1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/mm.h> 10 #include <linux/timer.h> 11 #include <linux/ctype.h> 12 #include <linux/nls.h> 13 #include <linux/device.h> 14 #include <linux/scatterlist.h> 15 #include <linux/usb/quirks.h> 16 #include <linux/usb/hcd.h> /* for usbcore internals */ 17 #include <asm/byteorder.h> 18 19 #include "usb.h" 20 21 static void cancel_async_set_config(struct usb_device *udev); 22 23 struct api_context { 24 struct completion done; 25 int status; 26 }; 27 28 static void usb_api_blocking_completion(struct urb *urb) 29 { 30 struct api_context *ctx = urb->context; 31 32 ctx->status = urb->status; 33 complete(&ctx->done); 34 } 35 36 37 /* 38 * Starts urb and waits for completion or timeout. Note that this call 39 * is NOT interruptible. Many device driver i/o requests should be 40 * interruptible and therefore these drivers should implement their 41 * own interruptible routines. 42 */ 43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 44 { 45 struct api_context ctx; 46 unsigned long expire; 47 int retval; 48 49 init_completion(&ctx.done); 50 urb->context = &ctx; 51 urb->actual_length = 0; 52 retval = usb_submit_urb(urb, GFP_NOIO); 53 if (unlikely(retval)) 54 goto out; 55 56 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 57 if (!wait_for_completion_timeout(&ctx.done, expire)) { 58 usb_kill_urb(urb); 59 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 60 61 dev_dbg(&urb->dev->dev, 62 "%s timed out on ep%d%s len=%u/%u\n", 63 current->comm, 64 usb_endpoint_num(&urb->ep->desc), 65 usb_urb_dir_in(urb) ? "in" : "out", 66 urb->actual_length, 67 urb->transfer_buffer_length); 68 } else 69 retval = ctx.status; 70 out: 71 if (actual_length) 72 *actual_length = urb->actual_length; 73 74 usb_free_urb(urb); 75 return retval; 76 } 77 78 /*-------------------------------------------------------------------*/ 79 /* returns status (negative) or length (positive) */ 80 static int usb_internal_control_msg(struct usb_device *usb_dev, 81 unsigned int pipe, 82 struct usb_ctrlrequest *cmd, 83 void *data, int len, int timeout) 84 { 85 struct urb *urb; 86 int retv; 87 int length; 88 89 urb = usb_alloc_urb(0, GFP_NOIO); 90 if (!urb) 91 return -ENOMEM; 92 93 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 94 len, usb_api_blocking_completion, NULL); 95 96 retv = usb_start_wait_urb(urb, timeout, &length); 97 if (retv < 0) 98 return retv; 99 else 100 return length; 101 } 102 103 /** 104 * usb_control_msg - Builds a control urb, sends it off and waits for completion 105 * @dev: pointer to the usb device to send the message to 106 * @pipe: endpoint "pipe" to send the message to 107 * @request: USB message request value 108 * @requesttype: USB message request type value 109 * @value: USB message value 110 * @index: USB message index value 111 * @data: pointer to the data to send 112 * @size: length in bytes of the data to send 113 * @timeout: time in msecs to wait for the message to complete before timing 114 * out (if 0 the wait is forever) 115 * 116 * Context: !in_interrupt () 117 * 118 * This function sends a simple control message to a specified endpoint and 119 * waits for the message to complete, or timeout. 120 * 121 * Don't use this function from within an interrupt context, like a bottom half 122 * handler. If you need an asynchronous message, or need to send a message 123 * from within interrupt context, use usb_submit_urb(). 124 * If a thread in your driver uses this call, make sure your disconnect() 125 * method can wait for it to complete. Since you don't have a handle on the 126 * URB used, you can't cancel the request. 127 * 128 * Return: If successful, the number of bytes transferred. Otherwise, a negative 129 * error number. 130 */ 131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, 132 __u8 requesttype, __u16 value, __u16 index, void *data, 133 __u16 size, int timeout) 134 { 135 struct usb_ctrlrequest *dr; 136 int ret; 137 138 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 139 if (!dr) 140 return -ENOMEM; 141 142 dr->bRequestType = requesttype; 143 dr->bRequest = request; 144 dr->wValue = cpu_to_le16(value); 145 dr->wIndex = cpu_to_le16(index); 146 dr->wLength = cpu_to_le16(size); 147 148 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 149 150 kfree(dr); 151 152 return ret; 153 } 154 EXPORT_SYMBOL_GPL(usb_control_msg); 155 156 /** 157 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 158 * @usb_dev: pointer to the usb device to send the message to 159 * @pipe: endpoint "pipe" to send the message to 160 * @data: pointer to the data to send 161 * @len: length in bytes of the data to send 162 * @actual_length: pointer to a location to put the actual length transferred 163 * in bytes 164 * @timeout: time in msecs to wait for the message to complete before 165 * timing out (if 0 the wait is forever) 166 * 167 * Context: !in_interrupt () 168 * 169 * This function sends a simple interrupt message to a specified endpoint and 170 * waits for the message to complete, or timeout. 171 * 172 * Don't use this function from within an interrupt context, like a bottom half 173 * handler. If you need an asynchronous message, or need to send a message 174 * from within interrupt context, use usb_submit_urb() If a thread in your 175 * driver uses this call, make sure your disconnect() method can wait for it to 176 * complete. Since you don't have a handle on the URB used, you can't cancel 177 * the request. 178 * 179 * Return: 180 * If successful, 0. Otherwise a negative error number. The number of actual 181 * bytes transferred will be stored in the @actual_length parameter. 182 */ 183 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 184 void *data, int len, int *actual_length, int timeout) 185 { 186 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 187 } 188 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 189 190 /** 191 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 192 * @usb_dev: pointer to the usb device to send the message to 193 * @pipe: endpoint "pipe" to send the message to 194 * @data: pointer to the data to send 195 * @len: length in bytes of the data to send 196 * @actual_length: pointer to a location to put the actual length transferred 197 * in bytes 198 * @timeout: time in msecs to wait for the message to complete before 199 * timing out (if 0 the wait is forever) 200 * 201 * Context: !in_interrupt () 202 * 203 * This function sends a simple bulk message to a specified endpoint 204 * and waits for the message to complete, or timeout. 205 * 206 * Don't use this function from within an interrupt context, like a bottom half 207 * handler. If you need an asynchronous message, or need to send a message 208 * from within interrupt context, use usb_submit_urb() If a thread in your 209 * driver uses this call, make sure your disconnect() method can wait for it to 210 * complete. Since you don't have a handle on the URB used, you can't cancel 211 * the request. 212 * 213 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl, 214 * users are forced to abuse this routine by using it to submit URBs for 215 * interrupt endpoints. We will take the liberty of creating an interrupt URB 216 * (with the default interval) if the target is an interrupt endpoint. 217 * 218 * Return: 219 * If successful, 0. Otherwise a negative error number. The number of actual 220 * bytes transferred will be stored in the @actual_length parameter. 221 * 222 */ 223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 224 void *data, int len, int *actual_length, int timeout) 225 { 226 struct urb *urb; 227 struct usb_host_endpoint *ep; 228 229 ep = usb_pipe_endpoint(usb_dev, pipe); 230 if (!ep || len < 0) 231 return -EINVAL; 232 233 urb = usb_alloc_urb(0, GFP_KERNEL); 234 if (!urb) 235 return -ENOMEM; 236 237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 238 USB_ENDPOINT_XFER_INT) { 239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 240 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 241 usb_api_blocking_completion, NULL, 242 ep->desc.bInterval); 243 } else 244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 245 usb_api_blocking_completion, NULL); 246 247 return usb_start_wait_urb(urb, timeout, actual_length); 248 } 249 EXPORT_SYMBOL_GPL(usb_bulk_msg); 250 251 /*-------------------------------------------------------------------*/ 252 253 static void sg_clean(struct usb_sg_request *io) 254 { 255 if (io->urbs) { 256 while (io->entries--) 257 usb_free_urb(io->urbs[io->entries]); 258 kfree(io->urbs); 259 io->urbs = NULL; 260 } 261 io->dev = NULL; 262 } 263 264 static void sg_complete(struct urb *urb) 265 { 266 struct usb_sg_request *io = urb->context; 267 int status = urb->status; 268 269 spin_lock(&io->lock); 270 271 /* In 2.5 we require hcds' endpoint queues not to progress after fault 272 * reports, until the completion callback (this!) returns. That lets 273 * device driver code (like this routine) unlink queued urbs first, 274 * if it needs to, since the HC won't work on them at all. So it's 275 * not possible for page N+1 to overwrite page N, and so on. 276 * 277 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 278 * complete before the HCD can get requests away from hardware, 279 * though never during cleanup after a hard fault. 280 */ 281 if (io->status 282 && (io->status != -ECONNRESET 283 || status != -ECONNRESET) 284 && urb->actual_length) { 285 dev_err(io->dev->bus->controller, 286 "dev %s ep%d%s scatterlist error %d/%d\n", 287 io->dev->devpath, 288 usb_endpoint_num(&urb->ep->desc), 289 usb_urb_dir_in(urb) ? "in" : "out", 290 status, io->status); 291 /* BUG (); */ 292 } 293 294 if (io->status == 0 && status && status != -ECONNRESET) { 295 int i, found, retval; 296 297 io->status = status; 298 299 /* the previous urbs, and this one, completed already. 300 * unlink pending urbs so they won't rx/tx bad data. 301 * careful: unlink can sometimes be synchronous... 302 */ 303 spin_unlock(&io->lock); 304 for (i = 0, found = 0; i < io->entries; i++) { 305 if (!io->urbs[i]) 306 continue; 307 if (found) { 308 usb_block_urb(io->urbs[i]); 309 retval = usb_unlink_urb(io->urbs[i]); 310 if (retval != -EINPROGRESS && 311 retval != -ENODEV && 312 retval != -EBUSY && 313 retval != -EIDRM) 314 dev_err(&io->dev->dev, 315 "%s, unlink --> %d\n", 316 __func__, retval); 317 } else if (urb == io->urbs[i]) 318 found = 1; 319 } 320 spin_lock(&io->lock); 321 } 322 323 /* on the last completion, signal usb_sg_wait() */ 324 io->bytes += urb->actual_length; 325 io->count--; 326 if (!io->count) 327 complete(&io->complete); 328 329 spin_unlock(&io->lock); 330 } 331 332 333 /** 334 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 335 * @io: request block being initialized. until usb_sg_wait() returns, 336 * treat this as a pointer to an opaque block of memory, 337 * @dev: the usb device that will send or receive the data 338 * @pipe: endpoint "pipe" used to transfer the data 339 * @period: polling rate for interrupt endpoints, in frames or 340 * (for high speed endpoints) microframes; ignored for bulk 341 * @sg: scatterlist entries 342 * @nents: how many entries in the scatterlist 343 * @length: how many bytes to send from the scatterlist, or zero to 344 * send every byte identified in the list. 345 * @mem_flags: SLAB_* flags affecting memory allocations in this call 346 * 347 * This initializes a scatter/gather request, allocating resources such as 348 * I/O mappings and urb memory (except maybe memory used by USB controller 349 * drivers). 350 * 351 * The request must be issued using usb_sg_wait(), which waits for the I/O to 352 * complete (or to be canceled) and then cleans up all resources allocated by 353 * usb_sg_init(). 354 * 355 * The request may be canceled with usb_sg_cancel(), either before or after 356 * usb_sg_wait() is called. 357 * 358 * Return: Zero for success, else a negative errno value. 359 */ 360 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev, 361 unsigned pipe, unsigned period, struct scatterlist *sg, 362 int nents, size_t length, gfp_t mem_flags) 363 { 364 int i; 365 int urb_flags; 366 int use_sg; 367 368 if (!io || !dev || !sg 369 || usb_pipecontrol(pipe) 370 || usb_pipeisoc(pipe) 371 || nents <= 0) 372 return -EINVAL; 373 374 spin_lock_init(&io->lock); 375 io->dev = dev; 376 io->pipe = pipe; 377 378 if (dev->bus->sg_tablesize > 0) { 379 use_sg = true; 380 io->entries = 1; 381 } else { 382 use_sg = false; 383 io->entries = nents; 384 } 385 386 /* initialize all the urbs we'll use */ 387 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags); 388 if (!io->urbs) 389 goto nomem; 390 391 urb_flags = URB_NO_INTERRUPT; 392 if (usb_pipein(pipe)) 393 urb_flags |= URB_SHORT_NOT_OK; 394 395 for_each_sg(sg, sg, io->entries, i) { 396 struct urb *urb; 397 unsigned len; 398 399 urb = usb_alloc_urb(0, mem_flags); 400 if (!urb) { 401 io->entries = i; 402 goto nomem; 403 } 404 io->urbs[i] = urb; 405 406 urb->dev = NULL; 407 urb->pipe = pipe; 408 urb->interval = period; 409 urb->transfer_flags = urb_flags; 410 urb->complete = sg_complete; 411 urb->context = io; 412 urb->sg = sg; 413 414 if (use_sg) { 415 /* There is no single transfer buffer */ 416 urb->transfer_buffer = NULL; 417 urb->num_sgs = nents; 418 419 /* A length of zero means transfer the whole sg list */ 420 len = length; 421 if (len == 0) { 422 struct scatterlist *sg2; 423 int j; 424 425 for_each_sg(sg, sg2, nents, j) 426 len += sg2->length; 427 } 428 } else { 429 /* 430 * Some systems can't use DMA; they use PIO instead. 431 * For their sakes, transfer_buffer is set whenever 432 * possible. 433 */ 434 if (!PageHighMem(sg_page(sg))) 435 urb->transfer_buffer = sg_virt(sg); 436 else 437 urb->transfer_buffer = NULL; 438 439 len = sg->length; 440 if (length) { 441 len = min_t(size_t, len, length); 442 length -= len; 443 if (length == 0) 444 io->entries = i + 1; 445 } 446 } 447 urb->transfer_buffer_length = len; 448 } 449 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT; 450 451 /* transaction state */ 452 io->count = io->entries; 453 io->status = 0; 454 io->bytes = 0; 455 init_completion(&io->complete); 456 return 0; 457 458 nomem: 459 sg_clean(io); 460 return -ENOMEM; 461 } 462 EXPORT_SYMBOL_GPL(usb_sg_init); 463 464 /** 465 * usb_sg_wait - synchronously execute scatter/gather request 466 * @io: request block handle, as initialized with usb_sg_init(). 467 * some fields become accessible when this call returns. 468 * Context: !in_interrupt () 469 * 470 * This function blocks until the specified I/O operation completes. It 471 * leverages the grouping of the related I/O requests to get good transfer 472 * rates, by queueing the requests. At higher speeds, such queuing can 473 * significantly improve USB throughput. 474 * 475 * There are three kinds of completion for this function. 476 * (1) success, where io->status is zero. The number of io->bytes 477 * transferred is as requested. 478 * (2) error, where io->status is a negative errno value. The number 479 * of io->bytes transferred before the error is usually less 480 * than requested, and can be nonzero. 481 * (3) cancellation, a type of error with status -ECONNRESET that 482 * is initiated by usb_sg_cancel(). 483 * 484 * When this function returns, all memory allocated through usb_sg_init() or 485 * this call will have been freed. The request block parameter may still be 486 * passed to usb_sg_cancel(), or it may be freed. It could also be 487 * reinitialized and then reused. 488 * 489 * Data Transfer Rates: 490 * 491 * Bulk transfers are valid for full or high speed endpoints. 492 * The best full speed data rate is 19 packets of 64 bytes each 493 * per frame, or 1216 bytes per millisecond. 494 * The best high speed data rate is 13 packets of 512 bytes each 495 * per microframe, or 52 KBytes per millisecond. 496 * 497 * The reason to use interrupt transfers through this API would most likely 498 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 499 * could be transferred. That capability is less useful for low or full 500 * speed interrupt endpoints, which allow at most one packet per millisecond, 501 * of at most 8 or 64 bytes (respectively). 502 * 503 * It is not necessary to call this function to reserve bandwidth for devices 504 * under an xHCI host controller, as the bandwidth is reserved when the 505 * configuration or interface alt setting is selected. 506 */ 507 void usb_sg_wait(struct usb_sg_request *io) 508 { 509 int i; 510 int entries = io->entries; 511 512 /* queue the urbs. */ 513 spin_lock_irq(&io->lock); 514 i = 0; 515 while (i < entries && !io->status) { 516 int retval; 517 518 io->urbs[i]->dev = io->dev; 519 spin_unlock_irq(&io->lock); 520 521 retval = usb_submit_urb(io->urbs[i], GFP_NOIO); 522 523 switch (retval) { 524 /* maybe we retrying will recover */ 525 case -ENXIO: /* hc didn't queue this one */ 526 case -EAGAIN: 527 case -ENOMEM: 528 retval = 0; 529 yield(); 530 break; 531 532 /* no error? continue immediately. 533 * 534 * NOTE: to work better with UHCI (4K I/O buffer may 535 * need 3K of TDs) it may be good to limit how many 536 * URBs are queued at once; N milliseconds? 537 */ 538 case 0: 539 ++i; 540 cpu_relax(); 541 break; 542 543 /* fail any uncompleted urbs */ 544 default: 545 io->urbs[i]->status = retval; 546 dev_dbg(&io->dev->dev, "%s, submit --> %d\n", 547 __func__, retval); 548 usb_sg_cancel(io); 549 } 550 spin_lock_irq(&io->lock); 551 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 552 io->status = retval; 553 } 554 io->count -= entries - i; 555 if (io->count == 0) 556 complete(&io->complete); 557 spin_unlock_irq(&io->lock); 558 559 /* OK, yes, this could be packaged as non-blocking. 560 * So could the submit loop above ... but it's easier to 561 * solve neither problem than to solve both! 562 */ 563 wait_for_completion(&io->complete); 564 565 sg_clean(io); 566 } 567 EXPORT_SYMBOL_GPL(usb_sg_wait); 568 569 /** 570 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 571 * @io: request block, initialized with usb_sg_init() 572 * 573 * This stops a request after it has been started by usb_sg_wait(). 574 * It can also prevents one initialized by usb_sg_init() from starting, 575 * so that call just frees resources allocated to the request. 576 */ 577 void usb_sg_cancel(struct usb_sg_request *io) 578 { 579 unsigned long flags; 580 int i, retval; 581 582 spin_lock_irqsave(&io->lock, flags); 583 if (io->status) { 584 spin_unlock_irqrestore(&io->lock, flags); 585 return; 586 } 587 /* shut everything down */ 588 io->status = -ECONNRESET; 589 spin_unlock_irqrestore(&io->lock, flags); 590 591 for (i = io->entries - 1; i >= 0; --i) { 592 usb_block_urb(io->urbs[i]); 593 594 retval = usb_unlink_urb(io->urbs[i]); 595 if (retval != -EINPROGRESS 596 && retval != -ENODEV 597 && retval != -EBUSY 598 && retval != -EIDRM) 599 dev_warn(&io->dev->dev, "%s, unlink --> %d\n", 600 __func__, retval); 601 } 602 } 603 EXPORT_SYMBOL_GPL(usb_sg_cancel); 604 605 /*-------------------------------------------------------------------*/ 606 607 /** 608 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 609 * @dev: the device whose descriptor is being retrieved 610 * @type: the descriptor type (USB_DT_*) 611 * @index: the number of the descriptor 612 * @buf: where to put the descriptor 613 * @size: how big is "buf"? 614 * Context: !in_interrupt () 615 * 616 * Gets a USB descriptor. Convenience functions exist to simplify 617 * getting some types of descriptors. Use 618 * usb_get_string() or usb_string() for USB_DT_STRING. 619 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 620 * are part of the device structure. 621 * In addition to a number of USB-standard descriptors, some 622 * devices also use class-specific or vendor-specific descriptors. 623 * 624 * This call is synchronous, and may not be used in an interrupt context. 625 * 626 * Return: The number of bytes received on success, or else the status code 627 * returned by the underlying usb_control_msg() call. 628 */ 629 int usb_get_descriptor(struct usb_device *dev, unsigned char type, 630 unsigned char index, void *buf, int size) 631 { 632 int i; 633 int result; 634 635 memset(buf, 0, size); /* Make sure we parse really received data */ 636 637 for (i = 0; i < 3; ++i) { 638 /* retry on length 0 or error; some devices are flakey */ 639 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 640 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 641 (type << 8) + index, 0, buf, size, 642 USB_CTRL_GET_TIMEOUT); 643 if (result <= 0 && result != -ETIMEDOUT) 644 continue; 645 if (result > 1 && ((u8 *)buf)[1] != type) { 646 result = -ENODATA; 647 continue; 648 } 649 break; 650 } 651 return result; 652 } 653 EXPORT_SYMBOL_GPL(usb_get_descriptor); 654 655 /** 656 * usb_get_string - gets a string descriptor 657 * @dev: the device whose string descriptor is being retrieved 658 * @langid: code for language chosen (from string descriptor zero) 659 * @index: the number of the descriptor 660 * @buf: where to put the string 661 * @size: how big is "buf"? 662 * Context: !in_interrupt () 663 * 664 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 665 * in little-endian byte order). 666 * The usb_string() function will often be a convenient way to turn 667 * these strings into kernel-printable form. 668 * 669 * Strings may be referenced in device, configuration, interface, or other 670 * descriptors, and could also be used in vendor-specific ways. 671 * 672 * This call is synchronous, and may not be used in an interrupt context. 673 * 674 * Return: The number of bytes received on success, or else the status code 675 * returned by the underlying usb_control_msg() call. 676 */ 677 static int usb_get_string(struct usb_device *dev, unsigned short langid, 678 unsigned char index, void *buf, int size) 679 { 680 int i; 681 int result; 682 683 for (i = 0; i < 3; ++i) { 684 /* retry on length 0 or stall; some devices are flakey */ 685 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 686 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 687 (USB_DT_STRING << 8) + index, langid, buf, size, 688 USB_CTRL_GET_TIMEOUT); 689 if (result == 0 || result == -EPIPE) 690 continue; 691 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) { 692 result = -ENODATA; 693 continue; 694 } 695 break; 696 } 697 return result; 698 } 699 700 static void usb_try_string_workarounds(unsigned char *buf, int *length) 701 { 702 int newlength, oldlength = *length; 703 704 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 705 if (!isprint(buf[newlength]) || buf[newlength + 1]) 706 break; 707 708 if (newlength > 2) { 709 buf[0] = newlength; 710 *length = newlength; 711 } 712 } 713 714 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 715 unsigned int index, unsigned char *buf) 716 { 717 int rc; 718 719 /* Try to read the string descriptor by asking for the maximum 720 * possible number of bytes */ 721 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 722 rc = -EIO; 723 else 724 rc = usb_get_string(dev, langid, index, buf, 255); 725 726 /* If that failed try to read the descriptor length, then 727 * ask for just that many bytes */ 728 if (rc < 2) { 729 rc = usb_get_string(dev, langid, index, buf, 2); 730 if (rc == 2) 731 rc = usb_get_string(dev, langid, index, buf, buf[0]); 732 } 733 734 if (rc >= 2) { 735 if (!buf[0] && !buf[1]) 736 usb_try_string_workarounds(buf, &rc); 737 738 /* There might be extra junk at the end of the descriptor */ 739 if (buf[0] < rc) 740 rc = buf[0]; 741 742 rc = rc - (rc & 1); /* force a multiple of two */ 743 } 744 745 if (rc < 2) 746 rc = (rc < 0 ? rc : -EINVAL); 747 748 return rc; 749 } 750 751 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf) 752 { 753 int err; 754 755 if (dev->have_langid) 756 return 0; 757 758 if (dev->string_langid < 0) 759 return -EPIPE; 760 761 err = usb_string_sub(dev, 0, 0, tbuf); 762 763 /* If the string was reported but is malformed, default to english 764 * (0x0409) */ 765 if (err == -ENODATA || (err > 0 && err < 4)) { 766 dev->string_langid = 0x0409; 767 dev->have_langid = 1; 768 dev_err(&dev->dev, 769 "language id specifier not provided by device, defaulting to English\n"); 770 return 0; 771 } 772 773 /* In case of all other errors, we assume the device is not able to 774 * deal with strings at all. Set string_langid to -1 in order to 775 * prevent any string to be retrieved from the device */ 776 if (err < 0) { 777 dev_err(&dev->dev, "string descriptor 0 read error: %d\n", 778 err); 779 dev->string_langid = -1; 780 return -EPIPE; 781 } 782 783 /* always use the first langid listed */ 784 dev->string_langid = tbuf[2] | (tbuf[3] << 8); 785 dev->have_langid = 1; 786 dev_dbg(&dev->dev, "default language 0x%04x\n", 787 dev->string_langid); 788 return 0; 789 } 790 791 /** 792 * usb_string - returns UTF-8 version of a string descriptor 793 * @dev: the device whose string descriptor is being retrieved 794 * @index: the number of the descriptor 795 * @buf: where to put the string 796 * @size: how big is "buf"? 797 * Context: !in_interrupt () 798 * 799 * This converts the UTF-16LE encoded strings returned by devices, from 800 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones 801 * that are more usable in most kernel contexts. Note that this function 802 * chooses strings in the first language supported by the device. 803 * 804 * This call is synchronous, and may not be used in an interrupt context. 805 * 806 * Return: length of the string (>= 0) or usb_control_msg status (< 0). 807 */ 808 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 809 { 810 unsigned char *tbuf; 811 int err; 812 813 if (dev->state == USB_STATE_SUSPENDED) 814 return -EHOSTUNREACH; 815 if (size <= 0 || !buf || !index) 816 return -EINVAL; 817 buf[0] = 0; 818 tbuf = kmalloc(256, GFP_NOIO); 819 if (!tbuf) 820 return -ENOMEM; 821 822 err = usb_get_langid(dev, tbuf); 823 if (err < 0) 824 goto errout; 825 826 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 827 if (err < 0) 828 goto errout; 829 830 size--; /* leave room for trailing NULL char in output buffer */ 831 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2, 832 UTF16_LITTLE_ENDIAN, buf, size); 833 buf[err] = 0; 834 835 if (tbuf[1] != USB_DT_STRING) 836 dev_dbg(&dev->dev, 837 "wrong descriptor type %02x for string %d (\"%s\")\n", 838 tbuf[1], index, buf); 839 840 errout: 841 kfree(tbuf); 842 return err; 843 } 844 EXPORT_SYMBOL_GPL(usb_string); 845 846 /* one UTF-8-encoded 16-bit character has at most three bytes */ 847 #define MAX_USB_STRING_SIZE (127 * 3 + 1) 848 849 /** 850 * usb_cache_string - read a string descriptor and cache it for later use 851 * @udev: the device whose string descriptor is being read 852 * @index: the descriptor index 853 * 854 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string, 855 * or %NULL if the index is 0 or the string could not be read. 856 */ 857 char *usb_cache_string(struct usb_device *udev, int index) 858 { 859 char *buf; 860 char *smallbuf = NULL; 861 int len; 862 863 if (index <= 0) 864 return NULL; 865 866 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO); 867 if (buf) { 868 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE); 869 if (len > 0) { 870 smallbuf = kmalloc(++len, GFP_NOIO); 871 if (!smallbuf) 872 return buf; 873 memcpy(smallbuf, buf, len); 874 } 875 kfree(buf); 876 } 877 return smallbuf; 878 } 879 880 /* 881 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 882 * @dev: the device whose device descriptor is being updated 883 * @size: how much of the descriptor to read 884 * Context: !in_interrupt () 885 * 886 * Updates the copy of the device descriptor stored in the device structure, 887 * which dedicates space for this purpose. 888 * 889 * Not exported, only for use by the core. If drivers really want to read 890 * the device descriptor directly, they can call usb_get_descriptor() with 891 * type = USB_DT_DEVICE and index = 0. 892 * 893 * This call is synchronous, and may not be used in an interrupt context. 894 * 895 * Return: The number of bytes received on success, or else the status code 896 * returned by the underlying usb_control_msg() call. 897 */ 898 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 899 { 900 struct usb_device_descriptor *desc; 901 int ret; 902 903 if (size > sizeof(*desc)) 904 return -EINVAL; 905 desc = kmalloc(sizeof(*desc), GFP_NOIO); 906 if (!desc) 907 return -ENOMEM; 908 909 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 910 if (ret >= 0) 911 memcpy(&dev->descriptor, desc, size); 912 kfree(desc); 913 return ret; 914 } 915 916 /** 917 * usb_get_status - issues a GET_STATUS call 918 * @dev: the device whose status is being checked 919 * @type: USB_RECIP_*; for device, interface, or endpoint 920 * @target: zero (for device), else interface or endpoint number 921 * @data: pointer to two bytes of bitmap data 922 * Context: !in_interrupt () 923 * 924 * Returns device, interface, or endpoint status. Normally only of 925 * interest to see if the device is self powered, or has enabled the 926 * remote wakeup facility; or whether a bulk or interrupt endpoint 927 * is halted ("stalled"). 928 * 929 * Bits in these status bitmaps are set using the SET_FEATURE request, 930 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 931 * function should be used to clear halt ("stall") status. 932 * 933 * This call is synchronous, and may not be used in an interrupt context. 934 * 935 * Returns 0 and the status value in *@data (in host byte order) on success, 936 * or else the status code from the underlying usb_control_msg() call. 937 */ 938 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 939 { 940 int ret; 941 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 942 943 if (!status) 944 return -ENOMEM; 945 946 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 947 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 948 sizeof(*status), USB_CTRL_GET_TIMEOUT); 949 950 if (ret == 2) { 951 *(u16 *) data = le16_to_cpu(*status); 952 ret = 0; 953 } else if (ret >= 0) { 954 ret = -EIO; 955 } 956 kfree(status); 957 return ret; 958 } 959 EXPORT_SYMBOL_GPL(usb_get_status); 960 961 /** 962 * usb_clear_halt - tells device to clear endpoint halt/stall condition 963 * @dev: device whose endpoint is halted 964 * @pipe: endpoint "pipe" being cleared 965 * Context: !in_interrupt () 966 * 967 * This is used to clear halt conditions for bulk and interrupt endpoints, 968 * as reported by URB completion status. Endpoints that are halted are 969 * sometimes referred to as being "stalled". Such endpoints are unable 970 * to transmit or receive data until the halt status is cleared. Any URBs 971 * queued for such an endpoint should normally be unlinked by the driver 972 * before clearing the halt condition, as described in sections 5.7.5 973 * and 5.8.5 of the USB 2.0 spec. 974 * 975 * Note that control and isochronous endpoints don't halt, although control 976 * endpoints report "protocol stall" (for unsupported requests) using the 977 * same status code used to report a true stall. 978 * 979 * This call is synchronous, and may not be used in an interrupt context. 980 * 981 * Return: Zero on success, or else the status code returned by the 982 * underlying usb_control_msg() call. 983 */ 984 int usb_clear_halt(struct usb_device *dev, int pipe) 985 { 986 int result; 987 int endp = usb_pipeendpoint(pipe); 988 989 if (usb_pipein(pipe)) 990 endp |= USB_DIR_IN; 991 992 /* we don't care if it wasn't halted first. in fact some devices 993 * (like some ibmcam model 1 units) seem to expect hosts to make 994 * this request for iso endpoints, which can't halt! 995 */ 996 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 997 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 998 USB_ENDPOINT_HALT, endp, NULL, 0, 999 USB_CTRL_SET_TIMEOUT); 1000 1001 /* don't un-halt or force to DATA0 except on success */ 1002 if (result < 0) 1003 return result; 1004 1005 /* NOTE: seems like Microsoft and Apple don't bother verifying 1006 * the clear "took", so some devices could lock up if you check... 1007 * such as the Hagiwara FlashGate DUAL. So we won't bother. 1008 * 1009 * NOTE: make sure the logic here doesn't diverge much from 1010 * the copy in usb-storage, for as long as we need two copies. 1011 */ 1012 1013 usb_reset_endpoint(dev, endp); 1014 1015 return 0; 1016 } 1017 EXPORT_SYMBOL_GPL(usb_clear_halt); 1018 1019 static int create_intf_ep_devs(struct usb_interface *intf) 1020 { 1021 struct usb_device *udev = interface_to_usbdev(intf); 1022 struct usb_host_interface *alt = intf->cur_altsetting; 1023 int i; 1024 1025 if (intf->ep_devs_created || intf->unregistering) 1026 return 0; 1027 1028 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1029 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev); 1030 intf->ep_devs_created = 1; 1031 return 0; 1032 } 1033 1034 static void remove_intf_ep_devs(struct usb_interface *intf) 1035 { 1036 struct usb_host_interface *alt = intf->cur_altsetting; 1037 int i; 1038 1039 if (!intf->ep_devs_created) 1040 return; 1041 1042 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1043 usb_remove_ep_devs(&alt->endpoint[i]); 1044 intf->ep_devs_created = 0; 1045 } 1046 1047 /** 1048 * usb_disable_endpoint -- Disable an endpoint by address 1049 * @dev: the device whose endpoint is being disabled 1050 * @epaddr: the endpoint's address. Endpoint number for output, 1051 * endpoint number + USB_DIR_IN for input 1052 * @reset_hardware: flag to erase any endpoint state stored in the 1053 * controller hardware 1054 * 1055 * Disables the endpoint for URB submission and nukes all pending URBs. 1056 * If @reset_hardware is set then also deallocates hcd/hardware state 1057 * for the endpoint. 1058 */ 1059 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr, 1060 bool reset_hardware) 1061 { 1062 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1063 struct usb_host_endpoint *ep; 1064 1065 if (!dev) 1066 return; 1067 1068 if (usb_endpoint_out(epaddr)) { 1069 ep = dev->ep_out[epnum]; 1070 if (reset_hardware) 1071 dev->ep_out[epnum] = NULL; 1072 } else { 1073 ep = dev->ep_in[epnum]; 1074 if (reset_hardware) 1075 dev->ep_in[epnum] = NULL; 1076 } 1077 if (ep) { 1078 ep->enabled = 0; 1079 usb_hcd_flush_endpoint(dev, ep); 1080 if (reset_hardware) 1081 usb_hcd_disable_endpoint(dev, ep); 1082 } 1083 } 1084 1085 /** 1086 * usb_reset_endpoint - Reset an endpoint's state. 1087 * @dev: the device whose endpoint is to be reset 1088 * @epaddr: the endpoint's address. Endpoint number for output, 1089 * endpoint number + USB_DIR_IN for input 1090 * 1091 * Resets any host-side endpoint state such as the toggle bit, 1092 * sequence number or current window. 1093 */ 1094 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr) 1095 { 1096 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1097 struct usb_host_endpoint *ep; 1098 1099 if (usb_endpoint_out(epaddr)) 1100 ep = dev->ep_out[epnum]; 1101 else 1102 ep = dev->ep_in[epnum]; 1103 if (ep) 1104 usb_hcd_reset_endpoint(dev, ep); 1105 } 1106 EXPORT_SYMBOL_GPL(usb_reset_endpoint); 1107 1108 1109 /** 1110 * usb_disable_interface -- Disable all endpoints for an interface 1111 * @dev: the device whose interface is being disabled 1112 * @intf: pointer to the interface descriptor 1113 * @reset_hardware: flag to erase any endpoint state stored in the 1114 * controller hardware 1115 * 1116 * Disables all the endpoints for the interface's current altsetting. 1117 */ 1118 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf, 1119 bool reset_hardware) 1120 { 1121 struct usb_host_interface *alt = intf->cur_altsetting; 1122 int i; 1123 1124 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1125 usb_disable_endpoint(dev, 1126 alt->endpoint[i].desc.bEndpointAddress, 1127 reset_hardware); 1128 } 1129 } 1130 1131 /** 1132 * usb_disable_device - Disable all the endpoints for a USB device 1133 * @dev: the device whose endpoints are being disabled 1134 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1135 * 1136 * Disables all the device's endpoints, potentially including endpoint 0. 1137 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1138 * pending urbs) and usbcore state for the interfaces, so that usbcore 1139 * must usb_set_configuration() before any interfaces could be used. 1140 */ 1141 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1142 { 1143 int i; 1144 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1145 1146 /* getting rid of interfaces will disconnect 1147 * any drivers bound to them (a key side effect) 1148 */ 1149 if (dev->actconfig) { 1150 /* 1151 * FIXME: In order to avoid self-deadlock involving the 1152 * bandwidth_mutex, we have to mark all the interfaces 1153 * before unregistering any of them. 1154 */ 1155 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) 1156 dev->actconfig->interface[i]->unregistering = 1; 1157 1158 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1159 struct usb_interface *interface; 1160 1161 /* remove this interface if it has been registered */ 1162 interface = dev->actconfig->interface[i]; 1163 if (!device_is_registered(&interface->dev)) 1164 continue; 1165 dev_dbg(&dev->dev, "unregistering interface %s\n", 1166 dev_name(&interface->dev)); 1167 remove_intf_ep_devs(interface); 1168 device_del(&interface->dev); 1169 } 1170 1171 /* Now that the interfaces are unbound, nobody should 1172 * try to access them. 1173 */ 1174 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1175 put_device(&dev->actconfig->interface[i]->dev); 1176 dev->actconfig->interface[i] = NULL; 1177 } 1178 1179 if (dev->usb2_hw_lpm_enabled == 1) 1180 usb_set_usb2_hardware_lpm(dev, 0); 1181 usb_unlocked_disable_lpm(dev); 1182 usb_disable_ltm(dev); 1183 1184 dev->actconfig = NULL; 1185 if (dev->state == USB_STATE_CONFIGURED) 1186 usb_set_device_state(dev, USB_STATE_ADDRESS); 1187 } 1188 1189 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__, 1190 skip_ep0 ? "non-ep0" : "all"); 1191 if (hcd->driver->check_bandwidth) { 1192 /* First pass: Cancel URBs, leave endpoint pointers intact. */ 1193 for (i = skip_ep0; i < 16; ++i) { 1194 usb_disable_endpoint(dev, i, false); 1195 usb_disable_endpoint(dev, i + USB_DIR_IN, false); 1196 } 1197 /* Remove endpoints from the host controller internal state */ 1198 mutex_lock(hcd->bandwidth_mutex); 1199 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1200 mutex_unlock(hcd->bandwidth_mutex); 1201 /* Second pass: remove endpoint pointers */ 1202 } 1203 for (i = skip_ep0; i < 16; ++i) { 1204 usb_disable_endpoint(dev, i, true); 1205 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1206 } 1207 } 1208 1209 /** 1210 * usb_enable_endpoint - Enable an endpoint for USB communications 1211 * @dev: the device whose interface is being enabled 1212 * @ep: the endpoint 1213 * @reset_ep: flag to reset the endpoint state 1214 * 1215 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers. 1216 * For control endpoints, both the input and output sides are handled. 1217 */ 1218 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep, 1219 bool reset_ep) 1220 { 1221 int epnum = usb_endpoint_num(&ep->desc); 1222 int is_out = usb_endpoint_dir_out(&ep->desc); 1223 int is_control = usb_endpoint_xfer_control(&ep->desc); 1224 1225 if (reset_ep) 1226 usb_hcd_reset_endpoint(dev, ep); 1227 if (is_out || is_control) 1228 dev->ep_out[epnum] = ep; 1229 if (!is_out || is_control) 1230 dev->ep_in[epnum] = ep; 1231 ep->enabled = 1; 1232 } 1233 1234 /** 1235 * usb_enable_interface - Enable all the endpoints for an interface 1236 * @dev: the device whose interface is being enabled 1237 * @intf: pointer to the interface descriptor 1238 * @reset_eps: flag to reset the endpoints' state 1239 * 1240 * Enables all the endpoints for the interface's current altsetting. 1241 */ 1242 void usb_enable_interface(struct usb_device *dev, 1243 struct usb_interface *intf, bool reset_eps) 1244 { 1245 struct usb_host_interface *alt = intf->cur_altsetting; 1246 int i; 1247 1248 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1249 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps); 1250 } 1251 1252 /** 1253 * usb_set_interface - Makes a particular alternate setting be current 1254 * @dev: the device whose interface is being updated 1255 * @interface: the interface being updated 1256 * @alternate: the setting being chosen. 1257 * Context: !in_interrupt () 1258 * 1259 * This is used to enable data transfers on interfaces that may not 1260 * be enabled by default. Not all devices support such configurability. 1261 * Only the driver bound to an interface may change its setting. 1262 * 1263 * Within any given configuration, each interface may have several 1264 * alternative settings. These are often used to control levels of 1265 * bandwidth consumption. For example, the default setting for a high 1266 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1267 * while interrupt transfers of up to 3KBytes per microframe are legal. 1268 * Also, isochronous endpoints may never be part of an 1269 * interface's default setting. To access such bandwidth, alternate 1270 * interface settings must be made current. 1271 * 1272 * Note that in the Linux USB subsystem, bandwidth associated with 1273 * an endpoint in a given alternate setting is not reserved until an URB 1274 * is submitted that needs that bandwidth. Some other operating systems 1275 * allocate bandwidth early, when a configuration is chosen. 1276 * 1277 * This call is synchronous, and may not be used in an interrupt context. 1278 * Also, drivers must not change altsettings while urbs are scheduled for 1279 * endpoints in that interface; all such urbs must first be completed 1280 * (perhaps forced by unlinking). 1281 * 1282 * Return: Zero on success, or else the status code returned by the 1283 * underlying usb_control_msg() call. 1284 */ 1285 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1286 { 1287 struct usb_interface *iface; 1288 struct usb_host_interface *alt; 1289 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1290 int i, ret, manual = 0; 1291 unsigned int epaddr; 1292 unsigned int pipe; 1293 1294 if (dev->state == USB_STATE_SUSPENDED) 1295 return -EHOSTUNREACH; 1296 1297 iface = usb_ifnum_to_if(dev, interface); 1298 if (!iface) { 1299 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1300 interface); 1301 return -EINVAL; 1302 } 1303 if (iface->unregistering) 1304 return -ENODEV; 1305 1306 alt = usb_altnum_to_altsetting(iface, alternate); 1307 if (!alt) { 1308 dev_warn(&dev->dev, "selecting invalid altsetting %d\n", 1309 alternate); 1310 return -EINVAL; 1311 } 1312 1313 /* Make sure we have enough bandwidth for this alternate interface. 1314 * Remove the current alt setting and add the new alt setting. 1315 */ 1316 mutex_lock(hcd->bandwidth_mutex); 1317 /* Disable LPM, and re-enable it once the new alt setting is installed, 1318 * so that the xHCI driver can recalculate the U1/U2 timeouts. 1319 */ 1320 if (usb_disable_lpm(dev)) { 1321 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__); 1322 mutex_unlock(hcd->bandwidth_mutex); 1323 return -ENOMEM; 1324 } 1325 /* Changing alt-setting also frees any allocated streams */ 1326 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++) 1327 iface->cur_altsetting->endpoint[i].streams = 0; 1328 1329 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt); 1330 if (ret < 0) { 1331 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n", 1332 alternate); 1333 usb_enable_lpm(dev); 1334 mutex_unlock(hcd->bandwidth_mutex); 1335 return ret; 1336 } 1337 1338 if (dev->quirks & USB_QUIRK_NO_SET_INTF) 1339 ret = -EPIPE; 1340 else 1341 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1342 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1343 alternate, interface, NULL, 0, 5000); 1344 1345 /* 9.4.10 says devices don't need this and are free to STALL the 1346 * request if the interface only has one alternate setting. 1347 */ 1348 if (ret == -EPIPE && iface->num_altsetting == 1) { 1349 dev_dbg(&dev->dev, 1350 "manual set_interface for iface %d, alt %d\n", 1351 interface, alternate); 1352 manual = 1; 1353 } else if (ret < 0) { 1354 /* Re-instate the old alt setting */ 1355 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting); 1356 usb_enable_lpm(dev); 1357 mutex_unlock(hcd->bandwidth_mutex); 1358 return ret; 1359 } 1360 mutex_unlock(hcd->bandwidth_mutex); 1361 1362 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1363 * when they implement async or easily-killable versions of this or 1364 * other "should-be-internal" functions (like clear_halt). 1365 * should hcd+usbcore postprocess control requests? 1366 */ 1367 1368 /* prevent submissions using previous endpoint settings */ 1369 if (iface->cur_altsetting != alt) { 1370 remove_intf_ep_devs(iface); 1371 usb_remove_sysfs_intf_files(iface); 1372 } 1373 usb_disable_interface(dev, iface, true); 1374 1375 iface->cur_altsetting = alt; 1376 1377 /* Now that the interface is installed, re-enable LPM. */ 1378 usb_unlocked_enable_lpm(dev); 1379 1380 /* If the interface only has one altsetting and the device didn't 1381 * accept the request, we attempt to carry out the equivalent action 1382 * by manually clearing the HALT feature for each endpoint in the 1383 * new altsetting. 1384 */ 1385 if (manual) { 1386 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1387 epaddr = alt->endpoint[i].desc.bEndpointAddress; 1388 pipe = __create_pipe(dev, 1389 USB_ENDPOINT_NUMBER_MASK & epaddr) | 1390 (usb_endpoint_out(epaddr) ? 1391 USB_DIR_OUT : USB_DIR_IN); 1392 1393 usb_clear_halt(dev, pipe); 1394 } 1395 } 1396 1397 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1398 * 1399 * Note: 1400 * Despite EP0 is always present in all interfaces/AS, the list of 1401 * endpoints from the descriptor does not contain EP0. Due to its 1402 * omnipresence one might expect EP0 being considered "affected" by 1403 * any SetInterface request and hence assume toggles need to be reset. 1404 * However, EP0 toggles are re-synced for every individual transfer 1405 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1406 * (Likewise, EP0 never "halts" on well designed devices.) 1407 */ 1408 usb_enable_interface(dev, iface, true); 1409 if (device_is_registered(&iface->dev)) { 1410 usb_create_sysfs_intf_files(iface); 1411 create_intf_ep_devs(iface); 1412 } 1413 return 0; 1414 } 1415 EXPORT_SYMBOL_GPL(usb_set_interface); 1416 1417 /** 1418 * usb_reset_configuration - lightweight device reset 1419 * @dev: the device whose configuration is being reset 1420 * 1421 * This issues a standard SET_CONFIGURATION request to the device using 1422 * the current configuration. The effect is to reset most USB-related 1423 * state in the device, including interface altsettings (reset to zero), 1424 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt 1425 * endpoints). Other usbcore state is unchanged, including bindings of 1426 * usb device drivers to interfaces. 1427 * 1428 * Because this affects multiple interfaces, avoid using this with composite 1429 * (multi-interface) devices. Instead, the driver for each interface may 1430 * use usb_set_interface() on the interfaces it claims. Be careful though; 1431 * some devices don't support the SET_INTERFACE request, and others won't 1432 * reset all the interface state (notably endpoint state). Resetting the whole 1433 * configuration would affect other drivers' interfaces. 1434 * 1435 * The caller must own the device lock. 1436 * 1437 * Return: Zero on success, else a negative error code. 1438 */ 1439 int usb_reset_configuration(struct usb_device *dev) 1440 { 1441 int i, retval; 1442 struct usb_host_config *config; 1443 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1444 1445 if (dev->state == USB_STATE_SUSPENDED) 1446 return -EHOSTUNREACH; 1447 1448 /* caller must have locked the device and must own 1449 * the usb bus readlock (so driver bindings are stable); 1450 * calls during probe() are fine 1451 */ 1452 1453 for (i = 1; i < 16; ++i) { 1454 usb_disable_endpoint(dev, i, true); 1455 usb_disable_endpoint(dev, i + USB_DIR_IN, true); 1456 } 1457 1458 config = dev->actconfig; 1459 retval = 0; 1460 mutex_lock(hcd->bandwidth_mutex); 1461 /* Disable LPM, and re-enable it once the configuration is reset, so 1462 * that the xHCI driver can recalculate the U1/U2 timeouts. 1463 */ 1464 if (usb_disable_lpm(dev)) { 1465 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__); 1466 mutex_unlock(hcd->bandwidth_mutex); 1467 return -ENOMEM; 1468 } 1469 /* Make sure we have enough bandwidth for each alternate setting 0 */ 1470 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1471 struct usb_interface *intf = config->interface[i]; 1472 struct usb_host_interface *alt; 1473 1474 alt = usb_altnum_to_altsetting(intf, 0); 1475 if (!alt) 1476 alt = &intf->altsetting[0]; 1477 if (alt != intf->cur_altsetting) 1478 retval = usb_hcd_alloc_bandwidth(dev, NULL, 1479 intf->cur_altsetting, alt); 1480 if (retval < 0) 1481 break; 1482 } 1483 /* If not, reinstate the old alternate settings */ 1484 if (retval < 0) { 1485 reset_old_alts: 1486 for (i--; i >= 0; i--) { 1487 struct usb_interface *intf = config->interface[i]; 1488 struct usb_host_interface *alt; 1489 1490 alt = usb_altnum_to_altsetting(intf, 0); 1491 if (!alt) 1492 alt = &intf->altsetting[0]; 1493 if (alt != intf->cur_altsetting) 1494 usb_hcd_alloc_bandwidth(dev, NULL, 1495 alt, intf->cur_altsetting); 1496 } 1497 usb_enable_lpm(dev); 1498 mutex_unlock(hcd->bandwidth_mutex); 1499 return retval; 1500 } 1501 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1502 USB_REQ_SET_CONFIGURATION, 0, 1503 config->desc.bConfigurationValue, 0, 1504 NULL, 0, USB_CTRL_SET_TIMEOUT); 1505 if (retval < 0) 1506 goto reset_old_alts; 1507 mutex_unlock(hcd->bandwidth_mutex); 1508 1509 /* re-init hc/hcd interface/endpoint state */ 1510 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1511 struct usb_interface *intf = config->interface[i]; 1512 struct usb_host_interface *alt; 1513 1514 alt = usb_altnum_to_altsetting(intf, 0); 1515 1516 /* No altsetting 0? We'll assume the first altsetting. 1517 * We could use a GetInterface call, but if a device is 1518 * so non-compliant that it doesn't have altsetting 0 1519 * then I wouldn't trust its reply anyway. 1520 */ 1521 if (!alt) 1522 alt = &intf->altsetting[0]; 1523 1524 if (alt != intf->cur_altsetting) { 1525 remove_intf_ep_devs(intf); 1526 usb_remove_sysfs_intf_files(intf); 1527 } 1528 intf->cur_altsetting = alt; 1529 usb_enable_interface(dev, intf, true); 1530 if (device_is_registered(&intf->dev)) { 1531 usb_create_sysfs_intf_files(intf); 1532 create_intf_ep_devs(intf); 1533 } 1534 } 1535 /* Now that the interfaces are installed, re-enable LPM. */ 1536 usb_unlocked_enable_lpm(dev); 1537 return 0; 1538 } 1539 EXPORT_SYMBOL_GPL(usb_reset_configuration); 1540 1541 static void usb_release_interface(struct device *dev) 1542 { 1543 struct usb_interface *intf = to_usb_interface(dev); 1544 struct usb_interface_cache *intfc = 1545 altsetting_to_usb_interface_cache(intf->altsetting); 1546 1547 kref_put(&intfc->ref, usb_release_interface_cache); 1548 usb_put_dev(interface_to_usbdev(intf)); 1549 kfree(intf); 1550 } 1551 1552 /* 1553 * usb_deauthorize_interface - deauthorize an USB interface 1554 * 1555 * @intf: USB interface structure 1556 */ 1557 void usb_deauthorize_interface(struct usb_interface *intf) 1558 { 1559 struct device *dev = &intf->dev; 1560 1561 device_lock(dev->parent); 1562 1563 if (intf->authorized) { 1564 device_lock(dev); 1565 intf->authorized = 0; 1566 device_unlock(dev); 1567 1568 usb_forced_unbind_intf(intf); 1569 } 1570 1571 device_unlock(dev->parent); 1572 } 1573 1574 /* 1575 * usb_authorize_interface - authorize an USB interface 1576 * 1577 * @intf: USB interface structure 1578 */ 1579 void usb_authorize_interface(struct usb_interface *intf) 1580 { 1581 struct device *dev = &intf->dev; 1582 1583 if (!intf->authorized) { 1584 device_lock(dev); 1585 intf->authorized = 1; /* authorize interface */ 1586 device_unlock(dev); 1587 } 1588 } 1589 1590 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1591 { 1592 struct usb_device *usb_dev; 1593 struct usb_interface *intf; 1594 struct usb_host_interface *alt; 1595 1596 intf = to_usb_interface(dev); 1597 usb_dev = interface_to_usbdev(intf); 1598 alt = intf->cur_altsetting; 1599 1600 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1601 alt->desc.bInterfaceClass, 1602 alt->desc.bInterfaceSubClass, 1603 alt->desc.bInterfaceProtocol)) 1604 return -ENOMEM; 1605 1606 if (add_uevent_var(env, 1607 "MODALIAS=usb:" 1608 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X", 1609 le16_to_cpu(usb_dev->descriptor.idVendor), 1610 le16_to_cpu(usb_dev->descriptor.idProduct), 1611 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1612 usb_dev->descriptor.bDeviceClass, 1613 usb_dev->descriptor.bDeviceSubClass, 1614 usb_dev->descriptor.bDeviceProtocol, 1615 alt->desc.bInterfaceClass, 1616 alt->desc.bInterfaceSubClass, 1617 alt->desc.bInterfaceProtocol, 1618 alt->desc.bInterfaceNumber)) 1619 return -ENOMEM; 1620 1621 return 0; 1622 } 1623 1624 struct device_type usb_if_device_type = { 1625 .name = "usb_interface", 1626 .release = usb_release_interface, 1627 .uevent = usb_if_uevent, 1628 }; 1629 1630 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1631 struct usb_host_config *config, 1632 u8 inum) 1633 { 1634 struct usb_interface_assoc_descriptor *retval = NULL; 1635 struct usb_interface_assoc_descriptor *intf_assoc; 1636 int first_intf; 1637 int last_intf; 1638 int i; 1639 1640 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1641 intf_assoc = config->intf_assoc[i]; 1642 if (intf_assoc->bInterfaceCount == 0) 1643 continue; 1644 1645 first_intf = intf_assoc->bFirstInterface; 1646 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1647 if (inum >= first_intf && inum <= last_intf) { 1648 if (!retval) 1649 retval = intf_assoc; 1650 else 1651 dev_err(&dev->dev, "Interface #%d referenced" 1652 " by multiple IADs\n", inum); 1653 } 1654 } 1655 1656 return retval; 1657 } 1658 1659 1660 /* 1661 * Internal function to queue a device reset 1662 * See usb_queue_reset_device() for more details 1663 */ 1664 static void __usb_queue_reset_device(struct work_struct *ws) 1665 { 1666 int rc; 1667 struct usb_interface *iface = 1668 container_of(ws, struct usb_interface, reset_ws); 1669 struct usb_device *udev = interface_to_usbdev(iface); 1670 1671 rc = usb_lock_device_for_reset(udev, iface); 1672 if (rc >= 0) { 1673 usb_reset_device(udev); 1674 usb_unlock_device(udev); 1675 } 1676 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */ 1677 } 1678 1679 1680 /* 1681 * usb_set_configuration - Makes a particular device setting be current 1682 * @dev: the device whose configuration is being updated 1683 * @configuration: the configuration being chosen. 1684 * Context: !in_interrupt(), caller owns the device lock 1685 * 1686 * This is used to enable non-default device modes. Not all devices 1687 * use this kind of configurability; many devices only have one 1688 * configuration. 1689 * 1690 * @configuration is the value of the configuration to be installed. 1691 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1692 * must be non-zero; a value of zero indicates that the device in 1693 * unconfigured. However some devices erroneously use 0 as one of their 1694 * configuration values. To help manage such devices, this routine will 1695 * accept @configuration = -1 as indicating the device should be put in 1696 * an unconfigured state. 1697 * 1698 * USB device configurations may affect Linux interoperability, 1699 * power consumption and the functionality available. For example, 1700 * the default configuration is limited to using 100mA of bus power, 1701 * so that when certain device functionality requires more power, 1702 * and the device is bus powered, that functionality should be in some 1703 * non-default device configuration. Other device modes may also be 1704 * reflected as configuration options, such as whether two ISDN 1705 * channels are available independently; and choosing between open 1706 * standard device protocols (like CDC) or proprietary ones. 1707 * 1708 * Note that a non-authorized device (dev->authorized == 0) will only 1709 * be put in unconfigured mode. 1710 * 1711 * Note that USB has an additional level of device configurability, 1712 * associated with interfaces. That configurability is accessed using 1713 * usb_set_interface(). 1714 * 1715 * This call is synchronous. The calling context must be able to sleep, 1716 * must own the device lock, and must not hold the driver model's USB 1717 * bus mutex; usb interface driver probe() methods cannot use this routine. 1718 * 1719 * Returns zero on success, or else the status code returned by the 1720 * underlying call that failed. On successful completion, each interface 1721 * in the original device configuration has been destroyed, and each one 1722 * in the new configuration has been probed by all relevant usb device 1723 * drivers currently known to the kernel. 1724 */ 1725 int usb_set_configuration(struct usb_device *dev, int configuration) 1726 { 1727 int i, ret; 1728 struct usb_host_config *cp = NULL; 1729 struct usb_interface **new_interfaces = NULL; 1730 struct usb_hcd *hcd = bus_to_hcd(dev->bus); 1731 int n, nintf; 1732 1733 if (dev->authorized == 0 || configuration == -1) 1734 configuration = 0; 1735 else { 1736 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1737 if (dev->config[i].desc.bConfigurationValue == 1738 configuration) { 1739 cp = &dev->config[i]; 1740 break; 1741 } 1742 } 1743 } 1744 if ((!cp && configuration != 0)) 1745 return -EINVAL; 1746 1747 /* The USB spec says configuration 0 means unconfigured. 1748 * But if a device includes a configuration numbered 0, 1749 * we will accept it as a correctly configured state. 1750 * Use -1 if you really want to unconfigure the device. 1751 */ 1752 if (cp && configuration == 0) 1753 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1754 1755 /* Allocate memory for new interfaces before doing anything else, 1756 * so that if we run out then nothing will have changed. */ 1757 n = nintf = 0; 1758 if (cp) { 1759 nintf = cp->desc.bNumInterfaces; 1760 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1761 GFP_NOIO); 1762 if (!new_interfaces) { 1763 dev_err(&dev->dev, "Out of memory\n"); 1764 return -ENOMEM; 1765 } 1766 1767 for (; n < nintf; ++n) { 1768 new_interfaces[n] = kzalloc( 1769 sizeof(struct usb_interface), 1770 GFP_NOIO); 1771 if (!new_interfaces[n]) { 1772 dev_err(&dev->dev, "Out of memory\n"); 1773 ret = -ENOMEM; 1774 free_interfaces: 1775 while (--n >= 0) 1776 kfree(new_interfaces[n]); 1777 kfree(new_interfaces); 1778 return ret; 1779 } 1780 } 1781 1782 i = dev->bus_mA - usb_get_max_power(dev, cp); 1783 if (i < 0) 1784 dev_warn(&dev->dev, "new config #%d exceeds power " 1785 "limit by %dmA\n", 1786 configuration, -i); 1787 } 1788 1789 /* Wake up the device so we can send it the Set-Config request */ 1790 ret = usb_autoresume_device(dev); 1791 if (ret) 1792 goto free_interfaces; 1793 1794 /* if it's already configured, clear out old state first. 1795 * getting rid of old interfaces means unbinding their drivers. 1796 */ 1797 if (dev->state != USB_STATE_ADDRESS) 1798 usb_disable_device(dev, 1); /* Skip ep0 */ 1799 1800 /* Get rid of pending async Set-Config requests for this device */ 1801 cancel_async_set_config(dev); 1802 1803 /* Make sure we have bandwidth (and available HCD resources) for this 1804 * configuration. Remove endpoints from the schedule if we're dropping 1805 * this configuration to set configuration 0. After this point, the 1806 * host controller will not allow submissions to dropped endpoints. If 1807 * this call fails, the device state is unchanged. 1808 */ 1809 mutex_lock(hcd->bandwidth_mutex); 1810 /* Disable LPM, and re-enable it once the new configuration is 1811 * installed, so that the xHCI driver can recalculate the U1/U2 1812 * timeouts. 1813 */ 1814 if (dev->actconfig && usb_disable_lpm(dev)) { 1815 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__); 1816 mutex_unlock(hcd->bandwidth_mutex); 1817 ret = -ENOMEM; 1818 goto free_interfaces; 1819 } 1820 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL); 1821 if (ret < 0) { 1822 if (dev->actconfig) 1823 usb_enable_lpm(dev); 1824 mutex_unlock(hcd->bandwidth_mutex); 1825 usb_autosuspend_device(dev); 1826 goto free_interfaces; 1827 } 1828 1829 /* 1830 * Initialize the new interface structures and the 1831 * hc/hcd/usbcore interface/endpoint state. 1832 */ 1833 for (i = 0; i < nintf; ++i) { 1834 struct usb_interface_cache *intfc; 1835 struct usb_interface *intf; 1836 struct usb_host_interface *alt; 1837 1838 cp->interface[i] = intf = new_interfaces[i]; 1839 intfc = cp->intf_cache[i]; 1840 intf->altsetting = intfc->altsetting; 1841 intf->num_altsetting = intfc->num_altsetting; 1842 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd); 1843 kref_get(&intfc->ref); 1844 1845 alt = usb_altnum_to_altsetting(intf, 0); 1846 1847 /* No altsetting 0? We'll assume the first altsetting. 1848 * We could use a GetInterface call, but if a device is 1849 * so non-compliant that it doesn't have altsetting 0 1850 * then I wouldn't trust its reply anyway. 1851 */ 1852 if (!alt) 1853 alt = &intf->altsetting[0]; 1854 1855 intf->intf_assoc = 1856 find_iad(dev, cp, alt->desc.bInterfaceNumber); 1857 intf->cur_altsetting = alt; 1858 usb_enable_interface(dev, intf, true); 1859 intf->dev.parent = &dev->dev; 1860 intf->dev.driver = NULL; 1861 intf->dev.bus = &usb_bus_type; 1862 intf->dev.type = &usb_if_device_type; 1863 intf->dev.groups = usb_interface_groups; 1864 intf->dev.dma_mask = dev->dev.dma_mask; 1865 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device); 1866 intf->minor = -1; 1867 device_initialize(&intf->dev); 1868 pm_runtime_no_callbacks(&intf->dev); 1869 dev_set_name(&intf->dev, "%d-%s:%d.%d", 1870 dev->bus->busnum, dev->devpath, 1871 configuration, alt->desc.bInterfaceNumber); 1872 usb_get_dev(dev); 1873 } 1874 kfree(new_interfaces); 1875 1876 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1877 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1878 NULL, 0, USB_CTRL_SET_TIMEOUT); 1879 if (ret < 0 && cp) { 1880 /* 1881 * All the old state is gone, so what else can we do? 1882 * The device is probably useless now anyway. 1883 */ 1884 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL); 1885 for (i = 0; i < nintf; ++i) { 1886 usb_disable_interface(dev, cp->interface[i], true); 1887 put_device(&cp->interface[i]->dev); 1888 cp->interface[i] = NULL; 1889 } 1890 cp = NULL; 1891 } 1892 1893 dev->actconfig = cp; 1894 mutex_unlock(hcd->bandwidth_mutex); 1895 1896 if (!cp) { 1897 usb_set_device_state(dev, USB_STATE_ADDRESS); 1898 1899 /* Leave LPM disabled while the device is unconfigured. */ 1900 usb_autosuspend_device(dev); 1901 return ret; 1902 } 1903 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1904 1905 if (cp->string == NULL && 1906 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS)) 1907 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1908 1909 /* Now that the interfaces are installed, re-enable LPM. */ 1910 usb_unlocked_enable_lpm(dev); 1911 /* Enable LTM if it was turned off by usb_disable_device. */ 1912 usb_enable_ltm(dev); 1913 1914 /* Now that all the interfaces are set up, register them 1915 * to trigger binding of drivers to interfaces. probe() 1916 * routines may install different altsettings and may 1917 * claim() any interfaces not yet bound. Many class drivers 1918 * need that: CDC, audio, video, etc. 1919 */ 1920 for (i = 0; i < nintf; ++i) { 1921 struct usb_interface *intf = cp->interface[i]; 1922 1923 dev_dbg(&dev->dev, 1924 "adding %s (config #%d, interface %d)\n", 1925 dev_name(&intf->dev), configuration, 1926 intf->cur_altsetting->desc.bInterfaceNumber); 1927 device_enable_async_suspend(&intf->dev); 1928 ret = device_add(&intf->dev); 1929 if (ret != 0) { 1930 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1931 dev_name(&intf->dev), ret); 1932 continue; 1933 } 1934 create_intf_ep_devs(intf); 1935 } 1936 1937 usb_autosuspend_device(dev); 1938 return 0; 1939 } 1940 EXPORT_SYMBOL_GPL(usb_set_configuration); 1941 1942 static LIST_HEAD(set_config_list); 1943 static DEFINE_SPINLOCK(set_config_lock); 1944 1945 struct set_config_request { 1946 struct usb_device *udev; 1947 int config; 1948 struct work_struct work; 1949 struct list_head node; 1950 }; 1951 1952 /* Worker routine for usb_driver_set_configuration() */ 1953 static void driver_set_config_work(struct work_struct *work) 1954 { 1955 struct set_config_request *req = 1956 container_of(work, struct set_config_request, work); 1957 struct usb_device *udev = req->udev; 1958 1959 usb_lock_device(udev); 1960 spin_lock(&set_config_lock); 1961 list_del(&req->node); 1962 spin_unlock(&set_config_lock); 1963 1964 if (req->config >= -1) /* Is req still valid? */ 1965 usb_set_configuration(udev, req->config); 1966 usb_unlock_device(udev); 1967 usb_put_dev(udev); 1968 kfree(req); 1969 } 1970 1971 /* Cancel pending Set-Config requests for a device whose configuration 1972 * was just changed 1973 */ 1974 static void cancel_async_set_config(struct usb_device *udev) 1975 { 1976 struct set_config_request *req; 1977 1978 spin_lock(&set_config_lock); 1979 list_for_each_entry(req, &set_config_list, node) { 1980 if (req->udev == udev) 1981 req->config = -999; /* Mark as cancelled */ 1982 } 1983 spin_unlock(&set_config_lock); 1984 } 1985 1986 /** 1987 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1988 * @udev: the device whose configuration is being updated 1989 * @config: the configuration being chosen. 1990 * Context: In process context, must be able to sleep 1991 * 1992 * Device interface drivers are not allowed to change device configurations. 1993 * This is because changing configurations will destroy the interface the 1994 * driver is bound to and create new ones; it would be like a floppy-disk 1995 * driver telling the computer to replace the floppy-disk drive with a 1996 * tape drive! 1997 * 1998 * Still, in certain specialized circumstances the need may arise. This 1999 * routine gets around the normal restrictions by using a work thread to 2000 * submit the change-config request. 2001 * 2002 * Return: 0 if the request was successfully queued, error code otherwise. 2003 * The caller has no way to know whether the queued request will eventually 2004 * succeed. 2005 */ 2006 int usb_driver_set_configuration(struct usb_device *udev, int config) 2007 { 2008 struct set_config_request *req; 2009 2010 req = kmalloc(sizeof(*req), GFP_KERNEL); 2011 if (!req) 2012 return -ENOMEM; 2013 req->udev = udev; 2014 req->config = config; 2015 INIT_WORK(&req->work, driver_set_config_work); 2016 2017 spin_lock(&set_config_lock); 2018 list_add(&req->node, &set_config_list); 2019 spin_unlock(&set_config_lock); 2020 2021 usb_get_dev(udev); 2022 schedule_work(&req->work); 2023 return 0; 2024 } 2025 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 2026