xref: /linux/drivers/usb/core/message.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/timer.h>
11 #include <linux/ctype.h>
12 #include <linux/nls.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/quirks.h>
16 #include <linux/usb/hcd.h>	/* for usbcore internals */
17 #include <asm/byteorder.h>
18 
19 #include "usb.h"
20 
21 static void cancel_async_set_config(struct usb_device *udev);
22 
23 struct api_context {
24 	struct completion	done;
25 	int			status;
26 };
27 
28 static void usb_api_blocking_completion(struct urb *urb)
29 {
30 	struct api_context *ctx = urb->context;
31 
32 	ctx->status = urb->status;
33 	complete(&ctx->done);
34 }
35 
36 
37 /*
38  * Starts urb and waits for completion or timeout. Note that this call
39  * is NOT interruptible. Many device driver i/o requests should be
40  * interruptible and therefore these drivers should implement their
41  * own interruptible routines.
42  */
43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
44 {
45 	struct api_context ctx;
46 	unsigned long expire;
47 	int retval;
48 
49 	init_completion(&ctx.done);
50 	urb->context = &ctx;
51 	urb->actual_length = 0;
52 	retval = usb_submit_urb(urb, GFP_NOIO);
53 	if (unlikely(retval))
54 		goto out;
55 
56 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 		usb_kill_urb(urb);
59 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
60 
61 		dev_dbg(&urb->dev->dev,
62 			"%s timed out on ep%d%s len=%u/%u\n",
63 			current->comm,
64 			usb_endpoint_num(&urb->ep->desc),
65 			usb_urb_dir_in(urb) ? "in" : "out",
66 			urb->actual_length,
67 			urb->transfer_buffer_length);
68 	} else
69 		retval = ctx.status;
70 out:
71 	if (actual_length)
72 		*actual_length = urb->actual_length;
73 
74 	usb_free_urb(urb);
75 	return retval;
76 }
77 
78 /*-------------------------------------------------------------------*/
79 /* returns status (negative) or length (positive) */
80 static int usb_internal_control_msg(struct usb_device *usb_dev,
81 				    unsigned int pipe,
82 				    struct usb_ctrlrequest *cmd,
83 				    void *data, int len, int timeout)
84 {
85 	struct urb *urb;
86 	int retv;
87 	int length;
88 
89 	urb = usb_alloc_urb(0, GFP_NOIO);
90 	if (!urb)
91 		return -ENOMEM;
92 
93 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 			     len, usb_api_blocking_completion, NULL);
95 
96 	retv = usb_start_wait_urb(urb, timeout, &length);
97 	if (retv < 0)
98 		return retv;
99 	else
100 		return length;
101 }
102 
103 /**
104  * usb_control_msg - Builds a control urb, sends it off and waits for completion
105  * @dev: pointer to the usb device to send the message to
106  * @pipe: endpoint "pipe" to send the message to
107  * @request: USB message request value
108  * @requesttype: USB message request type value
109  * @value: USB message value
110  * @index: USB message index value
111  * @data: pointer to the data to send
112  * @size: length in bytes of the data to send
113  * @timeout: time in msecs to wait for the message to complete before timing
114  *	out (if 0 the wait is forever)
115  *
116  * Context: !in_interrupt ()
117  *
118  * This function sends a simple control message to a specified endpoint and
119  * waits for the message to complete, or timeout.
120  *
121  * Don't use this function from within an interrupt context, like a bottom half
122  * handler.  If you need an asynchronous message, or need to send a message
123  * from within interrupt context, use usb_submit_urb().
124  * If a thread in your driver uses this call, make sure your disconnect()
125  * method can wait for it to complete.  Since you don't have a handle on the
126  * URB used, you can't cancel the request.
127  *
128  * Return: If successful, the number of bytes transferred. Otherwise, a negative
129  * error number.
130  */
131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 		    __u8 requesttype, __u16 value, __u16 index, void *data,
133 		    __u16 size, int timeout)
134 {
135 	struct usb_ctrlrequest *dr;
136 	int ret;
137 
138 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 	if (!dr)
140 		return -ENOMEM;
141 
142 	dr->bRequestType = requesttype;
143 	dr->bRequest = request;
144 	dr->wValue = cpu_to_le16(value);
145 	dr->wIndex = cpu_to_le16(index);
146 	dr->wLength = cpu_to_le16(size);
147 
148 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
149 
150 	kfree(dr);
151 
152 	return ret;
153 }
154 EXPORT_SYMBOL_GPL(usb_control_msg);
155 
156 /**
157  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
158  * @usb_dev: pointer to the usb device to send the message to
159  * @pipe: endpoint "pipe" to send the message to
160  * @data: pointer to the data to send
161  * @len: length in bytes of the data to send
162  * @actual_length: pointer to a location to put the actual length transferred
163  *	in bytes
164  * @timeout: time in msecs to wait for the message to complete before
165  *	timing out (if 0 the wait is forever)
166  *
167  * Context: !in_interrupt ()
168  *
169  * This function sends a simple interrupt message to a specified endpoint and
170  * waits for the message to complete, or timeout.
171  *
172  * Don't use this function from within an interrupt context, like a bottom half
173  * handler.  If you need an asynchronous message, or need to send a message
174  * from within interrupt context, use usb_submit_urb() If a thread in your
175  * driver uses this call, make sure your disconnect() method can wait for it to
176  * complete.  Since you don't have a handle on the URB used, you can't cancel
177  * the request.
178  *
179  * Return:
180  * If successful, 0. Otherwise a negative error number. The number of actual
181  * bytes transferred will be stored in the @actual_length parameter.
182  */
183 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
184 		      void *data, int len, int *actual_length, int timeout)
185 {
186 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
187 }
188 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
189 
190 /**
191  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
192  * @usb_dev: pointer to the usb device to send the message to
193  * @pipe: endpoint "pipe" to send the message to
194  * @data: pointer to the data to send
195  * @len: length in bytes of the data to send
196  * @actual_length: pointer to a location to put the actual length transferred
197  *	in bytes
198  * @timeout: time in msecs to wait for the message to complete before
199  *	timing out (if 0 the wait is forever)
200  *
201  * Context: !in_interrupt ()
202  *
203  * This function sends a simple bulk message to a specified endpoint
204  * and waits for the message to complete, or timeout.
205  *
206  * Don't use this function from within an interrupt context, like a bottom half
207  * handler.  If you need an asynchronous message, or need to send a message
208  * from within interrupt context, use usb_submit_urb() If a thread in your
209  * driver uses this call, make sure your disconnect() method can wait for it to
210  * complete.  Since you don't have a handle on the URB used, you can't cancel
211  * the request.
212  *
213  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
214  * users are forced to abuse this routine by using it to submit URBs for
215  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
216  * (with the default interval) if the target is an interrupt endpoint.
217  *
218  * Return:
219  * If successful, 0. Otherwise a negative error number. The number of actual
220  * bytes transferred will be stored in the @actual_length parameter.
221  *
222  */
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 		 void *data, int len, int *actual_length, int timeout)
225 {
226 	struct urb *urb;
227 	struct usb_host_endpoint *ep;
228 
229 	ep = usb_pipe_endpoint(usb_dev, pipe);
230 	if (!ep || len < 0)
231 		return -EINVAL;
232 
233 	urb = usb_alloc_urb(0, GFP_KERNEL);
234 	if (!urb)
235 		return -ENOMEM;
236 
237 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 			USB_ENDPOINT_XFER_INT) {
239 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 				usb_api_blocking_completion, NULL,
242 				ep->desc.bInterval);
243 	} else
244 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 				usb_api_blocking_completion, NULL);
246 
247 	return usb_start_wait_urb(urb, timeout, actual_length);
248 }
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
250 
251 /*-------------------------------------------------------------------*/
252 
253 static void sg_clean(struct usb_sg_request *io)
254 {
255 	if (io->urbs) {
256 		while (io->entries--)
257 			usb_free_urb(io->urbs[io->entries]);
258 		kfree(io->urbs);
259 		io->urbs = NULL;
260 	}
261 	io->dev = NULL;
262 }
263 
264 static void sg_complete(struct urb *urb)
265 {
266 	struct usb_sg_request *io = urb->context;
267 	int status = urb->status;
268 
269 	spin_lock(&io->lock);
270 
271 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
272 	 * reports, until the completion callback (this!) returns.  That lets
273 	 * device driver code (like this routine) unlink queued urbs first,
274 	 * if it needs to, since the HC won't work on them at all.  So it's
275 	 * not possible for page N+1 to overwrite page N, and so on.
276 	 *
277 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 	 * complete before the HCD can get requests away from hardware,
279 	 * though never during cleanup after a hard fault.
280 	 */
281 	if (io->status
282 			&& (io->status != -ECONNRESET
283 				|| status != -ECONNRESET)
284 			&& urb->actual_length) {
285 		dev_err(io->dev->bus->controller,
286 			"dev %s ep%d%s scatterlist error %d/%d\n",
287 			io->dev->devpath,
288 			usb_endpoint_num(&urb->ep->desc),
289 			usb_urb_dir_in(urb) ? "in" : "out",
290 			status, io->status);
291 		/* BUG (); */
292 	}
293 
294 	if (io->status == 0 && status && status != -ECONNRESET) {
295 		int i, found, retval;
296 
297 		io->status = status;
298 
299 		/* the previous urbs, and this one, completed already.
300 		 * unlink pending urbs so they won't rx/tx bad data.
301 		 * careful: unlink can sometimes be synchronous...
302 		 */
303 		spin_unlock(&io->lock);
304 		for (i = 0, found = 0; i < io->entries; i++) {
305 			if (!io->urbs[i])
306 				continue;
307 			if (found) {
308 				usb_block_urb(io->urbs[i]);
309 				retval = usb_unlink_urb(io->urbs[i]);
310 				if (retval != -EINPROGRESS &&
311 				    retval != -ENODEV &&
312 				    retval != -EBUSY &&
313 				    retval != -EIDRM)
314 					dev_err(&io->dev->dev,
315 						"%s, unlink --> %d\n",
316 						__func__, retval);
317 			} else if (urb == io->urbs[i])
318 				found = 1;
319 		}
320 		spin_lock(&io->lock);
321 	}
322 
323 	/* on the last completion, signal usb_sg_wait() */
324 	io->bytes += urb->actual_length;
325 	io->count--;
326 	if (!io->count)
327 		complete(&io->complete);
328 
329 	spin_unlock(&io->lock);
330 }
331 
332 
333 /**
334  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
335  * @io: request block being initialized.  until usb_sg_wait() returns,
336  *	treat this as a pointer to an opaque block of memory,
337  * @dev: the usb device that will send or receive the data
338  * @pipe: endpoint "pipe" used to transfer the data
339  * @period: polling rate for interrupt endpoints, in frames or
340  * 	(for high speed endpoints) microframes; ignored for bulk
341  * @sg: scatterlist entries
342  * @nents: how many entries in the scatterlist
343  * @length: how many bytes to send from the scatterlist, or zero to
344  * 	send every byte identified in the list.
345  * @mem_flags: SLAB_* flags affecting memory allocations in this call
346  *
347  * This initializes a scatter/gather request, allocating resources such as
348  * I/O mappings and urb memory (except maybe memory used by USB controller
349  * drivers).
350  *
351  * The request must be issued using usb_sg_wait(), which waits for the I/O to
352  * complete (or to be canceled) and then cleans up all resources allocated by
353  * usb_sg_init().
354  *
355  * The request may be canceled with usb_sg_cancel(), either before or after
356  * usb_sg_wait() is called.
357  *
358  * Return: Zero for success, else a negative errno value.
359  */
360 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
361 		unsigned pipe, unsigned	period, struct scatterlist *sg,
362 		int nents, size_t length, gfp_t mem_flags)
363 {
364 	int i;
365 	int urb_flags;
366 	int use_sg;
367 
368 	if (!io || !dev || !sg
369 			|| usb_pipecontrol(pipe)
370 			|| usb_pipeisoc(pipe)
371 			|| nents <= 0)
372 		return -EINVAL;
373 
374 	spin_lock_init(&io->lock);
375 	io->dev = dev;
376 	io->pipe = pipe;
377 
378 	if (dev->bus->sg_tablesize > 0) {
379 		use_sg = true;
380 		io->entries = 1;
381 	} else {
382 		use_sg = false;
383 		io->entries = nents;
384 	}
385 
386 	/* initialize all the urbs we'll use */
387 	io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
388 	if (!io->urbs)
389 		goto nomem;
390 
391 	urb_flags = URB_NO_INTERRUPT;
392 	if (usb_pipein(pipe))
393 		urb_flags |= URB_SHORT_NOT_OK;
394 
395 	for_each_sg(sg, sg, io->entries, i) {
396 		struct urb *urb;
397 		unsigned len;
398 
399 		urb = usb_alloc_urb(0, mem_flags);
400 		if (!urb) {
401 			io->entries = i;
402 			goto nomem;
403 		}
404 		io->urbs[i] = urb;
405 
406 		urb->dev = NULL;
407 		urb->pipe = pipe;
408 		urb->interval = period;
409 		urb->transfer_flags = urb_flags;
410 		urb->complete = sg_complete;
411 		urb->context = io;
412 		urb->sg = sg;
413 
414 		if (use_sg) {
415 			/* There is no single transfer buffer */
416 			urb->transfer_buffer = NULL;
417 			urb->num_sgs = nents;
418 
419 			/* A length of zero means transfer the whole sg list */
420 			len = length;
421 			if (len == 0) {
422 				struct scatterlist	*sg2;
423 				int			j;
424 
425 				for_each_sg(sg, sg2, nents, j)
426 					len += sg2->length;
427 			}
428 		} else {
429 			/*
430 			 * Some systems can't use DMA; they use PIO instead.
431 			 * For their sakes, transfer_buffer is set whenever
432 			 * possible.
433 			 */
434 			if (!PageHighMem(sg_page(sg)))
435 				urb->transfer_buffer = sg_virt(sg);
436 			else
437 				urb->transfer_buffer = NULL;
438 
439 			len = sg->length;
440 			if (length) {
441 				len = min_t(size_t, len, length);
442 				length -= len;
443 				if (length == 0)
444 					io->entries = i + 1;
445 			}
446 		}
447 		urb->transfer_buffer_length = len;
448 	}
449 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
450 
451 	/* transaction state */
452 	io->count = io->entries;
453 	io->status = 0;
454 	io->bytes = 0;
455 	init_completion(&io->complete);
456 	return 0;
457 
458 nomem:
459 	sg_clean(io);
460 	return -ENOMEM;
461 }
462 EXPORT_SYMBOL_GPL(usb_sg_init);
463 
464 /**
465  * usb_sg_wait - synchronously execute scatter/gather request
466  * @io: request block handle, as initialized with usb_sg_init().
467  * 	some fields become accessible when this call returns.
468  * Context: !in_interrupt ()
469  *
470  * This function blocks until the specified I/O operation completes.  It
471  * leverages the grouping of the related I/O requests to get good transfer
472  * rates, by queueing the requests.  At higher speeds, such queuing can
473  * significantly improve USB throughput.
474  *
475  * There are three kinds of completion for this function.
476  * (1) success, where io->status is zero.  The number of io->bytes
477  *     transferred is as requested.
478  * (2) error, where io->status is a negative errno value.  The number
479  *     of io->bytes transferred before the error is usually less
480  *     than requested, and can be nonzero.
481  * (3) cancellation, a type of error with status -ECONNRESET that
482  *     is initiated by usb_sg_cancel().
483  *
484  * When this function returns, all memory allocated through usb_sg_init() or
485  * this call will have been freed.  The request block parameter may still be
486  * passed to usb_sg_cancel(), or it may be freed.  It could also be
487  * reinitialized and then reused.
488  *
489  * Data Transfer Rates:
490  *
491  * Bulk transfers are valid for full or high speed endpoints.
492  * The best full speed data rate is 19 packets of 64 bytes each
493  * per frame, or 1216 bytes per millisecond.
494  * The best high speed data rate is 13 packets of 512 bytes each
495  * per microframe, or 52 KBytes per millisecond.
496  *
497  * The reason to use interrupt transfers through this API would most likely
498  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
499  * could be transferred.  That capability is less useful for low or full
500  * speed interrupt endpoints, which allow at most one packet per millisecond,
501  * of at most 8 or 64 bytes (respectively).
502  *
503  * It is not necessary to call this function to reserve bandwidth for devices
504  * under an xHCI host controller, as the bandwidth is reserved when the
505  * configuration or interface alt setting is selected.
506  */
507 void usb_sg_wait(struct usb_sg_request *io)
508 {
509 	int i;
510 	int entries = io->entries;
511 
512 	/* queue the urbs.  */
513 	spin_lock_irq(&io->lock);
514 	i = 0;
515 	while (i < entries && !io->status) {
516 		int retval;
517 
518 		io->urbs[i]->dev = io->dev;
519 		spin_unlock_irq(&io->lock);
520 
521 		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
522 
523 		switch (retval) {
524 			/* maybe we retrying will recover */
525 		case -ENXIO:	/* hc didn't queue this one */
526 		case -EAGAIN:
527 		case -ENOMEM:
528 			retval = 0;
529 			yield();
530 			break;
531 
532 			/* no error? continue immediately.
533 			 *
534 			 * NOTE: to work better with UHCI (4K I/O buffer may
535 			 * need 3K of TDs) it may be good to limit how many
536 			 * URBs are queued at once; N milliseconds?
537 			 */
538 		case 0:
539 			++i;
540 			cpu_relax();
541 			break;
542 
543 			/* fail any uncompleted urbs */
544 		default:
545 			io->urbs[i]->status = retval;
546 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
547 				__func__, retval);
548 			usb_sg_cancel(io);
549 		}
550 		spin_lock_irq(&io->lock);
551 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
552 			io->status = retval;
553 	}
554 	io->count -= entries - i;
555 	if (io->count == 0)
556 		complete(&io->complete);
557 	spin_unlock_irq(&io->lock);
558 
559 	/* OK, yes, this could be packaged as non-blocking.
560 	 * So could the submit loop above ... but it's easier to
561 	 * solve neither problem than to solve both!
562 	 */
563 	wait_for_completion(&io->complete);
564 
565 	sg_clean(io);
566 }
567 EXPORT_SYMBOL_GPL(usb_sg_wait);
568 
569 /**
570  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
571  * @io: request block, initialized with usb_sg_init()
572  *
573  * This stops a request after it has been started by usb_sg_wait().
574  * It can also prevents one initialized by usb_sg_init() from starting,
575  * so that call just frees resources allocated to the request.
576  */
577 void usb_sg_cancel(struct usb_sg_request *io)
578 {
579 	unsigned long flags;
580 	int i, retval;
581 
582 	spin_lock_irqsave(&io->lock, flags);
583 	if (io->status) {
584 		spin_unlock_irqrestore(&io->lock, flags);
585 		return;
586 	}
587 	/* shut everything down */
588 	io->status = -ECONNRESET;
589 	spin_unlock_irqrestore(&io->lock, flags);
590 
591 	for (i = io->entries - 1; i >= 0; --i) {
592 		usb_block_urb(io->urbs[i]);
593 
594 		retval = usb_unlink_urb(io->urbs[i]);
595 		if (retval != -EINPROGRESS
596 		    && retval != -ENODEV
597 		    && retval != -EBUSY
598 		    && retval != -EIDRM)
599 			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
600 				 __func__, retval);
601 	}
602 }
603 EXPORT_SYMBOL_GPL(usb_sg_cancel);
604 
605 /*-------------------------------------------------------------------*/
606 
607 /**
608  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
609  * @dev: the device whose descriptor is being retrieved
610  * @type: the descriptor type (USB_DT_*)
611  * @index: the number of the descriptor
612  * @buf: where to put the descriptor
613  * @size: how big is "buf"?
614  * Context: !in_interrupt ()
615  *
616  * Gets a USB descriptor.  Convenience functions exist to simplify
617  * getting some types of descriptors.  Use
618  * usb_get_string() or usb_string() for USB_DT_STRING.
619  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
620  * are part of the device structure.
621  * In addition to a number of USB-standard descriptors, some
622  * devices also use class-specific or vendor-specific descriptors.
623  *
624  * This call is synchronous, and may not be used in an interrupt context.
625  *
626  * Return: The number of bytes received on success, or else the status code
627  * returned by the underlying usb_control_msg() call.
628  */
629 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
630 		       unsigned char index, void *buf, int size)
631 {
632 	int i;
633 	int result;
634 
635 	memset(buf, 0, size);	/* Make sure we parse really received data */
636 
637 	for (i = 0; i < 3; ++i) {
638 		/* retry on length 0 or error; some devices are flakey */
639 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
640 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
641 				(type << 8) + index, 0, buf, size,
642 				USB_CTRL_GET_TIMEOUT);
643 		if (result <= 0 && result != -ETIMEDOUT)
644 			continue;
645 		if (result > 1 && ((u8 *)buf)[1] != type) {
646 			result = -ENODATA;
647 			continue;
648 		}
649 		break;
650 	}
651 	return result;
652 }
653 EXPORT_SYMBOL_GPL(usb_get_descriptor);
654 
655 /**
656  * usb_get_string - gets a string descriptor
657  * @dev: the device whose string descriptor is being retrieved
658  * @langid: code for language chosen (from string descriptor zero)
659  * @index: the number of the descriptor
660  * @buf: where to put the string
661  * @size: how big is "buf"?
662  * Context: !in_interrupt ()
663  *
664  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
665  * in little-endian byte order).
666  * The usb_string() function will often be a convenient way to turn
667  * these strings into kernel-printable form.
668  *
669  * Strings may be referenced in device, configuration, interface, or other
670  * descriptors, and could also be used in vendor-specific ways.
671  *
672  * This call is synchronous, and may not be used in an interrupt context.
673  *
674  * Return: The number of bytes received on success, or else the status code
675  * returned by the underlying usb_control_msg() call.
676  */
677 static int usb_get_string(struct usb_device *dev, unsigned short langid,
678 			  unsigned char index, void *buf, int size)
679 {
680 	int i;
681 	int result;
682 
683 	for (i = 0; i < 3; ++i) {
684 		/* retry on length 0 or stall; some devices are flakey */
685 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
686 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
687 			(USB_DT_STRING << 8) + index, langid, buf, size,
688 			USB_CTRL_GET_TIMEOUT);
689 		if (result == 0 || result == -EPIPE)
690 			continue;
691 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
692 			result = -ENODATA;
693 			continue;
694 		}
695 		break;
696 	}
697 	return result;
698 }
699 
700 static void usb_try_string_workarounds(unsigned char *buf, int *length)
701 {
702 	int newlength, oldlength = *length;
703 
704 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
705 		if (!isprint(buf[newlength]) || buf[newlength + 1])
706 			break;
707 
708 	if (newlength > 2) {
709 		buf[0] = newlength;
710 		*length = newlength;
711 	}
712 }
713 
714 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
715 			  unsigned int index, unsigned char *buf)
716 {
717 	int rc;
718 
719 	/* Try to read the string descriptor by asking for the maximum
720 	 * possible number of bytes */
721 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
722 		rc = -EIO;
723 	else
724 		rc = usb_get_string(dev, langid, index, buf, 255);
725 
726 	/* If that failed try to read the descriptor length, then
727 	 * ask for just that many bytes */
728 	if (rc < 2) {
729 		rc = usb_get_string(dev, langid, index, buf, 2);
730 		if (rc == 2)
731 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
732 	}
733 
734 	if (rc >= 2) {
735 		if (!buf[0] && !buf[1])
736 			usb_try_string_workarounds(buf, &rc);
737 
738 		/* There might be extra junk at the end of the descriptor */
739 		if (buf[0] < rc)
740 			rc = buf[0];
741 
742 		rc = rc - (rc & 1); /* force a multiple of two */
743 	}
744 
745 	if (rc < 2)
746 		rc = (rc < 0 ? rc : -EINVAL);
747 
748 	return rc;
749 }
750 
751 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
752 {
753 	int err;
754 
755 	if (dev->have_langid)
756 		return 0;
757 
758 	if (dev->string_langid < 0)
759 		return -EPIPE;
760 
761 	err = usb_string_sub(dev, 0, 0, tbuf);
762 
763 	/* If the string was reported but is malformed, default to english
764 	 * (0x0409) */
765 	if (err == -ENODATA || (err > 0 && err < 4)) {
766 		dev->string_langid = 0x0409;
767 		dev->have_langid = 1;
768 		dev_err(&dev->dev,
769 			"language id specifier not provided by device, defaulting to English\n");
770 		return 0;
771 	}
772 
773 	/* In case of all other errors, we assume the device is not able to
774 	 * deal with strings at all. Set string_langid to -1 in order to
775 	 * prevent any string to be retrieved from the device */
776 	if (err < 0) {
777 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
778 					err);
779 		dev->string_langid = -1;
780 		return -EPIPE;
781 	}
782 
783 	/* always use the first langid listed */
784 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
785 	dev->have_langid = 1;
786 	dev_dbg(&dev->dev, "default language 0x%04x\n",
787 				dev->string_langid);
788 	return 0;
789 }
790 
791 /**
792  * usb_string - returns UTF-8 version of a string descriptor
793  * @dev: the device whose string descriptor is being retrieved
794  * @index: the number of the descriptor
795  * @buf: where to put the string
796  * @size: how big is "buf"?
797  * Context: !in_interrupt ()
798  *
799  * This converts the UTF-16LE encoded strings returned by devices, from
800  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
801  * that are more usable in most kernel contexts.  Note that this function
802  * chooses strings in the first language supported by the device.
803  *
804  * This call is synchronous, and may not be used in an interrupt context.
805  *
806  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
807  */
808 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
809 {
810 	unsigned char *tbuf;
811 	int err;
812 
813 	if (dev->state == USB_STATE_SUSPENDED)
814 		return -EHOSTUNREACH;
815 	if (size <= 0 || !buf || !index)
816 		return -EINVAL;
817 	buf[0] = 0;
818 	tbuf = kmalloc(256, GFP_NOIO);
819 	if (!tbuf)
820 		return -ENOMEM;
821 
822 	err = usb_get_langid(dev, tbuf);
823 	if (err < 0)
824 		goto errout;
825 
826 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
827 	if (err < 0)
828 		goto errout;
829 
830 	size--;		/* leave room for trailing NULL char in output buffer */
831 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
832 			UTF16_LITTLE_ENDIAN, buf, size);
833 	buf[err] = 0;
834 
835 	if (tbuf[1] != USB_DT_STRING)
836 		dev_dbg(&dev->dev,
837 			"wrong descriptor type %02x for string %d (\"%s\")\n",
838 			tbuf[1], index, buf);
839 
840  errout:
841 	kfree(tbuf);
842 	return err;
843 }
844 EXPORT_SYMBOL_GPL(usb_string);
845 
846 /* one UTF-8-encoded 16-bit character has at most three bytes */
847 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
848 
849 /**
850  * usb_cache_string - read a string descriptor and cache it for later use
851  * @udev: the device whose string descriptor is being read
852  * @index: the descriptor index
853  *
854  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
855  * or %NULL if the index is 0 or the string could not be read.
856  */
857 char *usb_cache_string(struct usb_device *udev, int index)
858 {
859 	char *buf;
860 	char *smallbuf = NULL;
861 	int len;
862 
863 	if (index <= 0)
864 		return NULL;
865 
866 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
867 	if (buf) {
868 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
869 		if (len > 0) {
870 			smallbuf = kmalloc(++len, GFP_NOIO);
871 			if (!smallbuf)
872 				return buf;
873 			memcpy(smallbuf, buf, len);
874 		}
875 		kfree(buf);
876 	}
877 	return smallbuf;
878 }
879 
880 /*
881  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
882  * @dev: the device whose device descriptor is being updated
883  * @size: how much of the descriptor to read
884  * Context: !in_interrupt ()
885  *
886  * Updates the copy of the device descriptor stored in the device structure,
887  * which dedicates space for this purpose.
888  *
889  * Not exported, only for use by the core.  If drivers really want to read
890  * the device descriptor directly, they can call usb_get_descriptor() with
891  * type = USB_DT_DEVICE and index = 0.
892  *
893  * This call is synchronous, and may not be used in an interrupt context.
894  *
895  * Return: The number of bytes received on success, or else the status code
896  * returned by the underlying usb_control_msg() call.
897  */
898 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
899 {
900 	struct usb_device_descriptor *desc;
901 	int ret;
902 
903 	if (size > sizeof(*desc))
904 		return -EINVAL;
905 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
906 	if (!desc)
907 		return -ENOMEM;
908 
909 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
910 	if (ret >= 0)
911 		memcpy(&dev->descriptor, desc, size);
912 	kfree(desc);
913 	return ret;
914 }
915 
916 /**
917  * usb_get_status - issues a GET_STATUS call
918  * @dev: the device whose status is being checked
919  * @type: USB_RECIP_*; for device, interface, or endpoint
920  * @target: zero (for device), else interface or endpoint number
921  * @data: pointer to two bytes of bitmap data
922  * Context: !in_interrupt ()
923  *
924  * Returns device, interface, or endpoint status.  Normally only of
925  * interest to see if the device is self powered, or has enabled the
926  * remote wakeup facility; or whether a bulk or interrupt endpoint
927  * is halted ("stalled").
928  *
929  * Bits in these status bitmaps are set using the SET_FEATURE request,
930  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
931  * function should be used to clear halt ("stall") status.
932  *
933  * This call is synchronous, and may not be used in an interrupt context.
934  *
935  * Returns 0 and the status value in *@data (in host byte order) on success,
936  * or else the status code from the underlying usb_control_msg() call.
937  */
938 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
939 {
940 	int ret;
941 	__le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
942 
943 	if (!status)
944 		return -ENOMEM;
945 
946 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
947 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
948 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
949 
950 	if (ret == 2) {
951 		*(u16 *) data = le16_to_cpu(*status);
952 		ret = 0;
953 	} else if (ret >= 0) {
954 		ret = -EIO;
955 	}
956 	kfree(status);
957 	return ret;
958 }
959 EXPORT_SYMBOL_GPL(usb_get_status);
960 
961 /**
962  * usb_clear_halt - tells device to clear endpoint halt/stall condition
963  * @dev: device whose endpoint is halted
964  * @pipe: endpoint "pipe" being cleared
965  * Context: !in_interrupt ()
966  *
967  * This is used to clear halt conditions for bulk and interrupt endpoints,
968  * as reported by URB completion status.  Endpoints that are halted are
969  * sometimes referred to as being "stalled".  Such endpoints are unable
970  * to transmit or receive data until the halt status is cleared.  Any URBs
971  * queued for such an endpoint should normally be unlinked by the driver
972  * before clearing the halt condition, as described in sections 5.7.5
973  * and 5.8.5 of the USB 2.0 spec.
974  *
975  * Note that control and isochronous endpoints don't halt, although control
976  * endpoints report "protocol stall" (for unsupported requests) using the
977  * same status code used to report a true stall.
978  *
979  * This call is synchronous, and may not be used in an interrupt context.
980  *
981  * Return: Zero on success, or else the status code returned by the
982  * underlying usb_control_msg() call.
983  */
984 int usb_clear_halt(struct usb_device *dev, int pipe)
985 {
986 	int result;
987 	int endp = usb_pipeendpoint(pipe);
988 
989 	if (usb_pipein(pipe))
990 		endp |= USB_DIR_IN;
991 
992 	/* we don't care if it wasn't halted first. in fact some devices
993 	 * (like some ibmcam model 1 units) seem to expect hosts to make
994 	 * this request for iso endpoints, which can't halt!
995 	 */
996 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
997 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
998 		USB_ENDPOINT_HALT, endp, NULL, 0,
999 		USB_CTRL_SET_TIMEOUT);
1000 
1001 	/* don't un-halt or force to DATA0 except on success */
1002 	if (result < 0)
1003 		return result;
1004 
1005 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1006 	 * the clear "took", so some devices could lock up if you check...
1007 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1008 	 *
1009 	 * NOTE:  make sure the logic here doesn't diverge much from
1010 	 * the copy in usb-storage, for as long as we need two copies.
1011 	 */
1012 
1013 	usb_reset_endpoint(dev, endp);
1014 
1015 	return 0;
1016 }
1017 EXPORT_SYMBOL_GPL(usb_clear_halt);
1018 
1019 static int create_intf_ep_devs(struct usb_interface *intf)
1020 {
1021 	struct usb_device *udev = interface_to_usbdev(intf);
1022 	struct usb_host_interface *alt = intf->cur_altsetting;
1023 	int i;
1024 
1025 	if (intf->ep_devs_created || intf->unregistering)
1026 		return 0;
1027 
1028 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1029 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1030 	intf->ep_devs_created = 1;
1031 	return 0;
1032 }
1033 
1034 static void remove_intf_ep_devs(struct usb_interface *intf)
1035 {
1036 	struct usb_host_interface *alt = intf->cur_altsetting;
1037 	int i;
1038 
1039 	if (!intf->ep_devs_created)
1040 		return;
1041 
1042 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1043 		usb_remove_ep_devs(&alt->endpoint[i]);
1044 	intf->ep_devs_created = 0;
1045 }
1046 
1047 /**
1048  * usb_disable_endpoint -- Disable an endpoint by address
1049  * @dev: the device whose endpoint is being disabled
1050  * @epaddr: the endpoint's address.  Endpoint number for output,
1051  *	endpoint number + USB_DIR_IN for input
1052  * @reset_hardware: flag to erase any endpoint state stored in the
1053  *	controller hardware
1054  *
1055  * Disables the endpoint for URB submission and nukes all pending URBs.
1056  * If @reset_hardware is set then also deallocates hcd/hardware state
1057  * for the endpoint.
1058  */
1059 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1060 		bool reset_hardware)
1061 {
1062 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1063 	struct usb_host_endpoint *ep;
1064 
1065 	if (!dev)
1066 		return;
1067 
1068 	if (usb_endpoint_out(epaddr)) {
1069 		ep = dev->ep_out[epnum];
1070 		if (reset_hardware)
1071 			dev->ep_out[epnum] = NULL;
1072 	} else {
1073 		ep = dev->ep_in[epnum];
1074 		if (reset_hardware)
1075 			dev->ep_in[epnum] = NULL;
1076 	}
1077 	if (ep) {
1078 		ep->enabled = 0;
1079 		usb_hcd_flush_endpoint(dev, ep);
1080 		if (reset_hardware)
1081 			usb_hcd_disable_endpoint(dev, ep);
1082 	}
1083 }
1084 
1085 /**
1086  * usb_reset_endpoint - Reset an endpoint's state.
1087  * @dev: the device whose endpoint is to be reset
1088  * @epaddr: the endpoint's address.  Endpoint number for output,
1089  *	endpoint number + USB_DIR_IN for input
1090  *
1091  * Resets any host-side endpoint state such as the toggle bit,
1092  * sequence number or current window.
1093  */
1094 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1095 {
1096 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1097 	struct usb_host_endpoint *ep;
1098 
1099 	if (usb_endpoint_out(epaddr))
1100 		ep = dev->ep_out[epnum];
1101 	else
1102 		ep = dev->ep_in[epnum];
1103 	if (ep)
1104 		usb_hcd_reset_endpoint(dev, ep);
1105 }
1106 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1107 
1108 
1109 /**
1110  * usb_disable_interface -- Disable all endpoints for an interface
1111  * @dev: the device whose interface is being disabled
1112  * @intf: pointer to the interface descriptor
1113  * @reset_hardware: flag to erase any endpoint state stored in the
1114  *	controller hardware
1115  *
1116  * Disables all the endpoints for the interface's current altsetting.
1117  */
1118 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1119 		bool reset_hardware)
1120 {
1121 	struct usb_host_interface *alt = intf->cur_altsetting;
1122 	int i;
1123 
1124 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1125 		usb_disable_endpoint(dev,
1126 				alt->endpoint[i].desc.bEndpointAddress,
1127 				reset_hardware);
1128 	}
1129 }
1130 
1131 /**
1132  * usb_disable_device - Disable all the endpoints for a USB device
1133  * @dev: the device whose endpoints are being disabled
1134  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1135  *
1136  * Disables all the device's endpoints, potentially including endpoint 0.
1137  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1138  * pending urbs) and usbcore state for the interfaces, so that usbcore
1139  * must usb_set_configuration() before any interfaces could be used.
1140  */
1141 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1142 {
1143 	int i;
1144 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1145 
1146 	/* getting rid of interfaces will disconnect
1147 	 * any drivers bound to them (a key side effect)
1148 	 */
1149 	if (dev->actconfig) {
1150 		/*
1151 		 * FIXME: In order to avoid self-deadlock involving the
1152 		 * bandwidth_mutex, we have to mark all the interfaces
1153 		 * before unregistering any of them.
1154 		 */
1155 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1156 			dev->actconfig->interface[i]->unregistering = 1;
1157 
1158 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1159 			struct usb_interface	*interface;
1160 
1161 			/* remove this interface if it has been registered */
1162 			interface = dev->actconfig->interface[i];
1163 			if (!device_is_registered(&interface->dev))
1164 				continue;
1165 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1166 				dev_name(&interface->dev));
1167 			remove_intf_ep_devs(interface);
1168 			device_del(&interface->dev);
1169 		}
1170 
1171 		/* Now that the interfaces are unbound, nobody should
1172 		 * try to access them.
1173 		 */
1174 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1175 			put_device(&dev->actconfig->interface[i]->dev);
1176 			dev->actconfig->interface[i] = NULL;
1177 		}
1178 
1179 		if (dev->usb2_hw_lpm_enabled == 1)
1180 			usb_set_usb2_hardware_lpm(dev, 0);
1181 		usb_unlocked_disable_lpm(dev);
1182 		usb_disable_ltm(dev);
1183 
1184 		dev->actconfig = NULL;
1185 		if (dev->state == USB_STATE_CONFIGURED)
1186 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1187 	}
1188 
1189 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1190 		skip_ep0 ? "non-ep0" : "all");
1191 	if (hcd->driver->check_bandwidth) {
1192 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1193 		for (i = skip_ep0; i < 16; ++i) {
1194 			usb_disable_endpoint(dev, i, false);
1195 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1196 		}
1197 		/* Remove endpoints from the host controller internal state */
1198 		mutex_lock(hcd->bandwidth_mutex);
1199 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1200 		mutex_unlock(hcd->bandwidth_mutex);
1201 		/* Second pass: remove endpoint pointers */
1202 	}
1203 	for (i = skip_ep0; i < 16; ++i) {
1204 		usb_disable_endpoint(dev, i, true);
1205 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1206 	}
1207 }
1208 
1209 /**
1210  * usb_enable_endpoint - Enable an endpoint for USB communications
1211  * @dev: the device whose interface is being enabled
1212  * @ep: the endpoint
1213  * @reset_ep: flag to reset the endpoint state
1214  *
1215  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1216  * For control endpoints, both the input and output sides are handled.
1217  */
1218 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1219 		bool reset_ep)
1220 {
1221 	int epnum = usb_endpoint_num(&ep->desc);
1222 	int is_out = usb_endpoint_dir_out(&ep->desc);
1223 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1224 
1225 	if (reset_ep)
1226 		usb_hcd_reset_endpoint(dev, ep);
1227 	if (is_out || is_control)
1228 		dev->ep_out[epnum] = ep;
1229 	if (!is_out || is_control)
1230 		dev->ep_in[epnum] = ep;
1231 	ep->enabled = 1;
1232 }
1233 
1234 /**
1235  * usb_enable_interface - Enable all the endpoints for an interface
1236  * @dev: the device whose interface is being enabled
1237  * @intf: pointer to the interface descriptor
1238  * @reset_eps: flag to reset the endpoints' state
1239  *
1240  * Enables all the endpoints for the interface's current altsetting.
1241  */
1242 void usb_enable_interface(struct usb_device *dev,
1243 		struct usb_interface *intf, bool reset_eps)
1244 {
1245 	struct usb_host_interface *alt = intf->cur_altsetting;
1246 	int i;
1247 
1248 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1249 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1250 }
1251 
1252 /**
1253  * usb_set_interface - Makes a particular alternate setting be current
1254  * @dev: the device whose interface is being updated
1255  * @interface: the interface being updated
1256  * @alternate: the setting being chosen.
1257  * Context: !in_interrupt ()
1258  *
1259  * This is used to enable data transfers on interfaces that may not
1260  * be enabled by default.  Not all devices support such configurability.
1261  * Only the driver bound to an interface may change its setting.
1262  *
1263  * Within any given configuration, each interface may have several
1264  * alternative settings.  These are often used to control levels of
1265  * bandwidth consumption.  For example, the default setting for a high
1266  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1267  * while interrupt transfers of up to 3KBytes per microframe are legal.
1268  * Also, isochronous endpoints may never be part of an
1269  * interface's default setting.  To access such bandwidth, alternate
1270  * interface settings must be made current.
1271  *
1272  * Note that in the Linux USB subsystem, bandwidth associated with
1273  * an endpoint in a given alternate setting is not reserved until an URB
1274  * is submitted that needs that bandwidth.  Some other operating systems
1275  * allocate bandwidth early, when a configuration is chosen.
1276  *
1277  * This call is synchronous, and may not be used in an interrupt context.
1278  * Also, drivers must not change altsettings while urbs are scheduled for
1279  * endpoints in that interface; all such urbs must first be completed
1280  * (perhaps forced by unlinking).
1281  *
1282  * Return: Zero on success, or else the status code returned by the
1283  * underlying usb_control_msg() call.
1284  */
1285 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1286 {
1287 	struct usb_interface *iface;
1288 	struct usb_host_interface *alt;
1289 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1290 	int i, ret, manual = 0;
1291 	unsigned int epaddr;
1292 	unsigned int pipe;
1293 
1294 	if (dev->state == USB_STATE_SUSPENDED)
1295 		return -EHOSTUNREACH;
1296 
1297 	iface = usb_ifnum_to_if(dev, interface);
1298 	if (!iface) {
1299 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1300 			interface);
1301 		return -EINVAL;
1302 	}
1303 	if (iface->unregistering)
1304 		return -ENODEV;
1305 
1306 	alt = usb_altnum_to_altsetting(iface, alternate);
1307 	if (!alt) {
1308 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1309 			 alternate);
1310 		return -EINVAL;
1311 	}
1312 
1313 	/* Make sure we have enough bandwidth for this alternate interface.
1314 	 * Remove the current alt setting and add the new alt setting.
1315 	 */
1316 	mutex_lock(hcd->bandwidth_mutex);
1317 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1318 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1319 	 */
1320 	if (usb_disable_lpm(dev)) {
1321 		dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1322 		mutex_unlock(hcd->bandwidth_mutex);
1323 		return -ENOMEM;
1324 	}
1325 	/* Changing alt-setting also frees any allocated streams */
1326 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1327 		iface->cur_altsetting->endpoint[i].streams = 0;
1328 
1329 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1330 	if (ret < 0) {
1331 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1332 				alternate);
1333 		usb_enable_lpm(dev);
1334 		mutex_unlock(hcd->bandwidth_mutex);
1335 		return ret;
1336 	}
1337 
1338 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1339 		ret = -EPIPE;
1340 	else
1341 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1342 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1343 				   alternate, interface, NULL, 0, 5000);
1344 
1345 	/* 9.4.10 says devices don't need this and are free to STALL the
1346 	 * request if the interface only has one alternate setting.
1347 	 */
1348 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1349 		dev_dbg(&dev->dev,
1350 			"manual set_interface for iface %d, alt %d\n",
1351 			interface, alternate);
1352 		manual = 1;
1353 	} else if (ret < 0) {
1354 		/* Re-instate the old alt setting */
1355 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1356 		usb_enable_lpm(dev);
1357 		mutex_unlock(hcd->bandwidth_mutex);
1358 		return ret;
1359 	}
1360 	mutex_unlock(hcd->bandwidth_mutex);
1361 
1362 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1363 	 * when they implement async or easily-killable versions of this or
1364 	 * other "should-be-internal" functions (like clear_halt).
1365 	 * should hcd+usbcore postprocess control requests?
1366 	 */
1367 
1368 	/* prevent submissions using previous endpoint settings */
1369 	if (iface->cur_altsetting != alt) {
1370 		remove_intf_ep_devs(iface);
1371 		usb_remove_sysfs_intf_files(iface);
1372 	}
1373 	usb_disable_interface(dev, iface, true);
1374 
1375 	iface->cur_altsetting = alt;
1376 
1377 	/* Now that the interface is installed, re-enable LPM. */
1378 	usb_unlocked_enable_lpm(dev);
1379 
1380 	/* If the interface only has one altsetting and the device didn't
1381 	 * accept the request, we attempt to carry out the equivalent action
1382 	 * by manually clearing the HALT feature for each endpoint in the
1383 	 * new altsetting.
1384 	 */
1385 	if (manual) {
1386 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1387 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1388 			pipe = __create_pipe(dev,
1389 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1390 					(usb_endpoint_out(epaddr) ?
1391 					USB_DIR_OUT : USB_DIR_IN);
1392 
1393 			usb_clear_halt(dev, pipe);
1394 		}
1395 	}
1396 
1397 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1398 	 *
1399 	 * Note:
1400 	 * Despite EP0 is always present in all interfaces/AS, the list of
1401 	 * endpoints from the descriptor does not contain EP0. Due to its
1402 	 * omnipresence one might expect EP0 being considered "affected" by
1403 	 * any SetInterface request and hence assume toggles need to be reset.
1404 	 * However, EP0 toggles are re-synced for every individual transfer
1405 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1406 	 * (Likewise, EP0 never "halts" on well designed devices.)
1407 	 */
1408 	usb_enable_interface(dev, iface, true);
1409 	if (device_is_registered(&iface->dev)) {
1410 		usb_create_sysfs_intf_files(iface);
1411 		create_intf_ep_devs(iface);
1412 	}
1413 	return 0;
1414 }
1415 EXPORT_SYMBOL_GPL(usb_set_interface);
1416 
1417 /**
1418  * usb_reset_configuration - lightweight device reset
1419  * @dev: the device whose configuration is being reset
1420  *
1421  * This issues a standard SET_CONFIGURATION request to the device using
1422  * the current configuration.  The effect is to reset most USB-related
1423  * state in the device, including interface altsettings (reset to zero),
1424  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1425  * endpoints).  Other usbcore state is unchanged, including bindings of
1426  * usb device drivers to interfaces.
1427  *
1428  * Because this affects multiple interfaces, avoid using this with composite
1429  * (multi-interface) devices.  Instead, the driver for each interface may
1430  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1431  * some devices don't support the SET_INTERFACE request, and others won't
1432  * reset all the interface state (notably endpoint state).  Resetting the whole
1433  * configuration would affect other drivers' interfaces.
1434  *
1435  * The caller must own the device lock.
1436  *
1437  * Return: Zero on success, else a negative error code.
1438  */
1439 int usb_reset_configuration(struct usb_device *dev)
1440 {
1441 	int			i, retval;
1442 	struct usb_host_config	*config;
1443 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1444 
1445 	if (dev->state == USB_STATE_SUSPENDED)
1446 		return -EHOSTUNREACH;
1447 
1448 	/* caller must have locked the device and must own
1449 	 * the usb bus readlock (so driver bindings are stable);
1450 	 * calls during probe() are fine
1451 	 */
1452 
1453 	for (i = 1; i < 16; ++i) {
1454 		usb_disable_endpoint(dev, i, true);
1455 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1456 	}
1457 
1458 	config = dev->actconfig;
1459 	retval = 0;
1460 	mutex_lock(hcd->bandwidth_mutex);
1461 	/* Disable LPM, and re-enable it once the configuration is reset, so
1462 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1463 	 */
1464 	if (usb_disable_lpm(dev)) {
1465 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1466 		mutex_unlock(hcd->bandwidth_mutex);
1467 		return -ENOMEM;
1468 	}
1469 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1470 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1471 		struct usb_interface *intf = config->interface[i];
1472 		struct usb_host_interface *alt;
1473 
1474 		alt = usb_altnum_to_altsetting(intf, 0);
1475 		if (!alt)
1476 			alt = &intf->altsetting[0];
1477 		if (alt != intf->cur_altsetting)
1478 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1479 					intf->cur_altsetting, alt);
1480 		if (retval < 0)
1481 			break;
1482 	}
1483 	/* If not, reinstate the old alternate settings */
1484 	if (retval < 0) {
1485 reset_old_alts:
1486 		for (i--; i >= 0; i--) {
1487 			struct usb_interface *intf = config->interface[i];
1488 			struct usb_host_interface *alt;
1489 
1490 			alt = usb_altnum_to_altsetting(intf, 0);
1491 			if (!alt)
1492 				alt = &intf->altsetting[0];
1493 			if (alt != intf->cur_altsetting)
1494 				usb_hcd_alloc_bandwidth(dev, NULL,
1495 						alt, intf->cur_altsetting);
1496 		}
1497 		usb_enable_lpm(dev);
1498 		mutex_unlock(hcd->bandwidth_mutex);
1499 		return retval;
1500 	}
1501 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1502 			USB_REQ_SET_CONFIGURATION, 0,
1503 			config->desc.bConfigurationValue, 0,
1504 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1505 	if (retval < 0)
1506 		goto reset_old_alts;
1507 	mutex_unlock(hcd->bandwidth_mutex);
1508 
1509 	/* re-init hc/hcd interface/endpoint state */
1510 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1511 		struct usb_interface *intf = config->interface[i];
1512 		struct usb_host_interface *alt;
1513 
1514 		alt = usb_altnum_to_altsetting(intf, 0);
1515 
1516 		/* No altsetting 0?  We'll assume the first altsetting.
1517 		 * We could use a GetInterface call, but if a device is
1518 		 * so non-compliant that it doesn't have altsetting 0
1519 		 * then I wouldn't trust its reply anyway.
1520 		 */
1521 		if (!alt)
1522 			alt = &intf->altsetting[0];
1523 
1524 		if (alt != intf->cur_altsetting) {
1525 			remove_intf_ep_devs(intf);
1526 			usb_remove_sysfs_intf_files(intf);
1527 		}
1528 		intf->cur_altsetting = alt;
1529 		usb_enable_interface(dev, intf, true);
1530 		if (device_is_registered(&intf->dev)) {
1531 			usb_create_sysfs_intf_files(intf);
1532 			create_intf_ep_devs(intf);
1533 		}
1534 	}
1535 	/* Now that the interfaces are installed, re-enable LPM. */
1536 	usb_unlocked_enable_lpm(dev);
1537 	return 0;
1538 }
1539 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1540 
1541 static void usb_release_interface(struct device *dev)
1542 {
1543 	struct usb_interface *intf = to_usb_interface(dev);
1544 	struct usb_interface_cache *intfc =
1545 			altsetting_to_usb_interface_cache(intf->altsetting);
1546 
1547 	kref_put(&intfc->ref, usb_release_interface_cache);
1548 	usb_put_dev(interface_to_usbdev(intf));
1549 	kfree(intf);
1550 }
1551 
1552 /*
1553  * usb_deauthorize_interface - deauthorize an USB interface
1554  *
1555  * @intf: USB interface structure
1556  */
1557 void usb_deauthorize_interface(struct usb_interface *intf)
1558 {
1559 	struct device *dev = &intf->dev;
1560 
1561 	device_lock(dev->parent);
1562 
1563 	if (intf->authorized) {
1564 		device_lock(dev);
1565 		intf->authorized = 0;
1566 		device_unlock(dev);
1567 
1568 		usb_forced_unbind_intf(intf);
1569 	}
1570 
1571 	device_unlock(dev->parent);
1572 }
1573 
1574 /*
1575  * usb_authorize_interface - authorize an USB interface
1576  *
1577  * @intf: USB interface structure
1578  */
1579 void usb_authorize_interface(struct usb_interface *intf)
1580 {
1581 	struct device *dev = &intf->dev;
1582 
1583 	if (!intf->authorized) {
1584 		device_lock(dev);
1585 		intf->authorized = 1; /* authorize interface */
1586 		device_unlock(dev);
1587 	}
1588 }
1589 
1590 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1591 {
1592 	struct usb_device *usb_dev;
1593 	struct usb_interface *intf;
1594 	struct usb_host_interface *alt;
1595 
1596 	intf = to_usb_interface(dev);
1597 	usb_dev = interface_to_usbdev(intf);
1598 	alt = intf->cur_altsetting;
1599 
1600 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1601 		   alt->desc.bInterfaceClass,
1602 		   alt->desc.bInterfaceSubClass,
1603 		   alt->desc.bInterfaceProtocol))
1604 		return -ENOMEM;
1605 
1606 	if (add_uevent_var(env,
1607 		   "MODALIAS=usb:"
1608 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1609 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1610 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1611 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1612 		   usb_dev->descriptor.bDeviceClass,
1613 		   usb_dev->descriptor.bDeviceSubClass,
1614 		   usb_dev->descriptor.bDeviceProtocol,
1615 		   alt->desc.bInterfaceClass,
1616 		   alt->desc.bInterfaceSubClass,
1617 		   alt->desc.bInterfaceProtocol,
1618 		   alt->desc.bInterfaceNumber))
1619 		return -ENOMEM;
1620 
1621 	return 0;
1622 }
1623 
1624 struct device_type usb_if_device_type = {
1625 	.name =		"usb_interface",
1626 	.release =	usb_release_interface,
1627 	.uevent =	usb_if_uevent,
1628 };
1629 
1630 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1631 						struct usb_host_config *config,
1632 						u8 inum)
1633 {
1634 	struct usb_interface_assoc_descriptor *retval = NULL;
1635 	struct usb_interface_assoc_descriptor *intf_assoc;
1636 	int first_intf;
1637 	int last_intf;
1638 	int i;
1639 
1640 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1641 		intf_assoc = config->intf_assoc[i];
1642 		if (intf_assoc->bInterfaceCount == 0)
1643 			continue;
1644 
1645 		first_intf = intf_assoc->bFirstInterface;
1646 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1647 		if (inum >= first_intf && inum <= last_intf) {
1648 			if (!retval)
1649 				retval = intf_assoc;
1650 			else
1651 				dev_err(&dev->dev, "Interface #%d referenced"
1652 					" by multiple IADs\n", inum);
1653 		}
1654 	}
1655 
1656 	return retval;
1657 }
1658 
1659 
1660 /*
1661  * Internal function to queue a device reset
1662  * See usb_queue_reset_device() for more details
1663  */
1664 static void __usb_queue_reset_device(struct work_struct *ws)
1665 {
1666 	int rc;
1667 	struct usb_interface *iface =
1668 		container_of(ws, struct usb_interface, reset_ws);
1669 	struct usb_device *udev = interface_to_usbdev(iface);
1670 
1671 	rc = usb_lock_device_for_reset(udev, iface);
1672 	if (rc >= 0) {
1673 		usb_reset_device(udev);
1674 		usb_unlock_device(udev);
1675 	}
1676 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1677 }
1678 
1679 
1680 /*
1681  * usb_set_configuration - Makes a particular device setting be current
1682  * @dev: the device whose configuration is being updated
1683  * @configuration: the configuration being chosen.
1684  * Context: !in_interrupt(), caller owns the device lock
1685  *
1686  * This is used to enable non-default device modes.  Not all devices
1687  * use this kind of configurability; many devices only have one
1688  * configuration.
1689  *
1690  * @configuration is the value of the configuration to be installed.
1691  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1692  * must be non-zero; a value of zero indicates that the device in
1693  * unconfigured.  However some devices erroneously use 0 as one of their
1694  * configuration values.  To help manage such devices, this routine will
1695  * accept @configuration = -1 as indicating the device should be put in
1696  * an unconfigured state.
1697  *
1698  * USB device configurations may affect Linux interoperability,
1699  * power consumption and the functionality available.  For example,
1700  * the default configuration is limited to using 100mA of bus power,
1701  * so that when certain device functionality requires more power,
1702  * and the device is bus powered, that functionality should be in some
1703  * non-default device configuration.  Other device modes may also be
1704  * reflected as configuration options, such as whether two ISDN
1705  * channels are available independently; and choosing between open
1706  * standard device protocols (like CDC) or proprietary ones.
1707  *
1708  * Note that a non-authorized device (dev->authorized == 0) will only
1709  * be put in unconfigured mode.
1710  *
1711  * Note that USB has an additional level of device configurability,
1712  * associated with interfaces.  That configurability is accessed using
1713  * usb_set_interface().
1714  *
1715  * This call is synchronous. The calling context must be able to sleep,
1716  * must own the device lock, and must not hold the driver model's USB
1717  * bus mutex; usb interface driver probe() methods cannot use this routine.
1718  *
1719  * Returns zero on success, or else the status code returned by the
1720  * underlying call that failed.  On successful completion, each interface
1721  * in the original device configuration has been destroyed, and each one
1722  * in the new configuration has been probed by all relevant usb device
1723  * drivers currently known to the kernel.
1724  */
1725 int usb_set_configuration(struct usb_device *dev, int configuration)
1726 {
1727 	int i, ret;
1728 	struct usb_host_config *cp = NULL;
1729 	struct usb_interface **new_interfaces = NULL;
1730 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1731 	int n, nintf;
1732 
1733 	if (dev->authorized == 0 || configuration == -1)
1734 		configuration = 0;
1735 	else {
1736 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1737 			if (dev->config[i].desc.bConfigurationValue ==
1738 					configuration) {
1739 				cp = &dev->config[i];
1740 				break;
1741 			}
1742 		}
1743 	}
1744 	if ((!cp && configuration != 0))
1745 		return -EINVAL;
1746 
1747 	/* The USB spec says configuration 0 means unconfigured.
1748 	 * But if a device includes a configuration numbered 0,
1749 	 * we will accept it as a correctly configured state.
1750 	 * Use -1 if you really want to unconfigure the device.
1751 	 */
1752 	if (cp && configuration == 0)
1753 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1754 
1755 	/* Allocate memory for new interfaces before doing anything else,
1756 	 * so that if we run out then nothing will have changed. */
1757 	n = nintf = 0;
1758 	if (cp) {
1759 		nintf = cp->desc.bNumInterfaces;
1760 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1761 				GFP_NOIO);
1762 		if (!new_interfaces) {
1763 			dev_err(&dev->dev, "Out of memory\n");
1764 			return -ENOMEM;
1765 		}
1766 
1767 		for (; n < nintf; ++n) {
1768 			new_interfaces[n] = kzalloc(
1769 					sizeof(struct usb_interface),
1770 					GFP_NOIO);
1771 			if (!new_interfaces[n]) {
1772 				dev_err(&dev->dev, "Out of memory\n");
1773 				ret = -ENOMEM;
1774 free_interfaces:
1775 				while (--n >= 0)
1776 					kfree(new_interfaces[n]);
1777 				kfree(new_interfaces);
1778 				return ret;
1779 			}
1780 		}
1781 
1782 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1783 		if (i < 0)
1784 			dev_warn(&dev->dev, "new config #%d exceeds power "
1785 					"limit by %dmA\n",
1786 					configuration, -i);
1787 	}
1788 
1789 	/* Wake up the device so we can send it the Set-Config request */
1790 	ret = usb_autoresume_device(dev);
1791 	if (ret)
1792 		goto free_interfaces;
1793 
1794 	/* if it's already configured, clear out old state first.
1795 	 * getting rid of old interfaces means unbinding their drivers.
1796 	 */
1797 	if (dev->state != USB_STATE_ADDRESS)
1798 		usb_disable_device(dev, 1);	/* Skip ep0 */
1799 
1800 	/* Get rid of pending async Set-Config requests for this device */
1801 	cancel_async_set_config(dev);
1802 
1803 	/* Make sure we have bandwidth (and available HCD resources) for this
1804 	 * configuration.  Remove endpoints from the schedule if we're dropping
1805 	 * this configuration to set configuration 0.  After this point, the
1806 	 * host controller will not allow submissions to dropped endpoints.  If
1807 	 * this call fails, the device state is unchanged.
1808 	 */
1809 	mutex_lock(hcd->bandwidth_mutex);
1810 	/* Disable LPM, and re-enable it once the new configuration is
1811 	 * installed, so that the xHCI driver can recalculate the U1/U2
1812 	 * timeouts.
1813 	 */
1814 	if (dev->actconfig && usb_disable_lpm(dev)) {
1815 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1816 		mutex_unlock(hcd->bandwidth_mutex);
1817 		ret = -ENOMEM;
1818 		goto free_interfaces;
1819 	}
1820 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1821 	if (ret < 0) {
1822 		if (dev->actconfig)
1823 			usb_enable_lpm(dev);
1824 		mutex_unlock(hcd->bandwidth_mutex);
1825 		usb_autosuspend_device(dev);
1826 		goto free_interfaces;
1827 	}
1828 
1829 	/*
1830 	 * Initialize the new interface structures and the
1831 	 * hc/hcd/usbcore interface/endpoint state.
1832 	 */
1833 	for (i = 0; i < nintf; ++i) {
1834 		struct usb_interface_cache *intfc;
1835 		struct usb_interface *intf;
1836 		struct usb_host_interface *alt;
1837 
1838 		cp->interface[i] = intf = new_interfaces[i];
1839 		intfc = cp->intf_cache[i];
1840 		intf->altsetting = intfc->altsetting;
1841 		intf->num_altsetting = intfc->num_altsetting;
1842 		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1843 		kref_get(&intfc->ref);
1844 
1845 		alt = usb_altnum_to_altsetting(intf, 0);
1846 
1847 		/* No altsetting 0?  We'll assume the first altsetting.
1848 		 * We could use a GetInterface call, but if a device is
1849 		 * so non-compliant that it doesn't have altsetting 0
1850 		 * then I wouldn't trust its reply anyway.
1851 		 */
1852 		if (!alt)
1853 			alt = &intf->altsetting[0];
1854 
1855 		intf->intf_assoc =
1856 			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1857 		intf->cur_altsetting = alt;
1858 		usb_enable_interface(dev, intf, true);
1859 		intf->dev.parent = &dev->dev;
1860 		intf->dev.driver = NULL;
1861 		intf->dev.bus = &usb_bus_type;
1862 		intf->dev.type = &usb_if_device_type;
1863 		intf->dev.groups = usb_interface_groups;
1864 		intf->dev.dma_mask = dev->dev.dma_mask;
1865 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1866 		intf->minor = -1;
1867 		device_initialize(&intf->dev);
1868 		pm_runtime_no_callbacks(&intf->dev);
1869 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1870 			dev->bus->busnum, dev->devpath,
1871 			configuration, alt->desc.bInterfaceNumber);
1872 		usb_get_dev(dev);
1873 	}
1874 	kfree(new_interfaces);
1875 
1876 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1877 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1878 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1879 	if (ret < 0 && cp) {
1880 		/*
1881 		 * All the old state is gone, so what else can we do?
1882 		 * The device is probably useless now anyway.
1883 		 */
1884 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1885 		for (i = 0; i < nintf; ++i) {
1886 			usb_disable_interface(dev, cp->interface[i], true);
1887 			put_device(&cp->interface[i]->dev);
1888 			cp->interface[i] = NULL;
1889 		}
1890 		cp = NULL;
1891 	}
1892 
1893 	dev->actconfig = cp;
1894 	mutex_unlock(hcd->bandwidth_mutex);
1895 
1896 	if (!cp) {
1897 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1898 
1899 		/* Leave LPM disabled while the device is unconfigured. */
1900 		usb_autosuspend_device(dev);
1901 		return ret;
1902 	}
1903 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1904 
1905 	if (cp->string == NULL &&
1906 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1907 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1908 
1909 	/* Now that the interfaces are installed, re-enable LPM. */
1910 	usb_unlocked_enable_lpm(dev);
1911 	/* Enable LTM if it was turned off by usb_disable_device. */
1912 	usb_enable_ltm(dev);
1913 
1914 	/* Now that all the interfaces are set up, register them
1915 	 * to trigger binding of drivers to interfaces.  probe()
1916 	 * routines may install different altsettings and may
1917 	 * claim() any interfaces not yet bound.  Many class drivers
1918 	 * need that: CDC, audio, video, etc.
1919 	 */
1920 	for (i = 0; i < nintf; ++i) {
1921 		struct usb_interface *intf = cp->interface[i];
1922 
1923 		dev_dbg(&dev->dev,
1924 			"adding %s (config #%d, interface %d)\n",
1925 			dev_name(&intf->dev), configuration,
1926 			intf->cur_altsetting->desc.bInterfaceNumber);
1927 		device_enable_async_suspend(&intf->dev);
1928 		ret = device_add(&intf->dev);
1929 		if (ret != 0) {
1930 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1931 				dev_name(&intf->dev), ret);
1932 			continue;
1933 		}
1934 		create_intf_ep_devs(intf);
1935 	}
1936 
1937 	usb_autosuspend_device(dev);
1938 	return 0;
1939 }
1940 EXPORT_SYMBOL_GPL(usb_set_configuration);
1941 
1942 static LIST_HEAD(set_config_list);
1943 static DEFINE_SPINLOCK(set_config_lock);
1944 
1945 struct set_config_request {
1946 	struct usb_device	*udev;
1947 	int			config;
1948 	struct work_struct	work;
1949 	struct list_head	node;
1950 };
1951 
1952 /* Worker routine for usb_driver_set_configuration() */
1953 static void driver_set_config_work(struct work_struct *work)
1954 {
1955 	struct set_config_request *req =
1956 		container_of(work, struct set_config_request, work);
1957 	struct usb_device *udev = req->udev;
1958 
1959 	usb_lock_device(udev);
1960 	spin_lock(&set_config_lock);
1961 	list_del(&req->node);
1962 	spin_unlock(&set_config_lock);
1963 
1964 	if (req->config >= -1)		/* Is req still valid? */
1965 		usb_set_configuration(udev, req->config);
1966 	usb_unlock_device(udev);
1967 	usb_put_dev(udev);
1968 	kfree(req);
1969 }
1970 
1971 /* Cancel pending Set-Config requests for a device whose configuration
1972  * was just changed
1973  */
1974 static void cancel_async_set_config(struct usb_device *udev)
1975 {
1976 	struct set_config_request *req;
1977 
1978 	spin_lock(&set_config_lock);
1979 	list_for_each_entry(req, &set_config_list, node) {
1980 		if (req->udev == udev)
1981 			req->config = -999;	/* Mark as cancelled */
1982 	}
1983 	spin_unlock(&set_config_lock);
1984 }
1985 
1986 /**
1987  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1988  * @udev: the device whose configuration is being updated
1989  * @config: the configuration being chosen.
1990  * Context: In process context, must be able to sleep
1991  *
1992  * Device interface drivers are not allowed to change device configurations.
1993  * This is because changing configurations will destroy the interface the
1994  * driver is bound to and create new ones; it would be like a floppy-disk
1995  * driver telling the computer to replace the floppy-disk drive with a
1996  * tape drive!
1997  *
1998  * Still, in certain specialized circumstances the need may arise.  This
1999  * routine gets around the normal restrictions by using a work thread to
2000  * submit the change-config request.
2001  *
2002  * Return: 0 if the request was successfully queued, error code otherwise.
2003  * The caller has no way to know whether the queued request will eventually
2004  * succeed.
2005  */
2006 int usb_driver_set_configuration(struct usb_device *udev, int config)
2007 {
2008 	struct set_config_request *req;
2009 
2010 	req = kmalloc(sizeof(*req), GFP_KERNEL);
2011 	if (!req)
2012 		return -ENOMEM;
2013 	req->udev = udev;
2014 	req->config = config;
2015 	INIT_WORK(&req->work, driver_set_config_work);
2016 
2017 	spin_lock(&set_config_lock);
2018 	list_add(&req->node, &set_config_list);
2019 	spin_unlock(&set_config_lock);
2020 
2021 	usb_get_dev(udev);
2022 	schedule_work(&req->work);
2023 	return 0;
2024 }
2025 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2026