will only 1942 * be put in unconfigured mode. 1943 * 1944 * Note that USB has an additional level of device configurability, 1945 * associated with interfaces. That configurability is accessed using 1946 * usb_set_interface(). 1947 * 1948 * This call is synchronous. The calling context must be able to sleep, 1949 * must own the device lock, and must not hold the driver model's USB 1950 * bus mutex; usb interface driver probe() methods cannot use this routine. 1951 * 1952 * Returns zero on success, or else the status code returned by the 1953 * underlying call that failed. On successful completion, each interface 1954 * in the original device configuration has been destroyed, and each one 1955 * in the new configuration has been probed by all relevant usb device 1956 * drivers currently known to the kernel. 1957 */ 1958 int usb_set_configuration(struct usb_device *dev, int configuration) 1959 { 1960 int i, ret; 1961 struct usb_host_config *cp = NULL; 1962 struct usb_interface **new_interfaces = NULL; 1963 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1964 int n, nintf; 1965 1966 if (dev->authorized == 0 || configuration == -1) 1967 configuration = 0; 1968 else { 1969 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1970 if (dev->config[i].desc.bConfigurationValue == 1971 configuration) { 1972 cp = &dev->config[i]; 1973 break; 1974 } 1975 } 1976 } 1977 if ((!cp && configuration != 0)) 1978 return -EINVAL; 1979 1980 /* The USB spec says configuration 0 means unconfigured. 1981 * But if a device includes a configuration numbered 0, 1982 * we will accept it as a correctly configured state. 1983 * Use -1 if you really want to unconfigure the device. 1984 */ 1985 if (cp && configuration == 0) 1986 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1987 1988 /* Allocate memory for new interfaces before doing anything else, 1989 * so that if we run out then nothing will have changed. */ 1990 n = nintf = 0; 1991 if (cp) { 1992 nintf = cp->desc.bNumInterfaces; 1993 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces), 1994 GFP_NOIO); 1995 if (!new_interfaces) 1996 return -ENOMEM; 1997 1998 for (; n < nintf; ++n) { 1999 new_interfaces[n] = kzalloc( 2000 sizeof(struct usb_interface), 2001 GFP_NOIO); 2002 if (!new_interfaces[n]) { 2003 ret = -ENOMEM; 2004 free_interfaces: 2005 while (--n >= 0) 2006 kfree(new_interfaces[n]); 2007 kfree(new_interfaces); 2008 return ret; 2009 } 2010 } 2011 2012 i = dev->bus_mA - usb_get_max_power(dev, cp); 2013 if (i < 0) 2014 dev_warn(&dev->dev, "new config #%d exceeds power " 2015 "limit by %dmA\n", 2016 configuration, -i); 2017 } 2018 2019 /* Wake up the device so we can send it the Set-Config request */ 2020 ret = usb_autoresume_device(dev); 2021 if (ret) 2022 goto free_interfaces; 2023 2024 /* if it's already configured, clear out old state first. 2025 * getting rid of old interfaces means unbinding their drivers. 2026 */ 2027 if (dev->state != USB_STATE_ADDRESS) 2028 usb_disable_device(dev, 1); /* Skip ep0 */ 2029 2030 /* Get rid of pending async Set-Config requests for this device */ 2031 cancel_async_set_config(dev); 2032 2033 /* Make sure we have bandwidth (and available HCD resources) for this 2034 * configuration. Remove endpoints from the schedule if we're dropping 2035 * this configuration to set configuration 0. After this point, the 2036 * host controller will not allow submissions to dropped endpoints. If 2037 * this call fails, the device state is unchanged. 2038 */ 2039 mutex_lock(hcd->bandwidth_mutex); 2040 /* Disable LPM, and re-enable it once the new configuration is 2041 * installed, so that the xHCI driver can recalculate the U1/U2 2042 * timeouts. 2043 */ 2044 if (dev->actconfig && usb_disable_lpm(dev)) { 2045 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__); 2046 mutex_unlock(hcd->bandwidth_mutex); 2047 ret = -ENOMEM; 2048 goto free_interfaces; 2049 } 2050 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 2051 if (ret < 0) { 2052 if (dev->actconfig) 2053 usb_enable_lpm(dev); 2054 mutex_unlock(hcd->bandwidth_mutex); 2055 usb_autosuspend_device(dev); 2056 goto free_interfaces; 2057 } 2058 2059 /* 2060 * Initialize the new interface structures and the 2061 * hc/hcd/usbcore interface/endpoint state. 2062 */ 2063 for (i = 0; i < nintf; ++i) { 2064 struct usb_interface_cache *intfc; 2065 struct usb_interface *intf; 2066 struct usb_host_interface *alt; 2067 u8 ifnum; 2068 2069 cp->interface[i] = intf = new_interfaces[i]; 2070 intfc = cp->intf_cache[i]; 2071 intf->altsetting = intfc->altsetting; 2072 intf->num_altsetting = intfc->num_altsetting; 2073 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd); 2074 kref_get(&intfc->ref); 2075 2076 alt = usb_altnum_to_altsetting(intf, 0); 2077 2078 /* No altsetting 0? We'll assume the first altsetting. 2079 * We could use a GetInterface call, but if a device is 2080 * so non-compliant that it doesn't have altsetting 0 2081 * then I wouldn't trust its reply anyway. 2082 */ 2083 if (!alt) 2084 alt = &intf->altsetting[0]; 2085 2086 ifnum = alt->desc.bInterfaceNumber; 2087 intf->intf_assoc = find_iad(dev, cp, ifnum); 2088 intf->cur_altsetting = alt; 2089 usb_enable_interface(dev, intf, true); 2090 intf->dev.parent = &dev->dev; 2091 if (usb_of_has_combined_node(dev)) { 2092 device_set_of_node_from_dev(&intf->dev, &dev->dev); 2093 } else { 2094 intf->dev.of_node = usb_of_get_interface_node(dev, 2095 configuration, ifnum); 2096 } 2097 ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev)); 2098 intf->dev.driver = NULL; 2099 intf->dev.bus = &usb_bus_type; 2100 intf->dev.type = &usb_if_device_type; 2101 intf->dev.groups = usb_interface_groups; 2102 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 2103 intf->minor = -1; 2104 device_initialize(&intf->dev); 2105 pm_runtime_no_callbacks(&intf->dev); 2106 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum, 2107 dev->devpath, configuration, ifnum); 2108 usb_get_dev(dev); 2109 } 2110 kfree(new_interfaces); 2111 2112 ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0, 2113 configuration, 0, NULL, 0, 2114 USB_CTRL_SET_TIMEOUT, GFP_NOIO); 2115 if (ret && cp) { 2116 /* 2117 * All the old state is gone, so what else can we do? 2118 * The device is probably useless now anyway. 2119 */ 2120 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 2121 for (i = 0; i < nintf; ++i) { 2122 usb_disable_interface(dev, cp->interface[i], true); 2123 put_device(&cp->interface[i]->dev); 2124 cp->interface[i] = NULL; 2125 } 2126 cp = NULL; 2127 } 2128 2129 dev->actconfig = cp; 2130 mutex_unlock(hcd->bandwidth_mutex); 2131 2132 if (!cp) { 2133 usb_set_device_state(dev, USB_STATE_ADDRESS); 2134 2135 /* Leave LPM disabled while the device is unconfigured. */ 2136 usb_autosuspend_device(dev); 2137 return ret; 2138 } 2139 usb_set_device_state(dev, USB_STATE_CONFIGURED); 2140 2141 if (cp->string == NULL && 2142 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 2143 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 2144 2145 /* Now that the interfaces are installed, re-enable LPM. */ 2146 usb_unlocked_enable_lpm(dev); 2147 /* Enable LTM if it was turned off by usb_disable_device. */ 2148 usb_enable_ltm(dev); 2149 2150 /* Now that all the interfaces are set up, register them 2151 * to trigger binding of drivers to interfaces. probe() 2152 * routines may install different altsettings and may 2153 * claim() any interfaces not yet bound. Many class drivers 2154 * need that: CDC, audio, video, etc. 2155 */ 2156 for (i = 0; i < nintf; ++i) { 2157 struct usb_interface *intf = cp->interface[i]; 2158 2159 if (intf->dev.of_node && 2160 !of_device_is_available(intf->dev.of_node)) { 2161 dev_info(&dev->dev, "skipping disabled interface %d\n", 2162 intf->cur_altsetting->desc.bInterfaceNumber); 2163 continue; 2164 } 2165 2166 dev_dbg(&dev->dev, 2167 "adding %s (config #%d, interface %d)\n", 2168 dev_name(&intf->dev), configuration, 2169 intf->cur_altsetting->desc.bInterfaceNumber); 2170 device_enable_async_suspend(&intf->dev); 2171 ret = device_add(&intf->dev); 2172 if (ret != 0) { 2173 dev_err(&dev->dev, "device_add(%s) --> %d\n", 2174 dev_name(&intf->dev), ret); 2175 continue; 2176 } 2177 create_intf_ep_devs(intf); 2178 } 2179 2180 usb_autosuspend_device(dev); 2181 return 0; 2182 } 2183 EXPORT_SYMBOL_GPL(usb_set_configuration); 2184 2185 static LIST_HEAD(set_config_list); 2186 static DEFINE_SPINLOCK(set_config_lock); 2187 2188 struct set_config_request { 2189 struct usb_device *udev; 2190 int config; 2191 struct work_struct work; 2192 struct list_head node; 2193 }; 2194 2195 /* Worker routine for usb_driver_set_configuration() */ 2196 static void driver_set_config_work(struct work_struct *work) 2197 { 2198 struct set_config_request *req = 2199 container_of(work, struct set_config_request, work); 2200 struct usb_device *udev = req->udev; 2201 2202 usb_lock_device(udev); 2203 spin_lock(&set_config_lock); 2204 list_del(&req->node); 2205 spin_unlock(&set_config_lock); 2206 2207 if (req->config >= -1) /* Is req still valid? */ 2208 usb_set_configuration(udev, req->config); 2209 usb_unlock_device(udev); 2210 usb_put_dev(udev); 2211 kfree(req); 2212 } 2213 2214 /* Cancel pending Set-Config requests for a device whose configuration 2215 * was just changed 2216 */ 2217 static void cancel_async_set_config(struct usb_device *udev) 2218 { 2219 struct set_config_request *req; 2220 2221 spin_lock(&set_config_lock); 2222 list_for_each_entry(req, &set_config_list, node) { 2223 if (req->udev == udev) 2224 req->config = -999; /* Mark as cancelled */ 2225 } 2226 spin_unlock(&set_config_lock); 2227 } 2228 2229 /** 2230 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 2231 * @udev: the device whose configuration is being updated 2232 * @config: the configuration being chosen. 2233 * Context: In process context, must be able to sleep 2234 * 2235 * Device interface drivers are not allowed to change device configurations. 2236 * This is because changing configurations will destroy the interface the 2237 * driver is bound to and create new ones; it would be like a floppy-disk 2238 * driver telling the computer to replace the floppy-disk drive with a 2239 * tape drive! 2240 * 2241 * Still, in certain specialized circumstances the need may arise. This 2242 * routine gets around the normal restrictions by using a work thread to 2243 * submit the change-config request. 2244 * 2245 * Return: 0 if the request was successfully queued, error code otherwise. 2246 * The caller has no way to know whether the queued request will eventually 2247 * succeed. 2248 */ 2249 int usb_driver_set_configuration(struct usb_device *udev, int config) 2250 { 2251 struct set_config_request *req; 2252 2253 req = kmalloc(sizeof(*req), GFP_KERNEL); 2254 if (!req) 2255 return -ENOMEM; 2256 req->udev = udev; 2257 req->config = config; 2258 INIT_WORK(&req->work, driver_set_config_work); 2259 2260 spin_lock(&set_config_lock); 2261 list_add(&req->node, &set_config_list); 2262 spin_unlock(&set_config_lock); 2263 2264 usb_get_dev(udev); 2265 schedule_work(&req->work); 2266 return 0; 2267 } 2268 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2269 2270 /** 2271 * cdc_parse_cdc_header - parse the extra headers present in CDC devices 2272 * @hdr: the place to put the results of the parsing 2273 * @intf: the interface for which parsing is requested 2274 * @buffer: pointer to the extra headers to be parsed 2275 * @buflen: length of the extra headers 2276 * 2277 * This evaluates the extra headers present in CDC devices which 2278 * bind the interfaces for data and control and provide details 2279 * about the capabilities of the device. 2280 * 2281 * Return: number of descriptors parsed or -EINVAL 2282 * if the header is contradictory beyond salvage 2283 */ 2284 2285 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr, 2286 struct usb_interface *intf, 2287 u8 *buffer, 2288 int buflen) 2289 { 2290 /* duplicates are ignored */ 2291 struct usb_cdc_union_desc *union_header = NULL; 2292 2293 /* duplicates are not tolerated */ 2294 struct usb_cdc_header_desc *header = NULL; 2295 struct usb_cdc_ether_desc *ether = NULL; 2296 struct usb_cdc_mdlm_detail_desc *detail = NULL; 2297 struct usb_cdc_mdlm_desc *desc = NULL; 2298 2299 unsigned int elength; 2300 int cnt = 0; 2301 2302 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header)); 2303 hdr->phonet_magic_present = false; 2304 while (buflen > 0) { 2305 elength = buffer[0]; 2306 if (!elength) { 2307 dev_err(&intf->dev, "skipping garbage byte\n"); 2308 elength = 1; 2309 goto next_desc; 2310 } 2311 if ((buflen < elength) || (elength < 3)) { 2312 dev_err(&intf->dev, "invalid descriptor buffer length\n"); 2313 break; 2314 } 2315 if (buffer[1] != USB_DT_CS_INTERFACE) { 2316 dev_err(&intf->dev, "skipping garbage\n"); 2317 goto next_desc; 2318 } 2319 2320 switch (buffer[2]) { 2321 case USB_CDC_UNION_TYPE: /* we've found it */ 2322 if (elength < sizeof(struct usb_cdc_union_desc)) 2323 goto next_desc; 2324 if (union_header) { 2325 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n"); 2326 goto next_desc; 2327 } 2328 union_header = (struct usb_cdc_union_desc *)buffer; 2329 break; 2330 case USB_CDC_COUNTRY_TYPE: 2331 if (elength < sizeof(struct usb_cdc_country_functional_desc)) 2332 goto next_desc; 2333 hdr->usb_cdc_country_functional_desc = 2334 (struct usb_cdc_country_functional_desc *)buffer; 2335 break; 2336 case USB_CDC_HEADER_TYPE: 2337 if (elength != sizeof(struct usb_cdc_header_desc)) 2338 goto next_desc; 2339 if (header) 2340 return -EINVAL; 2341 header = (struct usb_cdc_header_desc *)buffer; 2342 break; 2343 case USB_CDC_ACM_TYPE: 2344 if (elength < sizeof(struct usb_cdc_acm_descriptor)) 2345 goto next_desc; 2346 hdr->usb_cdc_acm_descriptor = 2347 (struct usb_cdc_acm_descriptor *)buffer; 2348 break; 2349 case USB_CDC_ETHERNET_TYPE: 2350 if (elength != sizeof(struct usb_cdc_ether_desc)) 2351 goto next_desc; 2352 if (ether) 2353 return -EINVAL; 2354 ether = (struct usb_cdc_ether_desc *)buffer; 2355 break; 2356 case USB_CDC_CALL_MANAGEMENT_TYPE: 2357 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor)) 2358 goto next_desc; 2359 hdr->usb_cdc_call_mgmt_descriptor = 2360 (struct usb_cdc_call_mgmt_descriptor *)buffer; 2361 break; 2362 case USB_CDC_DMM_TYPE: 2363 if (elength < sizeof(struct usb_cdc_dmm_desc)) 2364 goto next_desc; 2365 hdr->usb_cdc_dmm_desc = 2366 (struct usb_cdc_dmm_desc *)buffer; 2367 break; 2368 case USB_CDC_MDLM_TYPE: 2369 if (elength < sizeof(struct usb_cdc_mdlm_desc)) 2370 goto next_desc; 2371 if (desc) 2372 return -EINVAL; 2373 desc = (struct usb_cdc_mdlm_desc *)buffer; 2374 break; 2375 case USB_CDC_MDLM_DETAIL_TYPE: 2376 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc)) 2377 goto next_desc; 2378 if (detail) 2379 return -EINVAL; 2380 detail = (struct usb_cdc_mdlm_detail_desc *)buffer; 2381 break; 2382 case USB_CDC_NCM_TYPE: 2383 if (elength < sizeof(struct usb_cdc_ncm_desc)) 2384 goto next_desc; 2385 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer; 2386 break; 2387 case USB_CDC_MBIM_TYPE: 2388 if (elength < sizeof(struct usb_cdc_mbim_desc)) 2389 goto next_desc; 2390 2391 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer; 2392 break; 2393 case USB_CDC_MBIM_EXTENDED_TYPE: 2394 if (elength < sizeof(struct usb_cdc_mbim_extended_desc)) 2395 break; 2396 hdr->usb_cdc_mbim_extended_desc = 2397 (struct usb_cdc_mbim_extended_desc *)buffer; 2398 break; 2399 case CDC_PHONET_MAGIC_NUMBER: 2400 hdr->phonet_magic_present = true; 2401 break; 2402 default: 2403 /* 2404 * there are LOTS more CDC descriptors that 2405 * could legitimately be found here. 2406 */ 2407 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n", 2408 buffer[2], elength); 2409 goto next_desc; 2410 } 2411 cnt++; 2412 next_desc: 2413 buflen -= elength; 2414 buffer += elength; 2415 } 2416 hdr->usb_cdc_union_desc = union_header; 2417 hdr->usb_cdc_header_desc = header; 2418 hdr->usb_cdc_mdlm_detail_desc = detail; 2419 hdr->usb_cdc_mdlm_desc = desc; 2420 hdr->usb_cdc_ether_desc = ether; 2421 return cnt; 2422 } 2423 2424 EXPORT_SYMBOL(cdc_parse_cdc_header); 2425